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ABSTRACT 

In this paper, roundoff noise properties of fixed-point IIR poly-
nomial predictors (FIPPs) and polynomial-predictive 
differentiators (FIPPDs) are investigated. These filters are de-
signed by augmenting the corresponding FIR basis filters with 
magnitude response shaping feedbacks. Here we use ideally 
quantized coefficient (coefficient quantization error free) poly-
nomial FIR predictors (PFPs) or predictive differentiators 
(PPFDs) as basis filters. Also, sufficient conditions for design-
ing coefficient quantization error free direct form FIPPs are 
given for completeness, even though augmented FIR imple-
mentations of FIPPs and FIPPDs are preferred since they are 
coefficient quantization error free by their nature, and offer 
greater flexibility for magnitude response shaping without af-
fecting the desired group delay properties set forth by the un-
derlying PFP or PPFD. 

1. INTRODUCTION 

Finite calculation precision [1] may have a crucial effect on 
filter properties. This has been found to be the case with poly-
nomial FIR predictors (PFP) [2] and polynomial-predictive 
FIR differentiators (PPFD). There exist design methods to pro-
duce PFPs and PPFDs, which provide for exact prediction 
and/or differentiation with short coefficient word lengths, [3], 
[4], respectively. Though these filters function exactly as de-
sired even under coefficient quantization to six bits, for many 
applications it is desirable to be able to shape their frequency 
responses. This can be done efficiently by applying a simple 
feedback extension [5,6,7] which shapes the frequency re-
sponse but does not affect the prediction and/or differentiation 
properties. If the FIPP or FIPPD is implemented using a direct 
form IIR structure with finite computation precision, the IIR 
extension may not be exact, and the prediction and/or differen-
tiation properties are destroyed even if the FIRs were originally 
quantization error free. In this paper, the sufficient conditions 
for ideal IIR coefficient quantization are given for the filter 
length N = 2, so that the desired properties are exactly pre-
served under direct form IIR coefficient quantization. On the 
other hand, the augmented FIR structure, Figure 1, by its nature 
preserves the prediction and/or differentiation properties even 
under feedback coefficient quantization, and is thus preferred 
over the direct form IIR implementation. A few magnitude re-
sponses of the designed FIPPs are shown, roundoff noise ef-
fects are analyzed and a cure to roundoff noise effects is pro-
posed. 

 

Figure 1. Structure of the augmented FIR [6] of length N = 2 
with one error feedback installed with input signal u(n), basis 
FIR coefficient vector h = [h(1) h(2)], feedback coefficient 

vector b = [b(1) b(2)], quantization error feedback coefficient 
vector e = [e(1) e(2)], hat denoting an estimate, squares Qi, 

i = 1, 2, 3, denoting quantizers, and prediction step p. 

For many control applications it would be highly beneficial 
if control loop delays could be avoided, likewise in many sig-
nal processing applications, signal processing delays may be 
harmful. In these applications, polynomial predictors and pre-
dictive differentiators may be successfully applied to overcome 
or lessen the effects of the delays while also attenuating noise. 

In the examples in this paper, 8-bit two’s complement num-
ber system with magnitude truncation is used. Multiply-accu-
mulate (MAC) operations are calculated with 16-bit precision, 
and the results are truncated to 8 bits at the quantizers Qi, 
i = 1, 2, 3. A filter is considered ideally quantized if it exactly 
fulfills the design criteria even under coefficient quantization. 

In section 2, PFPs and PPFDs, and their ideal quantization 
design methods are shortly reviewed along with the augmented 
FIR structure. In section 3, direct form IIR implementations of 
FIPPs and FIPPDs are considered, and sufficient conditions for 
ideally quantized designs of direct form IIR implementations 
are given. In section 4, augmented FIR implementation of 
FIPPs is described with examples, and their roundoff noise 
analysis is performed and a cure is proposed in section 5. The 
roundoff noise robust designs are overviewed in section 6, and 
section 7 concludes the paper. 

2. PFPs, PPFDs, AND THE CORRESPONDING 
AUGMENTED FILTER STRUCTURES 

2.1. Polynomial FIR Predictors 

PFPs, derived in [8], assume a low-degree polynomial input 
signal contaminated by white Gaussian noise. Filter output at a 
discrete time instant n, is defined to be a p-step-ahead predicted 
input,  
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where u(n) is input signal sample, h(k) are filter coefficients, N 
is filter length, and p is prediction step. After providing for ex-
act prediction, the rest of the degrees of freedom are used to 
minimize the white noise gain, 
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A set of linear constraints can be derived from the definition 
of the filter output (1) [2]: 
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The constraints (3) give the prediction of the polynomial de-
grees 0, …, I, and from them can closed form solutions for the 
FIR coefficients for low-degree polynomial input signals be 
solved by the method of Lagrange multipliers [9]. The closed 
form solutions for FIR coefficients for the 1st, 2nd, and 3rd de-
gree polynomial input signals can be found in [8]. 

2.2. Polynomial-Predictive FIR Differentiators 

PPFDs are derived in the similar way as the PFPs. For the 
PPFDs, the filter input-output relation is written as [5,7] 

 ( ) ( ) ( )∑
=

+−=+
N

k

knukhpnu
1

1�   (4) 

where the dot denotes time derivative. The linear constraints on 
the filter coefficients are now given by [5] 
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The closed form solution for FIR coefficients for the second-
degree polynomial input signals is obtained from the con-
straints (5) and is given in [5].  

It is worth noting that, for example, the coefficients of the 
first-degree p = 1 filter of length N = 2 and second-degree, 
p = 1, N = 3, are still exact if quantized to six bits or more for 
both PFPs and PPFDs, but the noise gains (2) of these filters 
are impractically high. Since these filters are coefficient quan-
tization error free by their nature, they are good basis filters for 
the feedback extension [6] which relieves the noise gain prob-
lem. Otherwise, longer filters are to be used for achieving ac-
ceptable noise gains, and the method described in [3,4] is to be 
used to obtain correctly functioning fixed-point coefficient fil-
ters. 

2.3. Ideal FIR Coefficient Quantization 

There exists methods for designing ideally quantized-coeffi-
cient PFPs [3] and PPFDs [4] that function exactly correctly in 
short word length environments. The method is based on find-
ing quantized filter coefficients that exactly fulfill the con-
straints (3), or (5) through a search algorithm. As the con-
straints (3), or (5), will be exactly satisfied, the prediction step p 
at zero frequency is exactly preserved in coefficient quantiza-
tion, likewise is the unity magnitude gain at zero frequency. All 
thus designed filters are natural choices for basis filters for 
fixed-point IIR extension since their desired properties are not 
affected by coefficient quantization. 

2.4. Augmented PFPs and PPFDs 

To meet design specifications, which require polynomial signal 
prediction and/or differentiation and good noise attenuation, 
would require PFPs or PPFDs of the length of the order of sev-
eral tens of taps. Also, it is not even possible to design very 
long, e.g. N = 100, ideally quantized coefficient PFPs or 
PPFDs since the quantized coefficients of long filters tend to 
zero, and also, designing very long ideally quantized PFPs and 
PPFDs is computationally difficult. Shaping the magnitude re-
sponse of an FIR filter with desired group delay properties is 
possible via an IIR extension [6], shown in Figure 1 for the 
PFP. Effectively, the IIR extension in Figure 1 introduces a 
smoothing feedback to the FIR basis filter. The overall transfer 
function of a augmented FIR is given in [6] and yields the 
transfer function of a feedback augmented 2-tap FIR as [6] 
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with IIR coefficient vectors B = [B(1) B(2)] and 
A = [1 A(1) A(2)], FIR coefficient vector h = [h(1) h(2)], and 
feedback coefficient vector b = [b(1) b(2)]. Let us denote the 
corresponding quantized coefficient vectors as Bq, Aq, hq, and 
bq, respectively, and the quantized coefficient space by H. The 
transfer function (6) is used to calculate the magnitude 
response of the augmented structure. Since the feedback coeffi-
cients b of the augmented structure do not affect the desired 
prediction and/or differentiation properties but only shape the 
magnitude response, they can be freely selected from H to 
yield coefficient quantization error free FIPPs and FIPPDs as 
long as also 1 –  b(i)  ∈  H, i ∈ [1,2]. 

3. IDEALLY QUANTIZED COEFFICIENT 
DIRECT FORM FIPPs AND FIPPDs 

In this section, it is shown possible to design direct form IIR 
implementations of FIPPs and FIPPDs with quantized coeffi-
cients even though the direct form IIR implementations are ex-
tremely sensitive to coefficient quantization and the augmented 
FIR structure, Figure 1, offers much greater design possibili-
ties. Assume that the original basis FIR is such that quantiza-
tion of a given h does not affect it, h = hq. For preserving the 
exact prediction and/or differentiation properties, it is necessary 
that h remains untouched in FIR augmentation and coefficient 
quantization. Thereafter, quantizing B and A in (6) may obvi-
ously result in a situation in which (6) does not hold anymore, 
i.e., calculating b(1) and b(2) with given hq(1) and hq(2) from 
B(1), B(2), A(2), and A(3), does not necessarily yield unique 
values of b(1) and b(2). To guarantee that the direct form IIR 
implementation is coefficient quantization error free it is suffi-
cient to ensure that 

b(i), 1 – b(i), hq(i)b(j), hq(i)b(j)b(k) ∈ H, i, j, k ∈ [1,2]. (7) 

Thereafter, it is necessary to check the poles of the resulting 
filters to ensure that the poles remain sufficiently inside the unit 
circle. It turns out that it is possible to find such feedback coef-
ficient vectors b that (7) and thus (6) hold. For example, for di-
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rect form implementation of the first-degree, one-step-ahead 
predictive p = 1, FIPP of order N  = 2 with eight bit coefficients 
and maximum accuracy of 0.03125, i.e., with 5 fractional bits, 
there are 237 possible vectors b that fulfill the constraints (7) 
and have poles inside the unit circle. An exemplary filter with 
h = [2 –1], b = [0.9375 0.5] is shown in Figure 2. 
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Figure 2. Magnitude responses (a) and group delays (b) of a di-

rect form implementation of a roundoff error free one-step-
ahead predictive first-degree FIPP with the feedback coeffi-

cients b = [0.9375 0.5] (dash-dot), two augmented type FIPPs 
with b = [0.6875  –0.9375] (dotted) and b = [0.9375  –0.9375] 

(solid), along with their basis filter basis FIR h = [2  –1] 
(dashed). For exact implementation of these FIPPs, 8-bit coef-

ficient precision with 4 fraction bits is sufficient. 

4. AUGMENTED FIR FORM DESIGN OF FIPPs 
AND FIPPDs 

FIPP and FIPPD implementation using the augmented FIR 
structure, shown in Figure 1, offers design flexibility without 
having to be concerned with the coefficient quantization effects 
to the desired magnitude response and group delay properties. 
The magnitude response can be freely shaped using all possible 
feedback coefficients b such that b(i), 1 – b(i) ∈ H, i = 1, …, N, 
without the feedback coefficients affecting the desired group 
delay properties of the underlying FIR with the coefficients 
h = hq.  

In Figure 2, two examples of one-step-ahead predictive first-
degree FIPPs with the basis FIR of length N = 2, implemented 
using the augmented structure, Figure 1, with coefficient preci-
sion of eight bits, are shown with h = [2  –1] with 

b = [0.6875  –0.9375], and b = [0.9375  –0.9375]. The one 
with b = [0.6875  –0.9375] exhibits a little wider prediction 
band but less noise attenuation at high frequencies. The second 
example with b = [0.9375  –0.9375] exhibits narrow prediction 
band with low passband peak and good noise attenuation at 
high frequencies. It is worth stressing that filters in Figure 2 are 
quantization error free since now h(i), b(i), 1 – b(i) ∈ H, 
i ∈ [1,2], and the augmented FIR implementation is used. The 
FIR basis filter h = [2  –1] is also seen in Figure 2. 

5. ROUNDOFF NOISE OF AUGMENTED FORM 
FIPPs AND FIPPDs 

As we are concerned with quantized coefficient IIRs, it is 
necessary to perform the roundoff noise analysis [10] of the de-
signed IIRs. Even though the designed FIPPs and FIPPDs are 
coefficient error free, quantization of MAC outputs introduces 
roundoff noise into the system. 

Modeling quantization as noise added to each summation 
node, and assuming two’s complement arithmetic, the average 
roundoff noise power at each quantizer 2

0σ , and thereafter the 

total average roundoff noise power of a filter 2
eσ , can be ex-

pressed, respectively, as [10] 

 1222
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where ∆ is quantization step, j number of summation nodes, kj 
products feeding into the jth node, and gj(n) is impulse re-
sponse from the ith summation node to the filter output. Trans-
fer functions for calculating gj(n) , j = 1, 2, 3, in (10) for the 
FIPP structure seen in Figure 1 can be found in [11]. 

Individual noise power contributions Sj, j = 1, 2, 3, (10) of 
the summation nodes in Figure 1, for the three filters shown in 
Figure 2, are listed in Table 1 with coefficient scaling of 8 in 
order to make Sj converge. Thereafter, it is still to be observed 
that since h = [2 –1], and signals w1(n), w2(n) ∈  H, Q3 does not 
produce any roundoff error since now 
w1(n)h(1) + w2(n)h(2) ∈ H, taking that the dynamic range is not 
exceeded. Thus we can set S3 = 0 in (9). For quantizers Q1 and 
Q2, almost all quantizer inputs within the dynamic range do not 
belong to  H. 

 
Table 1. Roundoff noise contributions Sj, j = 1, 2, 3, (10) of the 
individual summation nodes in Figure 1 for the filters seen in 

Figure 2. For this h = [2  –1], S3 = 0 when calculating (9). 
b S1 S2 S3 

[0.9375 0.5] 0.077 0.016 1.032 
[0.6875  –0.9375] 0.081 0.016 1.00 
[0.9375 –0.9375] 0.080 0.016 1.00 

 
6. ROUNDOFF NOISE ROBUST FIPPs AND 

FIPPDs 

In FIPPs and FIPPDs, roundoff noise can be a problem but, at 
least to some extend, it can be reduced by error feedback 
[10,12]. Observing Si, i = 1,2,3, in Table 1, it is clear that the 
roundoff errors produced by Q1 are to be combated (since with 
h = [2 –1], Q3 does not contribute to the roundoff error). In Ta-
ble 2, a few examples showing that even short error feedbacks 



NORSIG 2000 
 

 222 
 

with unity gains, e = [1 1], or e = [1 0], c.f. Figure 1, can be 
successfully applied in augmented PFP design, although the 
feedback structure is generally very depended on the filter co-
efficients and input signal statistics. This selection of e is natu-
rally the simplest and least costly to implement, and thus em-
ployed here. In Table 2, the mean square errors (MSE) when 
using the exemplary filters in Figure 2 to filter a ramp 
u(n) = 0.01 n, n = –100, 99, …, 100, and a sinusoid 
u(n) = sin (0.01 n), n = 0, 1, …, 5π, are shown. To let the filters 
settle, the ramp is preceded by 200 samples of –1, and the sinu-
soid by 200 zero samples. Improvement with a very simple er-
ror feedback is approximately from 40 % to 90 % in half of the 
cases shown in Table 2. Performance of the FIPP h = [2  –1], 
b = [0.9375  –0.9375], is much improved with regard to both 
signals by simple error feedbacks. However, an improper error 
feedback may easily make filtering perform worse than with-
out error feedback. The filter h = [2 –1], b = [0.9375 0.5] bene-
fits from the error feedback when operating on a ramp signal, 
but cannot be improved when filtering a sinusoid. The filter 
h = [2  –1], b = [0.6875  –0.9375], cannot be improved by 
these types of error feedback for either of the signals. For prac-
tical applications rigorously designed error feedbacks should 
be applied [12]. 
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Figure 3. Effect of the installed error feedback on filtering the 
ramp with the FIPP h = [2  –1], b = [0.9375 0.5]. Shown are 

the desired one-step-predicted filter input (dash-dot), and filter 
outputs with (solid) and without (dotted) the 3-bit error feed-

back of length 1, c.f. Table 2. 

7. CONCLUSIONS 

In this paper, it has been shown that polynomial-predictive 
FIRs and polynomial-predictive FIR differentiators can be 
augmented to IIR filters with feedback extensions to shape 
their magnitude responses even in short word length fixed-
point environments. It is shown possible to design coefficient 
quantization error free polynomial-predictive and differentia-
tive IIRs. With the designed coefficient quantization error free 

filters, a roundoff noise problem is identified, and error feed-
back is shown effective in solving the roundoff noise problem. 
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Table 2. Mean square errors (MSE) when filtering a ramp or a sinusoid with the exemplary FIPPs seen in Figure 2 with and without 
error feedback installed over the quantizer Q1. Superscipt “1” denotes the minimum MSE found over the cases listed. 

Signal Ramp Sinusoid Ramp Sinusoid Ramp Ramp 
Feedback coefficients b = [0.9375  –0.9375] b = [0.9375  –0.9375] b = [0.9375 0.5] b = [0.9375 0.5] b = [0.6875  –0.9375] b = [0.6875  –0.9375] 
Error feedback length 1 2 1 1 or 2 1 or 2 1 or 2 

Error feedback coefficients e = [1 0] e = [1 1] e = [1 0] e = [1 0] or e = [1 1] e = [1 0] or e = [1 1] e = [1 0] or e = [1 1] 
Error feedback accuracy (bits) 3 1 3 1, 2 or 3 1, 2 or 3 1, 2 or 3 
MSE without error feedback 0.1196 0.1360 0.1036 0.10331 0.00171 0.00171 

MSE with error feedback 0.0091 0.0699 0.0284 > 0.1033 > 0.0017 > 0.0017 
 


