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Abstract: A general parameter (GP) extension to expand the applicability of discrete 
time finite impulse response (FIR) filters designed for sinusoidal or polynomial signal 
prediction while attenuating white noise is proposed. These FIR filters are simple and 
powerful linear methods for filtering, predicting and modeling many real world 
phenomena. With only a single adaptive GP, it is computationally efficiently possible to 
extend prediction capabilities of polynomial and sinusoidal FIR predictors beyond their 
design input signal models, i.e., beyond polynomial input signals, or nominal design 
frequencies, respectively. This allows for more accurate prediction of signals with time 
varying characteristics. Copyright  2000 IFAC 
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1. INTRODUCTION 
 
Generally, signal processing methods assume input 
signal statistics for which they are optimized. In the 
real world, however, statistics of measured signals 
may either not be presentable by simple distributions, 
or at least determining the current distribution 
requires considerable computational resources. 
Adaptive filtering and soft computing methods, e.g., 
neural networks, address this problem of processing 
measured signals with unknown and/or varying 
signal characteristics. Many signal processing and 
control applications rely on identified signal 
statistics, or are forced to employ computationally 
complex adaptation schemes. In nature, many 
properly sampled measured signals are buried in 
noise and exhibit near polynomial or sinusoidal 
behavior, making polynomial or sinusoidal filtering 

an attractive choice. Prediction capabilities are most 
valuable in any control application in which the 
operation of a control loop is limited by unavoidable 
control loop delays, likewise in any application in 
which signal processing or other delays are to be 
avoided. Predictive FIR filtering is a simple and 
powerful linear approach but as such is fixed for the 
design input signal statistics; GP extension provides 
means for tuning the FIR basis predictors to allow 
operation beyond the design signal statistics. 
 
The first application example for GP extended 
prediction is transmitter power control of a mobile 
communication system (Tanskanen et al., 1995; 
Harju et al., 1996), in which the employed closed 
loop control system operation is inherently delay 
limited and could benefit from an accurate prediction 
of the Rayleigh distributed attenuation, or fading, 
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present in a radio channel under certain conditions 
(Parsons, 1995). Since a Rayleigh distributed signal 
can be approximated by an appropriate sum of 
sinusoids and in practice the exact distribution is 
unknown, an adaptive polynomial-predictive filtering 
(Heinonen and Neuvo, 1988; Väliviita et al., 1999) 
scheme is a lucrative approach. Also, it would 
naturally be beneficial if the adaptation was 
computationally as inexpensive as possible. 
Sinusoidal signal prediction is applied to zero 
crossing detection of power line frequency (Vainio 
and Ovaska, 1995). With prediction, it is possible to 
overcome the signal processing delay in the zero 
crossing detection calculations, and thus provide 
more accurate zero crossing information for the 
power electronics switching control. 
 
The basis FIRs employed are polynomial-predictive 
(Heinonen and Neuvo, 1988) and sinusoidal-pre-
dictive (Vainio and Ovaska, 1995; Väliviita et al., 
1999) FIRs. The extension that is attached to the 
FIRs consists of a single adaptive general parameter 
(GP) (Ashimov and Syzdykov, 1981), c.f. Fig. 1 for 
the block diagram of the GP extension and GP 
updating. The GP approach is fairly unknown 
technique even though it is very simple and capable 
of producing improved filtering results. It has been 
employed with radial basis function neural networks 
(Akhmetov and Dote, 1999). Here, the GP method is 
shown to extend the applicability of polynomial-
predictive FIR filters beyond polynomial input 
signals, and that of sinusoidal-predictive FIR filters 
beyond their nominal frequencies. This allows for 
more relaxed requirements for the signal statistics 
estimation, the control loop delay estimation, or the 
sinusoidal frequency estimation need not be as 
accurate as they should without the GP extension. 
 
The paper is organized as follows. In section 2, 
predictive FIR filtering is overviewed, and the 
general parameter extension is reviewed in section 3. 
In section 4, the stability condition of the GP 
approach is derived. Application examples are given 
in section 5, and section 6 concludes the paper. 

 
Fig. 1. Structure of the GP extended FIR. Notation: 

input signal x(n), output signal y(n), transfer 
function of the FIR H(z) with the coefficient 
vector h, FIR length N, general parameter β(n), p 
prediction step of the FIR, gain factor γ, unit 
delay z–1, and hat denoting an estimate. 

2. BASIS FILTERS FOR GENERAL PARAMETER 
EXTENSION 

 
FIR predictors for polynomial and sinusoidal signals 
are employed as basis FIR filters, and both 
polynomial-predictive (Heinonen and Neuvo, 1988; 
Väliviita et al., 1999) and sinusoidal-predictive 
(Vainio and Ovaska, 1995) FIR filtering theories are 
well established. Output of an ideally operating p-
step-ahead FIR predictor is calculated by 
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where h(k) are filter coefficients, and x(n) are input 
signal samples at discrete time instants n. With the 
coefficient vector ( ) ( ) ( )[ ]T21 Nhhh �=h , and 

input signal sample vector x(n) = [x(n)  x(n – 1) … 
x(n – N + 1)], (1) can be written as  
 
 ( ) ( )pnxn +=hx . (2) 

 
In FIR design, after providing for the exact p-step-
ahead prediction of a polynomial signal of a given 
degree, or of a sinusoidal signal with given 
frequency, the white noise gain given by 
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is minimized for achieving disturbance suppression 
outside the frequency band in which prediction is 
desired. A set of constraints on filter coefficients can 
be derived from the filter input-output relation (1), 
and from the constraint can closed form solutions for 
the FIR filter coefficients be calculated (Heinonen 
and Neuvo, 1988; Väliviita et al., 1999; Vainio and 
Ovaska, 1995). 
 
 
3. GENERAL PARAMETER EXTENSION TO FIR 

PREDICTORS 
 
The GP method (Ashimov and Syzdykov, 1981) is 
employed by adding an adaptive GP β(n) to each FIR 
coefficient in (2), resulting in the predictive filtering  
 
 ( ) ( )( ) ( )pnxnn +=+ hx , (4) 

 
where ( ) ( ) ( ) ( )[ ]Tnnnn βββ= �  is the time 

dependent GP vector. Writing this as 
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the GP is seen to act as an adaptive gain operating on 
average input signal value. 
 
Let us denote the actual filter output sample as ( )ny . 

z-1 
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GP extended FIR (7) with running 
sum implementation by Raita-aho et 
al. (1994) 
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The GP is adapted to the input signal according to the 
following simple updating rule (Ashimov and 
Syzdykov, 1981) which, taking also the prediction 
step p into account, is given by 
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where γ > 0 is the adaptation gain factor. The filter 
output is now given by 
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where hat denotes estimate, c.f. Fig 1. This 
adaptation resembles the well-known least mean 
square filter coefficient adaptation (Widrow and 
Stearns, 1985) but since there is only a single 
adaptive parameter β(n) per filter and not adaptation 
of all the filter coefficients independently, input 
signal statistics are taken into account in a form of 
average over the filtering window. 
 
From Fig. 1 it can be calculated that the GP extension 
requires 5 additions and 3 multiplications regardless 
of the FIR length. Also N + p + 1 memory locations 
for the delays are necessary. Thus, GP extension can 
thus be regarded computationally efficient. 
 
 
4. STABILITY OF THE GENERAL PARAMETER 

FILTERS 
 
Before the GP extension can be applied, stability of 
the resulting system must be considered. Stability of 
the GP extended filters can be analyzed similarly as 
the least mean square algorithm (LMS) 
(Kalouptsidis, 1997). Assume reference data 
sequences generated by the linear time varying model 
 
 ( ) ( ) ( ) ( )nvnnny += 0x , (8) 

 
where v(n) represents noise, and Θ0(n) is a parameter 
vector obeying a model of the form 
 
 ( ) ( ) ( )nnn +=+ 00 1  (9) 

 
with a corrective term ( ) ( ) ( )[ ] T

1 nnn N�= . The 

GP extended filter has the coefficient vector 
 
 ( ) ( )nn h += . (10) 

 
Considering the adaptation error 
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Substituting (11) into (12), we obtain 
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1

~
, (14) 

 
and inserting y(n) from (8) yields 
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This can be written in form  
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where I is an N by N unit matrix. The stability of the 
system therefore depends on the eigenvalues λi of the 
matrix  
 
 ( )nxSI γ− , (17) 

 
and it is required that Nii ...,,1,1 =≤λ . This 

guarantees the stability in the sense that the 
prediction error will always remain finite, if the gain 
factor γ is set accordingly. However, no guarantees 
are made of the prediction error approaching zero. 
 
The eigenvalues of the matrix (17) are equal to one 
except the one given by 
 
 ( )Sx nγ−=λ 1 . (18) 

 
For stability it is therefore required that the gain 
factor is constrained as 
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where E[·] denotes expectation value. It is possible to 
formulate a normalized algorithm, as with LMS, by 
adjusting the gain factor as 
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which, by inserting the vectors x and S (13), is seen 
to be  
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Inserting (21) into (6) yields the normalized GP 
update equation 
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  (22) 
As compared to (6), (22) involves division operation 
instead of multiplication, and therefore is in contrast 
with the original motivation of the GP method, i.e., 
adaptivity with very simple computations, if the 
application hardware does not support efficient 
division. 
 
If the cost of the division is tolerable, the gain factor 
(21) could be updated continuously in order to 
operate with the maximum gain factor. While (19) 
only guarantees that the error remains finite, the 
normalized gain (20) is set to half of the stability 
bound, which may be sufficient to avoid diverging. 
Should it happen that x(n) = 0, where 0 denotes a 
zero vector, (20) and thus (22) would be useless since 
the gain factor would become infinite. In practice, 
like also for LMS adaptive filters, a fixed gain factor 
can be estimated from the input signal to yield a 
sufficient probability of convergence by estimating 
the fixed gain factor (21) from the input signal. For 
example, a minimum gain factor according to (21) 
over a given period of time could be calculated 
periodically. Thus, stability of the GP system can be 
guaranteed, or a sound tradeoff between convergence 
probability and adaptation speed can be made with 
low computational cost. 
 
 

5. SIMULATION RESULTS 
 

Since the underlying signal model for the FIR 
predictors is assumed inaccurate as compared to the 
actual filter input signal, it is not expected that the 
GP extended filter should converge to a fixed general 
parameter value, but rather to continuously adapt and 
track the input signal even if the input signal is 
stationary. This can be seen in Fig. 2, in which the 
GP, appended to the first-degree one-step-ahead 
polynomial-predictive FIR of length N = 3, is seen to 
continuously vary with the one-step-delayed 50 Hz 
sinusoidal input signal sampled at 1.667 kHz. Note 
that here a sinusoid is filtered with a ramp predictor, 
which can be regarded as a large deviation in the 
signal statistics, especially as there are only 33 
samples takes during a period of the sinusoidal 
signal. Also, in Fig. 2, the predictive FIR and the 
corresponding GP filter input and output signals are 
shown along with the desired output signal. In Fig. 2, 
the gain factor is set to γ = 0.1138 which is the 
minimum gain factor over one period of the input 
sinusoid calculated using (21). In the case seen in 
Fig. 2, the maximum prediction error with the fixed 
FIR predictor is 0.059 while with the GP extended 
predictor it is 0.0073. For reference, the maximum 
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Fig. 2. One-step ahead sinusoid prediction with a 

first-degree polynomial predictor of length N = 3 
(dotted), and with the corresponding GP 
extended polynomial predictor (dash-dot), along 
with the one-step delayed filter input (dark 
dotted) and desired output (solid) signals. Also 
shown is the GP value (dark solid). 
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Fig. 3. Peak detail of the signals shown in Fig. 2. 
 
error caused by the one-step delay is 0.188. In Fig. 3, 
a detail of the signals in Fig. 2 is shown to illustrate 
the effect of GP approach on the signal amplitude. In 
Figs. 4 and 5, the magnitude responses and group 
delays are shown for the same FIR predictor as 
employed in Figs. 2 and 3 with different GP values. 
In the sinusoid prediction case in Fig. 2, the GP value 
is seen to fluctuate between 0.017 and 0.024, and the 
frequency response and group delay for this GP 
extended FIR with the GP value 0.02 can be seen in 
Figs. 4 and 5, respectively. Here of interest is only 
the low frequency range since the examples are 
noiseless. From Fig. 4 it is seen that the DC gain of 
the predictor is deviated from unity by the GP, and 
also the group delay is adjusted, Fig. 5. By design the 
exact p-step-ahead prediction requires unity DC gain, 
but the GP extension is seen to have a complicated 
effect as both the DC gain deviation and group delay 
chances are concerned. Comparing Figs. 4 and 5, it is 
seen that in this case, for negative GP values, 
prediction step grows while the DC gain decreases, 
and vise versa for the positive GP values. 
 
To demonstrate the effects of the general parameter 
extension, the sinusoidal and polynomial predictors 
are employed in sinusoidal or Rayleigh distributed 
signal prediction, respectively. The first example 
employs a two-step-ahead p = 2 sinusoidal FIR 



predictor of length N = 12 designed for predicting the 
50 Hz line frequency with the sampling rate of 1.667 
kHz, giving the nominal normalized prediction 
frequency of π=ω 06.00 , as employed by Vainio 
and Ovaska (1995) for the power line frequency zero 
crossing detection problem. The results of applying 
this predictor to a set of two steps delayed sinusoidal 
signals with different frequencies are given in Figs. 6 
and 7 with the GP gain factor set to γ = 0.001. In Figs 
6 and 7, the maximum and mean square errors (MSE) 
are given as functions of input sinusoid frequency for 
the sinusoidal and GP extended sinusoidal predictors, 
along with the corresponding errors caused by the 
pure delay of the input signal. From the Figs 6 and 7, 
it is seen that both the fixed coefficient and the GP 
extended predictors are able to improve the signal 
quality, and that the GP extended sinusoidal predictor 
outperforms the corresponding fixed-coefficient 
predictor in both maximum and mean square errors, 
providing for extended applicable input signal 
frequency range at a given tolerable prediction error 
level. For example, if a system can tolerate the 
maximum prediction error of 0.1 in amplitude, the 
possible input frequency range for the sinusoidal 
predictor is 47~53 Hz while for the GP extended 
sinusoidal predictor the corresponding range is 
<40~57 Hz. Similar results are observed for MSE.  
 
In the second example, presented in Figs. 8 and 9 as 
error reductions in percents gained by application of 
FIR and GP extended FIR predictors, a Rayleigh 
distributed signal with different delays is fed to a 
polynomial-predictive FIR filter, i.e., Heinonen-
Neuvo (H-N) filter (Heinonen and Neuvo, 1988), of 
length N = 2, designed for one-step-ahead prediction 
of first degree polynomial signals, and into the 
corresponding GP extended filter with the gain factor 
set to γ = 0.005. From Fig 8, it is seen that GP is able 
to improve the maximum error performance of the 
pure H-N predictor only with input delay of 1 
sample. In Fig. 9 for the MSE, the GP extended 
predictor again outperforms the fixed FIR predictor. 
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Fig. 4. Magnitude response of the one-step-ahead 

predictive H-N FIR of N = 3 (strong solid) and in 
detail the same the GP extension with the GP 
values –0.05 (solid), –0.02 (dash-dot), 0.02 
(dashed), and 0.05 (dotted). 
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Fig. 5. Detail of the group delays of the one-step-

ahead predictive H-N FIR of N = 3 (strong solid) 
and the same with GP extension with the GP 
values –0.05 (solid), –0.02 (dash-dot), 0.02 
(dashed), and 0.05 (dotted). 
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Fig. 6. Maximum errors of the sinusoid (dash-dot) 

and GP extended sinusoid (solid) predictors as 
functions of input frequency, along with the 
maximum errors at the filter input caused by the 
delay only (dotted). 
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Fig. 7. MSEs of the sinusoid (dash-dot) and GP 
extended sinusoid (solid) predictors as functions 
of input frequency, along with the MSEs at the 
filter input caused by the delay only (dotted). 

 
for all input signal delays. Thus, it can be concluded 
that the GP extension might be able to slightly 
expand the applicability range of the polynomial-
predictive FIR filters in this application. Improved 
received power level prediction would yield relaxed 
requirements for the mobile radio system transmitter 
power control loop delay estimation. 
 
The used Rayleigh distributed signal models the 
power level received by a mobile phone (Parsons, 
1992) which operates at 1.8 GHz carrier frequency 
 



1 2 3 4 5
0

20

40

60

80

M
ax

. e
rr

or
 d

ec
ra

se
 (

%
)

Delay (samples)  
 
Fig. 8. Decrease of maximum error in percents; with 

the H-N (dash-dot) and GP extended H-N (solid) 
predictors when predicting a Rayleigh distributed 
signal with different delays. 
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Fig. 9. Decrease of MSE in percents; with the H-N 

(dash-dot) and GP extended H-N (solid) 
predictors when predicting a Rayleigh distributed 
signal with different delays. 

 
and is moving at 10 km/h, and whose received power 
level is measured at 1 kHz rate. 
 
For the line frequency zero crossing application, it 
can be concluded that as the frequency deviates from 
the nominal line frequency of 50 Hz, and thus from 
the nominal design frequency of the predictor, GP 
extension is able to improve the prediction 
capabilities, and thus to contribute to the zero 
crossing detection accuracy. 
 
 

6. CONCLUSIONS 
 
It has been demonstrated that adaptive general 
parameter extension to sinusoidal-predictive and 
polynomial-predictive FIR filters is able to expand 
the applicability of these filters. GP extended 
filtering is of low computational complexity since it 
involves only a single adaptive parameter that is 
added to all the filter coefficients. The stability 
conditions of the GP systems are stated and 
corresponding normalized update equation for the 
general parameter is given with comments for 
practical application using a fixed adaptation speed 
factor estimated from the input signal, which 
provides for maximum adaptation speed with which 
the stability of the GP system can be guaranteed. 
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