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ABSTRACT

This thesis focuses on the analysis of irregular hierarchical visual objects. The main
approach involves modelling the objects as unordered attribute trees. A tree presents
the overall organization, or topology, of an object, while the vertex attributes describe
further visual properties such as intensity, color, or size. Techniques for extracting,
matching, comparing, and interpolating attribute trees are presented, principally aiming
at systems that can learn to recognize objects. Analysis of weather radar images has
been the pilot application for this study, but the main ideas are applicable in structural
pattern recognition more generally.

The central original contribution of this thesis is the Self-Organizing Map of Attribute
Trees (SOM-AT) which demonstrates how the proposed tree processing techniques — tree
indexing, matching, distance functions, and mixtures — can be embedded in a learning
system; the SOM-AT is a variant of the Self-Organizing Map (SOM), the neural network
model invented by Prof. Teuvo Kohonen. The SOM is especially suited to visualizing
distributions of objects, classifying objects and monitoring changes in objects. Hence,
the SOM-AT can be applied in the respective tasks involving hierarchical objects. More
generally, the proposed ideas are applicable in learning systems involving comparisons
and interpolations of trees.

The suggested heuristic index-based tree matching scheme is another independent con-
tribution. The basic idea of the heuristic is to divide trees to subtrees and match the
subtrees recursively by means of topological indices. Given two attribute trees, the larger
of which has N vertices, and the maximal child count (out-degree) is D vertices, the com-
plexity of the scheme is only O(N logD) operations while exact matching schemes seem
to have at least quadratic complexity: (O(N?-3) operations in checking isomorphisms and
O(N?) operations in matching attribute trees. The proposed scheme is efficient also in
terms of its “hit rate”, the number of successfully matched vertices. In matching two
random trees of N < 10 vertices, the number of heuristically matched vertices is on
average 99% of the optimum, and the accuracy for trees of N < 500 vertices is still above
90%.

The feasibility of the proposed techniques is demonstrated by database querying, mon-
itoring, and clustering of weather radar images. A related tracking scheme is outlined
as well. In addition to weather radar images, a case study is presented on Northern
light (Aurora Borealis) images. Due to the generic approach, there are also medical and
geographical applications in view.

© All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.
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List of notations

Graphs and trees

G=(V,E) graph

G=(U,V,E) bipartite graph

T=(V,E) tree

T=(V,E,w) weighted tree

T=(V,E,a) attribute tree

T=(V,E,w,a) weighted attribute tree

U, U vertex (node, point)

A null vertex, nonexistent vertex

Uu,v set of vertices

e, (vi,vj), (u,v) edge (link, arc, line)

E set, of edges

w weight, a mapping from vertices to weights
w(v;), w; weight of v;

a attribute vector, a mapping from vertices to attribute vectors
a(v;), a; attribute vector of v;

a(vy), a; attribute of v;

parent(v) parent of v

v+, Vt(v) children of v

v; child of v

vy descendant of v

T, tree, the vertex set of which is denoted by V'
T(v) tree rooted at v

T(v;), T; tree rooted at v;

I index (descriptor, property, feature, invariant, fingerprint)
of a tree (complete list in Table 4, p. 30)

I(w), I, I index of T'(v)

I(v;), I; index of T'(v;)

I weighted version of index [

I maximum of index I

V|,N number of vertices in a tree

D number of children (out-degree) of a vertex

H height of a tree

A depth of a vertex (path length from root)

i index vector

i(v), v index vector of T'(v)



Tree matching (assume T, and T, to be matched)

Tm = (MaMIJEm)
M, M’

O(f(n))

P, NP

PROBLEM

program, program(...),
inside, adjacent-to

tree describing a matching of T3, and T,

vertex sets of T,

vertex in M, identified with a pair of matched vertices:
m = (u,v) for some u € T, and v € T,

vertex in M’', identified with an unmatched vertex:

m' =uorm' =v forsomeu €T, orveT,

edge set of T,

cost of matching u and v

cost of leaving v unmatched

approximated, unscaled cost of matching 7'(u) and T'(v),
based on the respective index vectors u and v
approximated, unscaled cost of leaving T'(v) unmatched,
based on the respective index vector v
cost of leaving T, unmatched

cost of matching T, and T, (implicitly presented by T.;,)
distance between T, and T,

approximated distance, by default equal to cost(T};,)
calculated from a heuristically obtained matching 77,

computational complexity at most of order f(n)
classes computational complexity (see Def. 5)
computational problem

computer program

spatial relation

Unless stated otherwise, the trees discussed in this thesis are assumed to be rooted and

unordered.
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Summary of the publications

In Publ. I, efficiency of shape descriptors was illustrated by means of the Self-Organizing
Map (Kohonen 1990). The descriptors studied were the chain code histogram (livarinen
and Visa 1996), the pairwise geometric histogram (Ashbrook et al. 1995) and a set of
simple, global indices (convezity, elongation, compactness, circularity, ellipticity). The
author’s contribution was in designing and experimenting the simple shape indices to-
gether with Tivarinen; the workshop paper of Peura and Iivarinen (1997) presents related
issues in further detail. The underlying application was classification of paper defects.
However, the studied descriptors appear to be generally applicable to irregular shapes.
Hence, with respect to this thesis, the role of Publ. I is in presenting attributes to be
used in the trees discussed in the other publications.

In Publ. II, a simple method for indexing trees is presented and tested with artificial
visual objects. The basic idea is to calculate statistics of topology and shapes at first
at each level and then vertically, over the levels. The approach is simple but can be
regarded as an introduction to the recursive, tree-matching related indexing proposed in
the later publications. Publ. II also contains the first version of the TRIM algorithm for
extracting trees from images.

Publ. IIT shows how rooted unordered trees can be used as the learning medium of the
Self-Organizing Map (SOM; Kohonen 1990); the original and most popular version of
SOM uses vectors. While the SOM learning rules are essentially general, there is however
no straightforward scheme for adapting them to arbitrary data structures. The major
contribution of Publ. I1I is the definition of the learning rules for trees by an index-based
tree matching scheme. The promising results with the SOM suggest that the proposed
techniques have general applicability in arbitrary interpolative learning systems, too.
Publ. III is rather independent from Publications I and II, as no special assumptions are
made on applications.

Publ. IV introduces briefly two remote sensing applications of tree matching. The author
is responsible for the most part of this publication. E. Saltikoff and M. Syrjisuo par-
ticipated in problem formulation, provided the involved data and background expertise.
The discussion on analysis of weather radar images is based on a more detailed seminar
paper by Peura et al. (1998).

Publ. V presents three meteorological applications of tree matching in analysis of radar
images. Instead of elaborating technical details, the goal of is to transfer ideas in a
general level to the meteorological community.

Publ. VI generalizes the topological approach of Publ. III to the Self-Organizing Map of
Attribute Trees. Radar image data is applied in the experiment.

Publ. VII is the synthesis of the topics listed this far, binding together the TRIM algo-
rithm, tree matching, mixing, the SOM of Attribute Trees, radar and auroral images.
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1 Introduction

This work belongs to the field of pattern recognition, introducing new techniques in mod-
elling objects as trees. The emphasis is on adaptive recognition systems incorporating
tree matching in one form or another. In applications, the main scope is on computer
vision but the developed methods are applicable in pattern recognition and related fields
more generally. The main assumption is that the objects are somehow hierarchical and
hence suited to tree-structured modelling. On the other hand, the trees are allowed to
be noisy, irregular, complex, large, and dynamical in size and form.

Formally, a tree is a connected acyclic graph. The trees discussed in this thesis are
assumed to be rooted, unordered and allowed to contain weights or other attributes.
The unorderedness means that the order of vertices connected to a parent vertex is
not taken into account. The assumption of unorderedness is justified for example in
many computer vision applications in which the spatial left-right and top-bottom order
of objects is insignificant. Ordered trees, applied for example in string matching, are
beyond the scope of this thesis.

Tree matching and tree interpolation are central topics of this thesis. Tree matching is
applied for example in comparing trees and thus in evaluating distances between trees,
which is essential in applications involving recognition and classification. Tree interpo-
lation means computing “weighted sums” of trees; the obtained mixtures can be further
interpreted as smooth generalizations of the involved trees. In the context of classifica-
tion, generalizations provide a means for presenting and storing knowledge compactly.
Trees can be also monitored and tracked by means of tree matching: dynamics of a
phenomenon can be analyzed by studying changes in the respective series of trees.

The principal contribution of this thesis is the Self-Organizing Map of Attribute Trees
(SOM-AT), a variant of the Self-Organizing Map (SOM), the neural network model
invented by Kohonen (1982, 1990, 1995). The SOM-AT demonstrates how tree matching
and interpolation can be incorporated in a learning system such that the core of the
system, the learning medium, consists of trees. The approach differs from standard
continuous learning paradigms in which the typical choice is to use vectors as a learning
medium — practically implying that the studied objects as well must be presented as
vectors.

Research on tree matching has been carried out under various problem formulations.
This thesis concentrates on FIXED TREE MATCHING, a problem slightly harder than SUB-
TREE ISOMORPHISM (Matula 1968, Reyner 1977, Pelillo et al. 1999b); the respective time
complexities of these problems are O(N?) and O(N?2%), where N is the number of ver-
tices. The less constrained problem TREE EDIT DISTANCE (or EDITED TREE MATCHING)
is remarkably harder, NP-complete (Zhang et al. 1992, Shasha et al. 1994). Due to the
complexity, this problem has less emphasis in this thesis, but one may expect that for
instance the proposed interpolation techniques can be adapted to this problem, too. On
the other hand, matching is not the only technique for recognizing trees. Trees can be
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modelled syntactically, and then classified and generalized using related techniques (Fu
and Bhargava 1973). However, one of the principal assumptions in this work is that
the objects of interest do not necessarily contain repeated structures, making syntactic
approaches less feasible.

In general, learning processes involve massive iterations. Consequently, the involved
low-level operations, such as distance computations and adaptation steps, should be
computationally light, say less than quadratic, O(N?). The proposed heuristic scheme
for approrimating FIXED TREE MATCHING is the second independent contribution of this
thesis. The heuristic is generally applicable — besides being especially suited to the
SOM-AT. The basic idea is to divide a tree recursively into subtrees, and apply indices,
numerical characteristics of the subtrees, in matching instead of exhaustive trials. The
complexity of the scheme is practically linear, O(N log D), where N is the vertex count
of the larger tree and D is the maximum child count. The general scheme of using the
proposed approach is shown in Fig. 1.

@© @© — _, indexin distance evaluation — classification
extraction & N Va

matching — interpolation — learning

— . e ¢
extraction ‘\*} — indexing monitoring, tracking. ..

Figure 1: Overall processing scheme for trees.

The third contribution is to use trees as object models in the analysis of weather radar im-
ages. Precipitative clouds, and clouds in general, are a phenomenon typically containing
irregular spatial hierarchies. By spatial hierarchy, we mean the topological organization
defined by the nesting and adjacency of image segments. In this context, irregularity
means that the objects of interest do not have to be syntactic or geometric. The im-
ages provided by the Finnish Meteorological Institute have inspired many of the ideas
presented in this thesis and served as a primary testbench for the related algorithms.

This introductory part of the thesis is organized as follows. General definitions and
matching problems are presented in Sec. 2. The related complexities are included as
a motivation for heuristical approaches. Some heuristics for matching problems are
reviewed in Sec. 3, followed by a synthesis of the proposed techniques for tree matching
in Sec. 4. In Sec. 5, the techniques are further developed towards the applicability
in learning systems, with a special emphasis on the Self-Organizing Map of Attribute
Trees. Also the consistency of continuous tree interpolations — a topic not addressed
in the publications — is discussed in detail. The matching performance of the proposed
scheme discussed in Sec. 6 is another previously unpublished topic. Practical applications
related to image analysis and potential future research are discussed in Sec. 7. Finally,
conclusions are presented in Sec. 8.
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2 Tree matching and related problems

2.1 Definitions

Definition 1 (Distance). A distance function or a metric is a function satisfying the
following axioms (Santini and Jain 1999):

dist(A4,A) = dist(B,B) (self-similarity)

dist(4,B) > dist(4,4) (minimality)

dist(4,B) = dist(B,A) (symmetry) (1)
dist(A, B) + dist(B,C) > dist(4,C) (triangle inequality)

Instead of exact distances we will often address distance approximations, denoted by
dist(A4, B), for which the above axioms are not expected to hold strictly.

Definition 2 (L-norm). Given a vector x = [z1 T2 -+ ], its L,-norm is

IIx[lp = (Z Iwil”> ()

i=1

where p > 0. If discussion applies to any p > 0, we will refer to an L-norm generally
and write ||x|| without subscript. L-norm of a vector difference ||x — y|| is called the
Minkowski distance between x and y (Devijver and Kittler 1982).

Definition 3 (Graphs). A graph G = (V, E) consists of a set of vertices V = {v;} and
edges E = {e;}. The edges are connections between vertices; vertex v; is adjacent to
v; if there is an edge e = (v;,v;) between them. Two edges are adjacent if they have a
common vertex. In an undirected graph (v;,v;) = (vj,v;) A path is a chain of adjacent
edges (’l)(l), U(Q)), (U(Q) , 1}(3)), (’U(3), 1)(4)), . (U(k—l) , ’U(k)) = path(v(l) , ’l)(k)), such that no
vertex is visited more than once except for the starting vertex v(;), which may be same
as the ending vertex v(yy. If v(1) = v(y), the path is a cycle. If there is a path between
any two vertices, the graph is connected.

Definition 4 (Trees). A tree T = (V, E) is an undirected connected graph that contains
no cycles. In a rooted tree, one of the vertices is distinguished as the root, r. Along any
path starting from the root, the adjacent vertices v(;y and v(;;1) are called a parent
and a child, respectively, and denoted v(;y = parent(v(;;1)). Thus, except for the root,
every vertex has a unique parent but may have several children or none. The children of a
common parent are siblings. If the order of the siblings is distinguished the tree is ordered,
otherwise unordered. The children of v, their children, and so on are the descendants
of v, denoted by v}. The subtree rooted at v contains hence v and its descendants. In
an attribute tree T = (V, E,a) each vertex is associated with an attribute or several
attributes, an attribute vector: a(v;) = a;. In this thesis, all the attributes are assumed
to be numeric. The weight w(v;) = w; of a vertex is a special attribute. By default,
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w; € [0,1]. At this point one may consider the weight as a degree of significance, strength
or existence of a vertex; the role of weight will be discussed in further detail in Sec. 4. A
weighted tree (having no other attributes) is a triplet T = (V, E,w). Finally, a weighted
attribute tree is denoted by T = (V, E,w,a). In a rooted tree, there is no reason to
distinguish between the attributes of edges and vertices since every edge is associated
with a unique vertex — the child vertex where the edge points to. Any property of an
edge can be seen as a property of that vertex.

Definition 5 (Complexity). In this thesis, computational effort means computation
time defined as the number of computation steps with respect to the length of the input
in solving a problem (exactly or approximately). We say that a problem having input
length n is of order f(n), denoted O(f(n)), if the number of operations implied by
the input is at most cf(n) for all inputs of length n > N for some fixed N and c.
Computational complexity refers to the computational effort defined through the O(f(n))
notation. Omitting a bunch of theoretical constructions based on the concept of Turing
machines, we mention that there are two classes of special interest in computer science.
The class of all the polynomial-time problems that can be solved by a deterministic
computation is denoted by P. Accordingly, NP stands for the class of problems that
can be solved in a polynomial time by a nondeterministic computation; nondeterminism
means the ability to guess the correct computation paths. A nondeterministic solution to
a problem means that there ezists at least one computation path leading to the solution.
A practical property is that any problem in NP can be solved in exponential time. P
is a subset of NP, it is thus conventional to say “a problem is in NP” when actually
meaning that the problem is known to be outside P but still inside NP. This thesis will
not address problems beyond NP.

Definition 6 (Reduction). A reduction is a process of reformulating a problem as
another problem such that the solution of the former problem can be obtained by solving
the latter. Assuming that the complexity of the latter problem is known, the reduction
is an indirect tool for determining the (maximal) complexity of the former problem. A
problem is said to be NP-complete if any problem in NP can be reduced to it; the
further constraint for the reduction in this case is that it can be computed in polynomial
time (Garey and Johnson 1979) or in logarithmic space as preferred by Papadimitriou
(1994).

2.2 Basic matching problems

Tree matching is a special case of more general matching problems. In order to discuss
tree matching problems, some basic matching problems are reviewed first.

In established terminology of graph theory, a matching is generally defined as a subset of
the edges of a given graph G = (V, E) such that no two edges are adjacent. Sometimes,
matching is defined more specifically between two distinct vertex sets U = {u;} and
V = {v;}, thus assuming a bipartite graph G = (U, V, E) where E C U x V. For the time
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being, let us at first define a matching generally as any subset of the edges in a bipartite
graph, without constraints on adjacency:

M ={m;} CE. 3)

According to this point of view, E can be regarded as a list of permitted connections.
Further, let us denote the set of unmatched vertices by

M ={m'|\m'eUZv:(m v)eM} U {m'|meV Au:(um)e M} (4

Matching principles. Clearly, there are several ways of matching the vertices of U to
those of V. Some matching principles are listed in Table 1. We say that matching is
mazimal (under a principle) if | M| maximizes. The matching principle depends on the
practical application at hand. Typically, determining a matching principle for an appli-
cation is not straightforward. It must be noted that the principle dictates an essential
part of the nature of the approach, compromising between tractable computational effort
and satisfactory results.

Some classical matching problems related to the principles listed in Table 1 are of special
interest here. In the classical combinatorial problem of BIPARTITE MATCHING one tries
to find a maximal one-to-one matching. Sometimes this problem is called PERSONNEL
ASSIGNMENT PROBLEM, since it can be thought as of assigning employees u; € U to
tasks v; € V (Bondy and Murty 1976). Hopcroft and Karp (1973) presented an exact
algorithm having complexity of O(N?%).

Table 1: Matching principles for a bipartite graph G = (U, V, E).

matching principle constraint M

[ J
many-to-many VANV
[Vudv : (u,v) € M]A W
complete many-to-many Modu: (u,0) € M]
o o
V(ui,vj) € M, Y(ug,vi) € M : \ ///
one-to-one . .
(i=k) & (j=0) ¢
one-to-one such that ®
complete one-to-one Vudv : (u,v) € MV
[Vo3u : (u,v) € M]
A0, 1) (i # DA V.S
one-tomany (i, v3), (,0;) € M e e
| AG kD AR AGED A oK
mixed disjoint (i, v7), (s v; ), (s 01) € M
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Numerical constraints. In addition to the constraints listed in Table 1, a matching
problem often involves minimization of a cost function of the form

cost(M, M'") = Z e(m) + z c'(m'). (5)

meM m'eM’

where ¢(m) is the cost of matching u to v, that is, assigning edge m = (u,v) in M, and
c(m’) is the cost of leaving a vertex unmatched (m’ = u or m’ = v). For clarity, we
may write ¢(u,v) instead of ¢(m) and respectively ¢'(u) or ¢'(v) instead of ¢'(m’). The
¢ and ¢’ can be regarded as repulsion and attraction in physics. Using (5), BIPARTITE
MATCHING can be formulated by setting, say, ¢ = 3 for all edges and ¢’ = 2 for unmatched
vertices, which implies maximal 1-to-1 matching: it is profitable to match any pair of yet
unmatched vertices (3 < 2+2) but not profitable to reuse a matched vertex for catching
a single unmatched vertex (3 > 2).

The formulation of cost functions in (5) depends on the application. It is often practical
to assume that each vertex is associated with an attribute or an attribute vector, that
is, a point in space. The cost of matching vertices u and v can then be defined, say,
as the Euclidean distance between the respective attribute vectors u and v. One may
further assume that in, addition to attributes, vertex weights are applied. In this thesis,
a “weight” refers to a vertex weight, unless stated otherwise. A weight describes the
strength, activity, probability or significance of a vertex. By default, the weight isw = 1,
and a vertex with w = 0 can be treated as a nonexistent vertex. For the cost function
(5) it is hence natural to assume that:

1. ¢/(u) is monotonically increasing with respect to w,,.
2. ¢(u,v) is monotonically increasing with respect to w,,, w,, and |ju — v|].
3. Matching is favored over unmatching: c¢(u,v) < ¢'(u) + ¢/ (v).
It is often sensible for ¢’ to regard unmatched vertices as virtually matched against “null

vertices” having zero-valued weights or attribute vectors. Suggestions of cost functions
c and ¢ are listed in Table 2.

Table 2: Definitions of vertex matching and unmatching costs. The attributes of vertices
u and v are denoted by u and v and weights by w, and w,, respectively.

c(u,v) c (u)
default; no weights or attributes 0 1
weighted vertices |wy — wy| |wa|
attributed vertices [[u—v]| [|ul|
weighted, attributed vertices LutWo |ly — v|| | wal|ul|

In WEIGHTED BIPARTITE MATCHING, each edge (u,v) is associated with a profit p(u,v),
and one tries to find a complete one-to-one matching that maximizes the sum of prof-
its. (In literature, profit is often called weights, a term which would be misleading in
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this context.) Again, one may think of employees, now having varying effectiveness in
different tasks; hence the synonym OPTIMAL ASSIGNMENT PROBLEM (Bondy and Murty
1976, Lawler 1976). The problem can be defined equivalently through (5) with, say,
d(v) =1 and ¢(u,v) = 2 — p(u,v)/[max(p) —min(p) +€]. The computational complexity
appears currently (Buss and Yianilos 1998) to be O(N?) in general case (Lawler 1976)
and O(N%logN) for profits (weights) defined as L-norms (Def. 2) in a plane (Vaidya
1989).

Remark. BIPARTITE MATCHING can be reduced (see Def. 6) to a more general graph
problem called MAXIMUM FLOW, which can be likewise solved in polynomial time (Pa-
padimitriou 1994). In that problem, one tries to maximize the flow through a network in
which each (directed) edge has a predefined integer capacity. BIPARTITE MATCHING can
be embedded in a MAXIMUM FLOW formulation regarding each e € E as a channel of unit
capacity. If and only if the flow of magnitude N can be directed from U to V, there exists
a complete one-to-one matching. Clearly, also WEIGHTED BIPARTITE MATCHING can be
reduced to MAXIMUM FLOW. The findings of the future research on MAXIMUM FLOW may
yield even smaller upper bounds for BIPARTITE MATCHING and WEIGHTED BIPARTITE
MATCHING. However, although the revised algorithms are progressively simpler in terms
of theoretical computational complexity, their implementations tend to be practically less
attractive due to numerous additional data structures and gadgets. For example, see the
algorithm of Ahuja et al. (1989) having complexity O(N M log((N/M)(logc)'/? + 2))),
where N = |V|, M = |E| and ¢ is the maximal capacity of flow.

Finally, it is natural to define the distance between U and V as
dist(U,V) = m}é{n[cos‘c(M, M")]. (6)

The M corresponding to the distance is an optimal matching. Unless stated otherwise,
cost is defined according to (5) and Table 2.

2.3 Graph problems

In the above discussion, a matching was defined within a bipartite graph, between the
two separate vertex sets which by definition have no internal structure. On the other
hand, if two vertex sets do have internal structure to be taken into account in matching,
the problem is called graph matching. In other words, matching is constrained not only
by the vertex-to-vertex costs of type (5) but also by the preservation of the topology,
that is, neighborhood relations of the vertices. Three purely topological graph problems
closely related to this thesis are shown in Fig. 2.

Two graphs are isomorphic if they can be obtained from each other by relabeling vertices.
GRAPH ISOMORPHISM is hence the problem of finding a bijective mapping f : U — V
between two graphs G, = (U, E,) and G, = (V, E,) such that (f(u), f(u')) € E, if
and only if (u,u’) € E,. It is one of the classical problems in computer science hav-



18

GRAPH ISOMORPHISM SUBGRAPH ISOMORPHISM GRAPH CONTRACTABILITY
(NP) (NP-complete) (NP-complete)

Figure 2: Graph matching problems. The labels illustrate possible solutions.

ing applications for example in pattern recognition. The problem remains inside NP;
the brute force solution requires testing all the permutations of the |U| = |V| vertices.
However, determining the NP-completeness of GRAPH ISOMORPHISM has remained one
of the yet unresolved challenges (Papadimitriou 1994). In checking the isomorphism
of many graphs against a single graph, some speedup can be obtained using enumera-
tion approach: instead of comparing two complex structures (graphs) directly to each
other, one calculates and compares their ranks, that is, integers uniquely associated with
topologies (Kreher and Stinson 1999).

Practical algorithms, engaging search trees in a form or another, can be optimized by
pruning unnecessary branches of the search trees. Such technique has been used by
Ullmann (1976) with the problem of SUBGRAPH ISOMORPHISM, where one searches for a
subgraph of G that is isomorphic with G'. Computational effort for worst cases remains
nevertheless exponential; SUBGRAPH ISOMORPHISM is NP-complete (Garey and Johnson
1979).

Detection of isomorphisms is often too strict an approach for natural objects. In pattern
recognition problems, one typically wishes to determine also a degree of similarity in
terms of the number of edit operations required in deforming a graph to another. In
GRAPH CONTRACTABILITY (Garey and Johnson 1979), one checks whether a graph G’
can be obtained from G by repeatedly merging pairs of vertices of G such that each
compound vertex inherits the edges of the original vertices. Also this problem is NP-
complete.

2.4 Tree problems

Tree problems corresponding to the graph problems of Fig. 2 are shown in Fig. 3. As
trees are a subclass of graphs, one could assume that the corresponding problems be
easier. It appears that some problems indeed are, falling to P, while others persist in
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NP. A list of complexities of both ordered and unordered tree problems was published
by Kilpeldinen and Mannila (1994). In the following, some fundamental tree matching
problems with respect to this thesis are reviewed.

@ ® (9
@ ® (©
2 @ {9

600 /\ N

%

TREE ISOMORPHISM ~ FIXED SUBTREE MAXIMAL COMMON  TREE INCLUSION
G) ISOMORPHISM SUBTREE (NP-complete)
(P (P

Figure 3: Tree matching problems. The labels illustrate possible solutions.

TREE ISOMORPHISM belongs to P. As with isomorphisms in general, TREE ISOMOR-
PHISM can be detected by enumeration. Read (1972) reviews ranking algorithms for free
trees, rooted trees, and planar (ordered) rooted trees. The basic idea is to sort subtrees
recursively, starting from leaves.

Let us define FIXED SUBTREE ISOMORPHISM as SUBGRAPH ISOMORPHISM between two
trees with the additional constraint that the roots are mapped to each other. For that
problem, Reyner (1977) published a polynomial time algorithm which was based on the
outline given by Matula (1968) and later corrected by Verma and Reyner (1989). We
prefer using here the word “fixed” instead of “rooted” because the latter ambiguously
refers to both matching of rooted trees and root-fixed matching. Pelillo et al. (1999a)
have studied subtree isomorphisms, but aiming at finding a MAXIMAL COMMON SUBTREE
of two trees, that is, the largest connected graph that is contained in both source trees.
The subtree does not have to include both roots. The fact that the trees are rooted means
only that the directions of the parent-child relations are preserved. Clearly, MAXIMAL
COMMON SUBTREE is not a subproblem of FIXED SUBTREE ISOMORPHISM, nor vice versa,
but it stays in P as it can be solved with an exact algorithm similar to that of Reyner
(1977) for FIXED SUBTREE ISOMORPHISM: one may easily replace checking an isomor-
phism to calculating a maximal sub-isomorphism, and then, applying that through all
the |V1|+|Va2|— 1 possible rooting positions.

TREE INCLUSION corresponds to GRAPH CONTRACTABILITY but has the additional con-
straint of ancestorship preservation. Kilpeldinen and Mannila (1995) presented a proof
of its NP-completeness by a reduction from the fundamental combinatorial problem
SATISFIABILITY.
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Figure 4: Tree matching problems (continued).

Let us proceed to the three problems illustrated in Fig. 4. These problems have a central

role in this thesis. Define optimal depth-fixed one-to-one rooted unordered tree matching,
or briefly FIXED TREE MATCHING, as follows.

Definition 7 (FIXED TREE MATCHING). Given trees T, = (U, E,) and T, = (V, E,),
construct tree T, = (M, M', E,;,) = fixedTreeMatching(T,,T;), that has two sets of
vertices M and M’, under the following constraints. In addition to being the vertex sets
of T,,, M and M' are still, in the spirit of (3) and (4), the matched vertex pairs and
unmatched vertices of T}, and T, as follows:

. Each vertex m € M is a pair of matched vertices, m = (u,v).
. Each m' € M' is a single vertex, m' = u or m' = v.
. The roots are always matched: 7, = (ry, 7).

. Each v and v is in either M or M': for each u exists either m' € M' :m' = u or

(m,v) € M:m = (u,v) for some v; respectively for v.

. Parent-child relations stated by E, and E, are preserved in Ey,: if m = (u,v) then

parent(m) = (parent(u), parent(v)), or u, v, and m are roots, and if m’' = u then
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parent(m') = parent(u) or parent(m') = (parent(u),v) for some v; respectively for
v. (Since the parent relation is unique, this constraint guarantees that 7., is a
tree.)

6. The number of matched vertices is maximized. In the case of weighted trees,
attribute trees, and weighted attribute trees, also a cost function as defined by (5)
and Table 2 is minimized. Inversely, plainly topological matching corresponds to
the case where ¢(m) = 0 and ¢(m') = 1.

The above definition is a basis for modifications proposed in the publications of this
thesis. Trees can be addressed by their roots, especially in programming. Thus, in the
spirit of polymorphism, the notation (m,d) = fixedTreeMatching(u,v), outputting the
root m of Ty, and tree distance d = dist(T,,T), will be used in parallel with the form
T = fixedTreeMatching(T,, T,) in this thesis.

FIXED TREE MATCHING resembles MAXIMUM COMMON SUBTREE and FIXED SUBTREE
ISOMORPHISM as it implies finding a maximum fixed subtree. An algorithm for FIXED
TREE MATCHING, outlined by Kilpeldinen and Mannila (1994) and Mannila (2000), based
on that of Reyner (1977) for FIXED SUBTREE ISOMORPHISM, is presented on p. 22 (Al-
gorithm 1). First, m is associated with w and v, the roots of the trees to be matched.
If neither u nor v has children, no further matching is needed. If only one of u and v
has children, the subtrees rooted by the children become embedded as such. If both u
and v have children, the tree matching problem is recursively divided into WEIGHTED
BIPARTITE MATCHING problems.

The subroutine weightedBipartiteMatching is assumed to accept sets of different size,
hence the resulting cost matrix D may be non-square (even empty) and the costs of un-
matching, d’, have to be considered as well. Using the standard formulation of WEIGHTED
BIPARTITE MATCHING (p. 16), each vertex pair (u;, v;) has cost D(4, j), and if [UT| > [V ]|
for each vertex u; € Ut there is a unique “mismatch vertex” u} € V* with (u;,v;) hav-
ing cost d'(i); symmetrically for |[V*| > |U*|. Further, for input v = A (null vertex),
a copy of T'(u) is attached as such to T(m); symmetrically for u = X. For notational
convenience, c¢(u,A) = ¢'(u) and ¢(\,v) = ¢(v). A bracketed indexing of a vector or
a matrix refers to a vector consisting of the elements indexed; sum() is the sum of the
elements of a vector.

The complexity of FIXED TREE MATCHING is of special interest here. Algorithm 1 is
principally the same as Reyner’s (1977) algorithm for SUBTREE ISOMORPHISM but now
distances instead of isomorphisms are calculated; while FIXED SUBTREE ISOMORPHISM
contains BIPARTITE MATCHING as a subproblem, FIXED TREE MATCHING contains anal-
ogously WEIGHTED BIPARTITE MATCHING. Reyner concludes that his algorithm has
complexity O(N?), where N = max(|U|,|V]) and p equals the exponent in the complex-
ity O(n?) for general BIPARTITE MATCHING of two sets of n vertices. In other words, the
overall complexity of FIXED TREE ISOMORPHISM depends on the complexity of the best
algorithm found for BIPARTITE MATCHING. Due to analogy, Algorithm 1 for FIXED TREE
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Algorithm 1: An exact algorithm for FIXED TREE MATCHING.

(m,d) =fixedTreeMatching(u,v)

input: U, v roots of trees, either of which can be A (null vertex)
output: m root pointing to the matched trees

d distance between the trees

Mt children of m (implicit; accessible via m)
variables: UV, V't  children of u, v

M matriz of the roots of (potentially) matched trees

m' vector of (potentially) unmatched vertices

c vertex cost function

D distance matrizc

d vector of costs of unmatching

M set of index pairs of D referring to matched vertices

M’ set of indices of A’ referring to unmatched vertices

1. set m = (u,v),
set MT =0,
set d = c(u,v);
2. if Ut =0 and V© =0,
return (m,d);
3. for each w; € U™,
for each v; € v,
(M(4, 7), D(4, 7)) =fixedTreeMatching(u;,v;) ;
4. if |[UT| > |VT,
for each u; € UT,
set (m'(i),d'(i)) = fixedTreeMatching(u;, \);
else if |Vt > |Ut],
for each v; € VT,
set (m'(i),d'(i)) = fixedTreeMatching(\, v;);
5. set (M,M') =weightedBipartiteMatching(D,d');
6. set M =M[M]Um'[M],
set d = d+sum(D[M]) +sum(d'[M']);
7. return (m,d).

MATCHING can be expected to require O(N?) operations, where p equals now the expo-
nent of the O(nP) complexity for WEIGHTED BIPARTITE MATCHING of two sets having n
vertices. As mentioned on p. 17, p = 3 in general case.

Intuitively, it seems that the complexity of FIXED TREE MATCHING must be at least
quadratic due to the construction of the distance matrices. However, an open question
seems to be whether trees possess a property that allows observing only a subset of the
distances. The central problems and complexities discussed are collected to Table 3.

The constraint of fixed depths in FIXED TREE MATCHING may be critical in some appli-
cations. FLEXIBLE TREE MATCHING is defined similarly to FIXED TREE MATCHING, but
now edges in both trees can be split by adding intermediate vertices. Intuitively, this
means that edges can be “stretched”.
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Table 3: Computational complexities.

| problem | complexity | reference |
BIPARTITE MATCHING O(n%) Hopcroft and Karp (1973)
FIXED SUBTREE ISOMORPHISM O(N%) Reyner (1977)
WEIGHTED BIPARTITE MATCHING O(n®) Lawler (1976)
— planar Euclidean distances (’)(n% logn) | Vaidya (1989)
FIXED TREE MATCHING O(N?) by analogy to Reyner (1977)
— heuristic algorithm | O(Nlog N) | Section 4

While FLEXIBLE TREE MATCHING allows edge splitting, yet more combinatorial freedom
— and complexity — is obtained by allowing wvertex splitting. Shasha et al. (1994)
define TREE EDIT DISTANCE as the problem of finding a minimal set of edit operations
in transforming a tree T,, to another tree T),,. The operations — insert, delete, and
change (Fig. 5) — are generalizations of those used for calculating a Levenshtein distance
in string matching (Levenshtein 1965, Kohonen 1985). The deletion of a vertex v means
that v is removed from V' and the children of v become children of parent(v), the parent
of v. An insertion is the inverse of a deletion. Changing a label is obtained by a deletion
followed by an insertion, but change is typically considered as an operation of its own.
Each operation has a cost — conventionally one — and the distance is the minimum total
cost. The NP-completess of TREE EDIT DISTANCE was shown by Zhang et al. (1992)
by a reduction from EXACT COVER BY 3-SETS (Garey and Johnson 1979). Calculating
the distance implies finding an optimal one-to-one edited rooted unordered tree matching.
Due to this equivalence and for consistency in vocabulary, we prefer calling this problem
EDITED TREE MATCHING instead of a TREE EDIT DISTANCE.

Figure 5: Tree edit operations.

At this point, let us return to the example of Fig. 4 and consider the distances correspond-
ing the matchings. Clearly, in FIXED TREE MATCHING, six vertices remain unmatched:
three in the “source” tree (unlabelled vertices) and three in the “target” tree (8,9,10).
FLEXIBLE TREE MATCHING catches the crown of four vertices (7,8,9,10), with a cost in-
serting one vertex (small circle), and leaving still three vertices unmatched (5 and two
unlabelled), so the distance is four. Only two operations are needed in EDITED TREE
MATCHING for transforming one tree to the other.

Assuming that an application has been given, the question is: among the three matching
problems of Fig. 4, which one yields the most natural distance function? Obviously,
there is no universal answer. The choice of a matching problem (model), and thereby of



24

a distance function, depends on the application. However, in the example of Fig. 4 one
could intuively expect that the crowns of four leafs should correspond to each other. In
that sense, FIXED TREE MATCHING is incapable of detecting similarity of the trees. On
the other hand, the way how EDITED TREE MATCHING finds the correspondence between
the trees is somewhat unnatural; the combination of a deletion and an insertion, causing
two subtrees to be swapped, looks too powerful.

The emphasis of this thesis is above all on FIXED TREE MATCHING, keeping in mind its
relation to the better known, NP-complete EDITED TREE MATCHING. FLEXIBLE TREE
MATCHING, which in a way falls between the two abovementioned, is not discussed here
but will be subject to future studies.

2.5 Syntactic tree recognition

Trees can be also recognized syntactically, as proposed by Fu and Bhargava (1973). In
computer vision, syntactical approaches are feasible if the studied objects have indeed
been generated by a syntactic phenomen: many man-made objects and some natural
objects, like plants, certainly have. Inversely, regularities of botanical trees have also
inspired constructing artificial trees (Imiya et al. 1996). One may of course argue that
any tree, stored as a list of parent-child relations, is a syntax. Essentially, the question is
whether a tree contains repeated, self-similar structures (fractals) that could be described
compactly by a grammar. The assumption in this thesis is that the objects of interest
are such that the size of an extracted tree reflects an inherent property of the modelled
object. Nevertheless, it seems that the approach of processing trees as such — by their
explicit structure instead of a grammar — is rather general by being capable of handling
also trees having syntactic nature, especially those in which the syntax varies as the
function of depth in a tree.
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3 Heuristic approaches

3.1 General

According to Pearl (1984), heuristics are “...popularly known as rules of thumb, educated
guesses, intuitive judgments or simply common sense. In more precise terms, heuristics
stand for strategies using readily available though loosely applicable information to control
problem-solving processes in human beings and machine.”

Pearl’s definition makes no assumption of the exactness of the result of a computation.
For computing a problem we may have two exact procedures one of which is faster on
average due to prior knowledge or assumptions on encountered problem instances.

Sometimes a heuristic means the opposite of an algorithm: an algorithm produces an
exact solution with a minor concern on the computation time while a heuristic reduces
the computation time and produces a suboptimal result as a trade-off. In the field of
computer science, one of the typical tasks is to determine whether a problem is in P or
NP. The problems and the inputs of the problems are assumed to be well-defined. Any
polynomial algorithms, with less concern on their degree, are generally considered prac-
tically “good” or “tractable”. In the field of pattern recognition, the goal is more in the
direction of finding feasible solutions for natural — incomplete, fuzzy or approximate —
data. In this thesis, “algorithm” loosely refers to any computational procedure, heuristic

[4

or not. Most of the problems addressed are optimization problems rather than “yes-no”

decision problems.

There are two types of heuristics related to this research. Randomized algorithms (Mot-
wani and Raghavan 1997) which essentially replace exhaustive trials of combinations by
testing subsets of combinations. In approzimation algorithms (Papadimitriou 1994) the
emphasgis is in approximability, that is, in controlling the upper bound of error. Given
an NP-complete problem, heuristic algorithms of polynomial complexity are considered.
For example, NODE COVER is an NP-complete problem in which one tries to find a mini-
mal subset V' of vertices (nodes) in a graph G = (V, E) such that each edge e € E has at
least one endpoint in V'; the best currently known polynomial approximation algorithm
finds a subset that has maximally twice the cardinality of the correct V' for any graphs
(Papadimitriou 1994). The simplicity of the algorithm is surprising: edges (vertex pairs)
are deleted in random order until no edges remain. Generally, finding an error bound for
a solution or even deciding whether such a bound exists is often a challenging problem
(see Kann 1992).
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3.2 Heuristics for matching problems

Before proceeding to the proposed heuristic tree matching scheme in Sec. 4, recent heuris-
tic approaches in matching problems are reviewed in the following.

As mentioned in Sec. 2.3, ranking is one of the exact techniques for detecting isomor-
phisms. However, ranking is unable to assess similarity of objects in continuous terms.
A heuristic counterpart for ranking is to extract an easily computable characteristics for
each object. The characteristics are not assumed to be unique, but nevertheless distin-
guishing enough for a specific application. Such characteristics are often called indices
as in this thesis or fingerprints (Motwani and Raghavan 1997) or invariants (Kreher and
Stinson 1999). A feature is a standard term in pattern recognition but not used here in
order to avoid confusion with tree attributes. Unlike with ranks, several different targets
may correspond to the same index. Indices may fail in detecting isomorphisms but per-
form well in more continuous similarity assessments as indices can be designed to carry
topological information.

The challenge is to design simple but informative indices. Herbin (1995) has proposed
using a neural network, the Self-Organizing Map (Kohonen 1990) for solving BIPARTITE
MATCHING. The basic idea is to use weighted sum of topological adjacencies as indices of
a graph. A similar approach has been used by Choy and Siu (1995) for a related decision
problem, BIPARTITE SUBGRAPH PROBLEM (Garey and Johnson 1979).

The proposed heuristic, discussed in the next section, computes and applies tree indices
recursively. Tree indices have been discussed also by Shokoufandeh et al. (1999) in the
context of tree matching based database queries. However, the indices are based on
eigenvalues of adjacency matrices and are hence less explicit than the simple indices
proposed in this thesis. In addition, the indices are computed for the root only; it is
unclear whether the indices of Shokoufandeh et al. could be computed recursively, in
order to use them in heuristic matching. Shokoufandeh et al. recommended using the
indices for limiting the input set for the actual, independent tree matching process.

Generally, the “indices” do not have to be numbers or sets of numbers. Eshera and Fu
(1984) suggested simple subgraphs as characteristics of directed attribute graphs; the
overall degree of similarity was calculated as the number of operations in recomposing
the objects from the subgraphs.

One of the standard techniques in solving a problem in NP is to reduce it to another
problem in NP for which heuristics have been already developed. For example, the
famous TRAVELLING SALESPERSON problem is NP-complete (Garey and Johnson 1979)
and has been a benchmark challenge for designers of heuristics. Although TRAVELLING
SALESPERSON is not an actual matching problem, it is a problem dominated by topology.
Hence, it can be approximated using the topological nature of the Self-Organizing Map
(Fujimura et al. 1999). In principle, one could also try reducing a matching problem to
an instance of TRAVELLING SALESPERSON.
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Pelillo et al. (1999b,2000) suggest a similar approach for MAXIMAL COMMON SUBTREE.
There is also an interesting extension for attribute trees (Pelillo et al. 1999a). The re-
duction used by Pelillo et al. is based on the fact that GRAPH ISOMORPHISM can be
solved by transforming the original graph to a so called association graph and then solv-
ing an NP-complete problem MAXIMUM CLIQUE for that graph. For MAXIMAL COMMON
SUBTREE, an additional constraint is applied in the reduction for preserving the hier-
archy of trees. For solving the intermediate problem, MAXIMUM CLIQUE, a continuous
optimization scheme is applied.

In principle, expanding a problem from P to NP makes little sense, but Pelillo et al.
motivate the approach by noting that a new instance preserves the simplicity of the
original problem, and further assume that the related tools — essentially designed to
attack harder (NP-complete) problems — will adapt to the simplicity. This property
is not proven formally but the experiments suggest that “the basins of attraction tend
to be large”, that is, the optimization process in the continuous space is mostly sta-
ble and converges to an optimal or nearly optimal result. Theoretically, though NP-
complete problems are reducible to each other, producing equivalent formulations of a
decision problem, the reductions do not generally transfer the approximabilities of the
corresponding function problems (Kann 1992).

Nevertheless, the approach of Pelillo et al. can be criticized because of the fact that
is involves an expansion of the input trees Ty = (V1, E1) and Ty = (Va, E») to a graph
G = (V,E) having V = V] x V4, and then calculations using the adjacency matrix, thus
a matrix of size |V|?> = |Vi x Va| x |V1 x V3|. Hence the computational complexity is of
O(N*%), denoting N = max(|Vy|,|Va]).

Along proposing an exact algorithm for EDITED TREE MATCHING, Shasha et al. (1994)
prosed using three heuristic techniques: Iterative Improvement, Simulated Annealing,
and Two Phase Heuristic. All the heuristics treat the problems as a state space. Iter-
ative Improvement simply picks a random state and then continues to such randomly
chosen neighbouring states which imply a decrement in a cost function. Simulated An-
nealing is similar but avoids getting stuck to local minima by proceeding, with some small
probability, also to the directions of increasing cost. Two Phase Heuristic is a mixture
the first two. Using these three methods for trees having from 10 to 20 vertices, Shasha
et al. obtained distance approximations with 9%...18% error. Slightly better results were
obtained by sorting the subtrees rooted to each vertex by their descendant count, and
using the resulting order as an initial state.

An alternative for solving exact problems heuristically is to define the problems less
strictly in the first place. Some tree-related approaches used in computer vision are
discussed in Sec. 7.
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4 Proposed approach: index-based matching

This section introduces briefly a heuristic procedure for FIXED TREE MATCHING. The
procedure, including slight variations, is also explained in the publications of this thesis
but is reviewed here for consistency. Likewise, only weighted attribute trees will be
considered. The weight of vertex v will be denoted as w(v), or briefly w, and attributes
(attribute vectors) as a(v) or a,. The weight and the attribute (vector) of vertex v; will
be denoted w; and a;, respectively. On the other hand, an unweighted, unattributed tree
can be obtained by setting w =1 and a = 1.

4.1 Basic idea

The exact procedure for FIXED TREE MATCHING presented in Algorithm 1 is an exhaustive
depth-first computation: a match between two vertices can be established or rejected only
after the respective children are completed, recursively.

In the proposed heuristic procedure, Algorithm 2, the basic idea is to avoid exhaustive
calculations by indexing. Before actually matching two trees, each vertex is attached an
index vector that describes the subtree rooted at that vertex. In the matching stage,
subtrees become matched according to their indices. The matching starts from the roots
and proceeds recursively upwards in one pass; no backtracking is applied. One step of
the procedure is shown in Fig. 6.

As with Algorithm 1, it is convenient to present the detected correspondances between
trees T, and T, by tree T,,, the vertices of which are the matched and unmatched
vertices of T,, and T). Since in each vertex v, the recursion proceeds after establishing
the match, the complexity of the core algorithm is O(N), where N = max(|U|, |V|). The
overall complexity of matching, discussed at the end of Sec. 4.3, depends however on the
complexities of indexing and WEIGHTED BIPARTITE MATCHING of subtree indices.

~J*

Figure 6: Index-based matching. The subtrees are matched relying on the information
carried by indices. In this example, two indices — height and vertex count — are applied
and illustrated as rectangles having the respective heights and widths.
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Algorithm 2: A heuristic algorithm for FIXED TREE MATCHING. The basic differ-
ence to Algorithm 1 is that bipartite matching is performed on approximated D, and
fixedTreeMatching is called after weightedBipartiteMatching.

(m,d) =fixedTreeMatching(u,v)

input: U, v roots of trees
output: m root pointing to the matched trees
d distance between the trees
Mt children of m (implicit; accessible via m)

variables: U™, VT

S oy ™ o

children of u, v

vertex cost function

approzimated, unscaled tree-to-tree distance (indez distance)
approzimated, unscaled distance matriz (index distance matriz)
vector of approzimated costs of unmatching

set of index pairs of D referring to matched vertices

set of indices of d’ referring to unmatched vertices

1. set m = (u,v),
set MT =0,
set d = c(u,v);
2. if Ut =0 and VT =90,
return (m,d);
3. for each w; €UT,
for each v; € v,
set ﬁ(i,j) = é(ui,vj) ;
4. if U] > VT,
for each u; € UT,
set d'(i) = & (w);
(respectively for vh
5. set (M,M’) =weightedBipartiteMatching(f) ,d);
6. for each (i,j)r € M,
set (mg,dr) =fixedTreeMatching(u;,v;),
set MT =M+ Umy,
set d=d+dy;
7. if U >|V1],
for each i’ € M,
set (my,d;) =fixedTreeMatching(u; ,\),
set MT =M+t Uumy,
set d=d+dy;
(respectively for vhH
8. return (m,d).
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4.2 Indices

An index is a numerical description of a tree, for instance the height or vertex count of
a tree. The topological indices used in this study are collected to Table 4, where the
notations are slightly revised from those of the publications for overall consistency.

Table 4: Topological indices. Generally, an index I(v) describes the whole tree rooted at
v. The weighted counterpart of I(v) is denoted by I(v). In this table, only the arguments
different from v are explicitly shown. The children and the descendants of v are denoted
by v; and v}, respectively. Vertex v and its descendants are collectively denoted by v**.

Basic definition Inductive definition

Level L | |path(r,v)| Liparent(v)] + 1

L Zv,epath(m) w(v') Llparent(v)] + w
Height H | max[L(v})]— L max[H (vi)] + 1

H max[f(v;*)] -L max[ﬁ(vi)] +w
Child count D | #{vi}

D | S ww)
Descendant count S| #{vi} D+ S(w)

S| SSwep D+ 5(w)
Vertex count N |S+1

N § +w
Sum of squared child count S> | D> +)_ D(v})? D? + " Sa(vi)

Sy | D>+ D(})? D? + 3 Sa(w)
Variance of child count o’ | 23 [Dwi*)— % Y. DwM))? i\,—Q - (%)2

o* | £ 3ADwit) = § RDwi | R - (%)

2

Std.dev. of child count o | Vo

2

o o
Torque T S [L(v;) — L] S+ ZT(W)
T | Y [L(v}) — L]xw(v}) S+ > T ()
Centroid c|71/8
c|rT/s

The level of a vertex, the distance from the root, is as such a noninformative index in
FIXED TREE MATCHING but it simplifies the definitions of other indices. The height is
simply the distance from the root to the highest vertex. The child count is the number
of vertices adjacent to the root; the descendant count is the respective cumulative sum.
It is practical to have a separate notation for the wvertex count, even though the only
difference is the contribution of the root. The squared descendant count is perhaps an
ambiguous yet convenient short of the sum of squared child counts, and it is used in
calculating the variance of child count and the standard deviation of child count, which
are measures of the irregularity of a tree topology. The torque and centroid take large
values for trees in which relatively many vertices are by the top of the tree.

As a tree can be referred to by its root, indices of the tree can be likewise associated with
the root. Thus, assuming T' = T'(v), without confusion one may denote an index by I(v)
instead of I(T'). Several indices can be collected as an index vector i =[I1 I ...].
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In order to keep the overall computation time of heuristic matching tractable, the index-
ing phase should be simple. The scheme presented here is linear, O(N), thus at least
not exceeding the complexity of the core algorithm. The key idea is to use cumulative
indices, or more generally, indices that can be derived inductively, that is, an index of a
vertex is a function of the indices of its children.

An inductively computable index can be a function of any indices of the children. The
derivation of indices listed in Table 4 is presented schematically in Fig. 7. For example,
the weighted standard deviation of child count, 7, is obtained from the weighted variance,
which is obtained from the weighted descendant count S , squared weighted descendant
count §2, and total vertex count N. The indices connected by a solid line are linearly
dependent. For example, the weighted torque T of a tree is a linear sum of the weighted
descendant counts and the torques of the children of the root. On the other hand, the
dotted line from S and centroid C tells that the latter is nonlinear. Linearity of indices
is a desired property of weighted tree mixtures discussed in Sec. 5.3.

Figure 7: Inductive derivation of indices.

In matching attribute trees, indices are needed for describing the distribution of the at-
tributes, too. Some basic attribute indices are suggested in Table 5. In some applications,
the objects having relevance with respect to recognition may reside (only) at the leaves of
a tree. Then, attribute indices can be designed correspondingly, propagating information
from leaves only.

Table 5: Attribute indices. An attribute of a vertex is denoted by a; the attributes of
the corresponding descendants and children are denoted by a} and a;, respectively.

Basic definition | Inductive definition

Attribute a

Maximum Amax | max(a;) max|[a;, Amax(a;)]

Minimum Apyin | min(a;) min[a;, Amin(a;)]

Mass Ap a+). a; a+), Anl(ai)
wa + Y wia; wa + 3 Am(ai)

Am
Average Aavg %Am
Aawg | %4m
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4.3 Weighted bipartite matching of indices

Like the exact algorithm for FIXED TREE MATCHING (Alg. 1), also the heuristic solution
(Alg. 2) contains WEIGHTED BIPARTITE MATCHING (p. 16) as a subproblem, the com-
putational complexity of which is O(N?). It should be noted that now the input — the
indices — are vectors, that is, points in space. If two indices are used, the space is planar
and the subproblem can be exactly solved in the reasonable O(n% logn) time (Table 3).

However, it is natural to apply a heuristic approach also in WEIGHTED BIPARTITE MATCH-
ING. Since the items to be matched — the indices — are themselves approximations,
it makes little sense to insist on full accuracy in matching them. Instead, one aims at
designing efficient heuristics that will fit the simplicity of the core algorithm.

A natural choice for index-to-index distance function is the L-norm (Def. 2)

&(u,v) = [[i(u) —i(v)|l- (7)

Consequently, an analogous function for an unmatched vertex (5) is the cost by magni-
tude,

&' (u) = [liu)] (®)

Although the distances between indices are desired to correlate with the actual tree-
to-tree distances, it should be noted that the index distance functions do not have to
resemble the tree-to-tree distance functions (see (5) and Table 2). For example, one could
use fixed cost, say a large positive constant, for unmatched vertices, regarding all the
vertices — essentially, subtrees — equivalent in that respect. Alternatively, one could
match an unmatched vertex virtually to its nearest (already matched) vertex, and the
unmatching cost would equal such virtual matching cost.

In the following, two heuristics for WEIGHTED BIPARTITE MATCHING are discussed. Re-
lated heuristics have been reviewed by Avis (1983), for example. Here we assume that
the indices somehow reflect the size of the tree, say vertex count or height. The vertex
sets to be matched are assumed to be U and V, denoting N = max(|U|,|V]).

Greedy matching. An obvious greedy approach is to match U and V in the ascending
order of c¢(u,v). Basically, the matching problem becomes a sorting problem. Greedy
matching tends to start matching from the smallest subtrees, leaving large trees un-
matched. Consequently, it seems advisable to favor large trees in matching. In scaled
greedy matching, the indices are normalized among siblings to the interval [0,1], guar-
anteeing that the “smallest” subtree of one tree will be matched to the “smallest” tree
of the other tree, and respectively for the “largest” trees. Scaled greedy matching is
motivated by some applications involving dynamics, where young objects have similar
elements as old objects, but the elements are smaller. Such objects appear for example
in the main application related to this research, in monitoring clouds in weather radar
images, Sec. 7.
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Greedy matching is easy to implement. One calculates the distance array, the size of
which is O(D?), and picks the D smallest row/column-independent elements in order.
For instance, a mergesort requires O(D? log D) operations for sorting D? items.

Rank-based matching. The large trees can be prioritized in matching by applying
mazimal matching: vertices are ranked in the order of index vector magnitudes, and
then items are matched by descending rank. Similar strategy, with descendant counts,
was used also by Shasha et al. (1994) in the initialization of EDITED TREE MATCHING.
Correspondingly, minimal matching means that small trees are matched first. Ranking
(sorting) a set of D children can be carried out in O(D log D) time. If several indices are
applied, the total ranking could be based on, say, an L-norm of index vectors.

4.4 Overall complexity

Finally, we consider the overall complexity. Assume that the larger tree to be matched has
N vertices, and the maximal child count is D. Indexing takes () computation steps
and the core of Algorithm 2 visits each of the N vertices once, calculating WEIGHTED
BIPARTITE MATCHING for the children of each vertex. Hence, with rank-based or exact
WEIGHTED BIPARTITE MATCHING of children one seems to arrive at O(NDlogD) or
O(N 53) complexity, respectively. A more careful analysis, as pointed out by Kilpelainen
(2001), yields even stricter bounds. The overall efforts are

N N
ZDi log D; < logEZDi = (N —1)log D = O(N log D). 9)
i=1 i=1

and

al .l =2 =2
Y D}<D" Y D;=D(N-1)=0(ND"). (10)
i=1 i=1

Naturally, efficiency of any heuristic should not be judged only by the computational
complexity but by the overall performance, taking the suboptimality of approximative
matching into account as well. Especially, as tree matching is often used as a preprocess-
ing for further operations (see Fig. 1), and any errors made in matching will propagate
throughout the scheme. The success rate of approximative matching is discussed in Sec.
6. Next, we will discuss a domain in which the speed of (9) is especially attractive.
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5 'Trees as object representations in learning systems

This section explains how trees can be used as learning objects or prototypes in adaptive
pattern recognition systems. A learning process means that an object gradually adapts
to given samples based on a similarity measure. We shall limit to the schemes in which
the learning is carried out by objects that have the same mathematical representation as
the input data, although other schemes of learning do exist. Likewise, we will ultimately
focus on continuous rather than discrete learning. The central issue here is how the conti-
nuity of trees is implemented, and what is the relation of continuity to matching, learning
and distance functions. Specifically, some tree-matching-based merging operations ap-
plicable in learning processes are presented. It is also useful to know the limits of the
applied operations, especially the extent and accuracy to which the operators obey the
intuitive ideas of adaptation. Thus, the consistency and related properties of matching
are discussed. Finally, a learning system, the Self-Organizing Map of Attribute Trees, is
presented as an demonstration of the proposed learning techniques.

5.1 The role of weights

One of the basic techniques presented in this thesis is to apply trees in which the vertices
are weighted. This far, it has been merely assumed that the concerned trees may have
vertex weights. It is clear that the interpretation of a weight depends on the application.
Especially in the context of learning systems, we may expect the following intuitive
properties.

1. The weight w of a vertex is an indication of the significance of the vertex. Depending
on the application, a weight may be also called the value, probability, confidence
or degree of existence of the vertex.

2. Typically w € [0,1], and the default value of a weight is 1. A simple (unweighted)
tree can be regarded as a weighted tree with the weights equal to unity. Corre-
spondingly, a vertex with zero weight can be identified with a nonexistent vertex.
Sometimes w € [0, 0o] might be applicable. Then, w = n can for instance indicate
that the vertex is equal to n vertices each having w = 1.

3. In learning systems designed for tree data, the training effect of a sample tree with
large weights is stronger than that of a tree with small weights.

4. In evaluating distance functions as minimized total costs as in (6), it is natural to
associate large costs to unmatched or poorly matched heavy vertices. On the other
hand, in some applications the vertex matching costs could be proportional (also)
to the difference of the vertex weights (see Table 2).
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5.2 Merging

Typically, learning schemes involve a limited set of adaptive objects, prototypes, and the
set is often called a codebook. The codebook is trained by presenting samples repeatedly
to the prototypes. The essential goal is to generalize data, that is, to use each prototype
for representing several training samples. Generalization is a means for keeping the
codebook limited in size.

Practically, a learning system involving trees as adaptive objects requires a procedure
for merging two trees. In the following, we will present some alternative methods. The
learning operations for trees discussed in the following assume that a tree matching
algorithm is given, and unless stated otherwise, the applied tree matching algorithm
may be exact or heuristic.

Consider the tree obtained by matching two trees: T,, = fixedTreeMatching(Ti,T5).
(In this section, the form T, = fixedTreeMatching(7},7>) is more convenient than
the respective “programming notation” (m,d) = fixedTreeMatching(u,v) applied in
Algorithms 1 and 2.)

It should be noted that as an object, T}, is not a completed mixture of 77 and T, but
more like a relation listing the correspondences between 77 and T>. Hence, we need
merging operations that proceed from T;,, towards new objects which are of similar kind
with 77 and T>. To start with, one can consider a union and an intersection of two
trees as basic merging operations. The definitions presented below assume implicitly
that T,, = (M, M', E,) = fixedTreeMatching(T}, T5) is given.

Definition 8 (Union). The union of two trees can be defined as Th UT» =

(V =MUM
E =FE,
max(wy,ws), if v = (vy,vs),
wv) =< wy, if v =,
T=(V,E,w,a) : w0y it o = o, (11)
max(ay,az), if v = (v1,v2),
a(v) = aj, ifv= V1,
L ag, if v =va.

where vy € Vi and vy € V2, and respective abbreviations w; = w(v;) and a; = a(v;) for
i = 1,2 are used for convenience, and max(a;,az) is taken element-wise.

Definition 9 (Intersection). Correspondingly, the intersection is Ty N Ty =
Vv =M
E  =E,N(Mx M)

T = (V,E,w,a) : w(’U) — min(w1,w2) } ifo= (’U1,U2)

a(v) = min(a,as)
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Now, we can define the subset relation Ty C T» < [(T1 N T2)=T1] & [(T1 U T2 )=T5]. For
example, a learning system could classify a given sample T” to a class ¢ if T fits between
the set intersection and the set union generated for that class: (.7 CT' C J.T.

More sophisticated merging is obtained if trees can be mized continuously. In a learning
system, a prototype could asymptotically adapt towards some kind of an average of the
samples representing a certain class. With vectors, one often applies update rules of the
type m} = m; + a(x —m;) or equivalently, m} = ax; + (1 — a)m;, where x is a sample,
m; is a prototype and « is a learning coefficient.

Next, our goal is to define the corresponding rule for trees.

Definition 10 (Mixture of trees). Using the same assumptions and notations as
above, the mizture of trees Ty and T5 with mixing coefficient o € [0, 1] is defined as

mixTrees(Ty, T2, a) =

(V =MUM'
E =E,
oawy + (1 — @)ws, if v = (v1,v2),
w(v) =< own, if v=u,
T, = E :
@ (V7 7w7a) \ (1 — a)’UJz, ifvo= V2.
aw (1-a)w e —
aw1+(lia)wg a; + aw1+(1—a2)w2 as, 1f v = (Ul,’l}z),
a(v) = ap, if v=u,
\ az, if v=1,.

(13)

Thus, a mixture blends two trees in a continuous fashion: T, = mixTrees(T,Ts,q)
represents 77 and T in proportions a and 1 — a, respectively, T,, can be seen as a
weighted instantiation of the respective matching, T}, = fixedTreeMatching(Ty,T%),
keeping in mind that Ty, is an object analogous to 77 and T», while T}, has the nature of
a relation. Strictly speaking, 77 and 7> may be unweighted, but 7, is always weighted.

Intuitively, (13) realizes an interpolation. It should be however seen as one among many
possible definitions of tree mixtures or interpolations; a detailed discussion on its proper-
ties is presented in 5.3. In principle, the learning systems dealing with scalars and vectors
could be generalized for trees if one could extend appropriate arithmetical operands for
trees. For example, one could think of rewriting the mixture of two trees more generally
as

mixTrees(Ty, T2, a) = oT1 + (1 — a)Ts. (14)

The following definitions of multiplication and addition are steps towards this goal. Ob-
viously, the left-hand side of (14) is continuous with respect to a because mixing takes
affect after matching while the right-hand side of (14) suggests that weighting is carried
out before matching, possibly affecting the matching stage: small changes in a may cause
recombinations in M, the set of matched vertices, and thus, clear discontinuities. The
conditions under which (14) holds are discussed in 5.3.
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Definition 11 (Scalar multiplication). Given a weighted attribute tree T' = (V, E, w, a)
and a scalar «, a scalar multiplication is a tree in which all the weights have been mul-
tiplied by a:

\% :V7
, , ) E' :E7
a_T:(V,E,’LU,a)' 'w('ul):a-’w('l)), (15)
a(v') =a(v).

Definition 12 (Summation of trees). Given two weighted attribute trees Ty =
(V1, E1,wi,ay) and Ty = (Va, Ea, we, as), the addition of two trees equals matching them
and summing the weights and the attributes

(V =MuM
E =8,
wy +we, ifv=(vi,v2) € M,
wv) =< wi, ifo=v, € M',
T1+T2:(V,E,w,a);{ o o v € M
it gy, ifu= (v1,v2) € M,
a(v) =< ai, ifv=v €M,
L as, ifv=vy € M.

(16)
Remark. We do not require a tree summation to obey familiar properties like associa-
tivity. Related topics could, however, be subject to further studies.

5.3 Consistency of matching and merging

Learning systems are compositions of operations and data structures. For overall control,
error tracking and sensitivity analysis, it is practical to require that the modules of such
system are robust and easy to analyse. For example, it is often hard to optimize a
learning system if it involves many stochastic or heuristic steps. In learning systems
involving index-based tree matching, one can simplify the overall control for example by
concentrating on index design while keeping the procedure of actual matching simple and
but robust.

In designing a learning system, it should be kept in mind that the performance of mixing
depends on the compatibility between distances ((6), Table 2) and mixing operations
(13), but essentially on the performance of matching. Further, if the continuity of mix-
tures is a desired property, one should know how accurately it applies in practice. In
addition to continuity, there are properties like stability and linearity which may be cru-
cial when designing a learning system. In applications involving prediction of trees, also
differentiability might be of interest. Some possible shapes of tree interpolation curves
are illustrated in Fig. 8. The ultimate question is: to which extent do tree interpolations
in tree space correspond to vector interpolations in Euclidean space?
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!

stochastic discontinuous continous, non-differentiable
a) b) c)

continuous continuous (monotonous distance) continuous (linear distance)
d) e) f)

Figure 8: Hypothetical interpolation paths in tree space illustrated as a plane.

The rest of this section will try answer the above question, discussing how matching
schemes tolerate prior weighting of trees (consistency of matching), how stable the ob-
tained mixtures are (consistency of mixing) and how well tree mixtures follow the intuitive
idea of interpolation (linearity of distances).

Definition 13 (Consistency of matching). A matching scheme is consistent if posi-
tive scalar multiplication has no effect on matching. Formally, assume T}, = (M, M', E,;,)

= fixedTreeMatching(T},T») and T, = (M, M), E,) = fixedTreeMatching(ayTy, asTs).
Then, fixedTreeMatching is consistent if M = M, for any attribute trees 77 and T5
and for any a3 > 0 and as > 0.

Consistency of matching is essential for example in applications where one expects that
weak trees gradually adapt to topologically similar but stronger trees without recombi-
nations among M ; recombinations may slow down or corrupt the process of adaptation.

Lemma 1 (Lmearlty of 1ndex1ng) Given tree T, let i(T) be a vector composed of
(some of) the indices D, S, N, and T listed in Table 4. Then i(T) is linear, that is,

i(aT) = «-i(T) and

i(Ty 4+ T3) i(T1) +i(T2)- 1

Proof. The indices D, S, N, and T are linear combinations of vertex weights w(v),
in other words, a sum of the type ) . biw(v;) where b; are constants. This property
can be seen in Table 4, or more visually in Fig. 7. Scaling each w to aw scales also the
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linear combination by «a. Likewise, according to the definition of summation (Def. 12),
the weights in 7' are simply sums of the weights of matched vertices. However, looking
at the definitions of 5, S , N , and T in Table 4, there is no difference between handling
weights as sums and separately. O

Remark. Indices H, S, ;5, and C are nonlinear. For example, :S';(aT) = az:S’;(T),
o2(aT) = a®8,/N — o2(S/N)? = a202(T), and C(aT) = C(T). However, the first

criterion applies to H and &. For example, &(aT) = gi(aT) =ao(T).

The following lemma means that we can restrict our scope to the consistency of children-
to-children matching:

Lemma 2 (Universality of consistency). If an index-based matching scheme apply-
ing linear indices is consistent for the children of roots, then it is consistent for whole
trees of any size.

Proof. If an index-based matching scheme is consistent for the children of roots, it
implies that the roots of the further subtrees-to-be-matched will be matched consistently.
Inductively, the whole tree will be matched consistently. O

Theorem 1 (Consistency — rank-based weighted bipartite matching). Consider
fixedTreeMatching in which the applied indices are linear, the heuristic weighted-
BipartiteMatching applied in index-to-index matching is rank-based (see p. 33). Then,
fixedTreeMatching is consistent.

Proof. Positive scalar multiplication does not change the ranks of linear indices nor the
ranks of the sums of linear indices. O

Theorem 2 (Consistency — exact weighted bipartite matching, squared Eu-
clidean cost). Consider fixedTreeMatching in which the indices are linear, weighted-
BipartiteMatching is ezact, and the vertex matching costs in (5) are c(u,v) = ||i(u) —
i(v)||3 and ¢'(u) = ||i(u)||3. Then, fixedTreeMatching is consistent.

Proof. Due to universality of linear indices (Lemma 2), we can concentrate on the
problem of children-to-children matching. Basically, there can be two types of recom-
binations: matched children recombinate among themselves, or previously unmatched
children become matched (turning some unmatched children matched). However, this
distinction is irrelevant since each unmatched vertex can be regarded as matched to a
null vertex A having zero indices because ¢'(v) = ||v||3 = ||[v — 0|3 = ¢(v, \).

Assume that a vertex of T, has two children, u and «’, which will be matched to the two
children, v and v', of some vertex in T,. Denote the respective index vectors by u, u/,
v, and v'. Assume further that T, and T, are multiplied by some a and 3, respectively.
Then

v) + c(u',v")
llou = B3 + ||au’ — Bv'|13 (18)
= o?u'u—2apu’v + B2vv + o?u'Tu’ — 2apu’v' + B2V

c(u
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and

c(u,v'") + c(u',v)
||04u Bv'|3 + ||au' - Bvli3 (19)
= a’u'u-—20fu'v + B2V + o?u'Tu’ — 2apu’v + BZvTv

For some « and 3, assume that {(u,v); (u',v")} is the optimal matching. In means that

é(u,v) + é(u',v")
& —2aB(u'v +u'v')
& uv + uv

é(u,v") + é(u',v)
—2aB(u'v' +u'Tv) (20)
u'v' +u'Tv.

IV IA A

But (20) applies to any positive @ and 8, meaning that matching of two vertices is not
affected by weighting. Generally, the same applies for matching vertex sets of any size:
looking at (18) and (19), the last line of (20) will always consist of mixed terms, that
is, inner products of matched vectors, and the inequality will hold for any number of
vertices, independently from « and 8. O

Remark. fixedTreeMatching applying eract weightedBipartiteMatching and an
L-norm as the distance function (2), is inconsistent. One can verify this by taking
for example u = [1 1], ' = [3 2], v = [6 1], and v' = [4 2] (Fig. 9, left). Using
L-norm, the optimal matching is M = {(u,v);(u',v")}, because é(u,v) + é(u',v") =
[[u=v]||p+||u' =v'||, = /5P + 0P+ /1P + 0P = 6 = {/3P+ /3P < /3P + 1P+ /3P + 1P =
é(u,v') + é(u',v). After multiplication by two (Fig. 9, right), the optimal matching is
M = {(u,v"); (u',v)} because &(u,v') + é(u',
/4P + /2P < AP + 1P + 2P + 27 = é(u,v) +

(
v) = Y2+ 0P+ Y0P +3» =5 < 6
e(u',v').

Figure 9: Inconsistency of tree matching when applying exact L-norm-based (or greedy)
weighted bipartite matching. The match changes when multiplying T, by two.

Remark. Also fixedTreeMatching applying greedy weightedBipartiteMatching is
inconsistent. Reusing the previous example (Fig. 9), v’ will be first matched to v', leaving
u for v. After multiplication by two, u will catch v', leaving v for «'. (Looking at Fig. 9,
this reasoning holds for any sensible distance function.)

Lemma 3 (Equivalence of mixtures and weighted sums). If fixedTreeMatching
is consistent, then (14) applies: mixTrees(Ty, Ty, ) = aTy + (1 — @)T,.
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Proof. mixTrees involves matching succeeded by weighting, while the left-hand side of
(14) involves matching preceded by weighting. Consistency of matching implies, that the
mutual order of weighting and matching is however insignificant. O

Definition 14 (Consistency of mixing). Consider two attribute trees T, and T, a
matching scheme fixedTreeMatching, and the respective mixing scheme mixTrees. Set
T, = mixTrees(T,,T,,a). Denote the matched vertices in fixedTreeMatching(T,,T),)
by M. Further, denote the matched vertices in fixedTreeMatching(T,,T,) and fixed-
TreeMatching(T,,T,) by M, and M,, respectively. The mixing scheme mixTrees is
consistent if

My,=M,=M VYael0,1] (21)

Thus consistency means that matching will not alter along the path of interpolation.

Lemma 4 (Convexity of indices). Consider trees T, and T,. Denote the respective
index vectors of the roots by u and v, respectively. Consider T, = mixTrees(Ty, Ty, ),
denoting the index vector of the root by v = ¥v(a). Then, if the applied indices are linear
(Lemma 1),

Vv =_pu+(1-p)v, (22)

where § = B(«) is a monotone increasing function such that $(0) =0 and (1) = 1.

The lemma states that the index vector of a vertex composed of two mixed vertices lies
on the line segment connecting the original index vectors.

Proof. In mixing two trees T, and T, with a mixing coefficient «, the weights of each
pair (u,v) of matched vertices become mixed as w, = aw, + (1 —a)w, which is a convex
sum. If the trees have attributes, also the attributes become mixed as convex sums:
a = fa, + (1 — p)a,, where § = (aw,)/[ow, + (1 — a)w,]. Generally, the 3 varies for
each pair of matched vertices. A linear index associated to a vertex is a linear sum of
indices of the subtree rooted to that vertex. Clearly, v.= v when @ = 0 and v = u for
a = 0. Due to linearity indices, and the convexity of the partial sums, v = fu+(1—3)v.
O

Theorem 3 (Consistency of mixing / L-norm). The mixing scheme mixTrees using
eract weightedBipartiteMatching for linear indices under L-norm is consistent.

Proof. (Triangle inequality.) Consider trees T, and T,. Assume that the root of
T, has D children, Ut = {ug,us,...,up}, and the root of T, has also D children,
V+ = {v1,vs,...,up}. Denote the respective index vectors by {uj,us,...,up}, and
{v1,Vva,...,vp}. If the child counts are initially unequal insert the required number
of null children (setting the corresponding index vectors to zero). Without loss of gen-
erality we may assume that the numbering of the children corresponds to the optimal
matching invoked implicitly by T = mixTrees(T,,T,,). That is, the optimal match-
ing is M = {(u1,v1); (u2,v2);...;(up,vp)}. Consider the corresponding mixed ver-
tices V+ = {v1,02,...,0p}, and the respective index vectors {V1,V2,...,Vp} where
v; = Vi(a) = Bi(@)u+ [1 — B;(a)]v (see (13) and Lemma 4). Denote the M-consistent
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matching of V* and Ut by M, = {(1,u1); (@2, us);...; (Up,up)}, and respectively for
V+ by M, = {(01,v1); (V2,v2);--.; (Up,vp)} (see Fig. 10). The optimality of M means
that cost(M) = >, é(uj,v;) = min. On the other hand, when using an L-norm, by the
convexity of indices (Lemma 4), cost(M) = cost(M,) + cost(M,). Consider growing «
from zero towards one. Assume that at some point «, a new matching M, instead of
M., would be optimal: cost(M},) < cost(M,,). But then cost(M,)+ cost(M]) < cost(M)
which is a contradiction. Similarly for M,. Clearly, the universality of matching consis-
tency (Lemma 2) generalizes to mixing, thus only the children of the roots need to be

discussed. O

optimal matching M recombination

Figure 10: Consistency of heuristic tree matching applying exact index-to-index-by-L-
norm matching

Remark. The mixing scheme mixTrees using ezact weightedBipartiteMatching for
linear indices under squared Euclidean distance (as in Theorem 2) is inconsistent. For
example, consider vertices u, u', v, and v’ assuming indicesu =[1 2], u' =[3 1], v = [6 2],
and v/ = [8 1]. The optimal matching is {(u,v); (uv/,v')} as (52+0%) + (52+02%) <
(7?2 +12) + (32+12) (see Fig. 11, left). A mixture of the involved trees might yield
Vo =0.2u+0.8v =[5 2] and v/, = 0.8u’ 4+ 0.2v' = [4 1], but then the optimal matching
would be {(vq,v'); (v}, v)} as (32+1%) + (22+1?) < (12+0%) 4 (4240?) (see Fig. 11, right).

3 3
v vét \'2
e, O e, 00
7 ] v \ ]
1 2 3 4 5 6 17 8 1 2 3 4 5 6 7 8

Figure 11: Inconsistency of tree mixing when applying squared Ls-norm in weighted
bipartite matching.

Remark. Mixing schemes using rank-based or greedy approach are not generally consis-
tent. For example, the ranks change in Fig. 11: ||u||, < ||u'||, and ||v||, < ||V'||, but
[|Vallp > [|V4||p for any p > 1 (at least). As to greedy matching, the optimal matching
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would be initially {(u,v"); (u',v)} but for example, given v, = 0.3u + 0.7v' = [5.9 1.3]
and v/, = 0.3u’ + 0.7v = [5.1 1.7], the optimal matching would be {(vq,v); (v),,v")}.

Theorem 4 (Consistency of mixing / rank-based, equal weights). The mix-
ing scheme mixTrees using rank-based weightedBipartiteMatching for positive linear
indices, equally weighted siblings, and L;-norm in ranking, is consistent.

Proof. If the elements of vectors v and u are positive, ||v||1 + [[u|li = ||v + u]|1.
In addition, for any L-norm applies ||8v|| = S||v||. Consider ordered sets of index
vectors ||ui|l1 > ||uz]ls > ... > ||lup|r and ||vi]lx > ||v2]li = ... > ||vD|li. The

inequalities can be multiplied by § and 1— 3, and summed, yielding ||fu; +(1—8)v1|1 >
[|IBug + (1 — B)vall1 > ... > ||fup + (1 — B)vp]||1. Due to universality of matching
consistency, the theorem follows. O

Theorem 5 (Linearity of mixtures). Consider mixing scheme T(e) = mixTrees(Ty, Ty, )
in which weights are mixed as @ = w, + wy — Wywy /[aw, + (1 — a)w,] (instead of
w = aw, + (1 — @)w, in (13)). If mixTrees is (still) consistent, and the vertex cost
¢(u,v) applied in approximative overall distance function (Ti?c(Tu,Tv) is defined as in
Table 2, then

dist(T,, To) + dist(T,, T,) = dist(Ty, T,). (23)

The theorem says that the described mixture, seen by the approximative distance func-
tion, lies on the line segment joining the matched trees.

Proof. Consider mixing T, and T,. Assume that u € U and v € V become (implicitly)
matched in T = mixTrees(Ty, Ty, @), and denote the resulting vertex in T' by ©. The
and weight

AWy

respective attribute becomes a = fa, + (1 — §)a,, where § = PTTE Er Tt
becomes W = Wy, + Wy — Wy Wy [[awy, + (1 — @)wy,]. (If ¥ corresponds to an unmatched
vertex, the above mixing rules can be used by setting the weight of the missing vertex
to zero.) The cost of matching ¥ to v is

W + Wy W+ Wy

W) = —w—la-all=—5—llfau+ (1~ Fla, —al (24)
Wt wy QWy, a a|
N 2 aw,+(1-a)w, © "

and respectively for matching v to v,
- W+ Wy, w + w,,
c@u) = —5—la-al=—F—|fau + (1 = fla, - ad| (25)
w+w 1-a)w

R e, L |

2 awy+ (1—a)w,
thus adding up to

o) o) = LT TR = el G0
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_ w(awy + (1 — a)wy) + wyw, -
= 2(awy + (1 — a)wy) [lay o] (27)

Y - au|
= - |w a, —ay,
2 awy + (1 — a)w,

1
= §(wu + wy)||ay — ay|| = c(u,v).

Due to mixing consistency, vertex-to-vertex matches are stable, and since the above
summation applies to every vertex, the theorem follows. O

Remark. Using the revised weighting rule makes Lemma 1 inapplicable, which turns
also Lemma 4 inapplicable. Only the consistency of ranked matching, Theorem 4, holds
but it implies that the mixture curve of weights is the same among siblings.

Conclusions. A collection of lemmas and theorems was presented, exposing stability
aspects of heuristic matching and mixing. Among the discussed index-to-index distance
functions, there seems to be no universal choice implying consistency in both matching
and mixing as well as linearity of mixtures. Above these ideal properties, one can expect
that the consistency of mixing should be the most significant: once the learning medium
has survived initialization and a possibly noisy overall adaptation stage, it is crucial
that the prototypes “get locked to their targets.” Among the alternative approaches for
WEIGHTED BIPARTITE MATCHING, the L-norm-based exact procedure seems the safest.
However, the rank-based matching is computationally more attractive especially if the
index set is small, and the indices are positive (Theorem 4). It seems that the metrics
must be chosen separately for each application, compromising between consistency and
linearity. To conclude, among the cases shown in Fig. 8, the one closest to the practi-
cal implementations of index-based matching seems to be the case e), which should be
satisfactory for most applications.

5.4 The self-organizing map of attribute trees

The analysis presented in Secs. 5.1-5.3 applies especially to learning processes involving
trees as smoothly adaptive object models. This section presents such a scheme, summa-
rizing several topics addressed also in the publications of this thesis.

The Self-Organizing Map (SOM) invented by Kohonen (1982, 1990, 1995) is one of the
most popular neural network methods in the world. It has been applied in various
recognition, prediction and monitoring problems (Kohonen et al. 1996). Like all the
neural networks, the Self-Organizing Map is an adaptive system that can learn from
examples. A special property of the SOM is that the training stage is unsupervised.

Formally, the SOM consists of an array of learning units, neurons. During training the
neurons smoothly adapt to presented data. By default, the data objects and the learning
objects associated with the neurons are of the same type, say real-valued vectors. In
principle, the studied objects could be anything, as far as a distance function and an
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adjustment operation are defined. A learning step consists of presenting a sample to the
map, finding the most resembling neuron — the best-matching unit — and adjusting that
neuron and its neighbors towards the sample. The radius of the neighborhood decreases
gradually during training. As a result, the neurons represent the input data in an orderly
fashion: nearby neurons correspond to nearby locations in the input space. In other
words, the SOM implements a topology-preserving mapping.

If the SOM is used in recognition or monitoring tasks, the map is calibrated by attaching
labels describing, say, classes to be recognized. In Fig. 12, we outline an a potential
application based on the weather radar data: a “weather map”. In Fig. 12, the underlying
hexagonal array illustrates the internal data presentation applied by the computer, the
suns and the clouds are labels attached by an expert (radar meteorologist), and the
trajectory illustrates the automated, operational stage of monitoring the development of
weather, or to be more specific, sky conditions.

’’’’’’’’’’ IRV ERNN
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Figure 12: A hypothetical application, “weather map”. The trajectory indicates the sky
conditions as a function of time.

The original and most popular version of the SOM is a two-dimensional array of vectors.
By default, the applied distance function is Euclidean, and the adjustment of neurons is
realized as interpolation between samples and map vectors. Also alternative topologies
and data structures have been suggested. Conical or annular topology is preferred in
applications involving circularities in input space. The Tree-Structured Self-Organizing
Map (TS-SOM) by Koikkalainen (1994) has the form of a quadtree: the map is recursively
divided into two-by-two maps. The tree-like structure implies speed-up in both training
and operation. However, it must be noted that the trees discussed in this thesis are data
objects, not algorithmic structures as in the TS-SOM.



46

As mentioned above, the crucial point is that a distance function and an adjustment
operation are defined for the objects involved. In addition, the computational complexity
must be taken into account as practical constraint. For example, assume that the training
stage of a SOM involves M data samples and N map units. At each training step, a
sample is presented to the map, and the search for the best-matching unit requires N
distance evaluations, followed by IV adjustment operations. The sample set is often used
over and over, hence the complexity of distance evaluation and adjustment is critical for
the overall computational effort. For a continuous object representation, the adjustment
operation is ideally based on the gradient of the distance function, but such a gradient
is not always available. Also discrete objects can be considered; essentially, the point is
that the adjustment should tune objects of the map towards the presented samples. If
an adjustment operator cannot be defined explicitly, it can be derived indirectly from
the distances. Kohonen (1985) showed how medians of symbol strings can be calculated,
further yielding the Self-Organizing Map of Symbol Strings (Kohonen 1996, Kohonen and
Somervuo 1998) which can be used for example in clustering protein sequences (Somervuo
and Kohonen 2000).

The central innovation in this thesis is the Self-Organizing Map of Trees (SOM-T, Publ.
ITT) and more generally, the Self-Organizing Map of Attribute Trees (SOM-AT, Publ.
VI). Given the proposed tree distance function (6) and mixing rule (13), implementing
the SOM-T or the SOM-AT is straightforward. Practically, no tree-specific modifications
are needed in the basic algorithm: the required tree operations can be linked to the code
as portable modules. The only exception is pruning: the trees in the map have to be
pruned regularly in order to avoid generation of massive unions of trees. Pruning means
deleting subtrees having weights that fall below a predefined limit.

The SOM-AT is suited for graphical illustrations. Let us consider four sets of artificial
trees, each set consisting of hundred trees. Three vertex attributes are applied: vertex
size, intensity and elongation. The trees within a set resemble each other, so the sets
represent four “species”. Samples of each species are shown in Table 6. A map trained
with this data is shown in Fig. 13.

Although there is no one-to-one analogy between trees and vectors, consistency of tree
matching, mixing and distance (Sec. 5.3) implies that the behaviour of the SOM-AT can
be expected to be close to that of the standard SOM. Occasional inconsistencies and the
lack of certain properties (like associativity) may effect training, but perhaps only by
increasing the processing time. One may assume that the errors resulting from heuristic
matching behave as noise. It should be remembered that noise is sometimes a desired
ingredient in training a neural network — such as the SOM — as it may accelerate
learning and also generalize the result (Bishop 1995).

As explained in Publications III and VI, the SOM-AT involves tunable parameters, most
of which are however inherited from the standard SOM. It seems that the overall imple-
mentation of tree matching, mixing and distance functions is more significant in practice.
Also, the success of self-organization depends more on the dimensionality of the studied



Table 6: Four artificial attribute tree “species”.
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phenomenon than on the applied data structure, as pointed out in Publ. ITI. For example,
an application may produce apparently complex trees while the space spanned by the
trees is essentially two dimensional: each tree may correspond to a point in a plane. The
practical assumption here is that determining such mappings — that is, optimal indices
— by observing tree distributions is generally nontrivial. For example, it would be hard
to define an explicit mapping from the trees shown in Table 6 to two dimensions.

To conclude, we claim that when processing tree data with the SOM, a matching-based
approach — even using rather simple indices — is generally applicable, hence designing
complicated, application-dependent tree-to-vector mappings will not often pay the effort.
In addition, the matching approach allows using similar objects (trees) both as input and
as learning medium, which facilitates controlling the learning process. In the next section,

the former claim will be motivated more theoretically.
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Figure 13: A Self-Organizing Map of Attribute Trees trained with artificial tree “species”.

The displayed trees are not labels on a map but the true contents of the map. Essentially,
the trees are the map.
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6 Bounds of matching performance

Heuristic methods are motivated by savings in computational effort. As a trade-off, they
produce suboptimal results. The computational complexity of the proposed algorithm
(Alg. 2) was discussed in Sec. 4.1, but nothing has been stated about the performance
in terms of matching success, that is, the number or the proportion of correctly matched
vertices. Based on simple tree distributions, this section presents some previously un-
published bounds of performance. For simplicity of formulae, trees without weights and
other attributes will be considered, and fit, number of matched vertices will be discussed
instead of distance.

6.1 Indexing, index-based matching or exact matching?

Indices proposed in Sec. 4.2 have been mainly designed for index-based matching. How-
ever, since indices are descriptions of trees, they can be used as such for comparing trees.
Intuitively, if the applied indices provide no information, no sensible matchings will be
obtained either. On the other hand, a 100% success in index-based matching would
mean that the applied indices carry complete information about trees — in which case
matching would be an unnecessary effort. Hence, it is natural to ask whether the simi-
larity of two trees can be any better approximated through index-based matching than
by comparing index vectors directly using, say, Euclidean distance.

100%

performance

- index-based matching

- index-to-index comparisons K

informativeness of indices 100%

Figure 14: Hypothetical performance of distance approximation.
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In fact, the unstated hypothesis beyond index-based matching discussed in Sec. 4.1 is
that index-based matching leads to better distance approximations, unless the indices
provide complete information. The hypothesis is illustrated in Fig. 14.

In the following, the validity of the hypothesis is verified using a simple distribution
of random trees. A lower bound of index-based matching is derived theoretically for
the worst possible indices, random indices. Further, it will be shown that the proposed
heuristic matching scheme is reliable with respect to the required computational effort.
The two types of problems to be addressed in parallel are matching of random trees and
matching of isomorphic trees.

The applied notations are listed in Table 7. The notations equipped with an asterisk
(*) apply to whole trees; without asterisk to distinct vertices. All the distributions and
expectations are functions of D and H, which are however omitted from notations for
convenience. Also bracketed operands are omitted when appropriate.

Table 7: Applied notations.

d, D child count, maximum child count of a vertex
h, H height, maximum height of a tree
P(v) probability of the existence of a vertex
P(v1|v2) | probability of the existence of a vertex v1 given that vs exists
P(d) probability for a vertex to have d children
Eld] expectation of child count of a vertex
E*[n] expectation of vertex count of a tree
E,.[m] expectation of matches when matching randomly
the children of two random vertices
E;[m] expectation of matches when matching

randomly two random trees

Ep[ml|d] | expectation of the number of unchanged positions in a
random permutation of a set of d items (here: children)

E,[m)] expectation of the number of unchanged positions
in random permutations of up to D children
E;[m] expectation of the number of matched vertices

when matching randomly two isomorphic trees

Definition 15 (coinflip tree). A coinflip tree is a random tree which has at least
one vertex — the root, v; — and in which any vertex v, has children vy 1, vs2, vs.3...
according to the probability distribution

P(vsalvs) = (28)

— N | =

P (s [i411|vs.4) (29)

N |

Thus, a coinflip tree can be thought as constructed by flipping a coin: for each vertex,
children are added one at a time as long as the result is “heads”; the first “tails” ter-
minates the process. Consequently, any tree of N vertices can be presented by a binary
string consisting of N zeros and N ones, corresponding to a sequence of coinflips. In
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number theory, the integers (ranks) associated with these binary strings are called Cata-
lan numbers. The average height of ordered trees (see de Bruijn et al. 1972) as well
as ranking of ordered trees (Kreher and Stinson 1999) have been studied by regarding
trees as Catalan numbers. This encoding is also addressed in gambling theory (fifty-fifty
betting) or in discrete random walks in a straight line.

Clearly, the resulting distribution of child count is geometric: P(d) = 1/29t!. The
procedure is repeated recursively for each child. This probabilistic model for generating
trees is illustrated in Fig. 15. The line thickness corresponds to the probability. It should
be emphasized that while the generation of coinflip trees obeys an order, the constructed
trees are nevertheless regarded unordered.

Figure 15: An illustration of the coinflip tree model.

Definition 16 (constrained coinflip tree). A constrained coinflip tree is a coinflip
tree with maximum height H and maximum child count D. Formally:

L if A(wy) < H
P N N — 2 1 s o
(veafos) { 0, ifA(v,) =T, (30)
1 : o)
_ bR lf d < D,
Pvs.@@snlvs.a) = { 0, ifd=D, (8D

where A(vs) is the depth of vertex vs. The children are distributed as above with the
exception P(D) = P(D — 1). Any constrained coinflip tree can be thought of first gen-
erating the tree by the unconstrained model but then truncating the branches exceeding
the constraints H and D. A slightly different distribution would be obtained by discard-
ing the trees violating the constraints, but the first policy is more convenient for the

considerations presented in this section.

Evidently, the coinflip model is one of the simplest possible tree distributions. The sim-
plicity of definition means also that the derivation of expectations is easy. As a further
attractive property, any tree can be regarded as an instance of the (unconstrained) coin-
flip tree model, suggesting that a result derived for coinflip trees can be generalized for
arbitrary tree distribution by appropriate weighting. The constrained coinflip distribu-
tion is also feasible in generating samples for experiments: the expected child count is
location invariant and finite. Further, the expected total vertex count is finite for any
finite D.
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If a vertex is allowed to have maximally D children, the expected child count is

E[d] = giP(i) = ﬁgz (%)m +D G)B =1-(1/2)P (32)

using N ng™ = q(1 — ¢)/(1 — q)2 = (Ng¥*1)/(1 — q). Values of E[d] for some D are
listed in Table 8.

Table 8: Expectation of child count E[d] assuming maximal child count D.

D o] 1] 2]3 4 5 ]oo]
Ed | 0]1/2]3/4]7/8]15/16 | 63/64 | 1 |

By location invariance, the d’s of subsequent generations are independent. With finite
H, the expected vertex count of a tree is the geometric sum of E[d]:

S N Bt Bt (V2 L LA Ve
E*[n] = hZE[d] T _2( —[1—(1/2)P)F+ ) (33)

Values of E*[n] for some D and H are listed in Table 9. A sample distribution for D = 5
and H = 5 is shown in Fig. 26, Appendix A.3.

Table 9: Expectation of vertex count E*[n] for some H and D.

P lo| 1 | 2 | 3| 4] 5 |
0 1] 1 1 1 1 1 |1
1 1] 15 | 175 | 1.88 | 1.94 | 1.97 | 2
2 1175 | 231 | 264 | 282291 | 3
3 1188|273 [331 364382 4
4 1194 305|390 | 441 | 470 | 5
5 1] 1.97 | 329 | 441 | 5.14 | 5556 | 6
00 1] 2 4 8 | 16 | 32
6.2 Lower bounds for matching — performance of random in-

dices

Matching coinflip trees randomly. Let us consider matching two trees generated
by the same coinflip tree distribution constrained by fixed H and D. In the proposed
matching scheme, subtrees are recursively matched according to their indices. Random
indices are clearly the worst possible indices: matching with random indices equals ran-
dom matching. However, despite the noninformativeness of random indices, there is
some latent topological information remaining: the child counts, di and dz. In 1-to-1
matching, min(dy,ds) children become matched — and this is the reason why random
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matching leads to a better approximation of tree-to-tree similarity than that obtained
directly by comparing indices globally. Thus, the key is the expectation of min(dy,ds),
the expectation of “matched” branches, which according to (39) in Appendix A.1 is

1-(1/4)P

E.[m] = 3

(34)
The values of E,[m] for some D are shown in Table 10.

Table 10: Expectation of matches E,[m] as a function of maximal child count D.

D 0] 1 2 3 4 5 )
E.,m] | 0| 1/4 | 5/16 | 21/64 | 85/256 | 341/1024 | 1/3

Thus, when matching two random trees randomly, the roots become always matched and
approximately E,[m] children of the root become matched. According to the coinflip
model (Def. 15), each of these E,.[m] matched children has the same distribution of
children, E[d], and hence the same ezpectation of matched children: E.[m]. Thus the
expectation for the number of root’s matched grandchildren is E2[m], and E"[m] for nth
generation. The expectation of total number of matched vertices in trees of maximal
height H and maximal child count D is

Eilm) = Y Bt = 11 2L 35)

For example, E*[m] = 5/4 when D=1 and H =1, and E![m] — 3/2 when D and H
approach infinity. Some values of E*[m] are listed in Table 11.

Table 11: Expectation of matches E*[m] when matching two coinflip trees randomly.

NP ol 1] 2| 3] 4|5 |
0 11 [ 1 [ 1 [ 1 [1]1
1 1|1.25 | 1.31 | 133 | 1.33 | 1.33 | 1.33
2 1131 | 141 | 144 | 144 | 144 | 144
3 1[1.33 | 1.44 | 147 | 148 | 148 | 148
i 1[1.33 | 1.45 | 148 | 149 | 149 | 149
5 1| 1.33 | 145 | 149 | 150 | 1.50 | 1.50
o 1133 | 1.45 | 149 | 150 | 150 | 1%

Matching isomorphic coinflip trees randomly. In many applications, similarity of
two objects is of interest only if the objects are already known to be at least coarsely
similar. For example, in recognizing trees one could first compare the index vectors of
the sample against those of the prototype trees and take into further consideration only
those trees of which the index vectors are similar enough. Hence, sometimes the accuracy
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of small distances is essential while large distances are not considered at all. Thus, it is
worthwhile to study how random matching copes with matching of isomorphic trees.

When matching two isomorphic trees randomly, the first step consists of “matching” the
d children of one root to a random permutation of the d respective children of the other
root. There are d! possible permutations. Observing a single position, the probability of
a correct match is 1/d, thus for a given vertex having d children the expectation is

0 if d=0
E - ’ 36
plmid] {d-l/dzl if d > 0. (36)

Thus, if there are any children, one child is expected to become matched with its true
isomorphic counterpart while the other children become matched to separate counter-
parts. The expectation of the correct matches over all the possible numbers of children

up to D is
D D 1 1
Eym] = Y BmldP(@) =Y P =1-PO) =1-5=5 (37
d=0 d=1
The expectation of incorrect matches is
Eylm] = E[d] - Eylm] = 1-(1/2)" = 1/2 = 1/2 - (1/2)". (38)

Notice that only (38) assumes the coinflip distribution; (37) assumes P(0) = 1/2 and (36)
applies generally. To a large extent, also the following discussion applies to any location
invariant random tree distributions, but let us keep in mind that the overall framework
is the coinflip distribution.

The matching can be thought as a procedure which starts by a definite isomorphism (the
roots) but is progressively taken over by false random choices when proceeding upwards in
the trees. The result of such a procedure contains two types of successful matches: a tree
of randomly preserved true isomorphisms as well as deviations from that tree containing
still some matches due to occasional similarity. The isomorphism-retrieving part consists
of subsequent generations of Ep[m] children whereas the randomly matching parts consist
of by-chance matching subsequent generations of E,.[m] children. Each of the latter type
is initiated by E,[m] children mismatched in a stage of the isomorphic chain. The success
tree depicted in Fig. 16 shows the geometry of the isomorphic-preserving part (solid line)
and the by-chance matching parts (dotted line).

Given a tree distribution, the expectation of matched vertices when randomly matching
two isomorphic trees is the sum of the cumulative products determined by all the paths
starting from the root. Vertex count of a by-chance matching path of length h has
expectation E,E;(h) = E|, ZZ;(I) E} = E, (1 - EM/(1-E,) = E,/1-E,)(1~- EM).
The total expectation consists of the sum of the by-chance paths and the sum of the
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Figure 16: Tllustration of the expectations related to random matching of isomorphic
trees.
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Some values of E}[m] are listed in Table 12.

Table 12: Expectation of matches E}[m] when matching two isomorphic trees.

N olo| 1 2 3 4 5 o0
0 T 1 1 1 1 i i
1 T 1.33 | 1.57 | 1.73 | 1.84 [ 1.00 | 2
2 1| 1.44 | 1.85 | 2.23 | 2.35 | 2.48 | 2.67
3 T 1.48 | 1.97 | 2.55 | 2.63 | 2.80 | 3.06
1 T 1.49 | 2.02 | 2.75 | 277 | 2.97 | 3.27
5 T 1.50 | 2.05 | 2.88 | 2.84 | 3.06 | 3.38
o 1] 1.50 | 2.06 | 3.11 | 2.91 | 3.15 | 3L

Conclusions. Let us first consider random matching of two random trees. Studying Fig.
14, Table 9, and Table 11 leads to the following conclusion. When matching coinflip trees
randomly, up to 1% vertices are expected to match. At first sight, the expectation seems
small as roots contribute always by one match but, for example, 50% of the coinflip trees
are single-vertex trees, thus in 75% of matched trees the number of matched vertices
will not exceed one. It is more sensible to consider the proportion of matched vertices,
E}[m]/E*[d], keeping in mind that it is yet not the actual success rate. For example
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for trees constrained by D < 5 and H < 5, that proportion is at least 1% /5.55 = 25%.
Hence, random matching succeeds in matching some vertices, and because the number
of matched vertices E¥[m] is bounded by the size of the smaller tree, that number must
have positive correlation with the correct number obtained by exact matching.

When matching randomly two isomorphic trees, the optimal number of matched vertices
is known — as it simply equals the size of the trees. Thus for D < 5 and H < 5, the
actual success rate is around 3.06/5.55 = 55%.

The bounds derived above suggest that random matching can be used in approximat-
ing coarsely a tree-to-tree distance, dist(7y,75), whereas the direct correlation between
random index vectors is always zero and hence useless.

6.3 Experimental performance of the proposed indices

As shown above, the theoretical lower bounds for matching can be derived by studying
the performance of the worst possible matching, random matching. Thus, any index-
ing scheme should imply better matching but it is however difficult to derive theoret-
ical bounds for the performance of the indices proposed in this thesis (Sec. 4.2). In
the following, the power of the indices is studied experimentally. In the experiments,
fixedTreeMatching (Alg. 2) applied mazimal matching (p. 33) in weightedBipartite-
Matching of indices.

Performance of different index combinations. The five most central indices
discussed in this thesis are listed in Table 13. As there are 32 possible combinations that
can be composed of five indices, each combination corresponds to a binary number of
five bits. Let 27 be the marker of jth index. Then, an index set can be denoted by i,
where b is the sum of markers of the indices included. The empty set iy corresponds to
random indexing scheme.

Table 13: The five most central indices.

index marker
D child count 1
S descendant count 2
H  height 4
C  center of mass 8
o standard deviation of child count 16

The data of this experiment consisted of 1000 coinflip trees which had been generated
under maximal child count D = 5 and maximal height H = 5. The trees are displayed
in Fig. 26, Appendix A.3. Theoretically, the average vertex count of this constrained
distribution is 5.55 vertices (Table 9). Exactly half of the trees consist of a single vertex
in both the unconstrained and the constrained coinflip distribution. In the generated
set (Fig. 26), the average size is 5.2 vertices and 504 of out the 1000 trees are singular
vertices, which serves as the first check for the distribution. Further validation can be
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carried out by comparing the obtained distribution against the theoretical distribution,
P(nl|5,5), in Fig. 27, Appendix A.3. In fact, the dataset can be considered to present
the unconstrained distribution P(n) equally well.

First, all the 1000 trees were matched against another randomly chosen tree in the set.
The results of matching are shown in Fig. 17. According to (35) and Table 11, with
H =5 and D = 5 the theoretical minimum is E*[m] = 1.50. The best performance
(1.701/1.704=99.8%) is obtained by the combinations ijg = [S, C], i14 = [S, H, C], iz =
[S,C, 0], and i30 = [S,H,C,0]. The most powerful single index seems to be iy = S
(99.6%), while the least powerful one is i; = D (97.4%).
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Figure 17: Matching performance measured as average number of matched vertices for
two random coinflip trees (D = 5,H = 5) using random matching (ip) and all the
combinations (i, i, ...,i31) of indices D, S, H, C, and o.

Each of the 1000 trees was also matched against a random isomorphic counterpart, that
is, to a randomly hashed copy of the tree. The results of the isomorphic matching were
impeccable. Even the worst index, child count (D), found 99.7% of the possible matches.
Plain random matching found 3.10/5.21 = 0.60% of the possible matches, which is close
to the theoretical value (3.06, Table 12).

Performance of the indices as a function of the tree size. Generally, large trees
can be expected to be more complex than small ones, but using the proposed scheme
(Alg. 2) the number of indices — “the width of the information channel” — is fixed.
Thus, one can expect that the errors in matching large trees are progressively larger.
One can also expect that the most fatal confusions are made in matching the children
of the roots. Next, let us study how matching performance changes as a function of the
vertex count of trees.

First, we generated the complete sets of the unordered trees of maximally ten vertices.
The number of trees in the respective sets is 1, 1, 2, 4, 9, 20, 48, 115, 286, and 719, adding
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up to 1205 trees. The experiment involved matching all the pairs within each set. The
matching was carried out both exactly and by using index-based approach employing the
best and worst single indices, i1 = [D] and i» = [S] (according to Fig. 17). The results
are shown in Fig. 18 (left).
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Figure 18: Number of matched vertices as a function of tree size N for complete sets up
to N = 10 vertices (left) and for sampled sets of larger trees, 15 trees in each (right).

As the number of trees explodes as size increases, it is not practical to exhaustively
generate and test large trees. Thus, another test set consisted of seven sets of fifteen
nonisomorphic random trees. In each set, the trees had the same size: 8, 16, 32, 64,
128, 256 and 512 vertices. Practically, the trees were generated such that children were
added to randomly chosen vertices until the desired size was obtained; if a new tree was
detected isomorphic (by Algorithm 1) to an already generated tree, it was rejected. The
experiment involved matching the (15 - 14)/2 = 105 pairs within each set. The results
are shown in Fig. 18 (right).

The success rate in matching, that is, the average number of matched vertices divided
by the average maximum (the average number of exactly matched vertices) is shown in
Fig. 19 (left). Let us consider the trade-off between matching success and computational
effort. The cost of the full 100% success rate, the computational complexity of the exact
fixedTreeMatching (Alg. 1), is N? time units, where p is between 2 and 3 (see p. 21).
The proposed heuristic version (Alg. 2) can be thought of being developed from Alg.
1 by changing the order of the commands and adding the computation of indices; one
may estimate that the absolute number of additional computations, ¢, is around 10; it
is above 1 but certainly below 100. Thus, strictly speaking, the overall computational
complexity is O(cN log D) (see p. 33), keeping in mind that the success rate in matching
is between 91% and 99% for trees of up to N = 512 vertices (Fig. 18).

In Fig. 19, some curves of computation effort per success rate are displayed. The averages
of actual values of D of the test set (Fig. 18, right) were applied in computing the
curves for heuristic matching. Fig. 19 can be interpreted for instance as follows: if the
computational complexity of the exact weightedBipartiteMatching is beyond O(n?9),
and if the matching accuracy (> 91%) of the heuristic fixedTreeMatching is accepted,
it is better to use the heuristic algorithm, practically, for trees no matter how large.
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Figure 19: Success rate of index-based matching (left) and absolute computational effort
per success rate in exact matching and index-based matching applying i» = [S] (right),

assuming N?, N>, or N? operations for exact matching and N log, D, 10N log, D, or
100N log, D for index-based matching.

Conclusions. There are some interesting general observations considering the overall
performance of index-based matching. To start with, using any one of the indices im-
proves matching performance remarkably from that obtained by random matching (Fig.
17). The performance of the complete index set does not exceed that of the best index
pair, and several combinations of three or four indices remain inferior to single indices
or pairs of indices. Thus, it seems sufficient to use only one or two indices at least when
mazimal matching is applied in weightedBipartiteMatching. The tendency of getting
worse results when using several indices (features) is a general observation in pattern
recognition (Devijver and Kittler 1982, Bishop 1995). One of the reasons is in the fact
that the information carried by indices is often conditional. For example, standard devi-
ation of child count is distinguishing only in the case where the trees-to-be-matched are
already known to be at least coarsely similar.

The performance of index-based matching in isomorphic matching is attractive, but it
must be remembered that matching of isomorphic trees is an easier problem than general
tree matching. Also, recalling the discussion on enumeration of trees, it is possible to
design “cryptic” indices which map trees to diverse values — which is ideal in isomor-
phic matching — but without being able to provide any information about the degree of
similarity of two nearly isomorphic trees. Thus, success in isomorphic matching is not
a sufficient but a necessary condition for an index (combination) to be taken into ac-
count. The role of such “cryptic” indices is to complete the information provided by the
structurally more guaranteeing indices.

The irregular pattern of the matching success of different indices in Fig. 17 suggests that
the performance of the indices is generally sensitive to applied data. Here, the topological
indices were used in the form they are defined in Table 4, p. 30: for simplicity and
generality, no application-dependent scaling of indices or other optimization was applied.
For the same reasons, matching performance of attribute trees, and hence, attribute
indices (Table 5 on p. 31), were not discussed either.
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7 Computer vision applications

In the previous sections, trees have been discussed at a general level without references
to applications. This section discusses current applications and outlines possible future
extensions. First, extraction of trees and attribute trees is presented as a technical
prerequisite for the applications discussed.

7.1 Spatial hierarchy and trees

Technically, a digital image is a two-dimensional array of gray levels, or intensities, refer-
ring to frequencies beyond the visible range. More generally, almost anything that can be
tractably stored in a two-dimensional array can be interpreted as an image: ranges, tem-
peratures, agricultural productivities, or densities of population, for example. In many
applications, images are processed one pixel at a time, assuming that groups of pixels
possess no complementary information; the image array serves only as a medium for
displaying input and output. In the field of computer vision, the scope generally extends
from distinct pixels to higher levels of perception — from image primitives (points, line
segments, edges) to more complex aggregations, and ultimately to semantic descriptions.

Texture is two-dimensional structure of repeated patterns; repetition and patterns are
defined in statistical and/or syntactical terms. It has been suggested that intensity
and texture should be seen as a dual nature of an image: images with pronounced,
repeated intensity patterns have textural nature whereas in other images, the intensity
is a dominant property (Haralick et al. 1973, Haralick 1979). A taxonomy of textured
and non-textured images, together with a practical algorithm for detecting texture, is
proposed by Karu et al. (1996).

Segments are areas of consistent texture, intensity and/or other property. Appropriate
aggregations of elements and segments form objects. Like between intensity and textures,
the distinction between objects and intensity as well as between objects and texture is
vague. Clouds are an excellent example of objects mixing all these properties.

Spatial relations between objects can be presented and analysed by means of graphs.
Registering all the mutual relations between objects leads to complete graphs — and
intractable computational efforts as discussed in Sec. 2.3. Therefore, one should somehow
limit the number of relations, that is, the number of graph edges. In the other extremity,
some images can be seen as a flat mosaique of segments such that all the adjacency
relations can be neglected.

If an image contains an object hierarchy, a tree is the most tractable structure for presen-
tation. For example, any image that can be interpreted analogously to curves of terrain
elevation on a topographic map can also be transformed to a tree as illustrated in Fig.
20. More generally, the segments are not required to have an ordered property, like al-
titude of elevation curves; adjacent and inside are sufficient relations for determining
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a topology. Practically, the basic scheme is to recursively detect nesting image segments
and construct a tree presenting the topology of segments. A scheme, called TRIM for
Tree Image, is suggested with further detail in Publ. II and Publ. VII. How much infor-
mation is preserved, and how compactly a tree captures the information, depends on the
application.
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Figure 20: Extracting tree topologies in image segments.

One can also obtain trees by skeletonizing segments by means of morphological opera-
tions (Haralick et al. 1987). Recently, skeletonizing has been applied by Zhu and Yuille
(FORMS, 1996) and Liu and Geiger (1999) for animate objects and by Pelillo et al.
(1999b) for visual shapes. Borgefors et al. (1997,1999) have introduced a recursive, hier-
archical skeletonizing scheme: again, the hierarchy means that matching can be carried
out in a top-down fashion, starting from the most salient features first.

7.2 Attributes

The vertices of a tree can be attached attributes (Fig. 20, right) characterizing the
referred components of objects, segments. The attributes compactly present properties
of such segments. Attribute can communicate some global property, say the intensity
or the average over a textural feature of the segment, or a distinct observation obtained
somewhere inside the segment. It must be noted that segment properties, like intensities,
obeying some partial order do not strictly follow the vertical order of the corresponding
vertices in a tree. For example, in all-sky images, the intensity of the sky and holes in
clouds are the same but topologically clouds are between the sky and holes (holes are
inside clouds and clouds are inside the sky).

A segment can be also characterized by shape descriptors such as those based on moments
of segments pixels (Hu 1962, Gupta and Srinath 1987). Recently, livarinen and Visa
(1996), Iivarinen et al. (1997) and Peura and Iivarinen (1997) have studied descriptors
that are based on contours and have the convenient linear-time complexity, that is, O(NV)
operations for a contour consisting of N pixels. As topological indices (Sec. 4.2) can be
used for avoiding exhaustive matching of tree topologies, shape indices can be seen as a
means for avoiding matching of shapes.
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In some applications it may be useful to actually match the shapes — optimally or
suboptimally. Mokhtarian et al. (1996) have applied scale-space approach for detect-
ing dominant points of a curve. In matching two shapes, it is assumed that matching
the dominant points solves the global matching problem with reasonable accuracy, and
intermediate points can be matched directly by linear fitting. If shape matching is a
subproblem in tree matching, the applied algorithms ought to be quick. Heuristics can
be used in the detection of dominant points (Fdez-Valdivia et al. 1995). For example in
cloud tracking discussed in the next section, it would be useful not only to interpolate
tree topologies but also the segment contours in subsequent images.

At first sight, attribute trees extracted as in Fig. 20 seem to associate shape information
with topology in somewhat coarse manner. However, there are properties which lie in
between topology and shapes, making their distinction vague. Beyond the basic spatial
relations adjacent and inside, Hsu et al. (1996) presents a taxonomy of relations like
bulging-into, slightly-touching and nearby-but-not-surrounding. Nabil et al.
(1996) prefer using projections in extracting similar relations with emphasis on directional
order and overlappings.

7.3 Weather radar images

A glimpse in current meteorological literature reveals that most of the related research
is directly associated with physical models. Basic pattern recognition methods are re-
garded interesting and applicable in some meteorological problems (Pankiewicz 1995),
but as a rule, physical models are preferred. Meteorological models typically consist of
massive arrays of physical quantities; the arrays are initialized with numerical measure-
ments acquired by means of atmospheric soundings and land-based observations. In the
models, the basic calculations are themselves simple; the underlying power is the fidelity
to physical equations, high spatial resolution and massive iterations.

Among meteorologists, it is agreed that cloud observations provide significant information
for weather analysis. Cloudiness and cloud genera are one of the standard weather ob-
servations of the world-wide observation network managed by the World Meteorological
Organization (WMO 1956). In physical models, however, it has proven to be difficult to
utilize cloud observations — be they acquired by satellites, radars, land-based detectors,
or human observers. The reason is the absence of a practical mathematical formulation
of the relation between cloud observations and appropriate physical quantities. Never-
theless, sky conditions are used as a valuable detail verifying or indicating the existence,
approach, or development of weather phenomena.

Since 1991, automated cloud classification has been developed at the Laboratory of Com-
puter and Information Science at Helsinki University of Technology. The first project,
carried out in cooperation with the Finnish Meteorological Institute, focused on NOAA-
AVHRR satellite image processing, applying local textural and spectral features (Iivari-
nen et al. 1995a, livarinen et al. 1995b, Visa and Tivarinen 1997). The second project,
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focusing on land-based cloud classification was initiated by an industrial company, Vaisala
Oyj, in 1995. The scope of analysis extended from local image processing towards object-
oriented perception of clouds (Peura et al. 1996). The third project, analysis of weather
radar images has continued the series of studies on cloud classification. The objective,
as formulated together with the Finnish Meteorological Institute in 1996, is to develop
pattern recognition methods for radar-based rain analysis and forecasting, especially
short-time forecasting, now-casting.

Weather radars are designed to detect precipitation: drizzle, hail, rain, snow, etc. The
typical transmission frequency is between 3 GHz and 10 GHz, compromising between
the range of penetration and detection of small droplets. Radars measure the intensity,
distance and direction of reflected radiation; Doppler radars measure also radial velocity.
It should be stressed that even a weather radar does not detect direct physical quantities
like density of water in air: basically, a pixel (voxel) in radar data corresponds to a
nonlinear volume integral that is proportional to the sum of sixzth powers of droplet radia
(Rinehart 1991). That is, water content cannot be derived unambiguously but can be
approximated by assuming certain distributions. Further, the contribution of water par-
ticles depends on their phase — liquid, solid, or mixed. Despite these limitations, a radar
provides essential information for meteorologists. Above all, a radar image is a real-time
estimate of precipitation with high spatial resolution. Also short-time predictions of rain
are obtained by viewing a series of latest images and/or by applying Doppler veloci-
ties. Secondarily, radar images verify and specify the development of weather conditions
predicted by a coarser means such as a physical model. Also beyond operational meteo-
rology, weather radars have promoted the understanding of the life cycles of precipitative
clouds and thunderstorms.

As no physical quantities are captured by radars, meteorologists apply so called radar
parameters, which can be though as virtual quantities. The basic radar parameters are
reflectance (dBz), Doppler velocity, and polarization. Maximum reflectance, maximum
altitude of echo, and vertical integral of reflectance are examples of derived parameters.
Research in radar meteorology has yielded a series of equations estimating weather from
radar parameters.

Evidently, the absence of direct physical models for radar data and, hence, the artificial
nature of radar parameters, in contrast with the large field of potential applications in
view, have promoted using artificial intelligence in radar meteorology. Using the termi-
nology of pattern recognition, input is assumed to have a consistent relation with target
output, but the relation is vague and thus suited to processing by some artificial scheme.
However, due to reliability and visibility, radar meteorologists have preferred simple
techniques to more sophisticated methods. Many state-of-art approaches are based on
as simple techniques as thresholding, applied for instance by Listemaa and Biggerstaff
(1997) for cloud type classification and by Moszkowicz et al. (1994) for detecting anoma-
lous propagation; Moszkowicz (1994) has also applied more general linear discriminant
functions. Neural networks have been used for radar-based forecasting (Shinozawa et al.
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1994, Ochiai et al. 1995), hurricane tracking (Johnson and Lin 1995), and clutter detec-
tion (da Silveira and Holt 1997). Cluttered images have been restored also by Markov
chains (Upton and Ferndndez-Durdn 1998). Larsen (1995) used Gaussian kernels for
tracking and extrapolating precipitation cells; the method employed Kalman filtering for
detecting size variations, translation, rotation, and appearance-disappearance of kernels
in subsequent images. In a similar forecasting task, Otsuka et al. (1999) recently pro-
posed extracting features from a down-sampled radar image for retrieving similar image
sequences from a database and constructing predictions based on the retrieved sequences.

Weather radar images contain information in various scales — from clouds of constant
rain, hundreds of kilometres in size, to quickly developing, local thunderstorms and show-
ers within the scale of a kilometre. Extraction of such information requires high-level
image analysis dynamically adapting to varying form and complexity of images. Conse-
quently, there is the risk that occasionally complex samples may stall the flow of process-
ing. Hence, the involved algorithms should have at most, say, quadratic time complexity,
let alone exponential complexity. Radar images are obtained typically in every five or
ten minutes, which also determines the optimal time span for related applications, and
therefore, processing.

The tree extraction and matching based methods presented in this thesis seem especially
feasible for the analysis of weather radar images. Fig. 21 gives an impression of the
power of trees in capturing compactly the visual information of radar images. Such
trees, for example, could be applied in the weather map presented in Fig. 12. Further
demonstrations of applications — monitoring, image retrieval, learning — are presented
in Publications IV — VII.

Figure 21: Weather radar images and corresponding trees. The intensity of a segment
appears as the brightness of the corresponding edge. The weight (visualized as edge
thickness) has been defined as an increasing function of segment size and intensity.
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When matching unordered trees, the implicit assumption is that the metric locations
of the objects are irrelevant. However, one should here note that while the proposed
approach is essentially based on adjacency relations (topology), also coordinates (to-
pography) can be utilized as attributes: cloud tracking outlined in Publ. IV applies
coordinates of segment centroids under the assumption that the clouds in subsequent
images undergo relatively small translations, rotations and scaling.

7.4 Auroral images

Geophysical Research at the Finnish Meteorological Institute studies the dynamics of
the Earth’s magnetosphere. Northern light (Aurora Borealis) is an indication of magne-
tospheric activity, thus auroral images are captured by several all-sky cameras located
in Northern Scandinavia and Finland (Syrjasuo et al. 1998). A sample image is shown
in Fig. 22. Naturally, detection of activity is the primary interest, but another goal is to
distinguish between different types of aurora in order to detect correlations between the
images and electromagnetic disturbances in human activities as well as aiming at better
understanding of the phenomenon itself. The current approach, suggested by Syrjisuo
and Pulkkinen (1999), is based on skeletonizing (Fig. 22 b).

While a skeleton is a description of the outline of a gray-level slice or the average outline
of several slices, the approach proposed in this thesis (Sec. 7.2) produces a tree which
preserves information of all the gray levels of an image (Fig. 22 ¢). In addition, at-
tributes (Sec. 7.2) can be readily attached in segment topology approach, although one
could develop attributes for skeletal trees as well. Publ. IV and Publ. VII demonstrate
monitoring and distance calculation of auroral images.

a) source image b) current approach c¢) proposed approach
(skeleton) (segment topology)

Figure 22: Two tree-based approaches for extracting information from auroral images.
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7.5 Known problems

Within pattern recognition, an object model is considered feasible if the similarity of two
objects can be reliably assessed by deriving the similarity between the extracted models.
In extracting segment topologies as suggested in Fig. 20, an interesting question is how
well an obtained tree corresponds to the original image. One of the encountered prob-
lems is demonstrated in Fig. 23: Visually small variations of weakly connected segments
may cause topological discontinuities due to pixel-wise sensitivity of crisp adjacencies.
Circular compositions, “atolls”, are the most awkward, as concavities may suddenly be-
come internal segments. On the other hand, in some applications the distinction may
be desired. If a recognition task is considered, the brute force approach would be to
collect enough samples such that different variations get covered statistically. A sophisti-
cated way is to detect fuzzy adjacencies (Bloch and Maitre 1997). A tempting practical
technique would be to simply “extrapolate” the spatial topology by spreading segments
with morphological operators: the obtained artificial topology would correspond to the
distances.
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Figure 23: The “atoll problem”. Visually similar objects correspond to diverging topolo-
gies.

Tree topology does not cover spatial organization beyond the relations adjacent and
inside: objects can be moved, rotated, arranged in rows etc. in the image space without
changes in the perceived topology. However, the assumption that seems valid in radar
and auroral images is that spatially close segments are connected by a common parent
segment, thus the extracted tree corresponds fairly well to the “correct” visual impression.
Issues related to practical problems topology extraction are further discussed in Publ. 1T
as well as in (Peura 1998).
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7.6 Future applications

The applications discussed so far have served as primary test benches for the developed
techniques. Several directions remain still to be explored. Above all, modelling by
FLEXIBLE TREE MATCHING (p. 22) and the involved heuristics should be developed. On
the other hand, it is obvious that the techniques developed already are applicable in a
variety of problems involving tree indexing and matching.

For example, there are many medical applications in which tree matching is involved in a
form or another. For example, Pisupati et al. (1996) have used geometrically constrained
tree matching for finding correspondences between subsequent 3D images of lungs. Also
the confinement trees applied by Mattes et al. (1999; Mattes and Demongeot (1999)),
for medical images seem rather similar to the trees extracted by TRIM algorithms (Fig.
20, Publ. II, Publ. VII).

In geography, graphs are natural models of human activities. Certain transportation net-
works, river basins and deltas are examples of tree-like objects. On the other hand, shape
descriptors somewhat similar to those proposed in Publ. I have been applied in analysing
shapes of cities (Griffith et al. 1986, Medda et al. 1998). Intuitively, it seems feasible to
model urban areas as hierarchical clusters, as Fig. 24 suggests. In tree-matching based
analysis, one could use some basic continuous quantities (like action or population den-
sity) for constructing topologies, and use semantic classes (land use, type of activity) as

' L=l
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Figure 24: Topologies of hypothetical cities.
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8 Conclusions

This thesis presented new techniques for applying unordered rooted attribute trees in
adaptive image analysis. The emphasis was on computer vision applications, but the
proposed techniques seem generally applicable in pattern recognition.

The discussion started by approaching tree matching as a graph theoretic problem. Def-
initions were given, and the computational complexity of tree matching and related
problems was discussed. While exact formulations provide a convenient basis for theo-
retical analysis, pattern recognition in general involves detecting irregular and indefinite
objects, which implies that inexact models and algorithms must be considered as well.

The proposed heuristic tree matching scheme, Algorithm 2, provided a practical means
for solving a tree matching problem (FIXED TREE MATCHING, Def. 7) in nearly linear
time, instead of the quadratic or cubic time required by the exact algorithms. The basic
idea was to divide a tree into subtrees, and present each subtree as a set of indices, and to
match the subtrees recursively by means of the indices. The proposed approach challenges
the related state-of-art heuristics. No comparative studies were presented here but the
computational simplicity and the performance of the proposed method seem attractive
with respect to other reported methods.

The discrete nature of trees was attacked by applying vertex weights. While introducing
the weights and other attributes provided flexibility, it also required disciplined design
in order to obtain consistency over the applied operators and algorithms. The suggested
continuous tree-to-tree distance metrics, matching and mixing schemes were defined such
that consistency issues were taken into account. The main contribution of this thesis, the
Self-Organizing Map of Attribute Trees combined the proposed techniques to a powerful
adaptive system to be used for classifying and monitoring of hierarchical objects, as well
as for visualizing involved distributions.

Principles for extracting hierarchical objects from images, together with an outline of
an algorithm, were also presented. Analysis of weather radar images has been the pi-
lot application for this study, and the results obtained this far are promising. Similar
experiments on auroral images also yielded interesting results.

To conclude, this thesis presented various tools that can be applied in the analysis of
irregular hierarchical images. The proposed techniques perform quickly, accurately and
consistently. One can except that the proposed methods are feasible to various tasks also
beyond the applications presented in this thesis.
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A Probabilities and expectations related to coinflip

trees

A.1 Expectation minimum child count

Let us consider 1-to-1matching of two trees which have been generated by the coinflip
model (Def. 15) with limited child count D and maximum height H. At any step of tree
matching, the children of two nodes are getting matched. Assuming that D; and D, are
the respective numbers of children, in 1-to-1 matching min(D;, D2) become matched.

The expectation of min(Dy, D5) is derived below, and is used in (34).
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A.2 Derivation of P(n) and P(n|H, D)

In the coinflip model Def. 15, every node of a tree can be thought of flipping a coin.
Every tree can be presented as a binary string such that unity means “add child and ”
and zero “go back”. If the tree contains N nodes, the corresponding string will consist
of 2N bits: N 1’s and N 0’s. Conversely, any binary string of N 1’s and N 0’s is not a
tree. There are (%)) = (2N)!/(N!)? such strings.

First we wish to derive the distribution of total node counts P*(n) assuming no con-
straints in child count D or height H. The distribution can be derived recursively as
follows. Let us consider first all the nodes except for the root, returning to the root in
(46). The probability of subtree sizes rooted to such a node is P(n). Given an n, the
node can be thought of “swallowing” one out of the n — 1 and “delegating” the rest n—1

to its minor siblings. The precondition for such delegation is that such “delegates” exist:
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at least one child exists with the probability of “heads”, one half. The same applies
for siblings. The probability of “tails” is also half, but for readabilty of the following

— —> \

formulae let us denote P(“heads”) =3 and P(“tails”) =

o — no = — s
Pn) =3 P(n-1) +Y 3 Pla-1-i) > Pt 5 2 Pln-1), (39)

where the first term delegates all the n — 1 nodes to the descendants, the middle term
delegates n —2,n —1,...,1 to descendants and 1,2, ...,n — 2 to siblings, respectively, and
the third term delegates all the n — 1 to the siblings. Defining P(0) = 1 for convenience

allows writing

—_

Z; n—1—14)P(i) (40)

The root is the only exception by having no siblings, leaving the n — 1 nodes to the
descendants. For the root and thus for the whole tree

P*(n) = %P(n _1). (41)

Given a node with maximally d—1 minor siblings and maximal height h, the probability
corresponding to (40) is now P(n|d,h). While in the unconstrained coinflip trees every
node except for the root has the same distribution of minor siblings and descendants, now
the constraints imply several cases needing separate treatment. The cases as depicted in
Fig. 25 with references to the following formulae.

— end (no comﬂlp)
> heads (P = —)
> tails (P =

O\ /O O ()\ . Q ) /O Qé\—? Q ‘ C)*
3L J S

/71 l/ipo| o| of o

i 1/1p1/8 0| o o
N + /f"”-’ 1/81/81/4 0| 0
VH !‘17‘, a 174174174173 o
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D

(42) (43) (44) (45)

Figure 25: Derivation of P(n|H, D).

The “independent” case corresponds to (40): there exist at least one sibling and at least
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one child for the focused node. The analogous counterpart for (40) is

n—1

P(nld, h) = % S P(n—1— h[D,h—1)P(hld—1,h) (42)
h=0

When the focused node has only children but no minor siblings (as it is the Dth child of
its parent),
1 —
P(n|l1,H) = iP(n —1|D,h—1). (43)

When the focused node has no children (as its depth is H) but at least one minor sibling,

(L™, ifn<d
P(n|d,0) =< (L)™', ifn=d (44)
0 if n>d

Also P(1|d, h) is needed for initializing the calculations. As n = 1, the recursion should
stop in both possible directions (siblings and children). There are four separate cases
depending on whether coin flipping is needed or not in those directions.

1, if (d=1) and (h=0),
1 if (d=1) and (h
pajam={ ¥ (120 (45)
5, if (d>1) and (h=0),
i, if (d>1) and (h>0)
The analogous counterpart for (41) is
P*(n|D, H) = 3 P(n—1|D,H - 1) (46)

The curves for P*(n) and P*(n|D = 5, H = 5) are plotted in Fig. 27, p. 80.

A.3 Sample data set

The data set used the experiments of Sec. 6.3 consists of 1000 coinflip trees with node
size N > 1, maximum child count D = 5, and maximum height H = 5. The set is shown
in Fig. 26.

The theoretical distribution of total vertex count, P*(n|D, H) was derived in Sec. A.2 The
distribution P* (n|5,5) of the 1000 sample trees is plotted together with the theoretical
distribution P*(n|5,5) in Fig. 27. The curve of the unconstrained distribution P*(n) =

P*(n|oo, o0) is included for comparison.
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Figure 27: Theoretical and experimental distribution of P*(n|5,5).



