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Abstract

This doctoral thesis consists of experimental studies on rotating superfluid helium-3 at

millikelvin temperatures. Superfluid 3He provides an example of ordered systems where

quantum phenomena are visible on a macroscopic scale. The order parameter is described

by a 3×3 complex matrix leading to different superfluid phases with different properties.

The A and B phases support topologically different kinds of defects, most notably vortex

lines. Vortex lines are most easily created and studied in uniform rotation. Because of

quantum nature, the circulation around the vortices is quantized in units of κ0 = h/2m3.

In superfluid 3He nuclear magnetic resonance (NMR) provides a means to distinguish

between different types of vortices and count them one by one. During the course of this

work the sensitivity of the NMR spectrometer was improved by an order of magnitude,

which enabled the direct measurement of the circulation of a vortex in the A phase that

carries two circulation quanta (2κ0). Up to now the circulation of the known quantized

vortex types in other quantum fluids, which include superfluid 4He, superconductors, and

Bose–Einstein -condensates, has been singly quantized.

Other NMR experiments reported in the thesis are: (1) The first qualitative measure-

ments of vortex annihilation in the A and B phases of 3He. These measurements tell the

lowest rotation velocity that stabilizes an array of vortex lines with a given number of

vortices, and how it depends on the type of the defect. (2) Studies of vortex arrays with

both singly and doubly quantized A phase vortex lines coexisting in the experimental

container. 3He-A provides a unique system in which this kind of arrangement can be

done. (3) In order to improve the vortex detection sensitivity in the B phase even fur-

ther, the response of different nonlinear spin precession modes to superfluid-normal fluid

counterflow was studied. A new mode, where the orbital angular momentum is oriented

transverse to the external magnetic field, was found.
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1 Introduction

1.1 Superfluidity in 3He

Liquid 3He is a quantum liquid at low temperatures. To explain its properties, quantum

statistical mechanics is needed. The 3He atom and the more common isotope of helium,
4He, are light in mass, and the zero-point motion of atoms is so large that helium is the

only element which does not solidify at the absolute zero temperature at ambient pressure.

Remarkably, superfluidity is observed below a critical temperature Tc, when the fermionic
3He atoms start to form Cooper pairs which are bosons. A macroscopic amount of these

bound pairs condenses into the ground state, so they occupy the same quantum state

described by a single wave function.

Since the Cooper pairs of 3He have internal structure, spin and orbital degrees of

freedom, the ordered state is described by a wave function with nine complex amplitudes.

A consequence of this is the existence of different superfluid phases as a function of

pressure, temperature, and magnetic field. The superfluid phases have different internal

symmetries and therefore different physical properties.
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Figure 1: Phase diagram of 3He in zero magnetic field. Two bulk superfluid

phases, A and B, are stable at millikelvin temperatures [1]. A third one,

A1, is stabilized in a finite magnetic field.

The superfluid phases have a high degeneracy of equilibrium states described by an

order parameter. Spatial variations of the order parameter describing the continuously

degenerate equilibrium states are called textures. Mass flow results from gradients in
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the order-parameter texture. Since a nonuniform texture can be the ground state of the

ordered system, inhomogeneity cannot be a source for dissipation. This is the basis of

frictionless flow of macroscopic amounts of atoms in superfluids [2]. Indeed, this is the

“super” property of superfluids.

1.2 Quantized vorticity

Some defects in the order-parameter field, most notably vortices, are extremely stable

due to the conserved charges induced by their topological properties. Uniform rotation is

the simplest way to create vortices in large quantities and to study them systematically.

So far seven different types of vortices have been experimentally observed, three in the B

phase, and four in the A phase [3].

In classical hydrodynamics, vorticity is defined as the curl of the velocity field, ∇×v.

A vortex tube is a bunch of lines whose direction is that of the vorticity vector [4]. The

strength of a vortex tube is measured in terms of the circulation

κ =

∮
v · dr. (1)

In superfluids the size of the vortex tube is much smaller than any relevant hydrodynamical

scale, and all the vorticity is concentrated in thin filaments, from here on called vortex

lines. The circulation of superfluid vortex lines is quantized in units of κ0 because of

single-valuedness of the order parameter. The quantum of circulation in 3He is κ0 =

h/2m = 0.066 mm2/s, where h is Planck’s constant and m is the mass of a 3He atom. But

this is only the standard picture. In 3He-A the superflow vs is not necessarily potential

and continuous vorticity can be supported without a singular vortex core. This kind of

vortices carrying multiple quanta of circulation will be discussed in Sec. 5.

In the two-fluid model, the liquid is regarded as a mixture of a normal fluid component

and a superfluid component. Once rotated at an angular velocity Ω, the viscous normal

fluid component rotates with the bucket and

∇× vn = ∇× (ΩΩΩ× r) = 2ΩΩΩ, (2)

while the superfluid component remains at rest. When a critical flow velocity is reached,

vortices appear in order to lower the free energy of the system. The movement of the

vortex lines is the main energy loss mechanism in superfluids. Below the critical flow

velocity mass can be transported without dissipation.
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Low millikelvin temperatures require extensive cryogenic engineering, and up to now

five rotating cryostats combining a nuclear demagnetization stage with a dilution refrig-

erator have been constructed. The first rotating cryostat, Rota I in Helsinki, became

operational in 1981 and could be rotated at moderate speeds and was capable of reaching

submillikelvin temperatures [5]. Other rotating cryostats have been built in Cornell [6],

Helsinki [7], Berkeley [8], and Manchester [9].

In addition to rotation, vortices have been created in 3He by using moving pistons,

weak links [10], and at ultra-low temperatures by neutron irradiation [11], and vibrating

wires [12].

1.3 Comparison with other superfluids

Superfluidity of 3He has been studied extensively ever since it was discovered in 1972 [13].

Research on superfluid 3He and its vortices has parallels with other coherent quantum

systems.

The other known superfluid is 4He. Its condensate consists of bosons having zero spin

and zero orbital angular momentum. Therefore, there is only one superfluid phase, and

one kind of a vortex with a singular normal-phase core. The importance of quantum statis-

tics at low temperatures is displayed by the thousand times higher critical temperature

for the superfluid transition in 4He compared to that of 3He.

Superconductors can be considered to be superfluids with their conduction electron

fluid. Applying an external magnetic field in a superconductor corresponds to applying

rotation in neutral superfluids. Likewise, quantized flux lines in superconductors corre-

spond to quantized vortices in superfluids. Probing fundamental aspects of vortices is

more difficult in superconductors because of impurities, pinning, and challenges in grow-

ing faultless single-crystal samples. Liquid 3He, in contrast, is at low temperatures the

purest substance known since impurities are adsorbed on the walls of the container.

Lately, there has been a lot of interest in new condensed matter systems, such as the

Bose–Einstein condensates of alkali atoms [14]. Such a gaseous system was originally

proposed by S. N. Bose and A. Einstein. Using a focused laser beam to stir a Bose–

Einstein condensate of 87Rb gas confined in a magnetic trap, the formation of vortices

has been observed [15,16].

Superfluid 3He is the most complex coherent many-body system that is available for

experimental studies in a laboratory setting. It serves as a model for other quantum

systems [17] because experiments on 3He usually have a successful theoretical description.
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The reasons are that in a fermionic system only particles with energies close to the Fermi

surface EF need to be considered, and that the gap energy ∆ is small compared to EF .

Perhaps the most promising real world application of superfluids is a gyroscope for

the detection of the earth’s rotation Ω⊕. The accuracy of 10−2Ω⊕ has been achieved for a

superfluid helium 4He gyroscope utilizing phase-slippage techniques [18]. When developed,

gyroscopes based on the Josephson effect in 3He [10, 19, 20] are believed to improve the

accuracy by many orders of magnitude becoming competitive with ring lasers. Also, there

is some potential to build a sensitive weakly interacting massive particle detector using
3He cooled to 100µK temperatures [21].

2 Methodology

2.1 Continuous-wave nuclear magnetic resonance spectroscopy

Rotating superfluids have been studied with many techniques including gyroscopy, ultra-

sound attenuation, ion mobility, and optical methods. While all of these methods have

brought valuable new information, nuclear magnetic resonance (NMR) is so far the most

instrumental for both quantitative and qualitative studies about the vortex structures

that are produced in the rotating 3He superfluids.

In general, a phenomenon called magnetic resonance is found in systems possessing

magnetic moments and angular momentum [22]. NMR spectroscopy can be applied to
3He since the 3He atom has a small nuclear moment µ = −3.56 · 10−26 J/T, and a radio

frequency (RF) field ω = γH, where the gyromagnetic ratio γ/(2π) = 32.4 kHz/mT, can

excite the spins. In continuous wave NMR the sample is excited at a fixed frequency and

the sample is driven into the resonance with a magnetic field. The signal is read, usually

phase sensitively, with a lock-in amplifier, giving absorptive and dispersive components

of the resonance curve.

By its very nature, NMR probes the spin system. Its usefulness for studies of 3He in

rotation arises from the coupling of the spin part of the order parameter to the orbital

part via a spin-orbit interaction. In this way, information on the orbital texture can be

retrieved using NMR.

Continuous wave NMR with small tipping angles is so far the most advanced way to

investigate vortices in 3He. The structure of vortex lines can be deduced in both the A

and B phases [23,24], and the number of vortex lines can be counted individually as they

are nucleated [P11] and [25].
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A pulsed measurement is commonly used in NMR, but for studies of rotating superfluid
3He, the continuous wave method is better suited. In order to achieve high sensitivity

in pulsed NMR, large tipping angles are required. Then the spin dynamic equations of

Leggett [26] cannot be linearized, and nonlinear NMR modes such as a homogeneously

precessing domain (HPD) can appear. In addition, large tipping angles are known to

modify the orbital order parameter field, which is of main interest here. Moreover, in

superfluid 3He rather large frequency shifts from the Larmor frequency ωL up to 5% can

occur due to the spontaneously broken spin-orbit symmetry. The bandwidth of a tuned

detection coil is f/Q which means that the detection would be in the so-called super-Q

limit [27].

Thus we use the continuous-wave NMR method and have achieved high sensitivity

using an LC-tank circuit with a high quality (Q) value.

2.2 High quality factor resonators

The continuous-wave NMR measurement is essentially a Q value measurement. The Q

value of an LC-resonant circuit is defined by

Q =
ωL

R
, (3)

where ω is the resonance frequency, L is the inductance, and R represents the losses in

the resonator. Sources of the losses can be accounted for by defining a conductor quality

factor Qc, a dielectric quality factor Qd, a radiation quality factor Qr, and an external

quality factor Qe from an external load [28]. The total unloaded quality factor is given

by
1

Q
=

1

Qc

+
1

Qd

+
1

Qr

+
1

Qe

. (4)

Placing a sample inside the inductor changes the inductance by L → L(1 + ξχ),

where ξ is the filling factor, and χ is a frequency dependent complex susceptibility of the

sample. The output voltage u is detected phase sensitively with a constant excitation

current flowing through the resonator

u− u0

u0

=
−iQξχ

1 + iQξχ
, (5)

where u0 is the output signal of the resonator without the sample. Therefore, the lower the

losses for the unloaded resonator, the higher the sensitivity of the resonator for the NMR

detection of superfluid 3He susceptibility will be. When Qξχ ∼ 1, the output signal is

no longer linear, but high Q values are nevertheless desirable, especially for small signals.
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Typically, the signal-to-noise ratio of a nuclear magnetic resonance measurement scales

as Q1/2.

A drastic improvement in Qc follows from using a superconducting wire for the induc-

tance L [29]. Usually this is not done since good polarizing field homogeneity is required,

and it is somewhat perturbed by a superconductor close to the sample. However, in 3He

internal relaxation mechanisms, increasing towards decreasing temperatures, dominate

the line width and thus justify the use of superconducting wire.

The external load Qe arises from a cooled preamplifier working at temperatures of

a few kelvins. The preamplifier is used for signal amplification and is needed for high

impedance coupling to the tank circuit [29].

In publication [P1] the radiation quality factor Qr was identified to be the largest

source of losses originating from the induced currents in the low conductivity body of the

polarizing NMR magnet. High-RRR copper cylinders inserted inside the magnet former

and change of the pickup coil geometry allowed for an order-of-magnitude improvement

in the Q value of the spectrometer from Q = 2 000 to Q = 25 000. Increased Q value and

digital filtering of the data made the detection of a single vortex signal in the A phase

possible [P11].

When high Q values are used, the measured signals are not linearly proportional to

the absorption and the dispersion. The distortion from a high Q value can be corrected

by solving χ from Eq. (5).

2.2.1 Static susceptibility

In publications [P2] and [P3] the dispersion signal was not available for the high Q correc-

tion. We show here that under certain conditions the static susceptibility can be obtained

from the measured data without any correction for the high Q value. This is useful be-

cause, for example, in the A phase the number of vortices can be measured from the

susceptibility of the so-called vortex satellite.

The static susceptibility is defined as [22]

χ0 = χ′(0) =
1

π
℘

∫ +∞

−∞

χ′′(ω′)

ω′
dω′ ≈ 2

π

1

ω0

∫ +∞

0

χ′′(ω′) dω′, (6)

where χ(ω) = χ′(ω) − iχ′′(ω) are the dispersion and the absorption satisfying χ(−ω) =

χ̄(ω), the bar denotes the complex conjugate, and ℘ means the principal value. The last

approximation is valid when all the absorption occurs close to the resonance frequency

ω0. Obviously, Eq. (6) assumes that the NMR response is linear with respect to the RF
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excitation.

Provided that max(|iQξχ|) < 1 from Eq. (5) follows

1

ξQ

∫ +∞

0

<
(
u− u0

u0

)
dω′ = <

∫ +∞

0

iχ

1 + iQξχ
dω′ = (7)

<
∫ +∞

0

[
iχ+Qξχ2 − iQ2ξ2χ3 − . . .

]
dω′ = (8)∫ +∞

0

χ′′ dω′ +

∫ +∞

0

Qξ(χ′2 − χ′′2) dω′ + . . . . (9)

From the Kramers–Kronig relation it follows that the asymptotic form of the dispersion

far from resonance is

χ′(ω) =
χ0ω0

2

(
1

ω + ω0

− 1

ω − ω0

)
. (10)

Using this formula, an error estimate for χ0 can be calculated from the second-order term

in Eq. (9) assuming that the measurement is carried out on the interval (ω0−∆ω, ω0+∆ω)

−
∫ ω0+∆ω

ω0−∆ω

Qξ(χ′2 − χ′′2) dω′ ≈
∫ ω0−∆ω

0

Qξχ′2 dω′ +

∫ ∞
ω0+∆ω

Qξχ′2 dω′ ≈ Qξχ2
0ω

2
0

2∆ω
, (11)

where Parseval’s theorem has been used and ∆ω � ω0 has been assumed. Thus, provided

that
Qξχ0ω0

π∆ω
� 1, (12)

the static susceptibility can be obtained to a good approximation from the measured data

by integrating it directly without any corrections for the high Q value.

For the 3He Fermi liquid, the static susceptibility can obtain values χ0 = 4.8 · 10−7 −
1.4 · 10−6 depending on pressure [30]. The integrated signals from the vortices in the A

phase can be five times lower than χ0, or even less. Values of Q = 2000−25000 have been

obtained in our experiments and the filling factors have typically been a few percent.

3 Superfluid in rotation

3.1 Equilibrium pattern of vortices

The response of a superfluid to rotation is the formation of an array of quantized vortex

lines parallel to the axis of rotation. The array simulates solid-body rotation globally

minimizing the free-energy function

F = E − LΩ, (13)
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where E is the total kinetic energy in the superfluid motion, L is its angular momentum,

and Ω is the rotation velocity of the container.

For an isotropic superfluid the equilibrium pattern of rectilinear vortex lines in a

rotating cylinder is obtained from the minimization of the free energy per unit length [31]

f = −
∑
i<j

ln |zi − zj|2 +
1

2

∑
i,j

ln |1− ziz̄j|2 − ω
∑
i

(1− |zi|2) +N ln(R/a). (14)

Reduced units are used, such that f = 4πF/(ρκ2), ω = (2πR2/κ)Ω, and ziR are the

complex positions of the vortex cores. Above, R is the container radius, ρ is the density

of the superfluid, a is the vortex-core radius, and κ is the circulation quantum. The first

term in Eq. (14) takes into account the interaction between the vortex lines. The second

term ascribes to the interaction between the vortex lines and the image vortices at 1/z̄i.

The image vortices with negative circulation are needed to fulfill the circular boundary

condition so that the flow is perpendicular to the normal of the wall. The third term is

proportional to the rotation velocity ω and it accounts for the angular momentum of the

fluid. The fourth term describes the intrinsic energy of the vortex lines ln(R/a). The

intrinsic energy is here taken not to depend on the vortex density.

For a given vortex number N , the vortex pattern is numerically obtained by starting

from an initial guess, and then moving the vortices along the negative gradient of the free

energy

uk = −1

2
∂f/∂z̄k =

∑
j 6=k

1

z̄k − z̄j
−
∑
j

1

z̄k − 1/zj
− ωzk (15)

until uk ≈ 0. The local energy minima for 23 vortices are shown in Fig. 2. The ring

numbers are shown to identify the configurations, and the slight difference in energy

compared to the pattern 231 is also shown.

At large rotation velocities, the array is dense and in the center it optimally has

triangular symmetry. Circular distortion on outer rings is due to rotational symmetry

and it is present in the absence of a circular boundary condition as well. In the lattice

the superfluid component velocity matches on the average the normal fluid component

velocity. On the container wall the counterflow vn − vs is highest, reaching a value of

(ω − N)κ/(2πR) on the average. Azimuthally averaged flow velocities as a function of

radius are shown in Fig. 3.

Numerical determination of rotational equilibrium states of an irrotational fluid [31]

was motivated by the superfluidity of 4He. In 4He at 100 mK the vortex patterns up to

N = 11 vortices have been photographed in the Berkeley experiments [32]. Because lower
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f = 0.023

Figure 2: Stationary vortex patterns of 23 singly quantized vortex lines at

a rotation velocity ω = 58 in units of κ/(2πR2). All patterns are locally

stable, and are shown in the order of increasing energy f using the Los

Alamos Catalog labeling [31]. Pattern 231 has the lowest energy, and would

be the equilibrium configuration for vortex line energy ln(R/a) = ln 107

in units of ρκ2/(4π). The occupation of the various concentric rings are

shown below the configuration. The energy differences are huge compared

to the experimental temperatures. For example, f = 1 corresponds to a

temperature per unit length of the order of 109 K/m for helium superfluids.
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Figure 3: Average superfluid component and normal component velocities

as functions of radius for the pattern 611 at ω = 100. On the wall r = R,

the counterflow reaches the highest value of ω − N . Experimentally, this

kind of situation could arise for N = 61 doubly quantized A-phase vortices

with a critical velocity higher than 2κ0(ω −N)/2πR = 0.41 mm/s in a cell

with radius R = 2 mm rotating at Ω = 526 mrad/s.
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temperatures are required, direct observation of the vortex lattice in 3He superfluids has

not yet been tried.

However, in 3He-A the question of equilibrium patterns is more involved because

vortices with different quantizations exist, namely n = 1 and n = 2. These singly and

doubly quantized vortices can exist simultaneously in the experimental container. The

experimental phase diagram of vortices as a function of rotation velocity and magnetic

field that agrees with theory has been presented in Ref. [23]. We were able to resolve the

radial distribution of singly and doubly quantized vortices experimentally from the NMR

response to slow deceleration. The methods to create such states along with numerical

studies are discussed in publications [P2] and [P3]. In 3He-A the force balance equation

for a moving vortex takes into account the anisotropic mass of the superfluid [33]. The

doubly quantized vortices have a 1/r velocity field outside the soft vortex core [see Sec. 5,

Eq. (30)]. Provided the soft cores of the n = 2 vortices do not overlap, the free-energy

gradient Eq. (15) can be used to find the the equilibrium vortex patterns. At equilibrium

the normal fluid velocity vn and the superfluid velocity vs are equal at the positions of

the vortices.

Often a superfluid is in its equilibrium state only when it has been adiabatically cooled

through the critical temperature Tc under constant rotation [34]. It is not only the energy

consideration, but also the nucleation and annihilation mechanisms of vortex lines that

determine the number of lines in the container. A rough estimate for the critical velocity

is obtained from Eq. (15). If the position of a vortex line has to be at least a distance of

order the radius of its core a from the wall, then

ωc = R/2a. (16)

Experimentally in 3He the critical velocity can be observed from an onset of a periodic

stepwise change in the NMR spectrum as the rotation velocity is increased linearly. A

hierarchy of critical velocities based on the vortex core size has been observed between

vortices in 4He, 3He-B, and 3He-A [35]. The stepwise change in the NMR signal was first

observed in the B phase [36] and then in the A phase for the n = 2 vortices, as described

in publications [P11] and [P12].

3.2 Annihilation of vortex lines

The rotation of the cylindrical container with an angular velocity ω stabilizes the vortex

configuration. Upon deceleration an instability appears, where some vortices are lost to

the boundary. This is called vortex annihilation.
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In a two-dimensional framework, the intrinsic stability of a vortex pattern can be

calculated from the Hessian of the vortex free energy in Eq. (14)

H =


h11 · · · h1N

...
. . .

hN1 hNN

 (17)

where

hkj =

[
∂2f

∂xk∂xj

∂2f
∂xk∂yj

∂2f
∂yk∂xj

∂2f
∂yk∂yj

]
(18)

and where zk = xk + iyk. In this framework harmonic approximation is used and higher

than second-order terms are neglected [37]. Now the problem is to calculate the 2N real

eigenvalues of H. The 2N eigenvectors of H correspond to transverse normal vortex

modes [38]. When the rotation velocity ω is decreased, mode softening occurs, and the

first eigenvalue becoming negative marks the lower limit of absolute stability of the vortex

pattern against annihilation, denoted by ω∗. The mode flow as a function of ω is calculated

first by finding the vortex pattern using Eq. (15), and then the eigenvalue spectrum is

calculated from the matrix H. An example of mode flow is presented in Fig. 4 for the

pattern 612. All patterns have a Goldstone mode corresponding to pure rotation with a

eigenvalue zero because of rotation symmetry in the problem. When searching for the

first negative eigenvalue, one should not be confused with the Goldstone eigenvalue that

might be numerically slightly negative. Some patterns like 142, 151, and 373 have shear

modes corresponding to relative rotation of neighboring incommensurate rings and an

eigenvalue λ ≈ 0. Previously only values of ω∗ for patterns 21, 31, 41, 51, 62, and 71 have

been published [38]. These numerical calculations agree with the analytic solutions of the

stability of patterns calculated by Havelock in 1931 [39] for 21, 41, and 62 while they fail

for the patterns 31 and 51 (see footnote in Ref. [37]).

More values for ω∗ have been calculated, and they are presented in Table 1. Patterns

not found in Ref. [31] are labeled with letters, as the patterns cannot be ordered with

increasing energy for all rotation velocities in the case of a circular boundary. For example,

612 becomes the global energy minimum below ω = 68.81. We feel that values for ω∗ give a

good estimate on the annihilation instability because the energy barriers between different

vortex patterns are large compared to the experimental millikelvin temperatures. Also,

there is the question which transverse modes are excited in the experiments since as seen

from Fig. 4, the pattern 612 is numerically stable below ω∗. We infer that when only a

Magnus force Eq. (15) determines the motion of the vortex lines, a stable vortex system

11



65 65.2 65.4 65.6 65.8
ω

 -2

0

2

4

6

8

10

E
ig

en
va

lu
e

70 75 80
ω

1

1

1

1

1

1

2

2

2

2

1

1

1
1

1
1

2
21

ω∗ ω∗

1

1

2

1

2
1

ω=66.0ω=65.1 ω=75.0

Figure 4: Mode flow for vortex pattern 612 at constant vortex number

N = 61. Numbers in the figure show the degeneracy of the modes. At
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the local energy minimum transforms to a saddle point. The appearance of

the saddle points below ω∗ marks the lower limit of stability for the vortex

pattern. As an example of reconfiguration, for rotation velocities higher
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global minimum energy pattern 611. The mode with λ = 0 is a Goldstone

mode and is not physically interesting. Note the change in the scale of the
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On top of the figure the lowest eigenmode for three different velocities is

shown.
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does not necessarily occupy a local minimum of free energy. It is expected [37] that a small

mutual friction term makes an energy minimum both necessary and sufficient for a stable

vortex array. However, third-order terms in the free energy, which are neglected here,

may become important when considering thermal fluctuations for some specific patterns,

like 232, since they can make the energy barrier vanishingly small. Adding a longitudinal

term to Eq. (15) enabled one to find the pattern 50e which survives to the lowest rotation

velocities out of the patterns with N = 50 vortices.

The measurements in publications [P4], [P5], and [P6] provide the motivation for this

extended numerical study. In these annihilation experiments the velocity of the sample

container is decreased and the number of vortices is measured. At high rotation velocities

the number of vortex lines falls to the equilibrium curve upon deceleration because ex-

trinsic annihilation mechanisms such as the nonalignment of the cell with respect to the

rotation axis are dominant. Such equilibrium states can be used to measure line energies

of quantized vortices. Below a cross-over velocity Ω†, the number of vortex lines deviates

from the equilibrium state. A closeup of the experimental results for singular vortices in

the B phase is presented in Fig. 5.

A rough estimate for the intrinsic annihilation limit is presented in [P6], modified

from a barrier calculation for vortices entering the cell given in Ref. [40]. This continuum

model yields ω∗ = N+2
√
N , which at small vortex numbers is flawed because the discrete

two-dimensional model considering transverse vortex modes gives even lower values as

shown in Fig. 5. The thin solid line should be on the left side of the stars because if the

barrier vanishes for one vortex, the corresponding transverse vortex mode must also have

a negative eigenvalue. The main reason for the failure is that the counterflow is assumed

to be vn − vs = ωr − N/r throughout the entire counterflow region. Close to the vortex

bundle this only holds on the average.

The measurements that were carried out in the same cell give remarkably different

behavior for singular vortices in 3He-B, singular vortices in 3He-A, and continuous vortices

in 3He-A (see [P5]). In particular, for the continuous vortices in the A phase no deviation

from the equilibrium state down to the lowest measured velocities is observed. In these

measurements the rotation velocity is kept constant for a long time needed to record the

whole spectrum. Since the two-dimensional discrete model based on the eigenvalues of

the transverse modes gives too low values for ω∗ and it does not distinguish between

different types of vortices, a three-dimensional model of vortex modes with discrete lines

is called for. Such a model is beyond the scope of this introductory treatise. However,

if longitudinal modes of oscillations of vortex lines lead to annihilation, then necessarily

14
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Figure 5: Annihilation threshold in 3He-B at two different pressures,

a closeup of Fig. 6 in [P6] shown below the cross-over velocity Ω† =

180 mrad/s. The stars denote the transverse mode instability calculated

and tabulated in Table 1. A simple model presented in Sec. 3 of [P6] for

an instability against vortex annihilation gives N = N0 − 2
√
N0, where

N0 = 560Ω (rad/s)−1 corresponds to the number of vortices in a full cell.

Since the intervortex distance is the only relevant length scale in the prob-

lem, the data are fitted into a function of the form α(Ω − β
√

Ω). When

comparing results from different experimental cells, the quantity to look at

is βR.
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this theory involves vortex line tension (see Ref. [4] for discussion). For the measured line

types the vortex line tension is lowest for the continuous unlocked vortex in 3He-A and

highest for the singular vortex in 3He-B. A three-dimensional model should most likely

also take into account the experimentally inevitable noise in the rotation drive and vortex

pinning and bending. Vortex pinning in 3He has been studied in Ref. [41]. In conclusion,

the measured points lie between the equilibrium line and the lower limits set by the two

dimensional stability analysis as is expected, but the lowest measured points cannot be

assigned to intrinsic instability of vortex lines against annihilation.

Vortex annihilation phenomena outside superfluid physics is interesting in the study

of dynamics of pulsars. Pulsars are considered to be rotating neutron stars where the

neutrons comprise a fermionic system with a degeneracy temperature of 1011 K, while the

temperature of the star is estimated to be 108 K [42]. Most of the rotational energy of

the neutron star can be in the neutron superfluid. Measurements of the rotation veloc-

ity of pulsars show a slow decrease as a function of time. Sometimes, abrupt speedups

are observed, and models incorporating vortices to explain these glitches have been pre-

sented [43].

4 Nonlinear NMR modes in 3He-B

The spin dynamics in superfluid 3He are described by the Leggett equations [26]. These

can be written for the B phase in a form that describes the motions of the magnetization

M and the order parameter rotation matrix
↔
R(n̂, θ) [44]

Ṁ = γM×H +
4

15
Ω2
B

χ

γ
sin θ (1 + 4 cos θ)n̂, (19)

˙̂n = −1

2

γ

χ
[n̂× (M− χH) + cot

θ

2
n̂× (n̂× (M− χH))], (20)

θ̇ =
γ

χ
n̂ · (M− χH), (21)

Here γ is the gyromagnetic ratio, H is the magnetic field, ΩB is the longitudinal resonance

frequency, and χ is the static susceptibility. The magnetic field usually consists of a

static polarization component H0 and a small time-dependent excitation component. The

magnetization is related to the total spin density S by M = γS. In the B phase, the order

parameter is given by

Aµj = ∆(T, p)eiφRµj(n̂, θ), (22)

where ∆ is the gap amplitude, φ is the overall phase variable and
↔
R describes the combined

rotations of the spin and orbital spaces [1]. So, the B phase is sensitive only to relative
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rotations of the spin and orbital frames by an angle θ about an axis oriented along the

unit vector n̂. Publication [P12] discusses (n̂, θ) textures under high counterflow in a

rotating cylindrical container. The phase variable φ determines the mass-flow velocity

vs =
h̄

2m3

∇φ, (23)

and it can be solved from the conservation of the mass current ∇·js = 0 and the boundary

conditions, once vs is known [45].

Spin dynamics in the B phase exhibits more features than in A phase. In the A

phase the motion of the orbital anisotropy axis l̂ at finite temperatures is overdamped

because of coupling of l̂ to the quasiparticle system [1]. The Leggett–Takagi spin-dynamic

equations in 3He-B taking into account relaxation terms have many nonlinear solutions

and correspondingly many stable dynamic order-parameter states. In the case of small

tipping angles, the equations can be linearized and the conventional NMR response is

obtained that is linear in the RF excitation and independent of the field sweep direction.

Experimentally, nonlinear NMR modes are pronounced when the RF excitation level

is increased and the lineshapes become dependent on the direction of the field sweep.

Observed nonlinear NMR modes can be identified by comparing them to analytical and

numerical solutions for the Leggett–Takagi equations.

If the dipolar energy, giving rise to to the dipolar torque in Eq. (19), is averaged out

over the period of precession, local minima in energy can be found where the magnetization

has a nonequilibrium value. Half-magnetization states are an example of such states with

|M| = 1
2
χH0 [46]. In these states, the order parameter axis n̂ precesses with half the

frequency of precession of the magnetization M, and a component with this frequency

appears in the motion of M as well, as has been verified experimentally [47].

Whether vortex lines or vortex-free counterflow would have an effect on this kind

of NMR modes was studied in publication [P7], but the answer was negative. The ho-

mogeneously precessing domain (HPD) still remains the most proficient in the study of

vortex lines out of the many dynamic order-parameter states [48, 49] since vortex lines

cause additional dissipation in HPD, which depends on the type of the lines. However, in

the course of this study new NMR modes were found and once created at temperatures

0.98Tc < T < Tc, all states proved to be unusually stable and could be cooled to below

0.7Tc. The condition for the validity of averaging the dipole torque is ΩB � γH, which

means that the spin-orbital energy should be small compared to the Zeeman energy [50].

In that case, the system of order parameter vectors d̂(k̂) =
↔
R(n̂, θ)k̂, where

↔
R is a rotation

matrix, moves as a single whole with respect to H. At higher magnetic fields the condition
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ΩB � γH is better fulfilled, and the stability regimes were found to be more extended at

a field of 21.2 mT than in previous measurements with the same setup at 10.2 mT [46].

As the temperature is lowered, the Leggett–Takagi relaxation and the frequency shifts in-

crease rapidly, and RF excitation fields comparable to or exceeding the equivalent of the

dipole interaction need to be used as the states do not correspond to the true minimum

of the dipole energy like the HPD does, for example.

An experimental cell made of quartz with smooth walls makes the critical velocity for

vortex nucleation in the B phase [35] higher than the maximum rotation velocity of the

cryostat Ωmax = 3.5 rad/s. Then at a high rotation velocity Ω in the vortex-free state,

the effect of the counterflow vn − vs on the orientation of the orbital angular momentum

L by far exceeds that of the dipole coupling, whereas classically the orientations of L

and H are parallel. While the cryostat is at rest, the NMR shows linear behavior, but

starts to show nonlinearity as the rotation velocity is increased. This superflow-stabilized

nonlinear NMR is discussed in publication [P8].

5 Direct observation of double quantization in 3He-A

Unlike the other superfluids, 3He-B and 4He, superflow in 3He-A is not potential but can

be expressed with the help of an orthonormal set of unit vectors (m̂, n̂, l̂) as

vs =
h̄

2m3

∑
i

mi∇ni. (24)

The complex vector m̂ + in̂ is the orbital part of the order parameter. Vectors m̂ and n̂

define the direction of the Cooper pair orbital angular momentum l̂ = m̂ × n̂. The spin

degrees of freedom of equilibrium states are described by an unit vector d̂ indicating the

direction of the spontaneous magnetic anisotropy [2].

From Eq. (24) follows the Mermin–Ho relation [51]

∇× vs =
h̄

4m3

∑
ijk

eijkli∇lj ×∇lk. (25)

Thus since three-dimensional rotations do not commute, superflow in 3He-A is not gen-

erally irrotational, but it can be, for example when the l̂ texture is confined to a plane.

The circulation number now becomes

n =
2m3

h

∮
vs · dr =

1

2π

∫
l̂ · ∂ l̂

∂x
× ∂ l̂

∂y
dx dy, (26)
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where the first integral is around the core of the vortex along the boundary of a primitive

cell in the vortex lattice and it counts the number of complete rotations of (m̂, n̂) about

l̂. The second integral is over the vortex core and it measures the net area of the unit

sphere that l̂ sweeps over the core. So it is possible to support vorticity in 3He-A without

a singularity in the order-parameter field.

Indeed, it turns out that in 3He-A continuous vortices are possible and they are the

prominent form of vorticity because they have the lowest critical velocity. A possible

structure of the orbital part of the order parameter for a continuous high-field vortex

with n = 2 has the parametrization [1]

d̂ = ŷ (27)

l̂ = sin η(r) ŷ ± cos η(r)[sinϕ x̂− cosϕ ẑ] (28)

m̂ + in̂ = e−iϕ[sin η(r)(− sinϕ x̂ + cosϕ ẑ)± cos η(r) ŷ + i(sinϕ ẑ + cosϕ ẑ)], (29)

vs =
h̄

2m3r
[1 + sin η(r)] ϕ̂, (30)

where η is a function of radius r such that η(r � ξD) = −1
2
π and η(r � ξD) = 1

2
π.

In the A phase the dipolar length ξD = 10µm. This structure is dipole-unlocked, since

above the dipolar field HD the orientating effect of the magnetic field is stronger than the

tiny spin-orbit coupling trying to lock the vectors l̂ and d̂ parallel or antiparallel. One

structure based on a numerical calculation in Ref. [52] is depicted in Fig. 6.

The continuous high-field vortex was first observed in Ref. [53] and theoretical support

to explain these as actual continuous vortices was presented in Ref. [54]. The identification

of the quantization and the structure of the vortex lines arises from the comparison of

the NMR response with theoretical calculations on vortex structures. The most recent

calculations on different structures in the A phase can be found in Ref. [52].

Already before the first experiments, several questions arose, such as how to distinguish

the signal from the vortices from the other signals caused by rotation and whether linear

velocity dependence is sufficient evidence for the signal to arise from vortices. Here we

have measured the NMR response of the dipole-unlocked vortex with improved resolution

and determined the quantization of the double-quantized vortex structure directly for the

first time and thus confirmed that the observed NMR satellites really arise from vortex

lines. This requires better sensitivity in the A phase by an order of magnitude, than in

the B phase because the origins of the NMR signals for vortex detection are different.

The linear increase in the signal above the critical rotation velocity Ωc arises because

new vortex lines are formed periodically, whenever vc is reached. The expression for the
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Figure 6: Vortex line with n = 2 has a singularity-free order parameter

structure and the two circulation quanta of the vortex line correspond to a

4π phase winding around the vortex, which arises from a continuous orien-

tational distribution over 4π of the orbital l̂ field within the vortex.
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counterflow vn − vs close to the wall at Reff can be written as (see Fig. 3)

vn − vs = ΩReff −
κN

2πReff

. (31)

If the critical velocity is assumed to be constant and the vortices are formed at the distance

Reff from the center of the container, then the angular velocity difference ∆Ω for vortex

events is obtained from Eq. (31). Solving the velocities for N and N + 1 vortices gives

∆Ω =
nh̄

2m3R2
eff

. (32)

Thus the winding number n can be extracted directly from a measurement of the incre-

ment ∆Ω. Here it is remarkable that the mass m3 is really the bare mass of a 3He atom,

despite the fact that the atoms in the liquid are strongly interacting.

Now if n = 2 is kept fixed, information on the vortex formation site as a function

of rotation velocity Ω can be obtained. The measurements and results are presented in

publications [P11] and [P12]. The formation site Reff has to be close to the wall because

there the counterflow is fastest, but at the wall there is a boundary condition for l̂, making

it locked perpendicular to the wall. Therefore, the results confirm that the vortices in
3He-A are indeed formed in the bulk [55].

Equating the radial dependencies of the normal fluid and superfluid velocities yields

for the radius of the vortex cluster

Rcluster =

√
1− Ωc

Ω
R, (33)

which resembles the dependence of Reff(Ω). Therefore, the vortex formation site may be

considered to be pushed closer to the wall by an expanding vortex cluster.

6 Rotating A-B phase-boundary experiment

In the last chapter of this introduction we here consider how to stabilize the interface

between the A and B phases of superfluid 3He. The setup is optimized for vortex detection

in the rotating state. The properties of vortices at the phase boundary are deduced from

independent NMR measurements in both phases.

6.1 Introduction

The state of the condensate in superfluid 3He is described by a 3×3 complex matrix order

parameter. The resulting multitude of phases enables one to study superfluid-superfluid
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interfaces. Of the many possible phases of 3He, the A phase with gap nodes and the

isotropic B phase are the two major ones in the bulk (see Fig. 1).

The phase transition from the A phase to the B phase is of first order and a well defined

interface exist between the phases. The structure of the A-B interface is depicted in Fig. 7.

Since the system is described by a single order parameter, the transformation of phases

into each other across the interface leads to an excess energy that is here called surface

tension. Still there are enough degrees of freedom at the boundary to support vortex lines

axiplanar
state

planar
state

B phase

+1 +1

-1 -1

+1-1
= 0 0

A phase

+2

-2

Figure 7: Evolution of the gap nodes in the momentum space at the A-B

interface [2]. On the left, the A phase is stable and continuously transforms

to the B phase (on the right) through the intermediate axiplanar and planar

states. The conserved topological charge is indicated by the numbers in the

figure. The surface energy σAB is a consequence of the additional free

energy that arises from the bulk nonequilibrium states and the bending

of the order parameter. The width of the boundary is several coherence

lengths (ξ0 ≈ 10 nm).

through the boundary, as has been observed in the case of a moving boundary with the B

phase replacing the A phase [56]. The continuation of vortices at the phase boundary is a

rather intriguing question. The A phase typically supports doubly quantized continuous

n = 2 vortices (see Sec. 5) and the B phase singular n = 1 vortices. The areas of these

vortices differ by a factor of 106. According to Ref. [57] vortices should continue through

the interface, so one A phase vortex should continue as two B phase vortices.

In principle, all questions that one might ask concerning vortices in a rotating cylinder,

can also be extended to the case in the presence of the A-B boundary, like the topological

types of defects, their nucleation properties, interactions with each other, and dynamics.

Other physical systems where coherent phase boundaries with intersecting topological

defects might become possible include unconventional superconductors and Bose–Einstein

22



condensates. However, 3He has the advantage that the phases and topological defects are

by now well characterized, and methods to distinguish between various defects and to

stabilize the A-B boundary exist. Also, the ways to look at defects have advanced to the

level that a signal from individual defects can be obtained.

6.2 Earlier experiments on the A-B phase boundary

Despite the obvious interest in the possibility of having an interface of two coherent

superfluids, there have not been many experiments conducted on the A-B interface itself.

The interfacial surface energy σAB was measured by Osheroff and Cross [58]. Using

NMR, they observed the temperature when the interface passes through a grid of small

holes. The knowledge of the value of σAB is of importance when the nucleation properties

of the bulk phases are considered.

The velocity of the propagating B phase front in hypercooled A phase was measured in

Los Alamos [59]. This was the first experiment to use a high magnetic field to control the

hypercooling substantially in the experimental cell. The experiment measured essentially

the susceptibility difference of the A and B phases with a SQUID.

A reversible phase transition A↔B in rotating state has been studied in Helsinki [56,

60,61]. A deficit of vorticity after the A→B was observed which depends on the transition

time. The velocity of the interface is deduced from the transition time, and it is found that

in relatively fast A→B transitions, the A phase vortices are swept to the container walls

while in slow transitions part of the vorticity penetrates through the boundary. In slow

A→B transitions, some vortices have been identified to be spin-mass vortices [49]. This

experiment has a connection to cosmology since it could elucidate the fate of topological

defects formed in the early universe [62]. One solution to the monopole problem is that

monopoles were swept away by a phase transition front [63, 64]. The monopole problem

in short is that attempts to unify the fundamental forces of nature predict the existence

of far too many magnetic monopoles in a cosmological context.

At Lancaster University, in the limit of low temperatures and low pressures, the A

phase has been stabilized to a region of high magnetic field of HAB = 340 mT or greater.

With a vibrating wire in the B phase region, information of the gap structure of the B-A

interface has been retrieved by observing the Andreev reflection of quasiparticles [65]. The

gap nodes of the A phase have been inferred from the measurements of latent heat [66],

as well as properties of the nucleation of the superfluid phases have been studied [67,68].

In none of these experiments, information was retrieved from both phases simultane-
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ously. This and the possibility to stabilize the boundary during rotation are the main

advancements of the present experiment.

Theoretically, the properties of the phase boundary have been studied in Refs. [57,

58, 69–77]. We note here that a generic numerical calculation on vortices at the phase

boundary would be difficult since it should be done in three space dimensions with a 3×3

complex matrix in every point of the grid. Also an adaptive mesh should be used because

of the difference of the core sizes of the A and B phase vortices. The length scale for the A

phase continuous unlocked vortex is the dipolar length ξD = 10µm, and for the B phase

singular vortex the length scale is the superfluid coherence length ξ0 = 17 nm at 2.9 MPa.

6.3 Design considerations

The phase diagram of bulk 3He is a function of pressure, temperature, and magnetic field.

A stable A-B phase boundary could be realized to the desired location by applying a

gradient of any of these quantities over the sample cell. However, it is not feasible to keep

a substantial pressure or temperature gradient for hours, which is the usual time frame

of experiments on rotating superfluids.

At first, it seems that the most convenient way to create a stable phase boundary is

by arranging the magnetic field so that the A phase is at a higher field than the B phase.

Figure 8 shows the phase diagram in the T −H plane at a pressure of 2.9 MPa. However,

this is not the optimal field configuration for vortex detection using NMR, as will become

obvious below.

Continuous-wave NMR with small tipping angles is so far the most advanced way to

probe vortices in 3He. The structure of the vortex lines can be deduced in both the A

and B phases [23,24], and the number of vortex lines can be counted individually as they

are nucleated [P11] and [25]. Because the origin of the NMR signals from vortices is

different in the A and B phases, the optimal polarization fields for vortex detection are

quite different.

6.3.1 Choice of polarization fields for A and B phase NMR

In the A phase, the frequency shifts of small satellite absorption peaks provide the iden-

tification of the vortex structure [23], while the amplitude is proportional to the number

of the defects. This is because the satellite absorption arises from the excitation of spin

waves localized in the soft cores of vortices, and at moderate rotation velocities the soft

cores do not overlap.
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Figure 8: Phase diagram of 3He at 2.9 MPa, constructed from the data given

in Ref. [78]. At fixed pressure and temperature, a magnetic-field gradient

can be used to stabilize the phase boundary to the desired location in the

long cylindrical cell of Fig. 9.

Vortex satellites are shifted away from the main absorption line more and more with

increasing pressure and decreasing temperature and magnetic field. Several constraints

have to be considered when optimizing these shifts: (1) The magnetic field should be

bigger than the dipolar field (≈ 3 mT), such that in the cores of the topological defects

dipolar unlocking occurs giving rise to a satellite in the NMR spectrum. (2) Because the

cell is long, and the thermal conductivity of solid helium-3 is low, the pressure should

be chosen to be close to the minimum of the melting curve. We choose p = 2.9 MPa

and H = 10 mT although higher pressures would still enhance the supercooling of the A

phase, and increase the longitudinal frequency shift.

In the B phase, the nucleation and the number of vortices are identified from the NMR

absorption signal envelope, which can be worked out from the local oscillator picture (see

[P10]). The increasing normal-superfluid counterflow velocity due to the deficit of vortex

lines shifts the NMR absorption from the Larmor frequency to higher frequency. The

counterflow affects the global texture in the cell. To change the texture as a function

of the counterflow velocity, the radius of the cell should be much bigger than the B

phase magnetic coherence length ξH ∝ H−1. The NMR spectra with different ξH/R

ratios are shown in Ref. [79]. The inner radius of the cell R is chosen to be 3 mm. The

considerations for choosing the polarization field H = ω/γ are: (1) The frequency width

of the absorption envelope is Ω2
B/2ω. At high fields the frequency resolution is lost since
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the longitudinal resonance frequency ΩB is fixed by the spin-orbit interaction and it does

not depend on the external field H. Obviously, since the longitudinal resonance frequency

is a function of pressure and temperature, the selection of the magnitude of the magnetic

field depends on the region of interest in the (p, T ) plane. (2) For NMR detection of the

changes in the fully developed counterflow peak at sin2 β = 0.8, an optimum field exists,

which minimizes the line width. The counterflow peak is broadened by the Leggett–Takagi

relaxation proportional to H−2 and the magnetic field inhomogeneity proportional to H,

as considered at low pressures in publication [P10]. Since the frequency range of the

Stanford SR560 differential preamplifier does not extend much above 1 MHz, the B phase

resonance frequency is chosen so that the corresponding magnetic field is 34 mT.

The structure of the B phase vortex core can be distinguished from the frequency

spacing of the spin-wave resonance absorption modes close to Larmor frequency [24].

The minimum observable frequency spacing is limited by the magnetic-field homogeneity,

which should obviously be optimized.

From the above considerations, the optimal NMR polarization fields for vortex detec-

tion at 2.9 MPa pressure for the A and B phases would be 10 mT and 40 mT, respectively.

This contradicts with the idea of stabilizing the phase boundary with a magnetic field

gradient (see Fig. 8). Stabilizing the phase boundary to the middle of a long cylinder

this way would fix the temperature and lock the experiment to one point in the phase

diagram.

Fortunately, the A phase is able to cool at high pressures substantially below the

thermodynamical transition point TAB. This allows for placing the A phase on the top

of the sample cell in low fields, a stable boundary in the middle of the cell, and the B

phase in the bottom of the cell at a higher field than the A phase. Two steps are crucial.

(1) Smooth walls of the sample container prevent the nucleation of the B phase above

0.5Tc as shown in Ref. [80]. Below 0.5Tc, the lifetime of the A phase is a strong function

of temperature, and ionizing radiation as a nucleation mechanism sets in. Quartz as a

material for the cylinder wall provides the required smoothness and cleanness. (2) A high

magnetic field in the middle of the cell acts as a valve [59], since fields above 550 mT

stabilize the A phase over the B phase at all temperatures and pressures. The existing B

phase in the lower part of the cell cannot propagate to the top because of this exclusion,

and the phase boundary is created. An illustration of the stabilization of the boundary

is given in Fig. 9.

With a valve field in the middle of the cell and a smooth-walled container, optimal

NMR fields for vortex detection and a stable phase boundary can be simultaneously ob-

26



3

3

He-A
pick-up coil

He-B
pick-up coil

AB
interface

0 100 200

 -45

0

45

H (mT)

z 
(m

m
)

A phase enters
and fills the cell

B phase fills the cell
up to the valve field

normal
phase

increasing time
decreasing temperature

Figure 9: Experimental scheme to stabilize the A-B phase boundary to the

middle of a long cylinder. The temperature is lowered in the figure from left

to right. The nuclear cooling stage is below the cell. Hence the superfluid

phases enter the cell from below. The surface roughness of the platinum-

silver sinter below the sample tube nucleates the B phase at a temperature

somewhat below TAB(H = 0 mT). The B phase then expands up to the

valve field region in the middle of the cell, and a stable phase boundary is

formed, which can be cooled to temperatures well below TAB(H = 10 mT).

27



tained. An arrangement like this requires a longer cell than those usually used. Such a

long cell has a long thermal time constant and thermal gradients are present in the cell

during the demagnetization of the nuclear stage. A small orifice φ1 mm in the bottom of

the cell prevents the leakage of vortices into the container from outside where they are

nucleated in the rough sinter. A numerical simulation which takes into account the tem-

perature dependencies of the heat capacity and the heat conductivity of normal 3He [81]

shows that the time needed to cool down a 150 mm long 6 mm diameter cell from 1 K to

below 100 mK is on the order of ten days when the dilution refrigerator keeps the tem-

perature of the nuclear stage at 20 mK. From a precool temperature of 20 mK, it takes

around ten hours to reach superfluidity in the cell. In order to diagnose these kinds of

problems of cooling the sample 3He, the use of thermometry other than the frequency

shift of superfluid 3He is of utmost importance. The thermometers in the experimental

setup are briefly discussed in Sec. 6.3.4.

6.3.2 Design of the NMR magnets

The NMR magnet system for the experiment has three coils which are energized from

separate power supplies. There are two polarization magnets for NMR, one for the A

phase and one for the B phase. One of the magnets produces the valve field that keeps

the A-B interface in the middle of the long cylinder.

The polarizing NMR magnets have two main requirements: (1) The field should be as

homogeneous as possible over the region of the pick-up coils. (2) The field should not affect

the polarization field of the other spectrometer either in magnitude or in homogeneity.

The length of the polarization coils is limited by the available space for the magnet

system in the experimental space of the cryostat. Once the length of the polarizing

solenoid is fixed, there are two approaches to maximize the homogeneity. One approach

is to maximize the coil length/diameter ratio, as then the sample sees the solenoid as

an infinitely long solenoid. A lower limit for the diameter of the polarization coils is

set by the dimensions of the pickup coils. The other approach is to minimize the coil

length/diameter ratio, as then the sample sees the coil as a circular loop and at small

distances from the plane of the loop compared to the loop radius the magnetic field does

not change rapidly.

We choose the first approach since the second approach makes the second requirement

of interference between polarization fields harder to fulfill. With small diameter end

compensated NMR solenoids this is easily accomplished with a couple of turns wound in
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the reverse direction as shown in Fig. 10.

A superconducting niobium shield around the magnets makes the field profiles less

sensitive to machining errors of the coil formers, and also reduces magnetic interference

from other devices on the nuclear stage.

The valve magnet should produce a large field at a reasonable current in the middle of

the cell without driving the niobium shield into normal state. Therefore the inner diameter

of the valve-field coil former, 14 mm, was made as small as reasonably possible. The valve

magnet has counterwound compensation coils to minimize the effect on the homogeneity

of the two NMR polarization fields. Figure 10 shows the disassembled magnet system

with the three concentric inserts.
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A and B phase
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magnet

A phase 10 mT

B phase 34 mT

Figure 10: Magnetic field configuration of the experimental setup. The

polarization fields for the A and B phases as well as the valve field at the

A-B phase boundary are independent from each other. The arrows show the

direction of the windings. Two heat-treated copper cylinders are inserted

inside the brazen valve-magnet bobbin in order to reduce the radiative losses

of the NMR tank circuit.

The polarization magnets were designed by optimizing ratios characterizing the field

homogeneity of the A and B phase spectrometers numerically. The ratio for the A phase
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magnet is given by √
〈H2

A〉A − 〈HA〉2A +
√
〈H2

A〉B − 〈HA〉2B
〈HA〉A

, (34)

where HA is the magnetic field produced by the A phase polarization coil and the 〈〉B
denotes that the average is calculated over the region of the B phase pick-up coil. Inci-

dentally, the average magnetic field of the A phase magnet is zero at the B phase pick-up

coil region, and vice versa. The same applies to the valve magnet. Fields produced by

the A phase, B phase, and the valve-field coils are independent of each other, as seen in

Fig. 11. The polarization fields change the magnitude of the maximum of the valve field

by 1 mT at most.
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Figure 11: Spectra of normal phase 3He signal measured with the upper

spectrometer. The solid line is with only the A phase magnet energized.

In the dashdotted line 2.1 A current is fed to the B phase magnet giving

a field of 40 mT. In the dashed line all magnets are used with 1.5 A to the

valve magnet giving a field of 130 mT. The interference on the A phase

spectrometer NMR linewidth from other magnets of the setup is tolerable.

The output voltage measured with the lock-in amplifier is shown. The Q

value of the spectrometer is 11600.

The shape of the phase boundary at Ω = 0 rad/s is determined by the shape of the

constant-field contours of the valve field. Shapes of the boundary at different currents of

the valve magnet are shown in Fig. 12. It is seen that the position of A-B boundary is not

a strong function of the applied current. A 100 mA increase in current can cause a change

in the position of the boundary of 1 mm at most. This means that a strong modulation of

the boundary position with a changing applied current to the valve magnet is not feasible
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with this setup.
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Figure 12: Profiles of the A-B phase boundary at Ω = 0 rad/s calculated

numerically from the constant-field contours of 217 mT produced by the

valve magnet at different applied currents. The center of the valve magnet

is at z = 0 mm. The boundary is flat when it is 6.5 mm below the center and

the value of the field is 1.6 times the field needed to stabilize the boundary.

At 2.9 MPa a magnetic field of 217 mT is enough to stabilize the boundary

from the temperature of 0.72Tc up to TAB = 0.86Tc.

6.3.3 NMR pick-up coils

The geometry of the pick-up coils used in the spectrometer is a coaxial pair of coils.

The average spacing of the halves is 10 mm and the diameter of the windings is 9 mm.

The windings have 54+54 turns in two layers giving an inductance of L = 24µH. The

A-phase spectrometer has a fixed frequency of f0 = 332 kHz and a quality factor of

Q = 10 000. The B-phase tank circuit has f0 = 1.32 MHz and Q = 7 500. The resonance

frequencies correspond to magnetic fields of 10.2 mT and 40.7 mT, respectively, since

γ/(2π) = 32.436 kHz/mT for 3He. The pick-up coils are wound from 50µm multifilament

NbTi wire and the layers are fixed with diluted varnish. A small hydrogen contribution is

observed to give a tilted background despite the fact that the gyromagnetic ratios of hy-

drogen (1H) and helium (3He) differ by a factor of 1.31. Single filament niobium wire with

a diameter of 25µm was found not to be strong enough in consecutive cooldowns when

wound on a quartz former, but has the advantage of a negligible hydrogen background.
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Comparison of the integrated area of the absorption signal in the normal phase to the

static susceptibility gives a value of two percent for the filling factor ξ (see Sec. 2.2.1).

The filling factor is optimized by placing the pick-up coils close to the sample. This

compromises the homogeneity of the RF excitation field produced by the pick-up coil. On

the average the signal picked up from the wall of the container is 20% stronger that the

signal picked up from the center of the container. More than 90% of the signal strength

comes from the region less than 6 mm in the axial direction from the center of the pick-up

coils.

6.3.4 Thermometers

The experimental setup adds two thermometers, a melting-curve thermometer and a

pulsed platinum NMR thermometer, on the nuclear stage that were not used in the

published articles [P1–P12].

The melting curve thermometer is based on a Straty–Adams type capacitive pressure

gauge. The capacitive pressure gauge has a resolution of 40 pF/MPa at 3.4 MPa. It is

insensitive to the rotation of the cryostat up to the maximum speed of 3.5 rad/s.

During the experiments in addition to the frequency shifts of the A and B phase NMR

signals, pulsed NMR on 195Pt nuclei is available for thermometry. Slow demagnetization

with the HVL10 power supply (see Fig. 13) allows one to stabilize the temperature of

the nuclear stage within 1µK. The pulsed platinum NMR thermometer operating at

125 kHz works well from 40 mK down following the temperature of the nuclear stage. It

is calibrated against the melting curve thermometer.

6.3.5 Instrumentation

Most instruments on the rotating platform have to be computer interfaced with the GPIB

bus making them controllable during the rotating measurements. Figure 13 shows the

schematic diagram of the NMR data acquisition setup.

The data acquisition programs are written in C and Tcl/Tk languages. Tcl/Tk bind-

ings to the GPIB library allow rapid prototyping and program development. The mea-

surement computer is running the Linux operating system.

6.4 Possible experiments

The described setup is the first investigating the stable A-B phase boundary in rotation.

The vortices at the phase boundary will be inferred indirectly from CW-NMR measure-
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Figure 13: Instrumentation of the Rota I cryostat for the A-B phase-

boundary experiment. Items inside the vacuum can are homemade, while

other components in the setup are commercial with the exception of

HVL10 [82].
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ments in A and B phases far away from the boundary. Retrieving direct NMR response

from the boundary would be desirable, since monopoles and half quantum vortices have

been predicted to exist [72], but they have not been experimentally observed in other 3He

experiments. This would require a new approach since in the present case the valve field

is not homogeneous and a high Q resonator works at a fixed frequency that cannot be

changed from room temperature.

The basic experiment is to establish the phase boundary in the cell and to ramp the

rotation velocity in a linear fashion. The continuous vortices in the A phase have lower

critical velocity than the vortices in the B phase [36, 55]. The formation of the A-phase

vortices is observed with the A-phase spectrometer. Whether the doubly quantized A-

phase vortices cross the boundary and transform into singly quantized B-phase vortices

can be detected from the change in the B phase NMR signal. One possibility is that the A

phase vortices do not cross the A-B phase boundary but bend to the wall at the interface.

Slow A→B transitions suggest a critical vortex density on the A-B interface of A-phase

vortices [56]. At higher density the vortices penetrate the interface collectively.

The magnetic field configuration in the long cell makes other interesting measurements

possible with no or slight changes in the experimental setup.

In the A phase there are many different types of quantized vorticity which can be

classified with topological invariants. One of them is νd defined as

νd =
1

4π

∫
d̂ · ∂d̂

∂x
× ∂d̂

∂y
dx dy. (35)

The prominent vortex type at high fields is the continuous unlocked vortex having νd = 0

described in Sec. 5. At low fields the orbital anisotropy axis l̂ and the magnetic anisotropy

vector d̂ are locked d̂ = ±̂l and the low field vortices have νd = 1 or νd = 2 [52]. A

topological first-order transition from a continuous locked vortex formed in a low magnetic

field to a continuous unlocked vortex upon increasing the field past the upper critical field

Hc1 = 4 mT has been observed [83]. However, in a supercooled A phase the continuous

locked vortices have been observed to exist at least up to magnetic fields of 12 mT [23].

This metastability makes two different experiments possible.

Consider the whole long cylinder filled with only A phase. Once in the supercooled

state, set a 10 mT NMR field in the upper spectrometer and zero field in the lower

NMR spectrometer. Then in the spinup of the container, continuous locked vortices

should be formed in the lower part of the cell because they have a lower critical velocity

than continuous unlocked vortices. These vortices will expand to the upper spectrometer

region and are to be observed individually as they are nucleated. The critical velocity
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and hopefully the quantization can be determined. For the quantization there are two

possibilities, n = 2 or n = 4, according to Ref. [52].

With the valve magnetic field up to 400 mT, the magnetic field triggering the tran-

sition from continuous locked vortices to continuous unlocked vortices can be measured

accurately as a function of temperature, as it happens. This would shed light on the na-

ture of the topological transition. One possibility is the creation of a point defect in the

d̂ field called hedgehog. This hedgehog would move along the vortex core axis and wipe

out the charge νd [84]. Whether such monopoles can be detected during the transition by

NMR is an interesting open question.

The measurement of the Kapitza resistance across the phase boundary has been theo-

retically considered by Yip [70]. There might be a possibility for the measurement of the

boundary resistance since the frequency shift of the NMR provides an accurate intrinsic

thermometer in the A phase and high RF excitation can be used to heat the sample.

Repeating the measurements of Parts et al. [56] might become worthwhile since after

those measurements, methods to create the vortex sheet [85] and singular vortex lines

have been found. By carefully preparing the vortex state in the A phase one might find

out the details on what happens to different vortices in a A→B transition as a function

of the transition time.
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7 List of publications

This thesis is based on the following peer reviewed original publications.

[P1] Y. Kondo, J. H. Koivuniemi, J. J. Ruohio, V. M. Ruutu, and M. Krusius, “Optimiza-

tion of high-Q low frequency NMR measurement,” Czech. J. Phys., vol. 46-Suppl.,

pp. 2843–2844, 1996.

In NMR spectrometers utilizing a high Q tank circuit, radiative losses to low con-

ducting magnet formers were found to be a possible limiting factor for an even

higher Q value. A workaround for this problem was developed.

[P2] Ü. Parts, V. V. Avilov, J. H. Koivuniemi, M. Krusius, J. J. Ruohio, and V. M. H.

Ruutu, “Vortex arrays of coexisting singly and doubly quantized vortex lines in
3He-A,” Czech. J. Phys., vol. 46-Suppl., pp. 13–14, 1996.

[P3] Ü. Parts, V. V. Avilov, N. B. Kopnin, M. Krusius, J. J. Ruohio, and V. M. H.

Ruutu, “Coexistence of single and double quantum vortex lines,” Phys. Rev. B,

vol. 62, pp. 5865–5876, Sept. 2000.

We have shown that in superfluid 3He-A topologically stable vortex lines with dif-

ferent quantization can appear simultaneously. Two different methods to prepare

states with coexisting singly and doubly quantized vortices were found. The radial

compositions of such states were compared to numerical simulations, and one of the

procedures was identified to lead into the minimum energy configuration.

[P4] V. M. Ruutu, J. J. Ruohio, M. Krusius, B. Plaçais, E. B. Sonin, E. V. Thuneberg,

and Wen Xu, “Annihilation of quantized vortex lines in rotating 3He-A,” Czech. J.

Phys., vol. 46-Suppl., pp. 9–10, 1996.

[P5] V. M. Ruutu, J. J. Ruohio, M. Krusius, B. Plaçais, E. B. Sonin, and W. Xu,

“Annihilation of vortex lines in rotating superfluid 3He,” Phys. Rev. B, vol. 56,

pp. 14089–14092, Dec. 1997.

[P6] V. M. Ruutu, J. J. Ruohio, M. Krusius, B. Plaçais, and E. B. Sonin, “Metastability

in decelerating rotation of superfluid 3He-B,” Physica B, vol. 255, pp. 27–40, 1998.

We have performed the first quantitative measurements on vortex annihilation in

the rotating 3He superfluids. At the destabilizing velocity, the vortices are lost to

the lateral walls where they annihilate, at most in bunches of a few lines. In the
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B phase, at a low rotation velocity the number of B phase singular vortices was

found to exceed the equilibrium number in decelerating rotation. The destabilizing

velocity of an vortex array in a two-dimensional framework was numerically studied

in Sec. 3.2.

[P7] V. B. Eltsov, V. V. Dmitriev, M. Krusius, J. J. Ruohio, and G. E. Volovik, “New

modes of stable spin precession in superfluid 3He-B,” J. Low Temp. Phys., vol. 113,

pp. 645–650, Dec. 1998.

[P8] V. V. Dmitriev, V. B. Eltsov, M. Krusius, J. J. Ruohio, and G. E. Volovik, “Superflow-

stabilized nonlinear NMR in rotating 3He-B,” Phys. Rev. B, vol. 59, pp. 165–168,

Jan. 1999.

Exotic spin precession modes exist in the B phase exhibiting nonlinear NMR re-

sponse. The magnitude of the magnetization of some of stable modes can differ

from the equilibrium value. The sensitivity of such states to the number of vortices

and to the counterflow between the superfluid and normal fluid fraction was inves-

tigated. Once created near Tc, some modes were found to be stable upon cooling

down to 0.8Tc, and their stability regimes were found to be more extended at a field

of 21 mT than in the previous experiments at 10 mT, but the modes were found not

to be feasible for vortex studies.

A new nonlinear NMR response was observed to develop as the counterflow was

increased at a high RF excitation level. In this new mode of spin precession, the

orbital angular momentum L is oriented along the flow direction transverse to the

external magnetic field. The nature of this mode was identified by comparing the

NMR response to the numerical solutions of the Leggett-Takagi spin-dynamic equa-

tions.

[P9] R. Schanen, R. Blaauwgeers, V. B. Eltsov, M. Krusius, and J. J. Ruohio, “NMR

measurement of quantized vortex lines in rotating 3He-B,” Physica B, vol. 284-288,

pp. 254–255, July 2000.

[P10] J. Kopu, R. Schanen, R. Blaauwgeers, V. B. Eltsov, M. Krusius, J. J. Ruohio, and

E. V. Thuneberg, “NMR line shape of rotating 3He-B at large counterflow velocity,”

J. Low Temp. Phys., vol. 120, pp. 213–232, Aug. 2000.

Single-vortex sensitivity, or vortex line counting, in the B phase has proven to be

a useful tool in the study of vortices nucleated by neutron irradiation [25]. In

37



order to extend this experiment to lower temperatures, the sensitivity of NMR for

vortex detection as a function of magnetic field was studied. Experimental NMR

line shapes were compared to curves obtained from a numerical model taking into

account different line broadening mechanisms.

[P11] R. Blaauwgeers, V. B. Eltsov, M. Krusius, J. J. Ruohio, R. Schanen, and G. E.

Volovik, “Double-quantum vortex in superfluid 3He-A,” Nature, vol. 404, pp. 471–

473, Mar. 2000.

[P12] R. Blaauwgeers, V. B. Eltsov, M. Krusius, J. J. Ruohio, and R. Schanen, “NMR

measurement of quantized vortex lines in rotating 3He-A,” Physica B, vol. 284-288,

pp. 250–251, July 2000.

We have measured the NMR response of the dipole-unlocked vortex in the A phase

with improved resolution. The circulation of this vortex structure was found to

be two circulation quanta. This is the first time that the circulation of a doubly-

quantized vortex was determined directly in any quantum fluid. This confirms the

working hypothesis that doubly-quantized vortices indeed are the prominent form

of vorticity in the A phase.

At the sensitivity of a single vortex event, it was possible to analyze the position

of the vortex formation site as a a function of rotation velocity by using correlation

analysis on the measurement data.

7.1 Author’s own contribution

The research work presented in this thesis is a result of team work.

I am responsible for the work on identifying losses in the high-Q LC resonator presented

in [P1]. I designed the experimental cell and the pickup-coil setup that was used in [P9]–

[P12].

I took care of the cryostat maintenance since the beginning of 1996, and I was re-

sponsible for the data acquisition and instrumentation starting from [P4]. The recording

of the dispersion of the NMR signal was added in the end of 1994, which is necessary

for correcting the NMR signal in a high Q setup. The whole data acquisition system

including the software part was completely revamped in the beginning of 1996.

I did part of the data analysis in [P2], [P3], and [P7]–[P11]. Part of the measurements

in [P4]–[P10] were done by me. Also, I participated in the writing process of the published

papers by reading and commenting the versions at their different stages.
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I played an active role in the design and in the construction of the A-B phase-boundary

experiment described in the latter part of this introduction, as well as the planning of

the possible experiments in this setup. At the time of writing this, January 2001, the

experiment has yet to produce the first results. The idea of placing the A phase into

a lower field than the B phase, using a compensated axial valve magnet instead of a

transversal magnet, and the numerical design of the whole magnet system are altogether

due to the author. [Note added: The phase boundary in the rotating state was successfully

stabilized for the first time on 23rd of February, 2001.]

7.2 Other related publications

Other publications by the author not included in this thesis.

[P13] V. B. Eltsov, R. Blaauwgeers, M. Krusius, J. J. Ruohio, and R. Schanen, “Dynamic

response of the equilibrium vortex sheet in rotating 3He-A,” Physica B, vol. 284-288,

pp. 252–253, July 2000.

[P14] K.-U. Taubenreuther, R. Schuhmann, E. Nazaretski, L. Hristakos, H. Götz, G. Eska,

and J. Ruohio, “Pulsed NMR investigations on normal-fluid 3He in restricted ge-

ometries,” Physica B, vol. 284-288, pp. 295–296, July 2000.

[P15] R. Blaauwgeers, V. B. Eltsov, M. Krusius, J. Ruohio, and R. Schanen, “Quantized

vorticity in superfluid 3He-A: Structure and dynamics,” in Superfluid Turbulence

and Quantized Vortex Dynamics (C. F. Barenghi, ed.), (Berlin), Springer Verlag,

2001.
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