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1 Introduction

Because of the need for a general turbulence model that would work for arbitrary cases,
the Reynolds-stress model (RSM) has gained popularity in turbulence modeling. Most
RSM applications have been for incompressible flow. In that case Reynolds-stress forces
act only in the momentum equations. Still, the coupling with the flow equations is a non-
trivial task, see e.g. [1]. In the case of a compressible flow, Reynolds-stresses, as well
as pressure, act not only in the momentum equations but also in the energy equation.
This makes the implementation more complicated. Because the coupling between the
Navier-Stokes equations and the Reynolds-stress equations is non-isotropic, time inte-
gration and upwinding are more complex than with algebraic or two-equation models.

In this study, Shima’s low-Reynolds number RSM {2] is coupled with a compress-
ible flow solver [3] based on Roe’s method [4]. A new non-isotropic coupling method
is introduced. The implicit solution method is modified in order to take account of the
Reynolds stresses. The convergence is improved by using a multigrid acceleration. The
model is applied for a channel flow and for a flow over an airfoil.

2 Governing Equations

The Reynolds-stress equations can be written in the following Cartesian tensor form

Dum
pP Dt = Pij + @ij - Ti' — €55 — dij (2.1)

where u;' is the Favre-averaged fluctuation velocity component in ¢-direction, tilde de-
notes Favre-averaging, and P;;, ®;;, T;;, €;; and d;; are the production, the velocity
pressure-gradient correlation, the turbulent transport, the dissipation rate and the diffu-
sion terms, respectively. The turbulent transport, the velocity pressure-gradient and the
dissipation rate must be modeled, whereas the production term is exact.

240



In this study Shima’s model [2] is applied. Some modifications were needed in the ve-
locity pressure-gradient term. The dissipation transport equation was taken from Chien’s
k — e model [5] because it was found to be stable and well behaved. Shima’s original
equation was applied for the airfoil test case.

3 Numerical Method

Diagonalization of the flow equations

In the evaluation of the inviscid fluxes Roe’s method [4] is applied. A rotation opera-
tor is used for the velocity components and also for the Reynolds-stresses. The flux is
calculated as

F=T-1F(TU). (3.2)
Here 7 is a rotation operator that transforms the dependent variables to a local coordi-

nate system normal to the cell surface. In this way, only the Cartesian form F' of the flux
is needed. Velocity components are rotated from global to local coordinate system as

i U
D)1 =T v 3.3)
W w

where the hats refer to the local Cartesian coordinate system. Matrix T' is the rotation
matrix that is determined by the normal and the tangent vectors of the cell face.

Correspondingly, the Reynolds-stresses are rotated from the global to the local coor-
dinate system by the following formula

I=TITT (3.4)

where the components of the Matrix I are the Reynolds-stresses. Transformation from
the local back to the global coordinate system is given by

I=TTIT. (3.5)

The Cartesian form of the flux is

K
1 1
FU,U") = 3 [FU") + F(UT)] - 5 > rBAE) k) (3.6)
k=1

where U! and U™ are the solution vectors evaluated on the left and right sides of the
cell surface, () is the right eigenvector of the Jacobian matrix A = 9F/3U, the cor-
responding eigenvalue is A(¥), and a(*) is the corresponding characteristic variable ob-
tained from R~18U, where §U = U™ — U'. A MUSCL-type approach has been adopted
for the evaluation of U and U™. In the evaluation of U’ and U”, primary flow variables
V = (p, @, 9, W, &), and conservative turbulent variables (pu; u;, pe) are utilized. Ja-
copian matrix A can be split in following ways
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A=RAR'=MLAL'M™ (3.7)

where R and R™! are the right and left eigenvector matrixes written by conservative
variables, L and L~ play the same role, with respect to the primitive variables, as the
matrixes Rand R~1, A is the eigenvalue matrix, and M and M —1 are the transformation
matrixes between the conservative and the primitive variables.

A coupling between the Navier—Stokes and the Reynolds-stress equations is intro-
duced, since the Reynolds-stresses may be connected with the pressure [6]. In the 2-
momentum equation, the resulting effective pressure can be defined as

pr=p+ pu”u“ (3.8)

In order to utilize Roe’s method, the Jacobian of the flux vectors must be diagonalized.
This requires that the Jacobian matrix of the flux vector has a complete set of eigen-
vectors. Unfortunately, linearly independent eigenvectors cannot be found if the non-
isotropic pressure field of Eq.(3.8) is applied.

Since the non-isotropic pressure field is difficult to handle, the turbulent pressure is
usually approximated by the mean of three components

* — 2—
p*=p+ gpk. 3.9

Using this, the flux vector can be divided into the isotropic and non-isotropic parts. The
Jacobian of the isotropic part can be diagonalized. The effect of the non-isotropic part
on a solution is small, and, consequently, it can be evaluated using central differences.
In this approach, there is no need to rotate Reynolds-stresses in the local cell face coor-
dinates. This diagonalization is similar to one of the k — € model and can be found in
[3].

The second method of diagonalization utilizes the production term P;;. The produc-
tion term is exact in RSM and it can be included into the vector F'. This is not a conser-
vative form of the vector F', but RSM is never in a strong conservative form because of
the source terms.

The eigenvalues, i.e. the characteristic speeds of the combined matrix are

A = wutcu-— u"u"u \/u"u"u+c,

u,u + u"u" u+ u"u" Uy Uy Uy U (3.10)

where c is the speed of sound. For an arbitrary equation of state, the speed of sound is

”

c2=pep/p2+pp+3u u. (3.1D)
Using the primitive variables, the characteristic variables are
§W = L6V = R™Y6U (3.12)

where §V = V™ — V!, The left eigenvector matrix L~ and right eigenvector matrix R
are relatively complicated and can be found in [7].

242



In matrix L~! and R there are terms that have to be limited to avoid unnatural be-

—

haviour between turbulent and unturbulent regions. For example, the term v” " / V u" u”

or 6(v"v")/Vu"u" must not get very large values when u"v" goes to zero. It can be
shown that

—— ] m——

ullull vllvll Z lullvll . (3.13)

Using this " v" /V 4" «" can be limited as

<\Vvv. (3.149

Time Integration Method

In the implicit stage the approximate factorization is done assuming isotropic Reynolds-
stresses. The algorithm consists of a backward and forward sweep in every coordinate
direction. The sweeps are based on a first-order upwind differencing. In addition, the
linearization of the source term is factored out of the spatial sweeps.

The matrix inversion resulting from the source-term linearization is performed be-
fore the spatial sweeps. The matrix D is approximated by using the following pseudo-
linearization

_9Q___ 2@
D=0 = AUl

In this way, the maximum change of U caused by Q is limited to [AUrnax|. The value
of | AUmnax| is evaluated as in [3].

A multigrid method is used to accelerate the convergence. In order to stabilize the
multigrid cycle with Reynolds stresses, several devices have been developed. The im-
plementation for the multigrid cycling is described in [3].

(3.15)

4 Test Calculations

Channel Flow

The model was checked by calculating a fully developed flow in a plane channel. Several
methods were compared. The numbering of the test cases can be seen in Table 1. The
second-order upwind scheme was used. The results were compared with those of Kim
et al. [8] DNS data and the Reynolds-stress budgets were compared with Mansour et
al. [9] data. The DNS data is at Re,, = pun,6/p =~ 2800, where 4, § and 4 are the
mean velocity, the channel half-width and molecular viscosity, respectively. Because a
compressible flow solver is used, the Mach number was set to 0.2. This introduced a 1%
change in density across the channel. Calculations were performed with five multigrid
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Table 1 Description of the test cases.

Case 1 | Isotropic flux difference splitting with diffusion of Daly et al. [10]
Case 2 | Non-isotropic flux difference splitting with diffusion of Daly et al.
Case 3 | Non-isotropic flux difference splitting with the scalar diffusion [11]
Case 4 | Same as case 2 with a single grid

20.0
/

15.0

Mo=0.2 Re=25800
Case |
w...Case2

504 =25 y455
—_—y
O-o o ¥ L) |l||ll|I L} VT L} LR
1] i U i 3
0.0 200.0 400.0 600.0 800.0 10 10 101 103

CYCLES y*

Figure 1 Convergence of the L2-norm of the z-momentum residual and mean velocity
profiles in wall coordinates.

Table 2 Mean flow variables.

DNS Case 1 Case 2 Case 3

56 0.141 0.135 0.133 0.135
9]6 0.087 0.081 0.080 0.082
H=5/6 1.62 1.66 1.67 1.64
cr = Tw/(EpuZ) | 8.18x 1073 | 845 x 10-2 | 843 x 103 | 8.72 x 10-3
Re, = pu,5/p 180 181 181 184
Rem = pim = 0/1 2800 2817 2819 2819
Re. = pu.b/p 3250 3256 3252 3259
U JUr 15.63 15.55 15.62 15.36

levels at CFL = 10. The first 50 iteration cycles were performed with a k — € model and
the Reynolds-stresses were not coupled with flow equations. A converged solution was
obtained after 350 iteration cycles.

The convergence history of the L,-norm of the z-momentum is shown in Fig. 1.In
this case also the difference in the convergence rate between the isotropic, non- isotropic
methods and k — € model is marginal, whereas the effect of the multigrid acceleration
is significant. However, two times higher CFL numbers could be used with the k — ¢
model.

Mean flow variables are presented in Table 2. As can be seen in Table 2, the difference
between isotropic and the non-isotropic flux difference splitting was small. The velocity

244



3.0 -1.0
I

e Meme Daly and Harlow
e -0.8 Scalar diffusion —

o Kim et al.

= o ’ 555,
ST IrYy “dop N
vy ~"4=200and
G0N wwoeﬁﬁﬂ&&&é'&aaa‘a} -02 o
,\ 00 f %
0.0 50.0 100.0 150.0 0.0 50.0 100.0 150.0 200.0
y* y*

7/

§
uv/uz
s
M

Figure 2 Comparision of the calculated Reynolds-stresses and the DNS-data in the plane
channel.

profiles are also compared in Fig. 1. Velocity profiles in the viscous sublayer agree well
with the DNS data and the universal profile. On the outer layer the velocity profiles are
not completely satisfactory. The Reynolds-stresses can be seen in Fig.2, where urms =

non

U u2. Turbulent intensities agree well with the DNS data, except that w,.,,s peak
level is low and the near wall values v, s are not satisfactory. Shear-stress in Fig. 2
agrees with DNS.

Onera A-airfoil

For this case the experimental data was provided by Capbern et al. [12] and Gleyzes
[13]. The Reynolds number and the Mach number are 2.1 x 10° and 0.15, respectively.
The angle of attack is 13.3 degrees. The RSM is compared with the two-equation model
of Chien and the Cebeci-Smith algebraic turbulence model. The dissipation equation is
the same as in Shima’s original article [2]. More detail can be found in [14]. In this case
only the isotropic flux splitting method was used. Skin friction coefficient and pressure
coefficient distributions can be found in Fig. 3.

S Summary

The Reynolds-averaged Navier-Stokes equations with a low-Reynolds number RSM
have been solved using an implicit method with a multigrid acceleration for conver-
gence. In the evaluation of fluxes Roe’s method is applied and the turbulence equations
are coupled with the inviscid part of the flow equations. A new non-isotropic coupling
of the Navier-Stokes and the Reynolds-stress equations was introduced.

This paper has focused attention on the problem of coupling the Reynolds-stresses
with Navier—Stokes equation in a compressible case. The main conclusion is that when
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Figure 3 Skin friction coefficient and pressure coefficient distributions around the Onera
A-airfoil.

Roe’s flux-difference splitting is applied, the Reynolds stress equations can be coupled
with Navier-Stokes equations if the effect of the production term is included in the Ja-
cobian matrix. The resulting eigenvectors and the characteristic variables have a fairly
complex form. In the present examples the new coupling method had only a minor effect
on the results and on the convergence rate. However, with a computational approach this
form can be rearranged and simplified. As a result the computing time is increased by
only 13% in comparison with the non-isotropic coupling. The iteration sweep in RSM
was roughly 2.5 times slower than in Chien’s k — € model.
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