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Intermittence and roughening of periodic elastic media
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We analyze intermittence and roughening of an elastic interface or domain wall pinned in a periodic
potential, in the presence of random-bond disorder in 111 and 211 dimensions. Though the ensemble
average behavior is smooth, the typical behavior of a large sample is intermittent, and does not self-average to
a smooth behavior. Instead, large fluctuations occur in the mean location of the interface and the onset of
interface roughening is via an extensive fluctuation which leads to a jump in the roughness of orderl, the
period of the potential. Analytical arguments based on extreme statistics are given for the number of the
minima of the periodicity visited by the interface and for the roughening crossover, which is confirmed by
extensive exact ground state calculations.
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I. INTRODUCTION

The properties of extended, elastic manifolds, like dom
walls in magnets or contact lines of liquids on solid su
strates become very varied if one introduces some disor
Defects on a surface or impurities in a magnet often pin s
interfaces. The recent interest in their physics follows fro
the observation that the energetics in the presence of
domness is obtained by optimizing the configuration of
manifold @1#. A competition between elasticity and the ra
dom potential arises. It results in a scale invariance descr
by a roughness exponentthat measures the geometrical flu
tuations, and anenergy fluctuation exponentthat measures
the variation of the manifold energy around its mean. It
also related to the energy scales of excitations from the s
of minimum energy. The experimental interest in these s
tems arises, in particular, due to the energetics: tim
dependent phenomena like creep and coarsening~in mag-
nets! follow slow, activated dynamics dictated by the ener
barriers that can be described with such exponents@2#.

Frequently manifolds also experience a periodic poten
In the case of superconductors, one periodicity is due to
rotational invariance of the phase. A second periodicity
induced when flux lines form a lattice. Similarly, in the ca
of charge density waves~CDW’s! or domain walls in mag-
nets, one periodicity is due to the underlying lattice structu
and a second is due to the self-organized periodicity of
CDW’s or magnetic domains themselves. Generic mod
for these phenomena are calledperiodic elastic media
~PEM!, and are the focus of this work. As noted recently t
asymptotic behavior of the PEM class depends on the typ
periodicity, with the case of a periodic surface tension be
in one universality class@3#, while the case of an applie
periodic potential is in another@4#. In this work we are in-
terested in the case of an applied periodic potential, in p
ticular the intermittent behavior of interfaces which expe
ence a competition between pinning due to the perio
potential and pinning due to random bond disorder.

The paper is organized as follows. Section II introduc
the Hamiltonian of periodic elastic media and describes
1063-651X/2001/63~3!/036126~7!/$15.00 63 0361
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intermittent behaviors involved in PEM, when the amplitu
of the applied periodicity is changed. This section also
cludes a discussion of the numerical method used. In Sec
the first type of the intermittent behavior, jumps of man
folds, is analyzed using extremal statistics, and is dem
strated with numerical simulations. Section IV discusses
second type of the intermittent behavior, the roughening
the manifolds, with the aid of droplet arguments and furth
numerics. In Sec. V the roughening behavior is studied
$10%- and$100%-oriented lattices which have a lattice-induce
periodicity; we compare these systems with other PEM. T
paper ends with conclusions in Sec. VI.

II. PERIODIC ELASTIC MEDIA

The continuum Hamiltonian that describes the comp
tion between elasticity, periodicity, and randomness is giv
by

Hpem5E Fg2$¹h~rW !%21h$h~rW !%1Vp$h~rW !%GdrW. ~1!

Here h(rW) is a single-valued height variable, andrW is a (d
21)-dimensional vector.Vp is a periodic potential~of am-
plitude V0 and wavelengthl) in the height direction and
h$h(rW)% is the disorder, which we take to be of the rando
bond type with delta-function correlations. The physics
manifolds described by Eq.~1! was discussed recently, sinc
there may exist aroughening transitionthat separates an
algebraically rough regime from a logarithmically rough o
as the potential strength is varied@4#. However, in the di-
mensions considered here@d5(111),(211)# these mani-
folds are always rough at large enough length scales@5# with
the corresponding roughness exponentsz52/3 andz50.41
60.01 ford5~111! and ~211!, respectively. The issues w
raise here arise in all dimensions, and so we numeric
illustrate them in (111)- and (211)-dimensional systems

We calculate the exact location and morphology of int
face ground states for a given configuration of bond disord
For this configuration of bond disorder we vary theampli-
©2001 The American Physical Society26-1
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tudeof the periodic modulation. Interfaces which experien
this combination of a periodic potential and random bo
disorder show a variety of intermittent behaviors as the a
plitude of the potential,V0, is varied. Two types of intermit-
tence which we study in detail are: intermittent jumps in t
center of mass location of the interface, and intermitt
jumps in the roughness of the interface. The first type is m
easily discussed at strong pinning~large values of the key
ratio v5V0lJ/dJ), where the interface is always pinne
near a minimum of the periodic potential, but it jumps b
tween different minima asv is varied. It does this to maxi
mize the energy gain due to small fluctuations about a
interface. In the limit of large system sizes there can be
infinite number of such jumps with, of course, no overl
between the ground states of interfaces in different minim
We develop a scaling theory to demonstrate that the num
of minima explored asv is varied over a finite range is o
order ln(Lh), whereLh is the system size in theh direction in
which the manifold fluctuates. Such intermittence is simi
to the chaos seen in spin glasses~where it implies a vanish-
ing overlap between spin configurations!, and is related to
replica symmetry breaking@6#. It is also a close cousin of th
phenomenon that takes place if the disorder is changed
domly @7#.

A second type of intermittence occurs when it becom
energetically favorable to form a large domain excitatio
This means that a finite fraction of the interface is in o
minimum of the potential, while another finite fraction is
an adjacent minimum. These large fluctuations are the c
sical ‘‘Imry-Ma’’-type droplets, and have a linear extensio
of the order of the system size. By slowly decreasing
potential, we are able to find the threshold at which the fi
domain excitation occurs, and to demonstrate its effect
the roughnessw(v). We observe that since the domain ex
tation is of the order of the sample size, the roughness
duced by that domain fluctuation is proportional tol. Thus
there is afirst-order jump in roughness. In contrast, a naiv
averaging of the roughness looks smooth and scales nic
This is due to a scaling of theprobability of a jump of the
order l occurring atv rather than being the self-averagin
behavior of a typical sample. The exact numerical calcu
tions are supported by scaling theories based on Imry
and large fluctuation ideas, which account for the jumpy
havior of interfaces in a periodic potential.

The numerical calculations are carried out using Is
magnets with random bonds. For a given configuration
bond disorder, we find the ground state interface in squ
and cubic, nearest-neighbor, spin-half, ferromagnetic Is
models. An interface is imposed along the$11% or $10% di-
rections of a square lattice, or along the$111% or $100% di-
rections of a cubic lattice, by using antiperiodic bounda
conditions. Periodic boundaries are used in directions pa
lel to the interface, unless otherwise mentioned. The ave
value of the exchange constant isJ51, while the random-
bond disorder is drawn from a uniform distribution of wid
dJ. The periodic potentialVp5V0@0.5 sin(2ph/l)10.5# is
added to the random bond disorder, whereh is to be along a
direction perpendicular to the average orientation of the
terface. This is done for the$11% and $111% cases, while in
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the other orientations ($10%,$100%) we use the intrinsic lat-
tice potential as discussed below. Note that ifl is small, the
discrete representation of the potential will by necessity
rather coarse. The exact interface ground state in this ran
energy landscape is found using a mapping to the minimu
cut maximum-flow optimization problem@8#. We have de-
veloped a highly efficient~in both memory and speed! imple-
mentation of the push-and-relabel method for the maxim
flow problem @9#. The exact ground state of a manifold
system with 1 000 000 sites can be found in about 1 min o
workstation.

III. JUMPS BETWEEN POTENTIAL VALLEYS

We first discuss the sensitivity of the ground state
model ~1! to small variations in the amplitudeV0 of the
potential Vp , with wavelengthl. A simple scaling theory
captures many aspects of this sensitivity. The scaling the
begins with the central limit form for the energy of a fl
interface located at a minimum of the periodic potenti
P1(E). If the interface is exactly flat, the energy fluctuatio
are just due to the random bond disorder, so that

P1~E!5
1

Aps
expH 2

~E2JA!2

s2 J , ~2!

where A5Ld21 is the area of the manifold, ands2

52AdJ2 is the width of the Gaussian distribution.
Now consider a system in which there areN minima in

the periodic potential. The probabilityLN(E) that the lowest
minima has energyE is LN(E)5NP1(E)$12C1(E)%N21,
where C1(E)5*2`

E P1(e)de. The difference in energy,g,
between the lowest energy state and the next lowest en
state of the manifold may also be simply calculated. We c
this difference in energy the ‘‘gap,’’ and its distributio
GN(g,E) is given by GN(g,E)5N(N21)P1(E)P1(E
1g)$12C1(E1g)%N22. Stated more precisely,GN(g,E) is
the probability that if the lowest energy manifold has
energyE, then the gap to the next lowest energy level isg.
The average lowest energy level is given by^EM&
5*2`

` ELN(E)dE. This is not analytically tractable. How
ever, the typical value of this lowest energy is estima
from sNP1(^EM&)'1, which yields

^EM&;JA2s$ ln~N!%1/2. ~3!

To estimate the typical value of the gap, we uses2N(N
21)P1(^EM&)P1(^EM&1^g&)'1, which, with Eq.~3!, and
the fact thatu^g&u!u^EM&u, yields

^g&'
s2 ln~s!

~JA2^EM&!
'

s ln~s!

$ ln~N!%1/2
, ~4!

wheres5A2AdJ and A5Ld21. The gap between minima
of the potential is thus of order 1/$ ln(N)%1/2, where N
;Lh /l andLh is the system size perpendicular to the inte
face. So the separation between minima grows increasin
small asLh increases. Similar extreme statistics proble
were discussed in Ref.@10#.
6-2
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Given the small gap between the metastable minima
the periodic potential, due to the presence of random bo
we now need to find the typical change inV0 which can
cause a level crossing in which the global ground st
changes from one minimum of the periodic potential to a
other@11#. The key effect that we must control is the fact th
the interfaces arenot flat even when confined to one min
mum of the periodic potential. Instead they have a roughn
which is determined by the interplay between the curvat
of the periodic potential at its minima and the energy var
tions of a manifold due to confinement. We now develop
scaling theory for this phenomenon.

First we treat the confinement effect. Consider a manif
in the presence of random bond disorder, and which is c
fined in a slab of sizel 3Ld21. The energy of such a slab i
given by

E~ l ,L !5S L

Lx
D d21

~c1Lx
d211c2Lx

u!, ~5!

whereLx5 l 1/z. This yields

e~ l !5
E~ l ,L !

Ld21
5c11c2l 2x, ~6!

where

x5~d212u!/z. ~7!

Note thatx is positive, so that the confinement energyde-
creasesas the confinement lengthl increases, as expected

To include the effect of the confining potential, consid
the behavior near a minimum of the periodic potential to
of the form

V~ l !5V0S l

l D y

, ~8!

whereV05V0 /dJ, andy is a positive exponent to ensure th
the potential is confining. For example, a sinusoidal poten
hasy52. The behavior of a manifold in this confining po
tential, and in the presence of an additive random bond
order, is estimated by considering its total energy as a fu
tion of l @i.e., combining Eqs.~5! and ~8!#:

e total5c11c2l 2x1V0S l

l D y

. ~9!

Finding the minimum of the total energy yields the manifo
roughness,

l c5S c2xly

yV0
D 1/(y1x)

, ~10!

with the energy of this optimal manifold being

eopt5c11c3S c2
yV 0

x

lxy D 1/(y1x)

, ~11!

wherec3 is a constant that depends onx andy @12#.
Now the variation in the optimal energy, with a sma

variation inV0, is given by
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eopt~V01dV0!2eopt~V0!5
]eopt

]V0
dV0 . ~12!

This change in energyalso varies randomly from one mini
mum of the potential to another. Ifthe variation in the en-
ergy changeis of order the gap found in Eq.~4!, then we
expect the ground state location to change from one m
mum of the potential to another. Thus we find the typic
value ofdV0 between jumps to be found from

S Ld21
]eopt

]V0
dV0D 1/2

5^g&. ~13!

Thus, using Eq.~4!,

dV0 jump5
^g&2

Ld21 S ]e

]V0
D 21

5
^g&2

Ld21

~x1y!

c3x S lxV0

c2
D y/(x1y)

;
dJ2$ ln~Ld21dJ2!%2

ln~N! S lxV0

dJ D y/(x1y)

, ~14!

whereV05V0 /dJ. There are several interesting features
this equation. First, note thatdV0 jump increases logarithmi-
cally with the area of the manifold,Ld21. On the other hand
the number of minimaN;Lh /l, and dV0 jump , decrease
logarithmically with Lh . The dependence ofdV0 jump on l
and on V0 is qualitative, as expected in that it increas
monotonically with both of these factors.

The intermittence implied by result~14! is illustrated in
Figs. 1 and 2. As a function ofV0, the manifold mostly stays
almost unchanged in the current valley of minimum ener
and occasionally jumps to another, new minimum of the
riodic potential. A useful way to illustrate this intermittenc
as a function ofV0 is to calculate theconfigurational overlap
between the ground states as a function ofV0 ~in analogy
with the overlap used in spin glasses@13#!. The overlapq is

FIG. 1. Interface configurations in 111 dimensions for various
V0. In this calculation the disorder configuration and wavelen
(l516) are fixed atdJ51. As V0 is varied, the interface jumps
between the minima of the periodic potential. The solid lines den
the position of the largest values of the sinusoidal periodic poten
Vp . The lattice size is 1603160, and the interfaces are oriente
along the$11% direction. Note that the disorder isexactlythe same
for each value ofV0.
6-3
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1 if the two configurations are the same and 0 if they have
bonds in common. Figure 2 presents the overlap as a fu
tion of the amplitude of the pinning potential,V0, for inter-
faces in square and cubic lattices. The intermittent natur
periodic elastic media is clearly evident in these figur
Note that while the overlap and the interface roughness
intermittent, theinterface energy~see Fig. 3! does not show
any obvious signs of the jumps. Due to the logarithmic
duction in the gap size@Eq. ~4!#, the interface will only
sample an infinitesimal fraction@ ln(N)/$ln(Ld21)%2# of the
available minima of the potential as we sweepv. Neverthe-
less a large number of different minima@; ln(Lh)# will be
sampled by the system, in particular ifLh is increased while
the transverse sizeL is kept fixed.

IV. ROUGHENING OF THE MANIFOLDS

The behavior of the roughness of interfaces seen in Fi
is also strongly intermittent, especially in 111 dimensions.
The large jumps in roughness seen in this figure are ea
understood from the Imry-Ma arguments@14# concerning the
instability of interfaces to large fluctuations, as we now de

FIG. 2. The overlapq5L2(d21)( id(hi
12hi

2) between ground
states as the amplitude of the potentialV0 is varied (dJ51). As V0

is decreased, we calculate the overlap between the interface
figuration at one value ofV0 ~described by$hi

1%) and the interface
at the next value ofV0 ~described by$hi

2%). The corresponding
mean heightŝ h& are shown in the insets. The calculations we
carried out as for Fig. 1; however we used 300 different values
V0 with DV051022 for the same realization of disorder, and th
wavelengthl54. ~a! Two-dimensional case, with the system si
L3Lh5102431025. ~b! (211)-dimensional interfaces oriente
along the$111% direction for lattices of sizeL23Lh510023129.
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onstrate for the (211)-dimensional case.
The interface energy of a subregiona of the interface of

the areaA is, of course, also drawn from the Gaussia
P1(E)5(1/Aps)exp$2(E2Ja)2/s2%, but now with a stan-
dard deviations252adJ2. Some of these energy fluctua
tions are favorable while others are unfavorable. The larg
favorable fluctuations are found by settingAsP1(E)'1,
similarly to the extreme statistics arguments as in deriv
Eq. ~3!, and as the value of the energy gain this gives

^Eg&'s$ ln~A!%1/2. ~15!

A flat interface would tend to ‘‘take advantage’’ of suc
large favorable energy fluctuations in adjacent minima of
periodic potential. However, this requires having segme
of the interface crossing the barriers in the periodic potent
We define the barrier cost per bond to beeb

0 , and
this is given by the integral over the barrier,eb

0

5(1/l)$*0
lV(x)dx%5eV0. We shall use the last of thes

forms, as we shall often be interested in the dependenc
V0. We consider (111)- and (211)-dimensional systems
of wavelengthl, lengthL, width B, andA5BL so thatab
.lB is the area of the part of the interface which crosses
energy barrier, anda.LB/2 in order to maximize the energ
gain. B51 is the two-dimensional case, andB5L in the
isotropic three-dimensional case. The barrier energy cos
given by

Eb5eV0lB. ~16!

on-

f

FIG. 3. The interface width@w25L2(d21)( i(hi2^h&)2#, and
the total energy as a function ofV0 for l54 anddJ51. The results
are for a fixed disorder configuration and from the same calc
tions as Fig. 2. ~a! (111)-dimensional system. ~b!
(211)-dimensional system. Systems with free and periodic bou
aries have the same realization of randomness.
6-4
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Equating Eqs.~15! and ~16! yields the estimate of the
parameter values at which the first Imry-Ma jump in t
manifold roughness occurs:

S eV0l

dJ D
1

;FAL

B
$ ln~BL!%1/2G

1

. ~17!

In the (111)-dimensional case the logarithmic correcti
drops out, by elementary considerations.

An Imry-Ma fluctuation of sizea leads to a jump in the
roughness, which is of orderl3a/A.l/2. We emphasize
that this is the expected outcome in any system with fix
disorder, whenV0 is varied. IfB}L, there is an exponentia
dependence of the crossover length on the parameters
example, forB5L,

L1;expF S eV0l

dJ D 2G , ~18!

an exponential dependence onv @14#.
In Fig. 3, we present the numerically observed behav

of the interface roughness as a function ofV0. We observe
that for very largeV0 the interfaces are flat, and are confin

FIG. 4. ~a! Average size of the first jump in roughnessDw,
when V05V0,c , normalized usingl and calculated as the differ
ence between roughness values just after a jump and before th
a function of the volume of the systems. We have carried out si
lations for a strips of dimensionL51000, B51 –64, andLh55l,
for various values ofl. The number of realizations is 100.~b!
Average value of the amplitude of the potentialV05V0,c at which
the large-scale ‘‘Imry-Ma’’ fluctuation occurs (dJ51). The data
are from the same simulations as in~a! for the (211)-dimensional
case, i.e.,B.1. The results are scaled using prediction~17!.
03612
d

for

r

to a minimum of the potential. For a large range ofV0 the
roughness stays the same or increases slowly~in three di-
mensions!, until finally at a critical value a discrete jum
occurs due to the Imry-Ma nucleation process. This impl
that the roughening process, as defined by the point at w
the interfaces begin to fluctuate outside a single valley, ha
first-order character. It is seen from Fig. 4~a! that the first
jump is }l, as expected for an extensive fluctuation. T
critical value V0,c , at which the first extensive fluctuatio
occurs@Fig. 4~b!#, follows roughly the prediction of Eq.~17!,
though the slope is closer to 3/4 instead of 1/2.

The analysis of the last paragraph clearly demonstra
that the roughening of manifolds in periodic elastic media
via a first order jump in roughness, which is of the order
the wavelength of the periodic elastic medium. It is intere
ing to investigate whether this first order jump is observa
in the ensemble-averaged behavior. Scaled, ensem
averaged plots of the manifold roughness as a function ofV0
are presented in Fig. 5 for$11%-oriented interfaces@Fig. 5~a!#
and for $111%-oriented interfaces@Fig. 5~b!#. These plots
scale quite nicely with the characteristic length and rou
ness suggested by Eqs.~17! and~18!. In the two-dimensional
case, there is also a clear indication of the first order cha
ter of the transition. The three-dimensional data give lit

, as
-

FIG. 5. Scaled roughness of interfaces oriented in$11% and
$111% directions, for various values ofV0 andL. ~a! $11%-oriented
systems withl516, dJ51, and system sizesL25202–12802. The
number of realizations is 200 for each system size andV0. The solid
line corresponds the slopez52/3. ~b! $111%-oriented systems with
l54 and system sizesL35103–903. The number of realizations is
200 for each system size,dJ andV0. The solid line corresponds th
slopez50.42, while the dotted line isz50.36.
6-5
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indication of the first order jump in roughness, and und
score the problems with a naive averaging of the data. H
ever, we do not have any clear explanation, of why
roughness values in the plateau before the jump can be
lapsed with the same prefactor as in the asymptotic rou
ness in the$111% case, but not in the$11% case.

V. PERIODICITY DUE TO THE LATTICE

It is of interest to see if the first order character of t
roughening of PEM extends to manifolds in the$10% and
$100% directions. In these directions, the lattice itself intr
duces a periodicity, which, for example, is the origin of t
thermal roughening transition in lattice models in three
mensions. Thus we do not need to introduce an extra p
odic potential, and instead we just study the roughness
these manifolds as a function of disorder. We have stud
the roughness of$100% manifolds as a function of disorde
before, and in those studies we ensemble averaged the
@15#. In light of the understanding developed above, we h
revisited this problem, and found that the typical behavior
both the $10% and $100% problems is very similar to tha

FIG. 6. Behavior of the roughness of interfaces oriented in
$100% direction. ~a! The intermittence of a single realization as
function of the amplitude of uniform disorderdJ. The disorder
configuration is the same~with both free and periodic boundaries!,
but the ratiodJ/J is slowly increased in steps of 0.01. The syste
size isL351003. ~b! The histograms of the roughness valuesw for
system sizesL23Lh5503 . . . 20023100. The peak of the distribu
tions jumps fromw.0 to w.0.5 when the system size increase
The number of realizations is 500 for smaller system sizes and
for L23Lh520023100. dJ/J50.9.
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suggested by the PEM model. That is, in a large sample
system roughens via a first order jump in the roughness
to an extensive fluctuation. The behavior of one sample a
function of disorder is presented in Fig. 6~a!. The probability
distributions of the roughness for severalL ’s are presented in
Fig. 6~b!, in which we observe how one can pass throug
coexistenceregion with both flat and rough samples asL is
varied. The intermittent behavior typical of PEM is evide
in Fig. 6~a!, but is obscured by the averaging in Fig. 7~a!.
Though a jump transition from a flat phase to an algeb
ically rough phase occurs in both the periodic elastic mo
in the $111% direction and for interfaces in the$100% direc-
tion, there is an important difference in the behavior of the
models@compare Figs. 5~b! and 7~a!#. In the PEM model in
the $111% direction, there is a pronounced plateau in t
roughness due to the saturation of wandering within one w
@Fig. 5~b!#. In contrast, in the$100% direction, the interface
remains flat until the transition to the algebraically rou
phase@see Fig. 7~a!#. The extent of the plateau region can b
tuned in the PEM model by varying the shape of the pot
tial near the minimum and by varying the wavelength. W
have also carried out calculations for the case of dilut
disorder@Fig. 7~b!#, and found a similar behavior, with th
averaged behavior presented in Fig. 7~a!. With dilution dis-
order the pronounced plateau is not due to any roughen

e

.
00

FIG. 7. ~a! Scaled roughness with Eq.~18! for continuum dis-
order. The system sizes ranges fromL23Lh543 to 20023100. The
number of realizations ranges from 500 for system sizesL23Lh

,14023100 to 200 for the larger ones.~b! Scaled roughness with
Eq. ~18! or dilution type of disorder. The system sizes ranges fr
L23Lh543 to 20023100 ~and even up to 4003 for p50.90). The
number of realizations ranges from 500 for system sizesL23Lh

,14023100 to 200 for the larger ones~with the exception of larger
system sizes forp50.90).
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inside a valley, but because of rare ‘‘bumps,’’ whose occ
rence is due to the Poissonian statistics of diluted bonds.
averaged data scale quite well with (dJ/J)25p(1
2p)J2/(pJ)25(12p)/p, whereJ51, and the variance o
the binomial distribution var5std25p(12p)J2 with the
corresponding meanpJ, andp is the occupation probability
of a bond. Thus we find, in contrast to our earlier conclusio
from similar data, that at large enough length scales in
faces in the$100% orientation are algebraically rough, and a
consistent with the PEM model.

A further important feature of the large fluctuation cha
acter of the roughening transition is that it is strongly dep
dent on the boundary conditions. This is illustrated in Fi
2~b! and 5~a!, in which the roughness is depicted as a fun
tion of the amplitude of the disorder for both periodic a
free boundaries, and with thesamedisorder configuration.
The threshold value ofV0 at which the first order jump in
roughening occurs is typically smaller for the case of pe
odic boundaries. Large fluctuations can take advantage o
boundary to reduce the cost of crossing the energy bar
This sensitivity to boundary conditions is a hallmark of t
large fluctuation effects discussed here.

VI. CONCLUSIONS

To conclude, we have discussed the roughening of ela
manifolds in the presence of a competition between b
randomness and a confining periodic potential. We have c
centrated on the two- and three-dimensional cases, which
well known to have, asymptotically, an algebraic roughn
scaling. However, a study of the system-by-system beha
i,

in
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reveals a much richer scenario in which each manif
makes intermittent jumps, finally culminating in a first-ord
change in its roughness. This process is also important, s
it is related to the asymptotic scaling of the roughness.
cent experiments on the creep of (111)-dimensional sys-
tems@2# showed that scaling arguments of activation ene
barriers can match real systems, using predictions base
rough manifolds. The time scales also depend crucially
the actual amplitude which is set in our picture by the roug
ening transition.

Also, the intermittence in the early stages would me
experimental consideration. Such jumps in the mean loca
of the interface could be studied in the asymptotic rou
regime. In an independent study we have pointed out
mechanism for both fracture surfaces, arising from rand
fuse networks and from yield surfaces of perfectly plas
media which are equivalent to the minimum energy surfa
studied here@16#.

The focus of renormalization group and variational calc
lations in this problem has been dimensionsd5(D11).4,
since there one encounters two asymptotic regimes sepa
by a transition. Of the two phenomena discussed here
least the intermittent jumps in the center of mass location
the interface should persist in that case.
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