PROOF COPY [EWR725E] 146105PRE  Link to the original article (final version): http:/publish.aps.org/abstract/PRE/e066110
(Physical Review E, vol. 63, 066110)

PHYSICAL REVIEW E, VOLUME 63, 0561XX
Extremal statistics in the energetics of domain walls
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We study afT =0 the minimum energy of a domain wall and its gap to the first excited state, concentrating
on two-dimensional random-bond Ising magnets. The average gap scaleg,as ?f(N,), where f(y)
~[Iny] 2 ¢ is the energy fluctuation exponehtjs the length scale, ard, is the number of energy valleys.
The logarithmic scaling is due to extremal statistics, which is illustrated by mapping the problem into the
Kardar-Parisi-Zhang roughening process. It follows that the susceptibility of domain walls also has a logarith-
mic dependence on the system size.
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The energy landscapes of random systems are often asiension of the manifolds and is the dimension of their
sumed to be described at low temperatures by scaling exp@mbedding space. The continuum Hamiltonian for such an
nents that follow from the behavior of the ground states. Inelastic manifold is
renormalization grougRG) language this means that tem-
perature is an irrelevant variable. In most quenched random H:f
systems, the energy landscape contains many low-lying
metastable minima separated by high barriers. Examples can

be found in the realm of random magnets, the most famouvg_

one being spin glass¢s]. The dynamical behay@nat Wnite term in the integrand is the elastic contribution, with the

te_mpt_aratures, as a result_ of a t(_emperature change gfthe a(pdrresponding surface stiffne$s of the interface, and the
plication of an external field, will naturally depend on the second term comes from the random potential. For random
associated barriers and energy differences between tha,nifolds we use quenched random bafiB) disorder

minima. ) . which means that the random potential is delta point corre-
It is often assumed that energy differences or barriers anted, e, (V/(x2)V,(X',2"))=2D8(x—x") 8(z—z). The

tween configurationsdE) relate to the length involved by geometric behavior of the manifold is characterizedvidy

a scaling relationSE~1?, where @ is an energy fluctuation =([z(x)—ﬂ]z)~L2§, where L is the linear size of the
exponent. It measures the dependence of the first nonanaly@c;,stem and; is the corresponding roughness exponent. At
correction to the ground state or free energy on the lengtiby temperatures in 4 1 dimensions, due to the equivalence
scale. Here we show that, for extended manifolds, or Isingf DP’s in random medid2,3] to the KPZ equation, the
magnet domain wall$DW's) [equivalent to directed poly- exact roughness exponent reads2/3 [2—4]. In higher di-
mers(DP’s) in 1+1 dimensiong the energy difference be- mensions the functional RG approach gives the approximate
tween the ground state energy and the next Sthee “first expression/=0.208(4-D) [5] for RB DW's. Since the
excited state) follows from extremal statisticsThis is due  width of a manifold grows ad ¢, it is expected that the
to the fact that, usually, one can assume that the energy landumber of independent valley$,7] is proportional toN,
scape, at large enough scales, consists of niagpendent ~L,/L¢. At T=0 the total average minimum ener{,) of
valleys. Finding the gap between the minimum state and than elastic manifold is equal to its free energy and grows
second-most favorable state is then a straightforward exinearly with the manifold are&®, and its fluctuations scale
tremal statistics problem, as is the simpler one of the miniasAE=((Eq—(Eg))%)¥?>~L" whered=2¢+D—2 [8].

mum of all the independent valley energies. The extreme Letus now analytically derive the scaling of the “extreme
statistics leads to logarithmic factors in the gap and mini-statistics” contributions to the lowest minimuBy, and the
mum energies, which we also show by numerical calculagap between two lowest minima\E;=E;— Ey. We con-
tions. The same result can also be applied to other disorderesider the case of many independent valleys in the landscape
systems, where the energy landscape of DW'’s can be réN,>1, which means that the DP’s can have an arbitrary
duced to a one-dimensional form. We also interpret the restarting or end point, and that,>L¢. For the “single val-
sults in the language of kinetic roughening, since DP’s magey” boundary condition casd€one end of the manifold
into the Kardar-Parisi-ZhandKPZ) equation of growth fixed), it is known numerically that near its mean the distri-
[2—4]. Finally, as an application we show that the extremalbution is Gaussiaf9]. Hence we draw the energi&sfrom

r 2 D
E{Vz(x)} +V,(x,2) |d°X, (D)

ere z(x) is the height of the interface and is the
dimensional internal coordinate of the manifold. The first

statistics scaling shows up in tiseisceptibilityof DW’s. the distribution

Here we consider elastic manifolds at=0 with
guenched short-range, e.g., pointlike defects, randomness, P(E)=Kexp — [E—(E)[\” @
and ind=(D+n),n=1 dimensions, in whiclD is the di- AE '
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where(E)~LP is the average energy of the manifoldE
~L% measures its fluctuations, akchormalizes the integral X3 % Xs X X
sok~1/L?. The exponent; is not constanf9,3]. Near the L - W2
peak, n=2. In the low energy tail numerical simulations ¢ ) y )
indicate thaty_~1.6, while in the high energy tail the best
estimate isn,~2.4 [9]. At this stage we allown to be
variable, but note that it is the behavior near the mean and
the low energy tailwhich is the most important in this cal- L X
culation. In a system withiN,~L,/L¢ independent local <

minima, the probability that the global minimum has energy  FIG. 1. The relation between DP’s and growing interfaces. The

E is given by KPZ interface is growing, so thétincreases and DP’s in indepen-
dent valleys equal thaeth fastest arrival times of the interface to a
Ln,(E)=NP(E){1- Cy(E)N-1, (3)  prefixed heighh, atx,, at timest(x,) in a system with widtH_, .

The solid line describes the fastest polymer, which endg .athe
Wherecl(E):fEmp(é)de [10]. The gapAE, follows simi- dashed lines describe the next fastest polymers.

larly. Its distribution,Gy,(AE4,E) is given by The (1+1)-dimensional DW maps, in the continuum

limit, to the KPZ equation by associating the minimum en-
ergy of a DW with the minimunmarrival time t{,=E, of a
KPZ surface to heighlt. The connection is illustrated in Fig.
1 in the limit of many valleyN,>1. The minimal path of a
G (AE;,E) is the probability that if the lowest energy PW With an end poing(L) is equal to the path by which the
z interface reacheb=L at a locationx;=z and at a timet;
=E,. Thust, attains a logarithmic correction, from E(y),
of size —h#{In(L,/h*?)}V7, where B=1/3 andz=23/2 are
now the roughening exponent and dynamical exponent of the
" KPZ universality clas$2]. Now consider the second smallest
(E0>=f ELy (E)dE, (5)  arrival time t,. In the KPZ language of DP’s, if the path
> ‘ Xo(t") that givest, is completely independent of thg(t')

that results int;, thent, and x, are related to a separate,
independent valley of the DP landscape. TikerenceAt
=t,—t; is then equal tdAE; of the DW, and likewise obeys
extremal statistics, so thait~h?[In(L,/h*?)]~ (717 For

rowing surfaces this limit is thearly stagesf growth, in

hich the correlation lengtb<L,, and therefore the arrival
times, or DW energies, are independent.

_ In order to check the scaling behavior of the gap energy

LKNP((Eo))~1 © [Eqg. (9)], we have done extensive exact ground state calcu-
lations of elastic manifold in the two dimensional spin-half

Gn,(AE;,E)=N,(N,—1)P(E)P(E+AE,)

X{1—Cy(E+AE N2, (4)

manifold has an energk, then the gap to the next lowest
energy level iSAE;. The average value of the global mini-
mum is given by

which is not analytically integrable. The typical value of the
lowest energy may be estimated using extreme scaling
estimate. It follows from the fact the term inside thé in
Eq. (3) becomes unity ifC; is small enough. This has proven
useful in other contexts, for example breakdown of rando
networks, and here reafl$l]

which yields ) . . ;
RB Ising model, i.e., we take a nearest neighbor Ising model
(Eo)~(E)— AE{In(N,)}¥7, (7)  With random but ferromagnetic coupling;>0. Calcula-
tions are performed by varying both the parallel lengtnd
whereAE~LY. the heightlL, of systems oriented in thgl0} direction. The
To estimate the typical value of the gap, we use, similarlyDW is imposed by antiperiodic boundary conditions in the
to Eq. (6), direction atz=0 andL,. The elastic manifold is the inter-

face, which divides the system into two parts, one containing
1K?NL(N,—1)P({Eo))P({(Eq)+(AE;))~1, (8  up-spins and the other containing down-spins.TAtO the
problem of finding the ground state DW is a global optimi-
which, with Eq.(7), and the fact thaf AE;)| <|(Ey)|, yields  zation problem, which is solved exactly using a mapping to
the minimum-cut maximum-flow problem. The so-called
(AEy) AE” AE © push-and-relabel method solves this problem efficiently, and
1)~ _ = BTV was extensively discussed elsewhgtd—16.
7((E)—(Eo))” n{In(N,)}(7=D'7 In order to control the average number of the minima
We thus find that, in addition to the usual sample to sampIéNZ>~LZ/L§ in a chosen system size, we set the initial po-
variations in the energyNE~ L), there is a slow reduction sition of the interfacez, in a fixed size window at height
in the gap which scales din(N,)}" Y7, providedN,>1.  z,/L,=const. If the ground state interface is originally out-
Our case is closely related to tixeakly brokemeplica sym-  side the window, with room only for a single valley, it is
metry [12] of DP’s; also see Refl13], where the relation neglected, and a new configuration is created. After the origi-
between replica methods and extremal statistics is discussedal ground state is found, with its ener@y, the lattice is
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FIG. 2. The scaling of the ground state eneEjyas a function FIG. 3. The scaling functiom(y) of the scaled disorder average

of scaled transverse system sizgL¢ for the system sizels=100,  of the energy differencéAE,)/L? as a function of scaled trans-
200, and 300. The line-0.41+0.53In(2.78.,/L%)]*?is a guide to  verse system size,/L¢ for the system sizels= 100, 200, and 300,

the eye. We have subtracted the expected depender(& dfom  each withz,/L,~const. =1/3 and{=2/3. The line has a shape

(Eo) (see the tejt In Figs. 2—4 we use RB disorder, withJg ;  f(y)=0.23Inf) Y2 The configurations are the same as in Fig. 2.
€[0—1] uniform distribution andJ;; ,=0.5. The number of real-

izations ranges fronlN=500 for L =300 andL,=500 toN=2000 om
for L=200 andL,=600. x= lim < >
h—0+

dh (D

reduced, so that bonds in and above the window are ne-. the ch in th tizati fth .
lected and e new round st s and h corespond- 1 0 1e19° 1 e magnezaion ol vmen
ing gap energyAE; are found. We studied at lealst=500 24 . . 9

e . ) . ternal field from the positive sidgl6,17, and the brackets
realizations of system sizes uplio=300 andL,=500. Fig- imply a disorder average. We recently showed that the gen-
ure 2 starts the discussion of the numerical data by showin Py ge. Y 9

how the ground state energi,) behaves as a function &f gra_l behavior follows from a !evel—cr_ossmg phenomenon,
; : which involves an extra potentidl,(z) =hz, dependent on

andL,. The scaling resultEg. (7)] shows that the correction X . . S .

to the enerav follows a logarithmic dependence the height of the interface, in Hamiltonidf), and thath is
S gy . 09 P n, an applied external field to the manifold. In any particular

which is confirmed in the figure. Note that the extraction ofC nfiquration whenh is varied. the manifold position

this correction from the data requires an educated guess oﬁ gurat I : ) P

how (E), the single valley energy, behaves withwe have Changes in macroscopic “jumps[’L6], the first one occur-

used an’ansaK£g>]~aL+t>)/ Withgt%e values oa andb dem- fing ath,.

onstrated in Fig. 2, so th:at the exponent vale 2 corre- One may write the susceptibiligeq. (L1)] with the help

sponds to a Gaussian distribution. Due to the nature of thOf the probability distribution of the fields,P(hy), in the
i . ; orm
procedure, it would probably be possible to obtain a reason-

able fit for, e.g.,n=n_ as well. Az Az
For small sample sizek,<L¢ the value of the energly, y=_lim <_> :< 1> lim P(hy), (12)
is affected by confinement. Similarly, the gap is controlled h—o+ | AN o

by confinement effects in this limit. Wheln, is large there o
are many independent valleys and extreme statistics effects®ecause the magnetization of a systefh)=z(h)/L,, and
are important; hence we expect since the distance in the jump between the minia,)
~L, [16], independently of the sample-dependéant It is
_ expected that a scaling for(h,)=(h;)P(h,/{h;)) ap-
f(L2), L.<L, plies, and thaP remains finite in the limith;—0. Next we
LOIn(L, /LY D7 LsL compare the average susceptibility as a function of the num-
(10) ber of valleysN, to the conjecture that, in the presence of the
field, the average gap for the original and excited state fol-
lows an extremal statistics form similar to E®).
where we have used E¢Q) andN,~L,/L¢. We attempt to The simulations are done again using a fixed height win-
collapse the data by using the reduced variableslow in which the original ground state without a field is
(AE4(L,L,))/L versusL,/L¢ for variousL andL,. As seen  found. After this the external fielth is slowly applied by
in Fig. 3 we find a nice agreement with the extreme scalingncreasing the coupling constant valuds(z)=J.andom
form, with the ratio ¢p—1)/%»=1/2, i.e., by using a Gaussian +hz, whereJ, is perpendicular to the direction, until the
distribution. first jump is observed with the correspondingandAz;. In
Next we consider the relation of the extremal statistics toorder to find the scaling relation for the first jump fidid,
the susceptibility of these manifolds. In tizdimensional we perform the ansat?AE,)=(h,)LL,, since the field con-
case the susceptibility is defined by tributes to a polymer energy proportionalt6(D=1), and

<AE1(L1L2)>N
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FIG. 4. The scaling functiofi(y) of the scaled disorder-average
of the jump field(h,)L1"°L, as a function of scaled transverse
system sizé,/L¢ for the system sizeks =100, 150, 200, 250, and
300, each withzy/L,=const. §=1/3 and{=2/3. The line has a
shapef (y)=0.41Infy) Y2 Here the number of realizations ranges
from N=500 forL =300 andL,=500 toN=2600 forL =200 and
L,=600.

L,~(Az,;) is the difference in the field contributioris to
the energy at finitéh at different average valley heightg
andz;. Hence

4 LZ
(ha(L L)L ~L% =), (13)

where the scaling functiof(y) =[In(L,/L)]” Y. Figure 4
shows the scaling functiodEg. (13)] with a collapse
of (hy(L,L,))L* L, versusL,/L¢ for variousL and L,
which is again in good agreement with the logarithmic
extreme scaling correction. Generalizing to arbitrary dimen
sions, one has the behavior of(h,(L,L,))
~LPL In(L, /LYY For the susceptibility[Eq.
(12)], one obtains, usingh,) for the normalization factor at
P(h;=0),

PHYSICAL REVIEW E63 0561XX

x~LP oL [In(L, /L8] Dm, (14)

and in the isotropic limitLeL,, the total susceptibility;o
=L9y becomegwhen »=2)

Xtot~ L2 (1= 0)In(L) M2 (15

Note that for most random manifolds-1£>0, with the ex-
ception of 2D random field Ising DW’s for whicli=1 at
large scale§18]; thus the susceptibility does not diverde]

as the premis®&l,>1 does not hold in this case. If the con-
dition N> 1 is violated, the extreme statistics correction dis-
appears. Thus the extremal statistics of energy landscapes
leads to a logarithmic multiplier in the susceptibiliffq.

(15)] of the DW's. This result differs from algebraic forms of
scaling[16]; also see Ref].20].

To conclude, we have considered the average energy dif-
ferences or “gaps” in the energy landscape @fvo-
dimensional elastic manifolds. An extremal statistics argu-
ment in a system geometry with many independent valleys
shows that the ground state energy and the gap have loga-
rithmic scaling functions, also reproduced with numerical
studies. An illuminating connection can be made to Kardar-
Parisi-Zhang nonequilibrium surface growth. Finally, we
demonstrate that the gap scaling shows up in the susceptibil-
ity of random manifolds. This might have implications for
flux line lattices in high-temperature superconductors, where
a similar problem related to barriers was analyzed with the
aid of extremal statistice21].
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