PROOF COPY [LW7657E] 128105PRE Link to the original article (final version): http://publish.aps.org/abstract/PRE/v63/€066109
(Physical Review E, vol. 63, 066109)

PHYSICAL REVIEW E, VOLUME 63, 0561XX
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The ground-state structure of the two-dimensional random field Ising magnet is studied using exact numeri-
cal calculations. First we show that the ferromagnetism, which exists for small system sizes, vanishes with a
large excitation at a random field strength-dependent length scalebrg@kup length scale ) scales expo-
nentially with the squared random field, eAp§?). By adding an external fielti, we then study the suscep-
tibility in the ground state. I£ > L, , domains melt continuously and the magnetization has a smooth behavior,
independent of system size, and the susceptibility decals 4sWe define a random field strength-dependent
critical external field value- H.(A) for the up and down spins to form a percolation type of spanning cluster.
The percolation transition is in the standard short-range correlated percolation universality class. The mass of
the spanning cluster increases with decreadingnd the critical external field approaches zero for vanishing
random field strength, implying the critical field scalifpr Gaussian disordeiH~(A—A.)°, whereA,
=1.65+0.05 ands=2.05+0.10. BelowA the systems should percolate even whtn 0. This implies that
even forH=0 abovel, the domains can be fractal at low random fields, such that the largest domain spans
the system at low random field strength values and its mass has the fractal dimension of standard percolation
D;=91/48. The structure of the spanning clusters is studied by defieimglustersin analogy to the “red
sites” of ordinary site percolation. The sizes of red clusters define an extra length scale, indepenhdent of
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[. INTRODUCTION which would scale with the Euclidean dimension of the sys-

The question of the importance of quenched random-fieldem, is to have enough interpenetrating domains of both spin
(RF) disorder in ferromagnets can be traced back to the prierientations. However, with decreasing strength of the ran-
mary paper by Imry and M4@l1,2] from the midseventies. domness, the ferromagnetic coupling constants between
They argued, using energy minimization for an excitation tospins start to matter, the domains become “thicker,” and
the ground state, that the randomness in the fields assignedtfuus one enters an apparent ferromagnetic regime, and the
spins changes the lower critical dimension from the purgparamagneti¢PM) phase is encountered only at very large
case withd,=1 to d;=2. After that a number of field- length scales. Should there be large clusters with a fractal
theoretical calculations suggested that the randomness iflron-Euclidian mass scaling, they nevertheless can contrib-
creasesd, with two to be d,=3. Finally came rigorous ute to the physics in spite of the fact that the total fraction of
proofs first by Bricmont and Kupiaind3] in 1987 that there spins can be negligible in the thermodynamics limit. Thus
is a ferromagnetic phase in the three-dimensio(@D)  such clusters may even be measurable in experiments or be
random-field Ising modelRFIM) and in 1989 by Aizenman related to the dynamical behavior in nonequilibrium condi-
and Wehr[4] that there is no ferromagnetic phase in two-tions. Therefore, it is of interest to study the structure of the
dimensional(2D) RFIM. Thus it was established that the largges) clusters in the ground state, since it is not simply
lower critical dimension is two. This means that the groundparamagnetic as in normal Ising magnets abbyeThe true
state is a paramagnet, but the problem of how to describe thground state structure also gives some insight into the phys-
structure of the(ground state 9f 2D RFIM still persists. ics atT>0, since the overlap between the GS and the cor-
Some recent work concerns the scaling of the correlatiomesponding finiteF state is close to unity fol small, in
lengths[5] and there is a suggestion of a ferromagneticcontrast to the thermal chaos in spin glags@s
phase, but with a magnetization that is in the thermodynamic In this paper we want to shed some light on the character
limit below unity [6]. The point is that due to th@elevanj  of the ground states of 2D RFIM. We have done extensive
disorder there are no easy arguments that would indicatexact ground state calculations in order to characterize how
say, how the paramagnetic ground state should be charactehe ferromagneti¢FM) order vanishes with increasing sys-
ized. This is different from the thermal Ising case, which istem size. We have also studied the effect of the application
quite trivial in 1D. of an external field, that is, the susceptibility of the 2D

In two-dimensional Ising magnets, in the presence ofRFIM. Allowing for a nonzero external field makes it pos-
guenched random fields, the problem of determining thesible to investigate a percolation type of critical phenomenon
ground statdGS becomes more difficult. Finding the true for the largest clusters. We propose a phase diagram in the
ground state with any standard Monte Carlo method is probelisorder strength and external field plane for the percolation
lematic due to the complex energy landscape. Even with thbehavior. The presence of clusters of the size of the system,
exact ground state methods, such as the one used in thig., percolation type of order, adds another correlation length
paper, the thermodynamic limit is difficult to reach, since theto the systems and thus makes the decay of ferromagnetic
finite size effects are strong. In the typical case of squarerder more complicated than at first sight.
lattices, the only way to avoid having a massive domain, The Hamiltonian of the random field Ising model is
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fields in the “first excitation,” but not to the droplet field
H= —J<Z> SSJ'—Z (hi+H)S, (1) energy when the GS consists of domains of different length
ij i

scales.

o ) Grinstein and Md12] derived from the continuum inter-
whereJ>0 (in this paper we usd=1 for numerical calcu- face Hamiltonian that the roughness of the domain wall
lations is the coupling constant between nearest-ne|ghb0(DW) in RFIM scales asv~AZ3L(5~973 which is consis-
spinsS; andS;. We use here square lattide.is a constant  tent withd, = 2. Later, Fishef13] used the functional renor-
external field, which if nonzero is assigned to all of the spins,,jization group(FRO) to obtain the roughness exponeht

andh; is the random field, acting on each sfBn We con-  _ (5_4)/3 and argued that due to the existence of many
sider mainly a Gaussian distribution for the random-field val-yetastable states the perturbative RG calculations and di-
ues mensional reduction fail. Another, microscopic calculation
by Binder [14] optimized the domain-wall energy in two
p(h) 1 F{ 1(hiﬂ @ dimensions. The net result is a total energy gain from ran-
= —exg — =| — , i — _ (A2 i -
[ N 2| A dom fields, AU (A4/J)LInL due to domain wall decora

tions, which implies that the domain wall energy=2JL

. . . - + AU vanishes on a minimal length scale
with the disorder strength given ly, the standard deviation

of the distribution, though in some cases the bimodal distri- Lp~exd A(J/A)?], (5)
bution,
whereA is a constant of order unity. Fdr>L, the expec-
1 1 tation is that the system spontaneously breaks up into do-
P(h)=5d(hi—A)+ 5 a(hi+4) (3 mains. Similarly, the energy of a domain with a constant
external fieldH becomes

is used, too. The results presented below should not be too U/J=8L+2(H/J)L2—(8/A)(A/J)2L InL. (6)
dependent on the actuBl(h), in any case.

To find the ground-state structure of the RFIM means thaettingU/J=0 and assuming that the critical length scale
the Hamiltonian(1) is minimized, in which case the positive Ly Scales ak,, without the field, i.e.L, y~Ly,, the criti-
ferromagnetic coupling constants prefer to have all the spingal external field becomes
aligned to the same direction. On the other hand, the
random-field contribution is to have the spins be parallel to H./J=(4IA) (A1) exd —A(J/IA)2—1]. (7)
the local field, and thus has a paramagnetic effect. This com-
petition between ferromagnetic and paramagnetic effectblote that in this case the first two terms in K@) assume
leads to a complicated energy landscape and finding the Gtbat the domain is compact.
becomes a global optimization problem. An interesting as- These results imply, together with the notion that the
pect of the RFIM is that it has an experimental realization aground state is paramagnetic, that the magnetization should

a diluted antiferromagnet in a fieldDAFF). By gauge- Not as such display any “universal” features. The results of
transforming the Hamiltonian of DAFF, this paper show that the magnetizatiomist dependent on

the system size and has a smooth behaviomef f[H/
exp(—=6.5/A)] and the susceptibility vanishes with the sys-
H=-32 SSe€e—BY €S, (4)  tem size asy~L 2exp(7.3A)g[H/exp(~6.5/A)], where
(i) i g(y=0)= const, andy(y— +=)~exp(—0.2y|). These im-
ply that there is a length scale, related to the rate at which
where the coupling constanty<0, ¢; is the occupation clusters “melt” whenH is changed from zero.
probability of a spinS;, andB is now a constant external The presence of such a length scale is qualitatively similar
field, one gets the Hamiltonian of RFINL) with H=0  to the one discovered in the context of the percolation tran-
[8—10]. The ferromagnetic order in the RFIM corresponds tosition. It turns out that when the external field is varied, the
antiferromagnetic order in the DAFF, naturally. universality class is that of the ordinary short-range corre-
As background, it is of interest to review a few basic lated percolation universality class. The external field thresh-
results. Imry and Ma used a dome  vall argument to showold for spanningH . with respect to decreasing random-field
that the lower critical dimensiod,=2 [1]. In order to have strength approaches zero external field limit from the site-
a domain there is an energy cost@{L% ') from the do-  percolation limit of infinite random field strength value, sug-
main wall. On the other hand, the system gains energy bgesting a behavior for Gaussian disordertf~(A—A.)°,
flipping the domain from the fluctuations of random fields, whereA .= 1.65+0.05 andé=2.05+ 0.10. Below this value
which, interpreted as a typical fluctuation, means that thehe lattice effects of site percolation are washed out, and
gain isO(LY?). Thus, wheneved/2=d—1, i.e.,d<2, itis  there is yet another length scale that characterizes the perco-
energetically favorable for the system to break up into dodation clusters, the size of the “red clusters” defined below
mains. However, in this paper we will point out, as has beerin analogy to the usual red or cutting sites in percolation.
shown in one-dimensiondlLD) [11], that theO(L¥?) scal-  Now a whole cluster is reversed due to the forced reversal of
ing can be used only in relation to the sum of the randoma “seed” cluster, when the sample is optimized again. The
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length scale is, however, finite, indicating that the globalmillion spins in a workstation.
optimization of the ground state creates only finite spin-spin  When we have added an external field in the systems, our
correlations as is the case in 1D as well. system sizes are restrictedlté= 175 for H small but non-
This paper is organized so that it starts by introducing inzero due to the range of integer variab{és numerical rea-
Sec. Il the exact ground state calculation technique. In Sesons we use a discrete representation of real fielhen
[l the breaking up of ferromagnetic order is discussed, basethe high precision for field values is not needed, the compu-
on a nucleation-of-droplets picture which follows from a tations extend up to system size$=100¢. We have used
level crossing between a FM ground state and one with @eriodic boundary conditions in all of the cases. Also, the
large droplet. The relevarity, scaling (5) is derived from  percolation is tested in the periodic or cylindrical way, i.e., a
extreme statistics. Above the breakup length scale the dcluster has to meet itself when crossing a boundary in order
mains have a complex structure that is briefly discussed. Th® span a system.
effect of an external field, in the case where the system size When the red clusters are studied, Sec. VI C, we have
is abovel,, is studied in Sec. IV for Gaussian disorder. Theapplied a technique that allows us to take advantage of the so
percolation aspects of the 2D RFIM are studied in detail incalledresidualgraph[20]. After the original ground state is
Sec. V. The phase diagram for the percolation behavior asearched, a perturbation is applied. This means that, e.g., a
functions of the external field and the random-field strengttspin is forced to reverse, with a large opposite field value.
is sketched and the properties of the transition are discussetlhen the ground state is searched again. This time all the
The zero-external-field percolation probability is studied inflow need not be constructed from scratch, but instead one
Sec. VI. In this section the structure of spanning clusters i€an utilize the final situation of the first ground state search
also studied using the so calleed clusters whose scaling (the residual graph Only the extra amount of flow, needed
and properties are discussed. Conclusions are presented simce the capacity of the large opposite field value is added,
Sec. VII. has to be forced through the system to the sink. One also has
to subtract the flow from the original field val(eetrace it
back to the sourgelt is thus convenient to reverse only the
fields that originally were negative. For the positive field
For the numerical calculations the Hamiltonidh) is  Vvalues, one would have to study a mirror image of the sys-
transformed into a random flow graph with two extra sites:tem (h;— —h;). Thus we have analyzed the red clusters only
the source and the sink. The positive field valhesorre- ~ from the spanning clusters of down spins, which does not
spond to flow capacities;; connected to the sink) from a disturb the statistics, since the spin directions are symmetri-
spinS ; similarly, the negative fields with; are connected qal. The use of the residual graph considerably reduces the
to the source §), and the coupling constan}; = i be- tlme'needed to calculate the ngxt ground state, although ap-
tween the spins correspond to flow capacitigs=c;; froma  Proximately half of the spanning clusters have to be ne-
site S to its neighboring onés; [15]. In the casaheree the glectgd. Notice that since the ground-state energy is a linear
external field is applied, only the local sum of fieldd, functlo_n of t_he capacity of the saturated boidsthe field of
+h;, is added to a spin in the positive direction. The graphthe spins aligned along the local figléne can compute the
theoretical combinatorial optimization algorithms, namely, ‘break-point” field hy, at which a change takes place from
maximum-flow, minimum-cut algorithms, enable us to find the original ground state to the new one. We have not paid
the bottleneck, which restricts the amount of flow that it is@ttention to this, however, since our main interest is in the
possible to get from the source to the sthrough the cag th&eometry of the red clusters. One interesting additional ques-
pacities', of such a random graph. This bottleneck, gth tion would be, what is the smallest, and its disorder-
which divides the system into two parts—sites connected t&veraged distribution.
the sink and sites connected to the source—is the global
minimum cut 2 of the graph, and the sum of the capacities || pESTRUCTION OF FERROMAGNETIC ORDER
belonging to the cut /& pc;; equals the maximum flow and . _ \ : _
is smaller than of any other pacutting sing the system. The In this section we will derive the scaling for the breakup
value of the maximum flow gives the total minimum energylength scald.,,, Eq. (5), from extreme statisticéas done in
of the system. The maximum flow algorithms are proven tothe paper by Emig and Nattermaf#i]). and confirm it with
give the exact minimun cut ve of all the random graphs, inexact ground state calculations. We also discuss the ensuing
which the capacities are positive and with a single source angomain structure qualitatively.
sink [16]. In physical situations, this means that the systems If one picks a(compact subregion of area of a ferro-
are without local frustration. The algorithm was actually magnetic 2D RF system, the energy is drawn from a Gauss-
used for the first time in this context by Ogieldli7], who  ian distribution
showed that the 3D RFIM has a ferromagnetic phase. The

IIl. NUMERICAL METHOD

best known maximum flow method is by Ford and Fulkerson 1 (E—(E))?
and is called the augmenting path metHd®]. We have P(E)= exp ———— (8
used a more sophisticated method called push-and-relabel by V2mo 20

Goldberg and Tarjafl9], which we have optimized for our
purposes. It scales almost linear(n'?), with the number where the variancer?=aA? is due to the fluctuations of
of spins and gives the ground state in about one minute for eandom fields, andE)~a. For a system of size? we have

0561XX-3

PROOF COPY [LW7657E] 128105PRE


Laboratory of Physics

Laboratory of Physics
where

Laboratory of Physics

Laboratory of Physics

Laboratory of Physics

Laboratory of Physics
through the ca-

Laboratory of Physics
pacities

Laboratory of Physics

Laboratory of Physics

Laboratory of Physics

Laboratory of Physics

Laboratory of Physics
cut

Laboratory of Physics
cut

Laboratory of Physics
cut

Laboratory of Physics
cutting

Laboratory of Physics

Laboratory of Physics

Laboratory of Physics

Laboratory of Physics

Laboratory of Physics
2J  = c

Laboratory of Physics
ij

Laboratory of Physics
ij


PROOF COPY [LW7657E] 128105PRE

E. T. SEPPAA AND M. J. ALAVA PHYSICAL REVIEW E 63 0561XX

N,~L? ways of making such a subregion. The probability

that a subregion has the lowest eneHjis given by

Ly, (E)=NaP(E){1—Cy(E)}Na1, 9

whereC,(E)=[E_P(e)de [22]. The distributionLy_(E) is

in fact a Gumbel distributiof23]. The average value of the

lowest energies is given by

(E0= | EL(EI0E 10

which cannot be solved analytically. The typical value of the

lowest energy follows from aaxtreme scalingstimate. The

factor inside the curly brackets in E() is close to unity if

C; becomes small enoudfor similar applications, seje4— .

27]). Thus

oN,P((Eo))~1 (11) FIG. 1. An example of the ground state after the first excitation,
a 0 ' L?2=20C", Gaussian disorderA=0.76. Up spins are shown in

which yields, white, and down spins in black. Note that the system has periodic

boundaries.
(Eo)=(E)—o{In(N)}*2 (12 o _ o _
Due to the extensive size of the first domainlike excita-

i.e., the energy gain from the fluctuations is tion, the destruction of the ferromagnetism resembles a first

order transition. The magnetization for a certain disorder
(Eg)=~o{In(Ny)} 2. (13)  strength and system size would be averaged over systems, in

which the excitation has and has not been formed yet, with
A FM system would tend to take advantage of such largeém|~0 and|m|~1, respectively. Hence we define a simpler
favorable energy fluctuations by reversing a domain, whichineasure for the break up of FM order: the probability of
requires breaking bonds. This is assumed to have a cost Ofinding a purely ferromagnetic systelgy, (L,A), i.e., for a
E. — Jgd-1/d fixed random field strength and system size we calculate the
probability over several realizations that magnetizafion
=1 [28]. If the transition to the PM state were continuous,
this would not make much sense, since small fluctuations
would already caus®gy(L,A)=0. However, due to the
\/%A{m(Na)}l/ZwJa(dfl)/d' (15) first order behavior, anq to the fact that the gmallest energy
needed to flip a domain causes the excitation to be large,
It can be easily understood that the most preferable domaiRru is @ good measure and has a smooth behavior. We have
is the one that maximizes the area and minimizes the bonddiecked thatm| versusP, does not depend ob.
to be broken, which givea=L?%2. Figure 1 illustrates this, ~~ We have derived the breakup length sciajeby varying
as we increaséwith a fixed random-field configuration and the random field strength from the probability of finding a
system sizethe strength of the randomness or decrease thpure ferromagnetic system such Bgy(L,,A)=0.5. The
ferromagnetic couplings until the first domain appears. Itdata are shown in Fig. 2 for Gaussian and bimodal disorder
turns out that the droplet is of the order of the system size(in both caseg=1), and the exponential scaling fog, ver-
This kind of nucleation with a critical size is reminiscent of sus inverse random field strength squared is clearly seen. The
a first order transition, and is related to a level crossingprefactors areA=2.1+0.2 and 1.¢0.2 for Gaussian and
when either the random field strength or the system size ibimodal disorder, respectively. To check that the probability
varied, similarly to random elastic manifolds, when an extraPgy(L,A)<<1 is not due to so called stiff spins, i.e., single
periodic potential[25] or a constant external fielf26] is  spins for whichh;=4J, we next derive an extreme statistics
applied. By substitutingi~L? andN,~L? in Eq. (15), we  formula for their existence. The probability of findiriy
get for the length scale =4J P(hj=4J)=erfc(4/A). The extreme statistics argu-
ment,NP(h;=4J)~1, with N=L¢, gives

Equating Eqs(13) and(14) yields the estimate of the param-
eter values at which the first Imry-Ma domain occurs,

L~exd A(J/A)?], (16)
L,~[erfq(4/A)] Y2 (17)

which is, in fact,L, as in Eq.(5). This result, Eq(16), is
surprising in the sense that the extreme statistics calculatiohor Gaussiam\=0.8862 for whichL,=100 in Fig. 2,L,
for the formation of a domain leads to the exactly same scal=400 from Eq.(17). L, also grows much faster thdn, for
ing as the optimization of domain wall energy on successivelecreasingd, which is both easy to see from E(L7) and
scales in Binder's argument. easy to check numerically. Fak=0.6670 for whichL,
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10° — smaller oneA = 1.2 for a system size?=100’. One can see,
-~ ® bimodal that a system breaks into smaller and smaller domains inside
f} O Gaussian g0 each other from the case shown in Fig. 1. The feature of
= O & having clusters in different scales is familiar from the perco-
_;w’ oe lation problem29]. In fact, in both of the examples in Fig. 3
E‘) 10k O e i there is a domain that spans the system in the vertical direc-
o tion, drawn in gray. For the stronger random field value one
e ¢ can also see smaller domains of different sizes. However, the
oY e width of the spanning cluster is greater than that in a stan-
§ dard site or bond occupation percolation problem. Later, in
- Sec. VI B, we discuss the scaling properties of the largest

95— To 15 20 25 clusters in the ground state, abolvg.
Inverse random field strength [(1/A)7]

FIG. 2. Breakup length scals, vs inverse random field strength IV. MAGNETIZATION AND SUSCEPTIBILITY
(1/A)? for bimodal and Gaussian disordgitled circles and empty WITH AN EXTERNAL FIELD

squares, respectivelycalculated fromPgy(L,)=0.5.

In Fig. 4 we show what happens in a system, with a sys-
=800, L, becomes as huge as 22300. To confirm furthetem size well abové, when an external fiel#H is applied.
that the origin of the breakup is a large domain, one carNow the clusters melt smoothly when the external field
extend the argument to small domains. The length dcakt  strength is increased and a first order type of phenomenon
which one is able to find a cluster of two neighboring spinssuch as that seen as when a first Imry-Ma droplet appears in
flipped, i.e.,N/2L5P(h,;+h,=6J)~1, whereh,;<4J, 6]  the zero-field case is not seen here. The magnetization has a
—h;=<h,<h,, becomes even greater thap. These small continuous behavior, see Fig@, where we have the mag-
clusters are present in large system sizes, but do not playreetization with respect to the external field for several Gauss-
role in the probability of first excitation, since the energy ian disorder strength values. All the magnetization values for
minimization prefers extensive domains. It is interesting todifferent system sizes lie exactly on top of each other, when
note that the critical droplet size is reminiscent of criticalL>Ly, and as long as the statistics are good.
nucleation in ordinary first-order phase transitions. It is also For smaller system sizels<L, one could study “ava-
worth pointing out that the reasoning for stiff spins does notlanche” like behavior(see[30]). However, these are due to
work for the bimodal distributiorgsince it is boundeg and  the first order breakup, defined by E) and one should
indeed we observe, as expected, a similascaling for both  bear in mind that such behavior does not exist in the thermo-
the Gaussian and bimodal disorders. dynamic limit, L—oo, when the system sizes are above the

When a system size is well above the breakup lengtlbreakup length scale. Fr>L,, our results indicate that the
scale, the Imry-Ma argument is no longer applicable to thesize distribution of the flipped regions &kis swept is not
structure. In Fig. 3 we depict two systems with a largethat interesting.

Gaussian random field strength valde=3.0 and with a In order to find the scaling between the external field and

FIG. 3. (Color) Two examples of the ground state. Up spins in isolated domains are shown in white and down spins in black unless they
belong to the spanning clustégray). The yellow spin is a seed of a red cluster that breaks up the spanning cluster. Periodic boundary
conditions are used, and the spanning is checked in the vertical direction. Systeh?=siz8( and random fields’ standard deviations
A=3.0 andA=1.2.
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FIG. 4. An example of the ground state when an external field is applied. Systein-siz&5>L, . Gaussian disordex=1.9. Up spins
are shown in white and down spins in black. External fidl¢0.0 (a), 0.1 (b), 0.25 (c), and 0.5(d);

the random field strength, we have taken from Fi@) She  rate[or the slope of then(H) curve], and note that it is not,
crossing points of magnetization curves with fixed magnetiseemingly at least, related tq, .

zation values at external field$,, for different random field We have also studied the susceptibiligy;- (m?—(m)?),
strength valued. The external fieldd ,, scales exponentially - with respect to the external field. In Fig(e the susceptibil-
with respect to the random field strength, ity is shown for a fixed random field strength=2.2 and

varying system size. The data has been collapsed with the
area of the systemsy/L 2. In Fig. 6b) we have data-

see Fig. ). This is also evidence ofionexistenceof a colla_lpsed the suscep_tibility_ versus random field strength by
critical point in A, in which case there should be a power- Scaling the external field with Eq18) as for magnetization
law behavior if the transition was continuous, thus no PM to2nd the susceptibility witty~exp(7.34). Again the expo-
FM transition is seen. The data collapse using the scaling€ntial behavior is a sign of nonexistence of any critical
(18) is shown in Fig. &) confirming the prediction of the pPoint, due to the lack of power-law divergence at axy.
scaling. The magnetization has linear behavior with respedhithough the shape of the data collapse of the susceptibility
to the external field for small field valués$ and exponential looks almost Gaussian, it is actually not. It has a constant
tails. The exponential behavior of E[.8) implies that there value for small external field valuds$ and exponential tails

is a unique melting rate at which the cluster boundaries aréor large values, as seen in Figch This results straightfor-
eroded a3 increases and that the process is otherwise simiwardly from the magnetization, sincg=dJm/JH. The be-

lar for all A. We have no analytical argument for the melting havior of the susceptibility can be summarized as

H,,~exp —6.5A), (18
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FIG. 6. (a) Susceptibility, calculated as a fluctuation of the mag-
netization, multiplied by system size?y=L%m2—(m)?) vs the
external fieldH for A=2.2. (b) Scaled susceptibility/exp(7.3A)

3.5, and 4.5. Each point is a disorder average over 5000 realizationg scaled external fielth/exp(—6.5/A) for system sizd >=17%

and the error bars are smaller than the symhidlsExternal field
valuesH,, when the magnetization curves {a) cross the fixed
magnetization valuesn=0.25, 0.2, 0.1,—-0.1, —0.2, —0.25, vs

and random field strength valuas=1.9, 2.0, 2.2, 2.6, 3.0, 3.5, and
4.5. Each point is a disorder average over 5000 realizations and the
error bars are smaller than the symbots.Same agb) but only the

random field strength. The exp lines are guides to the eye, and thejositive external field values and in lin-log scale. The exp@x)

prefactors are estimated using least-square&fiData collapse of

(a) by scalingH with exp(—6.5/A) estimated in(b).

x~L 2exp(7.3A)g(H/H),

whereH,, is taken from Eq(18) and

a(y)~

const,

exp(—0.2y|),

y=0,

y— o,

PROOF COPY [LW7657E] 128105PRE

(19

(20

line is to guide the eye.

Therefore, the fluctuations of the magnetization are associ-
ated with yet another scale, which is almost, but not quite, an
inverse of that related to the magnetization. From the suscep-

tibility one gets the magnetization correlation lengih,

which has an exponential dependence on the random-field
strength. It should be noted, finally, that we have studied
here only the case with Gaussian disorder. With any other
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FIG. 7. Phe_lse diagram f_or the 2D RFIM wi?h disorder strength 0'090_10 _0.05 0.00 0.05 0.10
A and an applied external field. The 1A =0 axis corresponds to External field (H)
the standard site percolation, with percolation occupation fractior 0.30

p.=0.593. Dashed lines define percolation threshéld&l/A) for on:d.s,m:o.mésw.oom

up and down spins, below and above which the systems are simp 0.25 1| om=07, H.=0.0186:0.0009 :
ferromagnetic. Thick arrows denote two directions in which the O11=0.6, H=0.01920.0004
020 | ATm=04,H=0.018430.0011 1

percolation transition may be studied: the vertical one fisednd

. . ) <T1=0.3, H.=0.018210.0007
varying H, and the horizontal onel=0 and varyingA.

0.15 | vI=02,H=00173:0.0008
0.10

distribution we would expect that the prefactors in Egs.

External field [H (L)]

(18)—(20) would change. 0.05 r 1
0.00 | 1

V. PERCOLATION WITH AN EXTERNAL FIELD -0.05 | ]
Motivated by Fig. 3, where the domains resemble the per -0.10 1 .

colation problem, we next study the percolation behavior ir  _g 5 |

the 2D random field Ising magnets with Gaussian disorder b)
i istributi i - =020 ; : : : :

T_he uiu_al blmoda;_lbtljlsirlbutlon can belstud;edtas well, bu 000 002 004 006 008 ) 010 012

since it is susceptible to some anomalous features we col Scaled system size (L ")

centrate on the Gaussian case, which does not have the

problems. The bimodal case suffers from the fact that the 1.00 T T X O
ground states are highly degenerate at fractional fielc 090 | #4\ 1
strength values. Thus there are some ambiguities definin  ~ &g&

: 5 080 f 1
percolation clusterg31,32. = &

When the random field strength is well above the cou- :; 0.70 L ]
pling constant valueA>J, the percolation can be easily = ggot 020 |
understood by considering it as an ordinary site-occupatiol S 040
problem. This means that only the random field directions § 050 1 +30 1
are important and the coupling constants may be neglecte S‘D 0.40 0100 A
The site-percolation occupation threshold probability for g 030 | A150 ]
square lattices ip.=0.593[29], i.e., well above one half. § * 175
Applied to the strong random field strength case, it mean: &' 020[ 1
that there must be a finite external field in ordehave 3rive ¢ 0.10 a;g‘ﬂp ;
domain that spans the system. However, when the rando 0.00 one® (,C)
field strength is decreased, the coupling constants start 1 7250 —4.0 -3.0 2.0 -1.0 0. 0 20 30 40 50
contribute and in some casa domain spans the system evenitvithou (H-H,)/L.

external field, as in Fig. 3. Hence, we propose a phase dia-

gram, F'g', 7. There we can take t_he limi 0 so thqt the FIG. 8. (8 Spanning probabilities of up spii$,; as a function
ordinary site-percolation problem is encountered. This is tru€s 4 tor A=2.6 with L2e[20P—175]. Data points are disorder
for distributions for which one can control the fraction of 4 erages over 5000 realizations, the error bars being smaller than
“stiff” spins (i.e., h;>4J) systematically. In the case of the symbols. Lines are sixth-order polynomial fits) Crossing
Gaussian disorder there will be, of course, evenXovery  pointsH,(L) of polynomials with horizontal lines leads to the es-
large, a small fraction of “soft” spins where this criterion is timate of the criticaH,, by finite-size scaling using =", v=4/3.

not fulfilled. Thus the exact point that the percolation line(c) Data collapse with corresponding criticaH .=0.00186
approaches in the A/~ 0 limit will depend on the distribu- +0.0008.
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tion, but we expect that thep,” is different from one half, 0.7 y - )

that isH.#0. Notice that again the binary distribution pre- .~ L

sents a problem. Q06 o 1
When 1A — < the percolation threshold lines start to con- ’58 380

verge and théd=0 line. Now two questions arise. The first & 0.5 A 100 .fd’ 1

one is, what kind of a transition is the percolation here? Is it & :{3‘5’ &

like the ordinary short-range correlated percolation, sug- © 04 | ®

gested by the site-percolation analogy for the strong random % 5,“

field strength case, or are there extra correlations due to the S 0.3 £

global optimization relevant here? Examples about similar & gﬁ

cases can be found in R¢B3]. The second question is, do —aé 0.2 A

the lines meet at finité, i.e., does there exist a spanning © g*

cluster also wherH=0 andA>07? Our aim is to answer B 0.1 &£ ol

these two questions in this section, where we study the per- § wa

colation problem in the vertical direction in the phase dia- “? 0.0 ——— : : : :

gram, Fig. 7, and in the next section, where the horizontal -60 =50 40 -30 . -20 -0 0.0

direction, theH=0 line, is considered. (H-H)/L

In Fig. 8@ we have drawn the spanning probabilities of
up sp|nsﬂup with r_espect to the external field fo-r several up-spin spanning clusteP,, /L 4", B=5/36, v=4/3 vs the scaled
system sized, which are greater thahy,, for a fixed ran-  oyiermal field H—H.)/L~ Y, for A=3.0 with L2 [20P— 175].
dom field strengtld =2.6. The curves look rather similar to pata points are disorder averages over 5000 realizations, the error

the standard percolation. When we take the crossing poinisars being smaller than the symbols. The corresponding critical
Hc(L) of the spanning probability curves with fixed span- H (A =3.0)=0.040+0.001.

ning probability values for each systems slzewe get an

estimate for the critical external field. using finite size of which the casé =3.0 withH;=0.040 is shown in Fig. 9.
scaling; see Fig. ®). There we have successfully attempted Note that the valuesH{—H.)/L >0 are not shown, since
to find the value foH. using the standard short-range cor- cutoffs appear, due to the fact ttaf is bounded in between
related 2D percolation correlation length exponernt4/3.  [0,1] and the nonscaleB..=1 values after scaling saturate
Using the estimatedH.=0.00186 forA=2.6, we show a at different levels depending on the system size.

data collapse ofll,, versus H—HJ)/L™Y in Fig. 8c), Hence, we conclude that the percolation transition for a
which confirms the estimates bf. andv=4/3[29]. We get  fixed A versus the external fielti is in the standard 2D
similar data collapses for various other random field strengtishort-range correlated percolation universality clé29].
valuesA as well. In order to further test the universality classThis is confirmed by the fractal dimension of the spanning
of the percolation transition studied here, we have also caleluster, too, as discussed below. Other exponents could also
culated the order parameter of the percolation, the probabibe measured, such asfor the average sizés) of the clus-

ity of belonging to the up-spin spanning clusty. Using ters, ands and for the cluster size distribution. Note, how-

FIG. 9. Scaled order parameter, probability of belonging to the

the scaling analysis for the correlation length ever, that the control parameter should then be the external
- field H instead of the disorder strength See Ref[34] for
éperc~|H—H¢[ 7, (21)  an example of the cluster size distribution for a noncritical

case H=0, but|H.>0). The other exponents should be
measurable, too, such as the fractal dimension of the back-
bone of the spanning cluster, the fractal dimension of the
chemical distance, the hull exponent, etc. In addition to the
correct control parameter, the break-up length scale has to be
considered, too. Notice that there is a slight contradiction in

and for the order parameter, Wher< &,
P.(H)~(H=H)?, (22)

we get the limiting behaviors,

(H—H_)" L<¢ the notion that the hull exponent can be measured. Namely,
Pw(H,L)fv‘ L ¢ pere (23 both the work of Ref[34] and studies of domain walls en-
L=~ L> &percs forced with appropriate boundary conditions give no evi-

i . dence thereof. It seems likely that to recover the right expo-
and thus the scaling behavior for the order parameter b&ent(4/3) one has to resort to studying the spanning cluster
comes geometry itself at the critical point with>L,. It is inter-

esting to note that the standard 2D percolation hull exponent

P (H.L)~LA"F (H=H¢)™" _L-Biv H—H, can be recovered in nonequilibrium simulations of 2D RFIM
o L L-w )’ domain wallg[35].
(24) We have now shown that there exists a line of critical

external field valuesi (A) for percolation. The correspond-
We have done successful data collapses, i.e., plotted the scatg correlation length e, diverges as Eq21) with a cor-
ing functionf, for variousA using the standard 2D short- relation length exponent=4/3. On the other hand, it was
range correlated percolation exponefts 5/36 andv=4/3,  shown in the preceding section, that there is no critical ex-

0561XX-9

PROOF COPY [LW7657E] 128105PRE



PROOF COPY [LW7657E] 128105PRE

E. T. SEPPAA AND M. J. ALAVA PHYSICAL REVIEW E 63 0561XX

[Hc(A)]Y?% and it gives the estimate fak,=1.65+0.05.

This indicates that the percolation probability lines for up
and down spins meet &t.=1.65 and forA below the criti-

cal A, the systems always display a spanning of one of the
spin directions, even fdd =0. Actually one should note that
the only way that neither of the spin directions span is to
have a so called checkerboard situation, which prevents both
of the spin directions from having neighbors with the same
spin orientation. However, another scenario with an expo-
nential behavior forH (A) also fits reasonably well. This
would suggest that there is no finite.. Figure 1@b) shows

a behavior ofH.~A2exp(—13/A%2—4). This can be com-
(@) 1 pared with Eq.(7), where the breakup external field was
derived. Notice that the derivation was for compact domains
and the spanning clusters here are, by default, fractals. Be-
sides that, the factor 13 in front of A7 is much larger than
A=2.1 in the scaling form fot,. The difference implies
that theL., at which length scale the spanning probability
vanishes, scales 3§~Lg. Thel, is already an exponen-
tially large length scale for small, soL. should be large
enough that one can remain below it in experiments, and thus
a system can “apparently percolat¢36,10.

>
th

— A=A+CH."®, A=165

g
o

w
n

random field strength (A)
[ w
n =)

g
=)

1'50.00 0.10 0.20 030 . /?9.;10 0.50
scaled critical external field (H_ ", 6=2.05)

5

—_
<

VI. PERCOLATION AT H=0

107 ¢ 3 To understand how the percolation transition is seen when
there is no external field and the random field strength is
changed, we study the phase diagram in Sec. VI A in the
direction of the horizontal arrow in Fig. 7. The structure of

Scaled critical external field (H /A”)

2 2
[— .- Kemp-138) | (b) the spanning clusters is studied in Secs. VIB and in VIC
1o . . . . . with the help of the so calleted clusters
000 005 010 015 020 025 ) 0.30
Inverse random field strength (1/A") A. Spanning probability
FIG. 10. (a) For eachA the critical[H (A)]? of up-spin span- In Fig. 11(a) we have plotted the probability for spanning

ning, where 5=2.05+0.10. Data followsH.~(A—A.)?, where  Of either up or down spin$l as a function of the Gaussian
A.=1.65+0.05. Details are as in Fig. 81.(A) spans almost two random field strengtih. The probabilities are calculated up
decades fromH.=0.0028+0.0008 for A=2.0 to H,=0.1891 to A=30, but only the interesting part of the plot is shown.
+0.002 for A=4.5. (b) The other scenario is shown, witH There is a drop fromI=1 atA, 1to 5 a value of
~A2exp(-13/A%—4) (see text aboutlT=0.85 which correspondt=Lpr  ‘e. We have also
calculated thdl,, in this case and it is approximately one
ternal field value for the magnetic behavior, i.e., no PM tohalf of I1. For the larger random field strength values the
FM transition, and the magnetic correlation lengthhas an  probabilitiesII decrease and the lines get steeper when the
exponential dependence ah. The percolation correlation system size increases. In order to see if the spanning prob-
length &,ec may cause some confusion when studying theabilities are converging towards a step function at some
PM structure of the GS, since it introduces another lengthhreshold value, we have calculated the probabilities up to
scale. the system siz&?=100F and each point with 5000 realiza-
To answer the question of how the percolation criticaltions.
external fieldH.(A) behaves with respect to the random For each system sizk we have searched the crossing
field, we have attempted a critical type of scaling using thepointsA (L) of the spanning probability curves in Fig. (AL
calculatedH . for variousA=2.0, 2.2, 2.6, 3.0, and 4.5. For with fixed probability valued1=0.1, 0.15, 0.2, 0.25, 0.3,
smallerA, L, becomes large and . approaches the vicinity 0.4, and 0.5. Using finite size scaling fag(L) of the form
of zero, being thus numerically difficult to define. We have A (L)=A.(1+C;L ) (1+C,L ¥"2) we have estimated

been able to use the Ansatz behavior of A, for eachll value; see Fig. I(b). There we have plotted
the A(L) versus the scaled system siZgL ~ . One sees
He~(A—Ag)°, (25 that the different threshold values for spanning probabilities

IT approach different critical random field strength values
where §=2.05+0.10. In Fig. 10a) we have plotted the cal- A.. The thresholdI’'s have been plotted with respect Aq
culated A values versus the scaled critical external fieldin Fig. 11(c). In the ordinary percolation, this should be a
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FIG. 11. (a) Spanning probabilities of up or down spifisas a function ofA for H=0 with L2 [20?— 100F]. Data points are disorder
averages over 5000 realizations, the error bars being smaller than the symbols. Lines are tenth-order polyndmi@réissing points
A(L) of the polynomials with horizontal lines d1=0.1, 0.15, 0.2, 0.25, 0.3, 0.4, and 0.5 vs scaled system size. Estimates of the critical
A, are sought by finite-size scaling using(L)=A.(1+C;L~¥*)(1+ C,L~"2) and the data are plotted As(L) vs C,L ~*". (c) Critical
random field valued . with respect to thdl values from which they are estimated. Corresponding correlation length expongnighith
are used inb), are shown, too(d) Another scenario: Critical random field valuég with respect to system size. Lines are least-squares fits
of form L~exp(C/A%), whereC is a free parameter, for differeft values from(a).

step function, and the correlation length exponemmdepen- + 1T gown— My down: 3 y € e it ach
dent of the criteriorll. However, here also #/is dependent . Assuming thatl,, (and IT4,,,, respectively has a
on the criterionIl and varies with respect ta (II). We  value about one half at the critical line of percolation at the
believe that this surprising phenomenon is due to the facthermodynamic limit, we gell=0.75. In standard percola-
that we are approaching the part in the phase diagram Fig. ffon such a value is not actually univer¢gahd we have not
where the percolation lines of up and down spins are coneonfirmed i}, but depends on the boundary conditions, etc.
verging. In terms of the two control paramet&rsindH, one  [37]. However, whatever the values b, andIl 4, are at
can think about the “percolation manifold”: it has a line of the thermodynamic limit, as long as they are below urity,
unstable fixed point$d.(A). Usually H is a good control is below unity, too. This may be the reason there is an im-
parameter close tbl.. Having A as a control parameter mediate drop in Fig. 1& from [I1=1 at A(L,) for each
seems to have the problem that one moves almost parallel 8&ystem size, to a value of abdilt=0.85. If we approximate
the actual lineH (A). with a linear behavior thél versusA (1) in Fig. 11(c), the
When considering the percolation probability of up or critical value estimated in the preceding sectityp=1.65
down spins, it actually consists of probabilities of up-spin+=0.05, when the percolation threshatt,=0 for up-spin
spanninglIl,, and down-spin spannindly,,, as [I=1II,,  spanning has a value abdiit=0.7. Another interesting point
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FIG. 12. Average mass of spanning clusters for bimodal field 300 " R " X " A
randomness\ = 25/13 up to system size=470. The plot shows 275 A
_~ AA=13
also the sum of the random fields of the sites belonging to the same A 250 (b) A <-4
clusters. The 2D percolation fractal dimensibr=91/48 is indi- Eﬁ‘ A Va=15
cated with a line. v 225 Pacis
N’
) ) ) ) 5 200 A
in Fig. 11(c) is that the 1¢ is about 3/4 wherl versus § 175 | « « “ « i
A((IT) approaches zero. Thus the standard correlation length
exponent would be reached far enough away from the area 3 150 « v 1
where the percolation threshold lines for up and down spins = 25 | « v v ]
touch each other. ° vV vy Vo, v
In order to test the breakup length scale type of scaling for 3 100 > > . i}
the percolation behavid), we have taken from Fig. 14) = 75t *» > >
the estimatedA (L) for variousIl values and plotted the 50 . . . . . . .
system sizes in double-logarithm scale versus the logarithm 0 25 50 75 100 125 150 175 200
of the inverse of the critical.(L); see Fig. 14d). The ex- system size (L)

ponent, which isx=2 in L, scaling,L,~exp@/A%), is now
dependent ol again. At least this does not solve the prob-  FIG. 13.(a) Average number of red clustef\gc), as a func-

lem here, and the breakup length scale type of scaling can Bign of system sizel ?=20°—20C%, for A=1.3, 1.4, 1.5, and 1.6
ruled out. with H=0. Here the number of realizationsNs=200. The smaller

the A, the larger the amplitude ofNgc), since the sizes of red

clusters become larger. Ling’* is a guide to the eydb) Masses of

red clustergMgc) with respect to system side (Mgc) does not
In order to see if the thickness of the spanning clustedepend on the system size, as seen in the figure.

affects the scaling of the standard percolation, we have mea-

sured the fractal dimension of the spanning cluster wHen

B. The percolation cluster

—0. By now unsurorisinaly. the standard two-dimensionaltimization' The domains are no longer compact and as noted
—U. By P gy, above for large enough domains the domain-wall length

short-range correlated percolation fractal dimensiDp . .
—91/48 fits very well in the data, as can be seen in Fig. 12?c,hould be characterized by the percolation hull exponent.

The least-squares fit gives a value @f=1.90+0.01. We
have also measured the sum of the random fields in the span-
ning cluster and found that the sum scales with the exponent So far all the evidence points to the percolation transition
D;=91/48, too. This is in contrast to the Imry-Ma domain being exactly of the normal universality class. To further
argument, where th ale sistales (keh #& The prefactor investigate the nature of the clusters in the presence of the
for the scaling of the sum of the random fields slowly ap-correlations from the GS optimization, we next look at the so
proaches zero with decreasing random field strength, oppaalled red clusters The structure of a standard percolation
site to the mass of the spanning cluster, which increases witbluster can be characterized with the help of the “colored
decreasing\. sites” picture in which one assesses the role of an element in

Hence, the Imry-Ma argument defines only fivet exci-  the connectivity of the spanning cluster. This picture has also
tation, and is irrelevant when it comes to domains when théeen called théinks-nodes-blobsnodel with dead end9].
system has broken up into many clusters on different lengtihe red sites, or links and nodes, are such that removing any
scales. Then the structure is due to a more complicated ogingle one breaks up the spanning cluster.

C. Red clusters
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To compare with the original ground state, we investigatetion aroundH =0 and a paramagnetic ground state. We thus
what happens if one inverts, by fixing the local figéldto a  conclude that the correct way of looking at the susceptibility
large value opposite to the spin orientation, any spin belongis to study it with respect to the external field and above the
ing to the spanning cluster. Then the new GS is found withbreakup length scale instead of as a function of the random
this change to the original problem. The effect is illustratedfield strength, in which case the first-order character of the
in Fig. 3, the crucial difference in site percolation is that nowbreakup length scale may cause problems.

a whole subcluster can be reversed. The spin shown in yel- However, we are able to find another critical phenomenon
low is the inverted seed spin in the spanning cluster, and thia the systems, in their geometry. For square lattices, sites do
spins shown in red form the rest of the red cluster, which ighot have a spanning property in ordinary percolation, when
flipped from the original ground state when the energy isthe occupation probability is one half. This corresponds to
minimized the second time. We investigate whether or nothe random field case with a high random field strength value
the original cluster retains its spanning property for each spivithout an external field. When an external field is applied
or trial cluster in analogy with ordinary percolation. Thoseand the random field strength decreased, a percolation tran-
spins that lead to a destructiveluste) flip then definered ~ Sition can be seen. The transition is shown to be in the stan-
clusters(RC) as all the spins that reversed simultaneously. dard 2D short-range correlated percolation universality class

The finite size scaling of the number of red clusters,when studied as a function of the external field. Hence, the
(Nro), is shown in Fig. 18) for different field values. correlations in the two-dimensional random field Ising mag-
(Ngo) is, in practice, calculated as the number of seed spin§ets are only of finite size. We also want to point out that in
that cause the breaking up of the spanning cluster, since twi§ese kinds of systems, the random field strength is a poor
different seed spins may both belong to the same red clustef§ntrol parameter and the systems should be studied with
without the red clusters being identical. The technique fof€spect to the external field, and after that mapped to the
finding the red clusters was introduced in Sec. Il and alfandom field strength. By doing so, we have been able to find
though it is efficient, only up to the system si@¢20(%) can 2 critical random field strength valug below which the sys-

be studied, since each of the spins in the spanning clustef§MS are always spanning even without an external field.
has to be checked separately, because one cannot know Mhe.n the perc_olat|on transition is stud|eq without an exter-
forehand whether it is critical or not—this is what we want to Nl field and without tuning the random field strength, a lot
find out. For smaller field values, the spanning cluster i difficulties are encountered. This might have puzzling
“thicker” and the red clusters get larger. One can see fromconsequences when studying the character of the ground
the Fig. 13a) that(Ngc) scales with. /7, wherer=4/3 as in states, not only because pf the poor control parameter, put
ordinary percolation, for field value§s<A., whenL>L,. also because the pe_rcolauon correl_auon length may be mis-
The smaller the field, the larger the amplitude as well as thdaken for the magneﬂ;aﬂon correlation length. AIsp note that
average mass of red clusteiilgc). (M) is independent the “true behavior” is seen only for system sizes large
of the system size and depends only on the field see Fig. €hough £>Lyp).
13(b). The percolation character of the groun_d—state structure

The other elements of the spanning cluster, dead ends af@" be me'asured by the standard percqlatlon fra'ctal dimen-
blobs, could be generalized, too. Here blobs, which are muiSional scaling for the mass of the spanning domain. The ex-
tiply connected to the rest of the spanning cluster, are suclft€nce of such a large cluster is not contrary to the paramag-
that in order to break a spanning cluster, several seed spif§tic structure of the ground state, since the fractal
must flip simultaneously instead of a single one. Links,dme_nsmn |s.below th_e Euclidean dimension. In_ order to be
nodes, and blobs form together the backbone of the spannirfgPnsistent with the Aizenman-Wehr argument in the zero-
cluster, and the rest of the mass of the cluster is in the deagternal-field limit, the spins in the opposite direction from
ends. The red cluster size scale defines the average smalld3¢ external field may form the spanning cluster at low ran-

size of any element of the spanning cluster. dom field strength values. In fact we have found cases of
finite systems foH =0, where the magnetization of the sys-
VII. CONCLUSIONS tem is opposite to the orientation of spins in the spanning

cluster. Notice that this does not imply that the critical lines

In this paper we have studied the character of the grounéi (A) actually cross each other &, continuing on the
state of the two-dimensional randomfield Ising magnet. Weopposite side of thél=0 axis(see Fig. J. By considering
have shown that the break-up of the ferromagnetism, whethe red clusters, it seems that in the TD limit the spanning
the system size increases, can be understood with extrenatuster should be broken up bBt=¢€, e—0 since the field
statistics. This length scale has been confirmed with exacteeded to flip such a critical droplet should go to zero Wwith
ground-state calculations. The change of magnetization &lso, since the sum of the fields in the spanning cluster is
the droplet excitation is naturally of “first-order” kind. shown to scale with the same fractal dimension as the mass,

Above the breakup length scale we have studied the magwve conclude that the Imry-Ma argument does not work any
netization and susceptibility with respect to a constant extermore after the system has broken up in several domains. It
nal field. The behavior of the magnetization and the suscepworks only for the first domain.
tibility are continuous and smooth and do not show any We have also generalized the red sites of the standard
indications of a transition or a critical point, in agreementpercolation to red clusters in the percolation studied here. A
with the expectations of a continuously varying magnetiza+ed cluster results from the energy minimization achieved by
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flipping a whole cluster, although only a single spin has beenhere are large-scale structures present in the equilibrium
forced to be flipped, and breaks up the spanning character state. In particular in coarsening, it is unclear how the even-
a percolating cluster. Actually, the finite size of the red clus-tual hull exponent of 4/3 would affect the dynamics. It would
ters also indicate the presence of only short-range correlde interesting to see what kind of phenomena can be seen in
tions in the systems. Such a lack of long-range correlationthe structure on triangular lattices since hpge=0.5 even in
may explain why we can see an “accidental” percolationthe ordinary site percolation. One open question or possible
phenomenon in a zero-temperature magnet whose physicsapplication is the 3D RFIM. The percolation transition of the
governed by the disorder configuration. The normal percolaminority spins is expected to take place along a line in the
tion universality class is closely connected to conformal in-(H,A) phase diagram as well, singg=0.312 for site per-
variance, which is most often destroyed by long-range coreolation in the case of the cubic systems most often studied
relations or randomne$88|. numerically. Thus, in low fields only one of the spin orien-

In conclusion, we would like to raise some open questiongations percolates, whereas at high fields both do; see a re-
related to the percolation behavior of the ground states of theiew of 3D RFIM experiments ifi41]. The role of this tran-
two-dimensional random field Ising magnets. As noted, arsition is also unclear when it comes to the ferromagnet to
interesting problem is the exact relation of the RFIM perco-paramagnet phase boundary and the nature of the phase
lation to conformal invariance. The percolation characteristransition.
tics of the ground state might be experimentally measurable
since the overlap of the ground state and finite temperature
magnetization should be close to unity for low enough tem-
peratures. The structure and relaxation of diluted antiferro- This work was supported by the Academy of Finland
magnets[39,4( in low external fields are suitable candi- Center of Excellence Program. We acknowledge Dr. Cristian
dates: there, one would presume it to be of relevance thd#loukarzel for discussions.
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