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Abstract

This thesis reports numerical calculations on quantized vortices in 4He and 3He superflu-

ids. Vortices are of crucial importance in understanding many of the superfluid properties.

All the calculations presented in the thesis have experimental relevance, either in under-

standing measured results or in predicting the outcome of planned experiments.

Superfluid 4He has been observed to exhibit incomplete wetting on certain solid sub-

strates. The variations in the thickness of the fluid layer are explained by a model with

a nonuniform distribution of pinned vortices.

Superfluid 3He under weak perturbations (due to container walls, flow and magnetic

fields) is studied with the hydrostatic theory. Within this theory, the equilibrium prop-

erties of the superfluid are controlled by the distribution, i.e. the texture, of the order

parameter describing the superfluid state.

In the anisotropic A phase of 3He, vorticity usually appears in doubly-quantized con-

tinuous vortices, having no singular core. They can be created by applying a flow with

a velocity exceeding an experimentally measurable threshold. The critical velocity can

be theoretically identified with the instability of the underlying order-parameter distribu-

tion. The flow textures and critical velocities in 3He-A are calculated for different initial

configurations in both one-dimensional and two-dimensional geometries.

The full transverse NMR spectrum of 3He-B in a cylindrical container is calculated

numerically. The effects of rotation, magnetic field and the number of vortices are included

in the model. The results are used to determine the optimal sensitivity for observing

changes in the number of vortices, the finite-size effect due to the end plates of the

cylinder, and the change of absorption induced by the presence of a spin-mass vortex.
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1 Introduction

This thesis presents theoretical studies on superfluidity, a property exhibited by the two

stable isotopes, 4He and 3He, of liquid helium at low temperatures. In many cases, existing

theories explain successfully experimental results on superfluid systems. However, realistic

models, even in the simplest cases, usually lead to mathematical problems either difficult

or impossible to solve with analytical methods. Numerical computation is often needed

to achieve quantitative agreement between theory and measurements.

The main characteristic feature of superfluids is the ability to flow without friction,

which is one of the few known manifestations of quantum-mechanical behaviour on a large

scale. The dissipationless supercurrent is caused by a large number of particles moving

in a coherent fashion, like a single macroscopic entity. Such a flow can be generated

experimentally e.g. by driving a piston through a channel containing superfluid helium,

or by placing the superfluid in a rotating container. However, the frictionless flow can

only be sustained when its velocity is sufficiently low. If the velocity exceeds a critical

value, dissipation sets in through the appearance of quantized vortices, linear objects

surrounded by stable circulating flow. Vortices are of crucial importance in understanding

various properties of superfluids.

My thesis presents numerical calculations on vortex-related phenomena in three dif-

ferent superfluid systems: superfluid 4He (4He-II) and the A and B phases of 3He. Sec-

tion 1 introduces the most important theoretical concepts relevant to the specific research

projects described in the subsequent sections.

The thickness of the 4He-II film covering a rough solid substrate is affected by the

presence of vortices trapped by surface imperfections (see Fig. 1a). In Sec. 2, I describe

numerical calculations on the equilibrium film profile of 4He-II in a situation with an in-

homogeneous distribution of trapped vortices [P1]. The calculations suggest the existence

of transition regions where the film thickness varies rapidly, reminiscent of three-phase

contact angles.

The superfluid state in 3He has a nontrivial internal structure. The associated degrees

of freedom can be formally represented by unit-vector fields, one (n̂) in 3He-B and two (̂l

and d̂) in 3He-A, defined in the volume of the liquid. Different internal and external influ-

ences tend to orient these fields, causing the formation of textures, weakly inhomogeneous

spatial distributions of the vector fields.

In Sec. 3, I describe calculations on vortex formation in the A phase of 3He. The

formation of vortices in 3He-A is connected to a flow-induced textural transition. I have
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Figure 1: (a) Vortex lines pinned by surface irregularities in a 4He-II film. (b) The l̂ field of
3He-A for channel flow of velocity v in the presence of a magnetic field H. (c) The n̂ field of
3He-B in a cylinder rotating with angular velocity Ω in the presence of an axial magnetic field.

determined the associated critical velocity by calculating the equilibrium texture in a

channel (see Fig. 1b) as a function of the driving velocity [P2–P4]. I have performed

detailed studies on various different initial states using both one-dimensional and two-

dimensional models.

In the B phase, the presence of vortices in a rotating cylindrical container induces

modifications to the overall texture (Fig. 1c). This can be observed experimentally using

methods based on nuclear magnetic resonance (NMR). In Sec. 4, I present calculations

on the NMR response of 3He-B as a function of the number of vortex lines and several

other external parameters [P5], and in the presence of a spin-mass vortex [P6].

All the calculations are related to measurements, and in most cases quantitative agree-

ment with experiments is achieved without adjustable parameters.

1.1 Order parameter

The properties of superfluids arise from the macroscopic occupation of a single quantum-

mechanical state below a critical temperature (Tλ ≈ 2 K for 4He, Tc ≈ 3 mK for 3He). The

low-temperature phase can be described by introducing an order parameter that reflects

the broken symmetries associated with the phase transition. In the case of 4He-II, the

order parameter has the form of a scalar wave function [1]

ψ = |ψ|eiΦ (1)

2



of the macroscopically occupied quantum state. The wave function describes the coherent

state of structureless 4He atoms with zero spin, S = 0, and zero internal orbital angular

momentum, L = 0. The magnitude |ψ| of the order parameter has a fixed value, deter-

mined by the condensation energy of the superfluid (the energy gained in the process of

forming the coherent state). The phase Φ, however, is arbitrary and different choices rep-

resent energetically degenerate equilibrium states. Such quantities are sometimes referred

to as soft variables or degeneracy parameters. More important than the actual value of Φ

is the concept of rigidity, i.e. a spatial change in Φ involves a cost of energy. The balance

between this gradient energy and the condensation energy defines a characteristic length

of a superfluid, the coherence length ξ, which in 4He-II is of the order of 0.1 nm.

In 3He, the superfluid condensate is formed by correlated particle pairs, Cooper pairs,

which are in the same two-particle state having a nonzero spin S = 1 and a relative

orbital angular momentum L = 1 [2–4]. Due to the weakness of the pairing interaction,

the condensation energy is very small, and superfluidity is only observed at millikelvin

temperatures. Also, the coherence length in 3He is larger than in 4He-II: ξ ∼ 70 – 100

nm. The Cooper-pair state is determined by nine complex amplitudes, corresponding to

the three possible projections of both Sz and Lz. The order parameter for superfluid
3He is usually represented by a complex 3×3 matrix Aµj , where the index µ refers to

spin and j to orbital degrees of freedom. Like 4He-II, superfluid 3He shows anomalous

flow properties. Owing to the complicated order-parameter structure, superfluid 3He also

exhibits magnetic and liquid-crystal-like behaviour, supports many kinds of topological

defects, including a variety of vortices, and can exist in several superfluid phases with

different symmetry properties [5–8].

The stable superfluid phases observed in nature correspond to certain special forms of

the general 3×3 matrix. At low pressures, the equilibrium structure is called the B phase,

and the corresponding (unperturbed) order parameter has the form

Aµj ∝ eiΦRµj , (2)

where Rµj is a three-dimensional rotation matrix. Apart from the phase Φ, the order

parameter is degenerate also with respect to the structure of the rotation matrix, which

can conveniently be parametrized by the axis n̂ (of unit length) and the angle θ of the

rotation.

At pressures above 21 bar, the superfluid transition leads to a different state, the A
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phase. The order parameter for this phase can be written

Aµj ∝ d̂µ(m̂j + in̂j), (3)

where the spin part is determined by a unit vector d̂ and the orbital part by two mutually

orthogonal unit vectors m̂ and n̂. It is customary to define a third unit vector l̂ = m̂× n̂

so that {m̂, n̂, l̂} form an orthonormal triad in the orbital space. No explicit phase factor

appears in Eq. (3). Instead, the phase information is contained in the orientation of the

orbital triad: rotating m̂ and n̂ by an angle −Φ around l̂ is equivalent to multiplying the

order parameter by exp(iΦ). The vector l̂ gives the direction of the angular momentum

of the Cooper pair, and d̂ is perpendicular to the spin of the pair. In contrast to 4He-II

and also largely to 3He-B, the existence of preferred directions in spin and orbital spaces

in the A phase results in strong anisotropy.

1.2 Vorticity in superfluids

Many properties of superfluid systems can be explained with the phenomenological two-

fluid model, in which the superfluid is regarded as a mixture of two liquids [1]. One of

them is a normal viscous liquid with density ρn and velocity vn, and the other is superfluid,

with density ρs = ρ − ρn (ρ is the total density) and velocity vs. The behaviour of the

superfluid component is described by the order parameter. In particular, the superfluid

velocity vs of the nondissipative flow in 4He-II appears as a result of the existence of a

macroscopic phase variable. It is given by the spatial gradient of the phase,

vs =
h̄

m4

∇Φ, (4)

where m4 is the mass of the 4He atom. The form of the velocity implies that the superfluid

flow in 4He-II is potential, i.e. satisfies the condition ∇ × vs = 0. Still, this does not

rule out the possibility of rotational motion being described by Eq. (4). This can be seen

by investigating the circulation κ, i.e. the line integral of vs, along a closed contour in
4He-II. Since the single-valued phase Φ can only change by a multiple of 2π on the closed

curve, it follows that

κ =

∮
dr · vs =

h̄

m4

∮
dr · ∇Φ =

h̄

m4

(2πn) = n
h

m4

, (5)

where n is an integer. Therefore, the circulation in 4He-II is quantized to integral multiples

of h/m4. In a simply connected container, a nonzero value of n implies the presence of

one or more singular regions inside the contour of integration, inside which the order
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parameter given by Eq. (1) vanishes. These regions form the cores of vortex lines [9].

Because the order parameter inside the core differs from that in bulk superfluid, the size

of the core is determined by the coherence length ξ. In equilibrium situations, each vortex

line carries one quantum of circulation.

Because of the similar phase factor in the order parameter, the above discussion of
4He-II also applies to 3He-B with a few modifications. Since the condensate is formed by

pairs of atoms (with mass m3), the superfluid velocity is given by

vs =
h̄

2m3

∇Φ, (6)

and the circulation quantum is κ0 = h/(2m3). The size of the vortex cores is larger because

of the longer coherence length. Moreover, due to the additional degrees of freedom, the

order parameter remains nonzero also inside the core (although some of the components

vanish). In fact, two different core structures have been observed experimentally in the

B phase [10], with different order-parameter distributions and symmetries [11, 12]. In

addition to these two, a third kind of vortex has been observed in 3He-B: a spin-mass

vortex with spin currents as well as mass currents circulating around its core [13].

The anisotropic 3He-A differs noticeably from the previous two superfluids. The ex-

pression for the superfluid velocity in the A phase is

vs =
h̄

2m3

∑
j

m̂j∇n̂j . (7)

The important consequence of Eq. (7) is that the curl of vs can be nonzero, depending on

the spatial variation of the orbital triad [14]. Therefore, the circulation in the A phase can

in principle have any value. However, order-parameter variations require energy, which

restricts the formation of spatial gradients. For example, if l̂ is constant or constrained to

vary in a plane, the superfluid velocity becomes potential. It turns out that not only is

quantized vorticity present in 3He-A, but it can also appear in many different forms [15].

In addition to the singular vortices that have a strongly distorted core structure and carry

one quantum of circulation (like the vortices in 4He-II and 3He-B), three different kinds of

doubly-quantized continuous vortices have been identified in the A phase. In the core of

a continuous vortex, the bulk state of Eq. (3) is retained everywhere, and the circulation

arises from the spatial variation of the l̂ vector. Furthermore, vorticity in 3He-A can reside

on a planar structure, called a vortex sheet.
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1.3 Textures in 3He

The equilibrium properties of superfluid 3He can be determined by the hydrostatic theory.

The theory is applicable in situations where the external perturbations are weak enough

not to distort the order-parameter structure from the bulk form, but merely affect the

orientation of the soft degrees of freedom (in other words, the length scales associated with

the perturbations are much larger than the coherence length ξ). The possible influences

include e.g. magnetic fields, the walls of the container, and externally applied flow. The

circumstances where several influences compete with each other can result in the formation

of a nonuniform distribution of the degeneracy variables, which is called a texture. The

following discussion introduces the main orienting interactions with their respective free-

energy contributions in both B and A phases.

In 3He-B, the textures of the order parameter (2) arise from the spatial variations of the

rotation matrix
↔
R (n̂, θ). The most important interaction that affects the structure of

↔
R is

the dipole interaction between the nuclear moments of the 3He atoms. It is not sensitive

to the direction of n̂, but it lifts the degeneracy in the rotation angle by favouring θ ≈ 104◦

over distances larger than the characteristic length of the interaction, the dipole length

ξD ∼ 10µm. The texture problem is thus reduced to finding the distribution n̂(r) [16]. A

large multitude of external influences tend to orient n̂ [17]. In our calculations, we take

into account only the leading ones in the presence of a large magnetic field.

An external magnetic field H induces a small orientational effect on n̂ through the

dipole coupling, with an energy [16]

FDH = −a
∫
d3r (n̂ · H)2, (8)

where the integration is performed over the volume of the sample. A magnetic field thus

tends to have n̂ ‖ H. If a counterflow, i.e. a difference vn − vs between the velocities of

the normal and superfluid components, is set up in the system, the associated flow energy

has the form [18]

FHV = −λHV

∫
d3r [H · ↔

R · (vn − vs)]
2. (9)

It is customary to define the dipole velocity vD =
√

2a/(5λHV) ∼ 1 mm/s. Because of the

order-parameter rigidity, all spatial variations are associated with a gradient energy [16,17]

FG =

∫
d3r

[
λG1

∂Rαi
∂ri

∂Rαj
∂rj

+ λG2
∂Rαj
∂ri

∂Rαj
∂ri

]
, (10)
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which together with FDH determines the length scale of the texture, the magnetic coher-

ence length ξH =
√

65λG2/(8aH2) ∼ 1 mm. In addition to the bulk energies (8)–(10), the

walls of the container induce a boundary interaction [16]

FSH = −d
∫
d2r (H ·↔R · ŝ)2, (11)

where the integration is over the surface of the wall, the normal of which (pointing to-

wards the superfluid) is given by the unit vector ŝ. Another boundary energy arises from

equilibrium spin currents at the surface [19],

FSG = λSG

∫
d2r ŝjRαj

∂Rαi
∂ri

. (12)

This energy term also includes a surface contribution from the gradient energy [16]. The

last orienting interaction arises from the distortion of the bulk state inside the vortex

cores [20]. If the orientation of the vortex line is given by the unit vector l̂V, the associated

free energy of the interaction is

FLH = λLH

∫
L

d3r (H · ↔
R · l̂V)

2, (13)

where the integral is to be calculated over the region occupied by the vortices. Finally,

the equilibrium order-parameter texture in 3He-B is determined by minimizing the sum

of the individual free-energy contributions in Eqs. (8)–(13).

In superfluid 3He-A, the free energy is customarily expressed in terms of the vector

fields d̂ and l̂, and the superfluid velocity vs [3]. The dipole interaction in the A phase

tends to align the anisotropy axes d̂ and l̂ parallel to each other. The corresponding

free-energy density is of the form

fd = −1
2
λd(d̂ · l̂)2. (14)

Because the Cooper-pair spin is perpendicular to d̂, an external magnetic field prefers the

orientation d̂ ⊥ H, with the energy density

fh = 1
2
λh(d̂ · H)2. (15)

With Eqs. (14) and (15) it is possible to define a characteristic magnetic-field strength,

the dipole field Hd, according to Hd =
√
λd/λh. Consequently, if H 
 Hd ∼ 2 mT,

the vector d̂ is constrained to lie in a plane perpendicular to H. The gradient energy
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corresponding to spatial variations in the order parameter can be written as

fgr = 1
2
ρ⊥v2

s +
1
2
(ρ‖ − ρ⊥)(̂l · vs)

2

+ Cvs · ∇ × l̂ − C0(̂l · vs)(̂l · ∇ × l̂)

+ 1
2
Ks(∇ · l̂)2 + 1

2
Kt(̂l · ∇ × l̂)2 + 1

2
Kb |̂l × (∇× l̂)|2

+ 1
2
K5|(̂l · ∇)d̂|2 + 1

2
K6[(̂l ×∇)id̂j)]

2. (16)

The first two terms on the right-hand side of Eq. (16) describe the kinetic energy in the

anisotropic A phase; the quantities ρ‖ and ρ⊥ are the components of the superfluid-density

tensor in the directions parallel and perpendicular to l̂, respectively. The next two terms

arise because of the coupling between the superfluid velocity and an inhomogeneous l̂

texture. The five remaining terms are the energies due to bending of l̂ and d̂. The

characteristic velocity in the hydrostatics of 3He-A is the dipole velocity vd =
√
λd/ρ‖, and

the length scale of the textures is the dipole coherence length ξd = [h̄/(2m3)]
√
ρ‖/λd ∼

10 µm.

In addition to the bulk energies (14)–(16), solid boundaries exert a strong influence on

the orbital part of the order parameter. As a result, l̂ is fixed perpendicular to the walls

of the container. Together with this boundary condition, the equilibrium order-parameter

structure in the A phase is determined by minimizing the total free energy

F =

∫
d3r (fd + fh + fgr). (17)

The numerical values as functions of external conditions (temperature, pressure, etc.) of

the various prefactors in the interaction energies in Eqs. (8)–(16) can be obtained by

using a more fundamental theory, the quasiclassical theory of 3He [21]. This process is

too involved to be discussed here; for details, see Refs. [17] (B phase) and [22] (A phase).

1.4 Superfluids in rotation

One of the most effective methods of creating quantized vortices and studying their prop-

erties is to rotate a cylindrical container of superfluid around its axis. At a constant

angular velocity of rotation Ω, the viscous normal component of the superfluid rotates

like a solid body, i.e.

vn = Ω × r, (18)

which implies a nonzero vorticity, ∇× vn = 2Ω (the position vector r is measured from

the cylinder axis). For a potential superfluid-velocity field, ∇ × vs = 0, the solid-body
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Figure 2: The process of vortex creation in a rotating superfluid (schematic). If the angu-

lar velocity is sufficiently high, an initially small vortex loop expands under the influence of

counterflow and, finally, comes to rest at the cylinder axis as a rectilinear vortex line.

rotation is forbidden. Thus the superfluid component remains stationary at small Ω. On

increasing Ω, however, this state becomes unstable towards having vortex lines in the

cylinder. The appearance of vortices reduces the counterflow vn − vs and the kinetic

energy of the rotating liquid (see Fig. 2).

At present, the structure and properties of equilibrium vortex states in 4He-II are

already well established [9]. At a given angular velocity Ω, a cylindrical container of
4He-II is threaded by rectilinear vortex lines that are parallel to the cylinder axis, and

distributed in a regular array with an areal density of

nv =
2Ω

κ
. (19)

This equation follows from the condition that the circulations of the superfluid-velocity

and normal-velocity fields are equal. On accelerating (decelerating) the rotation veloc-

ity, vortex nucleation (annihilation) takes place at the container walls, to maintain the

equilibrium distribution of Eq. (19). Roughly similar behaviour is also exhibited by 3He

superfluids, but a number of differences can be observed in the details.

The critical angular velocities Ωc for the appearance of vortices in
4He-II are extremely

low. In fact, it is practically impossible to achieve a vortex-free state in 4He-II in a rotating

cylinder. The critical velocities are believed to reflect the unpinning of pre-existing vortices

(formed during the cooldown) from the container walls. They are also very difficult to

measure, because thermal fluctuations and quantum tunnelling reduce the nucleation

threshold. However, neither of these mechanisms affects the process of vortex creation

in superfluid 3He because of the lower temperatures and the longer coherence length ξ.

Therefore, the critical velocities in 3He-B and 3He-A describe intrinsic instabilities of the
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superfluid state.

In the B phase, the disruption of the initial bulk state necessary to produce vortices

with a singular core involves a large energy barrier to be overcome by the counterflow.

Even though the surface roughness of the walls can reduce the critical velocities consider-

ably, they are still high, typically of the order of several mm/s. Therefore, 3He-B is able to

support metastable rotating states, where the number of vortices differs from that given

by Eq. (19). In these cases, the vortices are situated in a central cluster at the cylinder

axis, forming a vortex bundle.

In 3He-A, the critical velocities are low because a suppression of the bulk order pa-

rameter (3) is not necessary for the creation of continuous vortices; an inhomogeneous

orbital texture is sufficient. Even the surface roughness does not play a role in the nucle-

ation process because of the boundary condition on the l̂ vector that restricts the vortex

formation to take place at a minimum distance of ∼ ξd from the wall. Therefore, with
3He-A, it is possible to study the intrinsic stability of superflow under exceptionally ideal

conditions.

1.5 NMR in 3He

A successful method of extracting information on the order-parameter distributions in the

superfluid phases of 3He is provided by nuclear magnetic resonance. The NMR techniques

discussed in this thesis study the linear response of the superfluid subjected to a static

magnetic field H ‖ ẑ and a weak radio-frequency field Hrf ⊥ H (Hrf � H). In the

normal state, resonance absorption occurs at the Larmor frequency ω0 = γH , where γ is

the gyromagnetic ratio of the 3He nucleus. In the superfluid state, the NMR response is

determined by the coupled dynamical equations for the spin density and the spin part of

the order parameter [23].

In the B phase, the frequency ω of the transverse resonance depends on the relative

orientation of the static field H and the vector n̂. By taking H ‖ ẑ and expressing

n̂ = (−r̂ cosα+ φ̂ sinα) sin β+ ẑ cosβ in cylindrical coordinates, the resonance frequency

can be written in the high-field limit in the approximate form

ω =
√
ω2

0 + Ω2
B sin2 β ≈ ω0 +

Ω2
B

2ω0

sin2 β, (20)

where ΩB is the B-phase longitudinal resonance frequency. Therefore, if n̂ is not parallel

to H, the resonance frequency is shifted above the Larmor value. The overall spectrum

can be obtained by the local oscillator model, i.e. by considering the fluid as an assembly
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of uncoupled oscillators with frequencies determined by the local value of β(r) according

to (20). The NMR line shape is given by the distribution of the individual contributions,

f(ω) =
1

V

∫
d3r δ[ω − ω(r)], (21)

where V is the volume of the sample. It follows that whenever ω(r), or equivalently β(r),

has a constant value over a larger region, the absorption spectrum has a peak at this

frequency.

In 3He-A, the static field H confines the unperturbed d̂0 = x̂ cos θ0 + ŷ sin θ0 to the

plane perpendicular to it. In the presence of a weak oscillating field, d̂ acquires a small

component, d̂z(r) = ψ(r), along H. This component satisfies a Schrödinger-like equation

[24]

−[K̃6∇2 + (K̃5 − K̃6)∇ · l̂̂l · ∇]ψ + Uψ = (R2
⊥ − 1)ψ, (22)

where K̃i = Ki/λd, and the potential for the fluctuations is given by

U = −l̂2z − (̂l × d̂0)
2 − K̃6(∇θ0)

2 − (K̃5 − K̃6)(̂l · ∇θ0)
2. (23)

The frequencies of the transverse resonance are determined by the eigenvalues R2
⊥ − 1 as

ω =
√
ω2

0 +R
2
⊥Ω

2
A, (24)

where ΩA is the A-phase longitudinal resonance frequency. An approximation for the

lowest eigenvalue and the corresponding bound state of fluctuation can be obtained by

the following variational principle:

R2
⊥ − 1 = min

ψ

∫
d3r[K̃6|∇ψ|2 + (K̃5 − K̃6)|̂l · ∇ψ|2 + U |ψ|2]∫

d3r|ψ|2 . (25)

In a uniform state d̂ ‖ l̂ ⊥ H, the absorption occurs at the bulk frequency given by

R2
⊥ = 1. However, dipole-unlocked regions (such as the soft cores of continuous vortices)

where l̂ and d̂ are antiparallel define a potential well for the spin fluctuations. Usually

this gives rise to bound states with frequencies corresponding to R2
⊥ < 1.

2 Vortices and wetting in 4He-II

One of the unusual properties of 4He-II is complete wetting of most materials, i.e. a layer

of fluid tends to cover all the exposed solid surfaces. In contrast, most fluids exhibit partial
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Figure 3: Pinning of a vortex line by a surface asperity of size ∼ b in a superfluid film of thickness

h. The presence of a flow with velocity v causes the vortex to bend.

wetting by forming droplets, with characteristic contact angles defined by the interfaces

separating the three phases (fluid, solid, vapour). Complete wetting thus corresponds to

the vanishing of the contact angle. However, incomplete wetting by 4He-II was predicted

theoretically [25] and later confirmed experimentally on Cs surfaces [26]. Also, subsequent

optical experiments displayed small contact angles, up to 15 mrad, on rough evaporated

SiO2 layers [27]. In publication [P1], a theoretical model based on an inhomogeneous

distribution of vortices is investigated, with the purpose of explaining the experimental

results observed in Ref. [27].

2.1 Vortex-pinning model

Vortices are present in practically all samples of 4He-II, especially in thin films. Due to

the small size of the core, they can easily become pinned by atomic-size imperfections on

a rough solid surface. The presence of a flow in the film causes a pinned vortex to become

bent (see Fig. 3), and finally unpinned when the velocity reaches a critical value [28]

vc =
κ

4πh
ln

(
b

a0

)
, (26)

where κ = 2πh̄/m4, h is the thickness of the film, b is a typical radius of the imperfections,

and a0 is of the order of the vortex core radius. At this velocity, the radius of curvature

for the bending of the vortex falls below the film thickness. If the unpinning flow is

assumed to arise from a neighboring vortex (with a velocity field ∝ 1/r), the condition

(26) provides a maximum density nmax of vortices. To logarithmic accuracy, this can be
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estimated as

nmax =
1

4h2
. (27)

Therefore, a given density of vortices n can only be supported by sufficiently thin super-

fluid films, with h < ht ≡ 1/(2
√
n). This leads to the possibility of a spatially varying

film thickness h(r), caused by an inhomogeneous distribution of vortices. In the thin-film

region, the vortex density n in our model is assumed to be given by the density of avail-

able pinning centers, while for h > ht the vortices become unpinned, and their density

follows Eq. (27). The transition region separating the areas with different film thicknesses

can be characterized by a pseudo-contact angle (somewhat like the true contact angles in

partial-wetting situations), derived from the maximum slope of the film profile.

2.2 Calculation of equilibrium film profile

The surface profile can be obtained by minimizing the free energy of the film. For simplic-

ity, we assumed translational invariance in one coordinate along the solid surface, whereby

the profile becomes a one-dimensional function h(x). The free energy per unit length is

given by

Ffilm

L
=

∫
dx

[
− A

12πh2
+ 1

2
ρgh2 + 1

2
σ

(
dh

dx

)2

+
ρsκ

2

4π
hn(h)

]
. (28)

The first term accounts for the van der Waals interaction of vapour and solid across the

helium film, approximated by the energy between two flat surfaces. For the Hamaker

constant A we used the value measured for a CaF2 surface [29]. Because A < 0, the

helium film tends to thicken under the influence of the interaction. The second term is

the gravitational energy of the film, and the third term is the surface tension for a weakly

inhomogeneous profile. The final term is the kinetic energy of the vortices (again, to

logarithmic accuracy), the density of which is taken to be divided into two regions,

n(h) =

{
n0 h < ht

1/(4h2) h > ht

, (29)

where ht = 1/(2
√
n0). The numerical values of the parameters used in the calculations

can be found in [P1]. The balance between the van der Waals term and the gravitational

term defines a characteristic film thickness h0 = [|A|/(6πρg)]1/4 ∼ 700 nm. Our model

has two constant equilibrium solutions, h1 and h2 (h1 < h0 < h2), corresponding to the
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local minima of (28) with the two expressions for the vortex density given by Eq. (29).

For a given density n0 of the pinning centers, two regions with different film thicknesses

can exist whenever h1 < ht < h2. This condition effectively restricts the use of the model

to a certain range n1 < n0 < n2 (with the parameters in [P1], n1 = 3 · 1010 m−2 and

n2 = 1.9 · 1015 m−2).

In the numerical calculations, we employed a discrete lattice with N equally spaced

points xi (i = 1, ..., N). The surface profile was presented by its value hi = h(xi) at these

locations. The equilibrium profile for a given value of n0 was determined by discretizing

the free energy (28) and relaxing an initial profile towards decreasing energy, until the

local minimum was reached. The minimization was performed under the condition that

the volume of the liquid remains constant. For an inhomogeneous solution describing the

thin-to-thick transition region, the pseudo-contact angle was determined through θp =

arctan[max(dh/dx)]. For the density range 1011 m−2 < n0 < 1013 m−2, the calculated

pseudo-contact angles were distributed in the range 10 mrad < θp < 40 mrad, in order-

of-magnitude agreement with the apparent contact angles observed in the measurements

of Ref. [27]

3 Flow stability in 3He-A

Although the structure and stability of the current-carrying states in 3He-A are widely

discussed in literature (see e.g. [P2] for a list of references) and the processes responsible

for the breakdown of the superflow have been known for a long time, most of this work

has been done either by using analytical methods or by restricting the texture to follow

the form of a variational ansatz. Accordingly, the authors have been forced to resort to

a number of simplifications in their studies. As a result, some questions concerning the

flow stability that have relevance in the interpretation of experimental observations have

remained unanswered. The methods of numerical computation allow direct determination

of the order-parameter texture, at least in simple geometries, without the need to make

any restrictions concerning its form.

In this thesis, I have studied theoretically the critical velocity vc of rectilinear flow

in 3He-A in bulk (publications [P2] and [P3]) and in parallel-plate geometry (publication

[P4]). The results are compared with measured critical velocities ΩcR for vortex creation

in a rotating cylinder (with a radius R). The calculations focus on the case where the

external magnetic field H is perpendicular to vs, as it is often the relevant orientation in
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Figure 4: The orientation of the orbital triad in one-dimensional flow textures in 3He-A: (a) the

uniform texture with vs = 0, (b) the uniform texture with 0 < vs < vc1 (̂l ‖ vs), and (c) the

helical texture for vs > vc1.

the experiments. In publication [P2], the critical velocities of the intrinsic flow instability

in 3He-A are determined, with a particular emphasis on the effects caused by the form

of the underlying orbital texture l̂(r). The dependences on temperature and magnetic

field strength are also investigated. The results are compared with experimental data

in publication [P3]. It should be emphasized that the comparison between theory and

measurements can be done directly without any adjustable parameters. The effects of

geometrical confinement due to the presence of lateral walls are studied in publication

[P4]. In particular, the case with a domain wall stretched between the walls in the flow

channel provides a model for the growth of a vortex sheet in 3He-A.

3.1 Instability of the uniform texture

In the presence of a magnetic field H and vanishing superfluid velocity, the minimum of

(17) corresponds to the uniform texture l̂(r) = d̂(r) = const. ⊥ H, which is the simulta-

neous minimum of the gradient, dipole-dipole, and magnetic-field energies (see Fig. 4a).

For nonzero H , this state persists as the minimum configuration also under a small im-

posed superfluid velocity vs ⊥ H with |vs| < vc1: the phase gradient corresponding to vs

is achieved by turning m̂ and n̂ around a constant l̂ (Fig. 4b). The superfluid velocity
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only lifts the degeneracy in the mutual direction of l̂ = d̂ ⊥ H by favouring l̂ ‖ vs, be-

cause this orientation minimizes the anisotropic kinetic energy (ρ‖ < ρ⊥), see Eq. (16).

However, if the velocity is raised beyond the first critical velocity vc1 (of the order of the

dipole velocity vd), the uniform texture becomes unstable towards small-amplitude trans-

verse fluctuations (Fig. 4c) [30]. The resulting helical texture has l̂ winding around the

direction of the superfluid velocity with a characteristic wave number q = 2π/λ, where

λ (a few times ξd) is the wavelength of a helix. The reason for the appearance of these

deformations lies in the coupling between the velocity field and an inhomogeneous orbital

texture in Eq. (16).

Helical textures in 3He-A have been subject to extensive investigation in the past, but

usually assuming the field orientation H ‖ vs. In this case, the magnetic field and the

superflow impose competing influences on the order-parameter texture, destabilizing the

uniform configurations. In contrast, when H ⊥ vs, both magnetic and kinetic energies

can be minimized simultaneously, leading to higher critical velocities for the breakdown of

the uniform texture. In addition, this case is theoretically more challenging because the

magnetic field breaks the rotational invariance around vs, introducing “easy” and “hard”

directions for the fluctuations. Consequently, the resulting helical texture is elliptically

distorted (the end of the winding l̂ vector traces an ellipse instead of a circle).

After their formation, the subsequent fate of the helical textures depends crucially on

the values of the various parameters in Eq. (16). These in turn depend on the external

conditions, most notably temperature and pressure. The important question is whether

the instability of the uniform state at vc1 leads to a stable helical texture or to a dissipative

situation accompanied by the degradation of the mass supercurrent, the density of which

can be written

js = ρ⊥vs + (ρ‖ − ρ⊥)̂l(̂l · vs) + C∇× l̂ − C0 l̂(̂l · ∇ × l̂). (30)

It turns out that, depending on the external parameters, it is possible to obtain stable

helical textures, which become finally unstable at a second critical velocity vc2 ≥ vc1. The

structure and stability of helical textures in the case H ⊥ vs have been previously studied

only by Lin-Liu et al. in Ref. [31]. However, they consider only the limiting case of the

immediate vicinity of T = Tc (the Ginzburg-Landau regime). In publication [P2], this

investigation is extended to lower temperatures.
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3.2 Calculations on helical textures

In the numerical calculations, the order parameter was assumed to depend only on the

coordinate x along the direction of the superfluid velocity, and defined on N equidistant

points in the interval −L/2 < x < L/2. Concerning the initial instability of the uniform

texture, it has been proven [31] that the longitudinal fluctuations are the relevant ones;

this is expected to be true also in considering the stability of the helical textures. The

superflow is generated by keeping a fixed difference in the order-parameter phase ∆Φ =

Φ(L/2) − Φ(−L/2) over the interval. Although a well-defined phase function Φ(x) only

exists when l̂ is confined to a plane (which clearly does not hold with helical textures),

it is still possible to keep a constant phase difference ∆Φ in the calculations with the

following procedure. The calculation begins with an initial configuration (as in Fig. 4b)

m̂0 + in̂0 = (ŷ + iẑ)ei(∆Φ/L)x, (31)

which corresponds to a situation with a constant driving velocity v = [h̄/(2m3)](∆Φ/L)x̂.

As the configuration is iterated (in fictitious time t) towards the minimum of the dis-

cretized free energy, the phase difference ∆Φ is kept constant at every iteration step by

imposing a boundary condition(
m̂ · dn̂

dt

)
x=−L/2

=

(
m̂ · dn̂

dt

)
x=L/2

. (32)

Actually, the initial configuration was chosen to contain a small disturbance in the middle

of the interval. For small enough phase differences, corresponding to v < vc1, the con-

verged solution had the uniform structure, whereas for v > vc1 the disturbance developed

into a helical texture.

In the case of a long channel, L 
 ξd, the wave vector q of the helical texture can

adjust to minimize the free energy. Therefore q has to be considered as a variable in

the calculations. Taking into account the periodicity of the problem, the calculations

were restricted to a single wavelength of the helix. Minimization with respect to the

texture parameters at a given v and wave vector q leads to a free-energy function of two

variables F (v, q). The stability of the helical textures is determined by the eigenvalues of

the Hessian matrix

H =


 ∂2F

∂v2
∂2F
∂v∂q

∂2F
∂v∂q

∂2F
∂q2


 . (33)
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For stability, both of the eigenvalues of H have to be positive. The second critical velocity

vc2 can now be defined as the lowest value of v with which the helical texture corresponding

to the optimally chosen wave vector qopt becomes unstable. The instability at vc2 leads to

the breakdown of superflow through the creation of continuous doubly-quantized vortices,

thus reducing the flow to a subcritical value.

In publication [P2], the stability regions and the detailed structure of the helical

textures are presented. For the first time, we studied the dependence on temperature. An

extended stability region of helical textures in the presence of a magnetic field H 
 Hd

was found at temperatures T < 0.8 Tc. We also found that the critical velocities vc2 for

the instability of the helical textures coincide reasonably well with the largest observed

critical velocities for vortex formation in a rotating cylinder, see publication [P3].

3.3 Flow in the presence of solitons

The above discussion on the helical textures applies to the case where the initial flow

state is homogeneous. However, stable inhomogeneities can exist in the texture because

of the complicated order-parameter structure of 3He-A. Obviously, the presence of such

inhomogeneities can cause significant reductions in the critical velocity of the superflow.

The one-dimensional flow model enables us to study a group of commonly encountered

defects called solitons.

Solitons are planar domain-wall-like objects that separate two energetically degenerate

equilibrium states. Planar defects owe their existence to a twofold degeneracy of some

interaction. For example, the dipole-dipole energy (14) in 3He-A has a minimum when

either l̂ = d̂ or l̂ = −d̂. In a dipole-unlocked soliton, two regions with parallel and

antiparallel asymptotic orientations of l̂ and d̂ are connected by a wall-like transitional

area with a thickness of ∼ ξd, where the angle between the vectors changes continuously

from 0 to 180◦. The dipole-unlocked soliton is stable since its removal would require a large

amount of energy. In the presence of flow, another soliton structure, the dipole-locked

soliton, becomes possible. In this case, the doubly degenerate interaction is provided by

the anisotropic kinetic energy, minimized when l̂ = vs or l̂ = −vs.

A soliton texture responds to the applied flow by rotating as a whole around the flow

direction. As an example, consider a dipole-unlocked soliton in the presence of a constant

driving velocity v ‖ x̂, with asymptotic orientations l̂ = ±x̂, x→ ±∞ (see Fig. 5). If the

texture is rotated by an angle θ around x̂, the phase difference ∆Φ along the x axis changes

by 2θ. The final state carries zero mass current, as calculated from Eq. (30). Therefore, if
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Figure 5: The variation of l̂ in a one-dimensional soliton texture. When an external flow is

applied, the soliton tends to detach from the plane perpendicular to the external field H.

nothing prevents this rotation, any phase difference can be produced by choosing a suitable

angle θ, and the critical velocity of the superflow vanishes for the soliton. However, in the

presence of a magnetic field H ⊥ vs, the rotation of l̂ is opposed by the field through the

dipole coupling to d̂ ⊥ H. Therefore, for small driving velocities, a nonzero supercurrent

js,x(v) is built up by the induced nonplanarity of l̂(x), see the bottom of Fig. 5. Finally, as

the critical velocity is exceeded, the texture becomes unstable against unlimited winding

around x̂, accompanied by an abrupt drop in the supercurrent.

In publication [P2], we determine the critical velocities for both dipole-locked (̂l ≈ d̂)

and dipole-unlocked (d̂ ≈ const.) solitons numerically as a function of temperature and

the strength H of the applied field. Apart from the choice of the initial configurations, the

calculations are carried out in a similar fashion as in the case of uniform textures, explained

in Section 3.1. We found that the lowest critical velocities are associated with the dipole-

unlocked solitons, with vc,US roughly a factor of six smaller than vc2 of the originally

uniform texture. The large spread compares very well with experimental observations of

the A-phase critical velocities in a rotating cylinder with different histories of flow-state

preparation. The comparison, presented in publication [P3], supports the view that the

critical velocity in 3He-A reflects the instability of the bulk flow, and depends on the

underlying orbital texture.
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Figure 6: The parallel-plate geometry with the plate separation D and the superfluid velocity

vs in the positive x direction. The orientations of the external magnetic field H and the soliton

wall (grey) are also shown.

3.4 Uniform flow between walls

In studying the one-dimensional bulk flow, as described in Secs. 3.1 – 3.3, the finite

size of the container is not taken into account. Publication [P4] investigates the effects

of confinement on the critical velocity of 3He-A. We used a flow channel consisting of

two parallel plates separated by a distance D, and studied the field orientation H ⊥ vs.

Our main goal was to investigate the flow in the presence of a dipole-unlocked soliton

stretched between the plates. The instability of the soliton provides a plausible model for

the experimentally measurable growth of a vortex sheet as a function of vs. In publication

[P4], we calculated the order-parameter texture in 3He-A in the presence of flow for the

first time in two spatial dimensions.

The numerical calculations in [P4] (see Fig. 6) used a discrete lattice in the xy plane

with a length L in the direction of the flow (−L/2 < x < L/2) and width D in the y

direction (−D/2 < y < D/2). Translational invariance in the z direction was assumed,

and the magnetic field H ‖ ẑ was assumed to force d̂ to vary in a plane with d̂z = 0.

For simplicity, the calculations were restricted to the Ginzburg-Landau region. The order

parameter was taken to be defined at N × M points spaced by ∆x and ∆y in x and

y directions, respectively (N∆x = L, M∆y = D). The equilibrium distribution was

determined by minimizing the total energy consisting of the dipole-dipole and gradient

contributions. The superflow was generated by keeping a fixed difference Φ(x = L/2)−
Φ(x = −L/2) ≡ ∆Φ in the order-parameter phase in the x direction. For different values
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of ∆Φ, we monitored the average supercurrent density

j ≡ 〈js,x〉 = 1

D

∫ D/2

−D/2
dy js,x(x, y), (34)

as a function of the driving velocity v = [h̄/(2m3)](∆Φ/L).

In the absence of flow, the simplest order-parameter texture in equilibrium has uniform

l̂ = d̂ perpendicular to the walls and the external magnetic field. This state persists even

under a small induced velocity v, resulting in a current j = ρ⊥v (because l̂ ⊥ vs). As the

velocity exceeds the limiting value vFr, approximatively satisfying the relation

vFr =
c

D
(35)

with c=constant, the texture undergoes a Freedericksz transition [32]. After the transition,

l̂ begins to tilt towards the flow direction in the middle of the channel, to reduce the

anisotropic kinetic energy, still retaining the invariance in the coordinate along the flow.

The numerical value of c depends on the behaviour of d̂: if D � ξd, d̂ stays constant,

whereas in the other limit D 
 ξd dipole-locking forces d̂ to follow l̂, providing the texture

with additional rigidity. Our values of vFr calculated in publication [P4] are in agreement

with previously published work [33].

If v is increased further, l̂ continues tilting until it is, apart from the immediate vicinity

of the walls, almost aligned with the superfluid velocity. This situation is a generalization

of the preceding discussion on one-dimensional flow. Therefore, a helical instability is

expected to occur also in this case. Indeed, we observed the transition in the numerical

calculations, with the critical velocity vh satisfying an approximate relation

vh(D) ≈ vc1 +
a

D2
, (36)

where vc1 is the critical velocity for the formation of helical textures in the one-dimensional

model (D → ∞) and a is a constant. Consequently, the presence of confining walls

modifies the critical velocity in the uniform flow state only slightly.

3.5 Vortex sheet growth

The main interest in studying 3He-A flow between parallel plates is provided by a close

analogy to the measurements in a rotating cylinder in the presence of a vortex sheet.

The vortex sheet is a planar object consisting of a dipole-unlocked soliton that carries

quanta of continuous vorticity (see Fig. 7) [34]. On increasing the angular velocity of
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Figure 7: Schematic representation of a vortex sheet. The sheet is attached to the container

wall by a soliton piece that carries no vorticity.

rotation, additional vortex quanta enter the sheet, as the counterflow velocity through

the vortex-free soliton piece exceeds a critical value. As new vorticity is added, the sheet

grows in length. In publication [P4], we used the channel-flow model in the presence of a

dipole-unlocked soliton (Fig. 6) to determine the critical velocity for vortex-sheet growth.

The calculations with the soliton follow the same lines as described in Sec. 3.4 in con-

nection with uniform flow, except that the driving velocity has to be incorporated in the

model with some caution due to the breaking of translational invariance. Apart from the

additional rigidity caused by the anchoring of l̂ at the walls, the instability of the soliton

also occurs through a similar process of texture rotation as in the bulk case. The critical

velocity vc (or, equivalently, the critical phase difference ∆Φ) for the instability turned out

to depend quite strongly on the chosen length L of the computational region. To avoid

time-consuming numerical calculations on large lattices, we determined the critical cur-

rent jc instead, since it was observed to show a weaker L dependence. The corresponding

velocity vc can then be obtained from the j(v) diagram for the uniform flow channel.

In publication [P4], we present the critical velocity vc(D) for the soliton instability as

a function of the plate separation D. At the bulk limit, D 
 ξd, our results reproduce the

low value of vc,US determined for the one-dimensional flow in publication [P2]. This should

be emphasized since a much higher value has been calculated previously [35]. However,

our low values are supported by the experimentally measured critical velocities for the

vortex sheet [22]. Also, the critical current was found to show a more pronounced D
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dependence than the uniform-flow case, following an approximate relation

jc ≈ a

D
+ b, (37)

with different constants a and b above and below the Freedericksz transition. Although

the constant-velocity model is a somewhat crude approximation for the inhomogeneous

velocity distribution in a rotating cylinder, it explains qualitatively the Ω dependence of

vc observed in the experiments of Ref. [22].

In addition, we determined the NMR frequency shift R2
⊥ of the dipole-locked soliton

in the presence of flow by solving numerically the minimization problem of Eq. (25). At

the limit of large D, the lowest eigenmodes were found to be concentrated at the contact

points of the soliton and the walls. The values of R2
⊥ were found to be considerably lower

than those calculated previously for a bulk soliton, emphasizing the important role played

by the container walls. In fact, the values are rather close to those expected for the vortex

sheet itself [34], and thus the wall connections are not expected to generate a separately

distinguishable satellite. This conclusion agrees with measurement.

4 Vortices and NMR in 3He-B

In 3He-B, the length scale of the order-parameter textures is determined by the long

magnetic coherence length ξH ∼ 1 mm. This is of the same order of magnitude as the

radius R of a typical sample cylinder in rotating experiments. Therefore, in contrast

to 3He-A where the relevant length scale ξd � R and all the calculations necessarily

are of local nature, the B-phase texture must be determined over the entire sample. In

publication [P5], I calculated the equilibrium texture and the corresponding NMR line

shape in a rotating cylinder. The model is developed to a level where a direct comparison

with the experimentally obtained NMR spectra is possible. The effects of metastable

rotating states (i.e. states with a nonequilibrium number of vortices) are included in the

model. Special emphasis is given on how the sensitivity to the number of vortices in the

cylinder depends on the external parameters controlling the behaviour of the system. In

publication [P6], I used a similar procedure to predict the NMR response in the presence

of a spin-mass vortex.
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4.1 Line shapes of flare-out textures

The spatial distribution of n̂ can be determined by finding the minimum for the sum of

different energy contributions given by Eqs. (8)–(13). In the presence of a large magnetic

field H 
 Hd, the equilibrium texture in the infinitely long cylinder has the rotationally

symmetric flare-out form [16], i.e. the components of n̂ expressed in the cylindrical

coordinate system only depend on the radial coordinate r. The remaining one-dimensional

texture problem is solved by discretization methods. The NMR spectrum corresponding

to the texture variations can then be obtained from the distribution β(r) of the angle

between n̂ and the axial magnetic field H through Eqs. (20) and (21).

As pointed out in Sec. 1.4, the critical velocity for the nucleation of vortices in 3He-

B is large. Therefore, it is possible to study a vortex-free state in a cylinder over a

considerable range of rotation velocities Ω. Because the superfluid component remains

then stationary, the rotation generates a counterflow v(r) = Ωr, which in turn affects

the texture through the flow-energy term (9). However, if the sample has been prepared

with a certain number N of vortices, situated in a central bundle at the cylinder axis,

the counterflow velocity becomes modified by the superfluid velocity field of the vortices.

Inside the bundle, the average superfluid velocity 〈vs〉 ≈ vn and the counterflow vanishes,

whereas in the vortex-free counterflow annulus v(r) = Ωr−ΩVR
2/r, where ΩV = ΩN/N0,

and N0 = 2πR2Ω/κ0 is the vortex number for the completely filled container [vortices

distributed with equilibrium density given by Eq. (19)].

As the rotation velocity Ω is increased in the vortex-free case, the equilibrium state

undergoes a sequence of textural transitions [36], with typical associated NMR line shapes

presented in Fig. 8. The main features of these line shapes can be understood by the

accumulation at two distinct frequencies: the Larmor frequency (given by sin2 β = 0) that

represents the minimum of the magnetic-field energy (8), and the frequency of counterflow

(sin2 β = 0.8) corresponding to the minimum of Eq. (9). Roughly speaking, at low rotation

velocities, most of the absorption occurs at the Larmor peak [apart from the tail caused

by the surface energy (11)] and, as Ω is increased, the absorption gradually shifts to the

counterflow peak. If vortices are present in the container, they reduce the counterflow,

decreasing the counterflow peak height.

However, the actual measured NMR spectra are subject to other sources of line broad-

ening besides that caused by the texture. The inhomogeneity of the static magnetic field

H is one of them. Spatial variations in the field strength induce a spread in the Larmor

frequency and, consequently, in the resonance frequency of Eq. (20). Another source of
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Figure 8: Calculated texture-induced NMR line shapes as a function of the rotation velocity Ω.

line broadening is the intrinsic Leggett-Takagi relaxation, arising from the nonequilib-

rium between the normal and superfluid contributions to the total magnetization [37].

With the inclusion of these two mechanisms, we could reproduce the main features of the

observed line shapes. Our procedure involves only one unknown fitting parameter, the

Leggett-Takagi relaxation time τLT. The values of τLT corresponding to the best fit are

in agreement with existing measurements [38]. The average magnetic-field inhomogene-

ity was determined from the signal of the normal-phase resonance. These were the first

optimization calculations where line-broadening effects have been taken into account and

where the calculated and measured line shapes could be compared, not only in terms of

frequency shifts, but also with respect to relative absorption intensities.

At sufficiently large rotation velocities, the counterflow peak is the main characteristic

feature of the line shape (see Fig. 8). In publication [P5], we calculated the height of this

peak as a function of external conditions: magnetic field strength, angular velocity, tem-

perature, and the number of vortex lines. With a single fitting parameter τLT, reasonable

agreement was achieved in the comparison. Because the two additional line-broadening

mechanisms have different dependences on the magnetic field strength, an optimal value

for H (corresponding to minimal broadening) can be exctracted from our model. In [P5],

we also studied the effects related to the finite length of the cylinder by calculating the

texture in two spatial dimensions. In this work, the entire order-parameter texture of
3He-B in a finite cylinder was determined for the first time.
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Figure 9: Schematic representation of a spin-mass vortex with a soliton tail.

4.2 NMR and a spin-mass vortex

In publication [P6], we used the model developed in [P5] to calculate the NMR response

due to a presence of one spin-mass vortex in a rotating cylinder. A spin-mass vortex

(SMV) is a composite object of three different defects of the B-phase order-parameter field.

It consists of two linear vortices, an ordinary mass vortex and a spin vortex (surrounded

by a circulating spin current), sharing a common core, and a planar tail formed by a

soliton. The soliton tail connects the SMV to the wall of the rotating container, see

Fig. 9. These defects can be found in specially prepared rotating states of 3He-B [39,40].

Their experimental identification is based on the specific NMR signature induced by the

soliton wall. Inside the soliton, the rotation angle θ of the order parameter deviates from

the minimum of the dipole energy. Therefore, its width is of the order of ξD, and much

smaller than the length scale of the n̂ textures. Nevertheless, despite its small size, a

single soliton can be observed because it fixes n̂ parallel to its normal vector, as shown in

Fig. 9. The texture regains the flare-out structure at a distance of ∼ ξH from the SMV.

This results in increased absorption at high frequencies, corresponding to sin2 β ≈ 1.

The surface tension of the soliton wall is stabilized by the counterflow-induced Magnus

force acting on the SMV. In the presence of a vortex bundle (of radius RV), the SMV is

located at its edge. If the rotation velocity is increased, the radius of the bundle decreases

according to RV ∝ Ω−1/2, and the soliton grows in length. Therefore, the amount of

increased absorption at high frequencies was expected to increase as well. To estimate

this effect, we determined numerically the equilibrium order-parameter texture in the

cylinder with the soliton wall. The order parameter was calculated in a two-dimensional
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cross section of the cylinder (neglecting the dependence on the coordinate z along the axis)

using a discrete lattice in the polar coordinates r and φ. The same energy contributions

were taken into account as in publication [P5], explained in Sec. 4.1. The NMR response

was determined by the same method as in [P5].

Contrary to the initial expectations, our calculations indicated a slight decrease in the

additional high-frequency absorption when Ω was increased. This can be understood by

taking into account the decrease in the characteristic length over which the texture returns

to the flare-out form. Another unexpected feature is a textural transition from a slightly

modified flare-out state to a different, roughly reflection-symmetric n̂ texture. In this

new state, most of the absorption accumulates at the high frequencies. Our calculations

suggest that, for suitably chosen external conditions, this transition could be triggered

by increasing Ω, with critical velocities well within the reach of rotating cryostats. So far

this transition has not been experimentally searched for.

5 Summary

This thesis has investigated theoretically vortex-related phenomena in superfluids. The

following summarizes the main results.

In 4He-II, vortices pinned by surface irregularities can give rise to a spatially varying

film profile on a solid substrate [P1], providing an interpretation for the small apparent

contact angles observed in optical experiments.

Superfluid 3He is an exceptional system in that it exhibits several highly nontrivial

phenomena, which can be investigated both experimentally and theoretically. Unlike

its counterparts e.g in the field of superconductivity, it is free of impurities and has no

crystalline lattice or other constraints except for the external boundary. All the complexity

in its behaviour arises from the symmetry and structure of the order parameter. Thus

the properties of the superfluid phases of 3He can, in principle, be calculated, if proper

care is taken in the choice of models.

In superfluid 3He-A, the stability of rectilinear superflow was studied numerically in

bulk [P2,P3] and in the presence of confining walls [P4] using the hydrostatic theory. The

critical velocities for the formation of doubly-quantized continuous vortices were deter-

mined as a function of temperature and external magnetic field. Our results indicate a

pronounced dependence on the structure of the underlying order-parameter field, explain-

ing the large spread of the critical velocities observed in experiments using a rotating
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cryostat. Our model employing a soliton wall stretched between two parallel walls repro-

duces the main experimental features concerning the critical velocity in the presence of a

vortex sheet.

The detailed NMR line shape of 3He-B in a rotating cylinder was calculated numeri-

cally [P5]. With a single fitting parameter, our model explains satisfactorily the observed

dependences on temperature, magnetic-field strength, rotation velocity, and the number

of vortices in the sample. Our model suggests an optimal choice for the magnetic field

so that maximum sensitivity to changes in the vortex number can be achieved. Our cal-

culations also predict new features in the NMR response of a spin-mass vortex [P6]. In

publications [P2-P6], the exact order-parameter distributions for both the A and B phases

under externally applied flow were determined in one-dimensional and, for the first time,

in two-dimensional geometries.

All the results obtained in this thesis reflect a high level of agreement between the-

ory and experiment. With the help of modern computational tools, many fascinating

and highly nontrivial phenomena exhibited by superfluid systems become available for

investigation in full detail.
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