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Abstract

This thesis deals with the development and application of two simulation methods commonly
used in radio engineering, namely the Finite-Difference Time-Domain method (FDTD) and
the Finite Element Method (FEM). The main emphasis of this thesis is in FDTD.

FDTD has become probably the most popular computational technique in radio engineering.
It is a well established, fairly accurate and easy-to-implement method. Being a time-domain
method, it can provide wide-band information in a single simulation. It simulates physical
wave propagation in the computational volume, and is thus especially useful for educational
purposes and for gaining engineering insight into complicated wave interaction and coupling
phenomena.

In this thesis, numerical dispersion taking place in the FDTD algorithm is analyzed, and a
novel dispersion reduction procedure is described, based on artificial anisotropy. As a result,
larger cells can be used to obtain the same accuracy in terms of dispersion error. Simulation
experiments suggest that typically the dispersion reduction allows roughly doubling the cell
size in each coordinate direction, without sacrificing the accuracy. The obtainable advantage
is, however, dependent on the problem. In the open literature, a few other procedures are also
presented to reduce the dispersion error. However, the rather dominating effect of unequal
grid resolution along different coordinate directions has been neglected in previous studies.

The so-called Perfectly Matched Layer (PML) has proven to be a very useful absorbing
boundary condition (ABC) in FDTD simulations. It is reliable, works well in wide frequency
band and is easy to implement. The most notable deficiency of PML is that it enlarges the
computational volume - in open 3-D structures easily by a factor of two. However, due to its
advantages, PML has become a standard ABC. In this thesis, the operation of PML in FDTD
has been studied theoretically, and some interesting properties of it not known before are
uncovered. For example, it is shown that, surprisingly, PML can absorb perfectly (i.e. with
zero reflection) plane waves propagating towards almost arbitrary given direction at given
frequency. Optimizing the conductivity profile allows reduction of the PML thickness.

A typical application of the FDTD method is the design of a mobile handset antenna. An
improved coaxial probe model has been developed for antenna simulations. The well-known
resistive voltage source (RVS) model has also been discussed. A reference plane
transformation is proposed to correct the simulated input impedance.

A popular thin-wire model in 2-D FDTD is discussed, and it is shown to be based on
erroneous reasoning. The error has been corrected by a simple procedure, and the corrected
model has been demonstrated to simulate infinite long thin wires much better than the
commonly used model.

A novel way to implement singular basis functions in FEM is discussed. It is shown
theoretically and demonstrated by examples that if a waveguide propagation mode contains
field singularities, then explicit inclusion of singularities in finite element analysis is crucial
in order to obtain accurate cut-off wavenumbers.



5

List of publications

This thesis is based on the work contained in the following papers:

[P1] Jaakko Juntunen, Theodoros D. Tsiboukis: Reduction of numerical dispersion in
FDTD algorithm through artificial anisotropy. IEEE Transactions on Microwave
Theory and Techniques, Vol. 48, No. 4, 2000, pp. 582-588.

[P2] Jaakko Juntunen, Nikolaos V. Kantartzis, Theodoros D. Tsiboukis: Zero reflection
coefficient in discretized split-field PML. IEEE Microwave and Wireless Components
Letters, Vol. 11, No. 4, 2001, pp. 155-157.

[P3] Jaakko Juntunen, Outi Kivekäs, Jani Ollikainen, Pertti Vainikainen: FDTD simulation
of a wide-band half volume DRA. Proceedings of the Fifth International Symposium on
Antennas, Propagation and EM Theory (ISAPE 2000), Beijing, 2000, pp. 223-226.

[P4] Jaakko Juntunen: Note on the S11-parameter and input impedance extraction in
antenna simulations using FDTD. Microwave and Optical Technology Letters, Vol. 28,
No. 1, 2001, pp. 8-11.

[P5] Riku Mäkinen, Jaakko Juntunen, Markku Kivikoski: An accurate 2D hard-source
model for FDTD. IEEE Microwave and Wireless Components Letters, Vol. 11, No. 2,
2001, pp. 74-76.

[P6] Jaakko Juntunen, Theodoros D. Tsiboukis: On the FEM treatment of wedge
singularities in waveguide problems. IEEE Transactions on Microwave Theory and
Techniques, Vol. 48, No. 6, 2000, pp. 1030-1037.



6

Contribution of the author

Papers [P1,P4,P6] were mainly contributed by the author.

Paper [P2] was mainly contributed by the author, N.V. Kantartzis contributed to the
introduction section.

Paper [P3] is a result of a collaboration work. The author is responsible of all simulations and
numerical techniques presented in the paper, as well as the manuscript. Outi Kivekäs and Jani
Ollikainen designed the prototypes and performed the measurements. The prototypes were
manufactured in the mechanical workshop of the Radio Laboratory.

Paper [P5] is a result of a collaboration work. The initiative to this work is due to Riku
Mäkinen, who discovered the inconsistency in the classical thin-wire formalism. The author
proposed and realized a previously published [1] Green’s function test to evaluate the
effective radius of a wire model. Furthermore, the author suggested and realized the
consistency comparisons between traditional and the proposed thin-wire models, using thin
wire as a passive scattering structure. Riku Mäkinen performed the other tests and wrote the
manuscript.

Other related papers authored or co-authored by this author are [O1-O7] listed in the
reference list.



7

Contents

Preface ...................................................................................................................................... 3

Abstract .................................................................................................................................... 4

List of publications .................................................................................................................. 5

Contribution of the author...................................................................................................... 6

Contents .................................................................................................................................... 7

List of symbols and abbreviations.......................................................................................... 9

1 Introduction..................................................................................................................... 14
1.1 Computational electromagnetics in radio engineering............................................... 14
1.2 Objectives of this study .............................................................................................. 15
1.3 General remarks about modeling and numerical methods ......................................... 15
1.4 Contents of the thesis ................................................................................................. 17

2 Finite-Difference Time-Domain method....................................................................... 19
2.1 Standard FDTD algorithm.......................................................................................... 19
2.1.1 Discretization of Maxwell’s equations ................................................................ 19
2.1.2 Spatial grid, time step and computational burden ............................................... 21
2.1.3 Excitation............................................................................................................. 22
2.1.4 Boundary conditions............................................................................................ 23
2.2 On the accuracy of the FDTD algorithm.................................................................... 24
2.2.1 Second-order accurate differences....................................................................... 24
2.2.2 Numerical dispersion ........................................................................................... 25
2.2.3 Errors in quantities obtained via FFT .................................................................. 25
2.2.4 Cases where accuracy is reduced......................................................................... 26
2.3 High-order methods.................................................................................................... 28
2.3.1 Fourth-order accurate spatial derivatives............................................................. 28
2.3.2 Derivatives on the outer boundary....................................................................... 29
2.3.3 Time stepping ...................................................................................................... 29
2.3.4 Material interfaces ............................................................................................... 30
2.3.5 Discussion............................................................................................................ 31
2.4 Reduction of numerical dispersion in FDTD ............................................................. 31
2.4.1 Numerical dispersion as a measure of accuracy .................................................. 31
2.4.2 Low-dispersion algorithms .................................................................................. 31
2.4.3 Reduction of numerical dispersion through anisotropy....................................... 32

3 Absorbing boundary conditions in FDTD .................................................................... 34
3.1 Traditional local ABCs............................................................................................... 34
3.1.1 Bayliss-Turkel ABC ............................................................................................ 34
3.1.2 Engquist-Majda operator and Mur ABC ............................................................. 34
3.1.3 Trefethen-Halpern ABC ...................................................................................... 35
3.1.4 Higdon ABC ........................................................................................................ 35
3.1.5 Liao extrapolation................................................................................................ 35
3.1.6 Mei-Fang superabsorption ................................................................................... 36



8

3.1.7 Conclusion ........................................................................................................... 36
3.2 Perfectly Matched Layer (PML) ................................................................................ 36
3.2.1 Original formulation ............................................................................................ 36
3.2.2 Stretched-coordinate formulation ........................................................................ 37
3.2.3 Uniaxial formulation............................................................................................ 37
3.3 Optimization of the conductivity profile in PML....................................................... 38
3.3.1 Widely used conductivity profiles ....................................................................... 38
3.3.2 Closed-form expression for the reflection in 1-D FDTD .................................... 39
3.3.3 Closed-form expression for the reflection in 2-D FDTD .................................... 41
3.3.4 New proposition for the conductivity profile design........................................... 42
3.4 Ramahi’s complementary operators method (COM) ................................................. 43

4 Coupling probe models in FDTD................................................................................... 44
4.1 Simulation case: dielectric resonator antenna ............................................................ 44
4.2 Generalized model of a coaxial probe........................................................................ 45
4.3 Resistive voltage source model .................................................................................. 46
4.4 Improved thin-wire model.......................................................................................... 48
4.5 Symmetry considerations and future work................................................................. 50

5 Finite Element Method ................................................................................................... 51
5.1 Introduction ................................................................................................................ 51
5.1.1 Vector finite elements.......................................................................................... 51
5.1.2 Basic idea of FEM solution construction............................................................. 52
5.2 Trial and testing functions .......................................................................................... 53
5.3 Choice of basis functions ........................................................................................... 54
5.4 Field singularities ....................................................................................................... 56
5.5 Curved boundaries...................................................................................................... 56

6 Summary of publications ............................................................................................... 58

7 Conclusions...................................................................................................................... 60

Appendix................................................................................................................................. 61

References............................................................................................................................... 63



9

List of symbols and abbreviations

Symbols

a aid variable
),( ⋅⋅a bilinear form

B byte

B
r

magnetic flux density [T]

newB
r

updated value of magnetic flux density [T]

oldB
r

old value of magnetic flux density before updating [T]

c speed of light in medium [m/s]
c0 speed of light in vacuum, 2.9979⋅108m/s
ci expansion coefficient

D
r

electric flux density [C/m2]

ihuD )( approximation of derivative of u at a discrete point i

Dt central-difference approximation of time-derivative
Dx central-difference approximation of x-derivative

Bd
r

differential change of magnetic flux density [T]
dt differential time increment [s]

E
r

electric field intensity [V/m]
Ex x-component of E

r

 [V/m]
Ey y-component of E

r

 [V/m]
Ez z-component of E

r

 [V/m]
F representative field component
f frequency [Hz],

source function
fc cut-off frequency [Hz]
fi frequency as a design parameter in PML optimization [Hz]
fw bandwidth of a modulated Gaussian pulse [Hz]
f0 center frequency of a modulated Gaussian pulse [Hz]

H
r

magnetic field intensity [A/m]
Hx x-component of H

r

 [A/m]
Hy y-component of H

r

 [A/m]
Hz z-component of H

r

 [A/m]
Hzx x-part of split Hz in PML [A/m]
Hzy y-part of split Hz in PML [A/m]
H0 magnetic field intensity at a distance ∆/2 from the axis of an infinite wire

[A/m]
H1 space of functions whose derivatives up to the first order are square integrable
h edge length of a square cell [m],

height of a monopole  [mm]
i integer index

J
r

electric current density [A/m2]
j integer index,

imaginary unit 1−
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k integer index,
wavenumber [1/m]

kx x-component of wave vector [1/m]
ky y-component of wave vector [1/m]
kz z-component of wave vector [1/m]
L linear operator
L2 space of square-integrable functions
M mega = multiplication factor 106

M PML width parameter
N width of a representative structure in cells,

probe height in cells,
number of basis functions in a finite element basis

n integer index,
conductivity profile exponent in PML

O(ab) remainder or error term of the order of ab

P aid parameter in PML reflection coefficient formula
p time stepping order,

order of finite element basis
Q Courant-number in 1-D FDTD
Q2 Courant-number in 2-D FDTD
Q3 Courant-number in 3-D FDTD
R resolution parameter
R(θ) theoretical reflection coefficient
R2 resolution parameter in 2-D FDTD

R̂ resolution parameter
r distance to the origin in polar coordinates [m],

distance to the z-axis in cylindrical coordinates [m],
residual error function

ri radius of the inner conductor of a coaxial line [m]
ro radius of the outer conductor of a coaxial line [m]
S pseudodifferential operator )//()/( tsc ∂∂∂∂ ,

aid parameter in PML reflection coefficient formula
Si aid parameter in PML reflection coefficient formula
S11 return loss
s generic coordinate direction x, y or z [m]
sx complex parameter in UPML
sy complex parameter in UPML
sz complex parameter in UPML
T Gaussian pulse parameter,

aid parameter in PML reflection coefficient formula
Ti aid parameter in PML reflection coefficient formula
Ty Turkel-Yefet -algorithm
t time [s]
t0 Gaussian pulse parameter
U aid parameter in PML reflection coefficient formula
u representative field component,

solution of a generic linear equation
uh FEM solution
ui function value at a discrete point i
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ru
r

radial unit vector
V representative field component,

voltage [V],
solution space of a generic linear equation

Vh finite-dimensional space for the FEM solution
W aid parameter in PML reflection coefficient formula

W
~

aid parameter in PML reflection coefficient formula
xn points where values of a discontinuous permittivity function are interpolated
x±(n+1/2) collocation points of a discontinuous permittivity function
x0 expansion point of a function
Yi aid parameter in PML reflection coefficient formula
Z FDTD cell shape parameter
Zin input impedance [Ω]

cor
inZ corrected input impedance [Ω]

Z0 characteristic impedance [Ω]

α wave propagation direction with respect to positive x-axis [rad],
wedge angle [rad]

αi propagation direction as a design parameter in PML optimization [rad]
∆ FDTD cell edge length [m]
∆t time step in FDTD [s]
∆x x-directed cell edge length in FDTD [m]
∆y y-directed cell edge length in FDTD [m]
∆z z-directed cell edge length in FDTD [m]
δ PML thickness [m]
ε FEM solution error
ε permittivity tensor [As/Vm]
ε(r) permittivity function [As/Vm]
εr relative permittivity
ε0 permittivity of vacuum, 8.854⋅10-12 As/Vm
η0 wave impedance of free space, 376.73 Ω
θ angle of incidence [rad]
λ wavelength [m]
µ permeability tensor [Vs/Am]
µr relative permeability
µ0 permeability of vacuum, 4π⋅10-7 Vs/Am
ν singularity exponent
π 3.14159265358…
ρ reflection coefficient,

distance from vacuum/PML interface
σ electric conductivity [1/Ωm]
σH magnetic conductivity in 1-D PML [Ω/m]
σN normalized conductivity in 1-D PML
σN vector containing normalized conductivity values

E
iσ electric conductivity in PML [1/Ωm]
H
iσ magnetic conductivity in PML [Ω/m]
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N
iσ normalized conductivity in PML

σ(ρ) electric conductivity function in PML [1/Ωm]
σm maximum conductivity on the outer boundary of PML [1/Ωm]
σx electric conductivity parameter in PML [1/Ωm]

*
xσ magnetic conductivity parameter in PML [Ω/m]

σy electric conductivity parameter in PML [1/Ωm]
*
yσ magnetic conductivity parameter in PML [Ω/m]

σz electric conductivity parameter in PML [1/Ωm]
Φi expansion function
φj testing function
Ω Ohm = V/A,

domain
ω angular frequency [1/s]
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Abbreviations

ABC absorbing boundary condition
CEM computational electromagnetics
COM complementary operators method
CPU central processing unit
dB decibel
DRA dielectric resonator antenna
FDTD finite-difference time-domain
FEM finite element method
FFT fast Fourier transform
HUT Helsinki University of Technology
IEE The Institution of Electrical Engineers
IEEE The Institute of Electrical and Electronics Engineers, Inc.
Im imaginary part
MB megabyte
MoM method of moments
ORBC outer radiation boundary condition
PC personal computer
PCB printed circuit board
PEC perfect electric conductor
PMC perfect magnetic conductor
PML perfectly matched layer
PSTD pseudospectral time-domain
RCS radar cross-section
Re real part
RVS resistive voltage source
SAR specific absorption rate
TE transverse electric
TEM transverse electromagnetic
TLM transmission-line matrix
UPML uniaxial perfectly matched layer



14

1 Introduction

1.1 Computational electromagnetics in radio engineering

This thesis deals with the development of a selection of simulation techniques commonly
applied in radio engineering. The term “computational electromagnetics” (CEM) appearing in
the title of the thesis covers in the wide sense all numerical techniques applied to
electromagnetic problems, and it is the most suitable general frame of reference of this work.

Concerning CEM, even if we restrict our attention specifically to radio engineering problems,
there remains a multitude of computational techniques. Radio engineering is a very wide
area, and it is natural that no unique method covers all applications. At least two different
ways to approach and understand radio engineering concepts have developed: 1) the realm of
electromagnetic fields (loosely speaking, the physicist’s point of view), and 2) the realm of
circuits, currents and voltages (the engineer’s point of view). Both points of view describe
reality – they are conceptual constructions that allow us, however, to design devices for
practical purposes. To some extent, the choice of viewpoint is a matter of taste. However, the
physical simplifications inherent in circuit theory necessarily restrict its applicability, yet
making the solution of a given problem usually very efficient if applicable.

The computational techniques reflect the above-mentioned dichotomy. In this work, the point
of view is mainly 1), the field point of view. Thus, in this work, we rule out numerical
algorithms that are based on circuit theory. In field-based methods the circuit concepts may
be used to highlight analogies to circuit theory. This is especially true for the transmission-
line matrix method (TLM); circuit concepts are occasionally used also in this thesis.

Algorithms based on circuit theory simplify considerably the physics of a problem by
‘coding’ all relevant properties of a component (or a whole device) into a set of simple
parameters, typically neglecting e.g. the physical dimensions. The dimensions of a circuit
may be taken into account by connecting different parts using transmission-line models. If a
circuit model is satisfactory, a circuit simulator most often provides the fastest solution.
However, concerning distributed structures typical in radio engineering, such models are not
necessarily easily available. It has been pointed out in the literature [2] that classical circuit
design tools fail to model electromagnetic wave propagation properly along ground planes or
in the empty space surrounding the circuit, and therefore a full-wave simulator could be
inevitable in analyzing e.g. interference problems in printed circuit boards (PCBs).

Having adopted the field-approach, it is still possible to focus on several computational
methods. Three generally used methods in radio engineering are the Finite-Difference Time-
Domain method (FDTD), the Finite Element Method (FEM) and the Method of Moments
(MoM). FDTD and FEM involve solution of differential equations, while MoM involves
solution of integral equations. FEM can be utilized for the solution of integral equations as
well, and in fact MoM could be justifiably merged to the class of finite element methods.

Radio engineering cannot be uniquely classified in terms of frequency. Practical application
of the numerical techniques developed in this thesis presumes that the computational volume
spans typically a few wavelengths. The corresponding frequencies depend solely on the
length scales: the lowest resonance between the Earth and ionosphere is about 8 Hz - the
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resonance phenomenon can be modeled using e.g. FDTD. A microdisk resonator may operate
at 200 THz [3], while FDTD can again be used in the simulation. The research community’s
task is to find as many relevant applications as possible for a given method.

Finally, in order to be useful for a radio engineer, a numerical method must be able to model
material properties in the relevant frequency range, and at least a power source, sometimes
also lumped elements. There are significant differences between the suitability of FDTD,
FEM and MoM to different types of problems. Examples highlighting typical use of each
method could be radiation absorption in biological tissue for FDTD, resonance mode analysis
for FEM, and scattering from a perfectly conducting body for MoM. Generally, it seems that
FEM has lost some of its popularity in favor of FDTD in high-frequency electromagnetics.
Instead, MoM continues to be popular, especially in antenna engineering. Nevertheless, MoM
is not considered further in this thesis.

For the algorithms to be discussed in this work, we made the presumption of “a few
wavelengths” regarding the size of the computational domain. Towards lower frequencies
(sub-λ scales), the use of (non-radiating) circuit models is better justified. In low-frequency
problems not conveniently expressible as equivalent circuits (e.g. magnetic field in electric
motors), the field problem is usually reformulated as a quasi-static approximation. For such
problems, FEM is a suitable tool, rather than FDTD. Towards higher frequencies (details
many hundreds of wavelengths), we are entering into the realm of optics, where a statistical
collection of ‘rays’ can properly represent the operation of a system under consideration. The
popular ray-tracing method [4] used to analyze e.g. mobile phone reception is an example of
such quasi-optical methods applied in radio engineering. The highest electromagnetic
frequencies known belong to the realm of nuclear physics, where the particle-like nature of
photons is determinative, and classical field theory may not be appropriate.

Some computational methods are more specialized for solving purely radio engineering
problems, some others can easily be exploited by the analogies between physically unrelated
phenomena. A common factor of the techniques of this thesis, however, is always a wave.

1.2 Objectives of this study

Even though numerical methods have been applied for tens of years in electrical engineering,
development work continues with increasing intensity worldwide. The diversity of
applications of electromagnetic phenomena has been the source of more and more specialized
numerical techniques. In this thesis, an attempt is made to develop computational techniques
in such a manner that as much generality as possible is maintained, so that the proposed
developments could be applied to a wide variety of problems. Furthermore, to demonstrate a
typical numerical modeling process, a sample problem is discussed in [P3] and chapter 4 that
serves other research project carried out at the Radio Laboratory.

1.3 General remarks about modeling and numerical methods

The mathematical form of physical laws makes it possible to efficiently apply numerical
methods to describe real world phenomena. The fact that mathematics has proven to be a
reliable guide to our way of describing the physical world has literally revolutionized our
worldview and everyday life from the days of Galileo Galilei, one of the first scientists who
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clearly understood that “the laws of nature have been written with mathematical letters”.
Nowadays, we are so used to technology that we seldom pay attention to the philosophical
principles beyond it. Once electricity was invented and industrialized, it soon became an
apparent triviality: “electricity comes from a wall socket.”

A computer understands only plain numbers, not physical quantities. Usually an engineer
wants to interpret computed numbers in physical units. From the computer’s point of view,
this is done only for convenience, even though it may sometimes be misleading. One may get
the false impression that a computer program really “understands” the distinction between
e.g. small-scale and large-scale models, while in fact the program and the processed numbers
may be identical in both cases. Most materials show nonlinear behavior in extreme
conditions, but one must not think that this behavior is seen in a model just by making
dimensions smaller or intensities higher, if the nonlinear behavior is not specifically
implemented in the code. Everyone who applies numerical methods should be aware of the
assumptions and restrictions covering the algorithms.

To simplify terminology, let us define “numerician” as a person whose main task is to apply
methods of numerical analysis in engineering or scientific problems. He or she is found
somewhere between mathematicians, physicists and engineers. He or she is responsible for
expressing an engineering problem in physical terms, choosing or developing a numerical
method for the solution, writing and/or executing a code, and finally interpreting and
explaining the results. As complicated numerical modeling has, in many cases, become part
of the engineering design cycle, the number of numericians is large, even though they are
usually not called by that title.

Radio engineering, in particular, provides very interesting challenges for a numerician. From
the mathematical point of view, adopting the field-approach, many radio engineering
problems can be reduced to the problem of finding solutions to Maxwell’s equations in
different geometries, with different sources and different materials. Even though it may seem
to be a unified and a rather simple task, in fact it is not. Attempts have been made to unify the
modeling through commercial general-purpose computer programs, though with considerable
success. However, novel techniques providing improvements for a limited class of problems
are continually proposed by the modelers worldwide.

Numerical modeling in radio engineering has nevertheless matured to a highly useful level.
Quantities that can be extracted from a simulation are e.g. S-parameters, impedance of an
antenna or a microstrip line, radiation pattern, specific absorption rate values (SAR), mutual
impedance of antennas, resonant frequencies, current distribution, radar cross-section (RCS),
or virtually any quantity of interest. The difficult question is “What is the accuracy of the
computed results?” Fortunately, on our path to answering this question, there are problems to
which the exact solutions are known. Comparing computed results with the reference
solutions gives us an idea of the accuracy of the applied method. We are not ‘blind’ while
testing an algorithm; where standard algorithms are concerned, we know at least the
asymptotic behavior of the error. The problem is that the error formulae often contain
unknown coefficients, and the asymptotic behavior may not be seen with given resources.
Therefore, reference problems are very important ‘lighthouses’: to obtain a higher level of
reliability, a method should always be tested with a set of problems having known solutions.
In practice, an exact mathematical solution is only available for the simplest problems, and
quite often one has to rely on ‘best available’ reference solution, which is usually either a
measurement or another computed solution.
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Being able to give absolute bounds to an error in a nontrivial problem is a very happy
incident. Let us mention two examples. An inherent property of the FDTD method (to be
discussed later) is that a wave in the numerical model always propagates in a velocity less
than the physical velocity. This leads to a systematic shift of frequency domain results
towards lower frequencies. Therefore, while evaluating the resonant frequencies of a
resonator, the exact values will be approximated from below. Instead, using FEM, one can
show that the eigenvalues corresponding to resonant frequencies are always approximated
from above. Thus, the true solution is sandwiched between these two. The other example is
reported in [5-7], where the impedance of a transmission line is evaluated using FEM for the
solution of original and dual problems. Again, one of the formulations leads to approximation
from below, while the other leads to approximation from above.

Among the important contributions of numerical methods is that they can make the invisible
visible: nobody has ever seen a radio wave, but a simulation can make it possible.
Visualization is a very efficient tool in building intuitive concepts. The development of
computer technology has made the visualization generally feasible. There is also a possible
danger here: a user might be impressed by colorful pictures or movies even though they
might not make any sense. A quick look at a selection of related advertisements reveals that
visualization is indeed used as a marketing trick. A user must not be confused with the fact
that numerical modeling is one thing, and representation of the results through visualization is
another thing, secondary to the first.

The common ‘headaches’ met by every numerician are the following:

• What is the physical model? Usually a practical problem is too complicated to be
modeled completely, with every factor not even known beforehand. One has to decide
what the essential characteristics of a given problem are.

• Having chosen the physical model, one has to choose a relevant numerical method. Due
to inherent restrictions of the methods, one may have to compromise e.g. by inaccurate
description of the geometry of the physical model (staircasing errors etc.). From the
mathematical point of view, application of a numerical algorithm always introduces some
error such that the computed values only approximate the compromised physical model
that approximates the already idealized physical model. Only in exceptional cases can one
undoubtedly bound the error due to the discretization of the continuous model.

• Finally, based on simulations and experience, a real prototype is fabricated. The prototype
only approximates the intended physical model; in the fabrication process some unknown
uncertainty is always introduced.

• The measurement conditions of the prototype may differ from the real operating
conditions, due to measurement cables, weather, noise or other similar reasons.

In short, a numerical model approximates a compromised physical model that approximates
an actual physical model that is approximated by the prototype that approximates the final
product. A numerician has to live with approximations.

1.4 Contents of the thesis

In this thesis, two numerical methods are discussed that are widely used in radio engineering,
namely FDTD and FEM. FDTD covers roughly 80 % of the work, and FEM about 20 %.
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Reflecting this, there are three chapters devoted to FDTD and one to FEM. In these chapters,
the basics of the methods are briefly reviewed and references are given to literature. The
algorithm developments reported in papers [P1-P6] are explained, leaving most of the
technical details to the papers themselves. In the summary of the publications, each paper is
briefly introduced and commented on. Finally, in the conclusions chapter, the main
contribution of this work is collected, along with some proposals for future work.

The area of computational radio engineering is enormous, and it is impossible to include a
reference to all relevant topics treated in the literature. It is demonstrative that a recent survey
done by K. L. Schlager and J. B. Schneider of only FDTD literature [8] contained 496
references plus 68 references to novel application areas of FDTD. The growth in the number
of publications has been almost exponential during the 90’s. In the year 1996 alone, there
were at least 430 publications related to FDTD, and the rate must have grown further since
then. Schlager and Schneider had a cumulative catalogue of over 2300 FDTD-related
publications as of December 1997. A search in IEEE/IEE Electronic Library using search
terms “FDTD” or “FD-TD” yielded 1973 hits in October 2000 – the database contains
publications only from 1988 onwards. In this thesis, the literature is reviewed to an extent
suitable for constituting a background for the original work presented. It is possible to write a
working FDTD code based on the details given either in this thesis or in the references.

Concerning FEM and MoM, the number of related publications is also enormous. A similar
search in the IEEE/IEE Electronic Library yielded 1635 hits for “FEM” and 592 hits for
“MoM”. Already in the year 1977, Zienkiewicz mentioned the existence of close to 8000
FEM-related references [9]. Selected references relevant to this work are given.

The second part of this thesis contains the papers included. The scientific contribution of the
thesis is reported in detail in these papers.
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2 Finite-Difference Time-Domain method

The finite-difference time-domain method is a powerful yet a simple algorithm to solve
Maxwell’s equations in time-domain. FDTD was introduced first time by Yee in 1966 [10].
At that time computers had very limited capabilities in terms of core memory and CPU speed.
Furthermore, the number of computers was low, and computing time was luxury. This may
be the reason why FDTD did not get much attention for years; FDTD makes sense only if
sufficient computer resources are available. As it turned out, developing FDTD to a useful
level required significant effort from a large number of researchers worldwide.

Things started to change in 1975, when Taflove and Brodwin published their highlight paper
[11]. There are several merits of [11]: a) it recognizes the potential of FDTD to solve
complicated electromagnetic problems and wakes up interest towards FDTD; b) a working
absorbing boundary condition (ABC) is presented; c) a “modern” way to implement
transparent plane wave source is given; d) the stability criterion is correctly derived; e)
exploitation of problem symmetry is discussed. Since FDTD is treated in [11] more or less as
a competitor to traditional frequency-domain methods, the examples given involve only
sinusoidal excitation.

The first applications of FDTD were scattering and penetration problems. As increasing
number of researchers devoted themselves to the development of FDTD, more and more
applications of the method were found.

2.1 Standard FDTD algorithm

2.1.1 Discretization of Maxwell’s equations

The starting point of the FDTD algorithm is the differential form of Faraday’s and Ampere’s
laws, or Maxwell’s curl equations:
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where, as usual, E
r

 and H
r

denote the electric and magnetic field intensities, respectively, D
r

and B
r

 denote electric and magnetic flux densities, respectively, and J
r

 denotes electric
current density. In a basic discussion, we can assume linear constitutive relations,
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where 0µ  and 0ε  are the permeability and permittivity of vacuum, respectively, and the

dimensionless quantities rµ  and rε  are the relative permeability and permittivity of the

medium, respectively. For the moment, we assume that rµ  and rε  are scalar functions of
position, representing isotropic, possibly inhomogeneous, medium.

The philosophy behind FDTD is to interpret (1) and (2) as a way to ‘update’ the field
quantities appearing in the time derivatives. For example, Equation (1) can be read as “the
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time rate of change of B
r

 is equal to the negative of the curl of E
r

”. Hence, if we know the
curl of E

r

, we can compute an infinitesimal change of B
r

:
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If, furthermore, some initial value of B
r

 and a finite time step ∆t are chosen, we can perform
a single update step to B

r

:
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In practice, the number of vector fields is reduced to two by the constitutive relations (3).

Quite often E
r

 and H
r

are chosen as working variables.

In FDTD, an advantageous discretization of field quantities is chosen [10], resulting local
approximations of second-order with respect to the grid parameters. The spatial arrangement
of field components in the so-called Yee grid is depicted in Figure 1. Note that in a large grid,
there are six field component locations per unit cell. The E

r

- and H
r

- fields are defined at
time levels offset by ∆t/2. The following notation is used for any field component F, when
evaluated at a discrete point at a discrete time:

n
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where ∆x, ∆y and ∆z are the spatial increments of the grid, here assumed uniform throughout
the grid. Using this notation and Yee’s discretization, we can write the update step for Hx:

.//

½))½,,(/(

||||

||

2/1,,2/1,1,,2/1,1,2/1,

0

2/1

2/1,2/1,

2/1

2/1,2/1,





 ∆


 −−∆


 −

×++∆+=

++++++

−

++

+

++

yEEzEE

kjitHH

n

kjiz

n

kjiz

n

kjiy

n

kjiy

r

n

kjix

n

kjix µµ
(7)

Other components are updated similarly. Electric field update equations are slightly modified,

if the medium has finite conductivity σ, giving rise to volumetric current density J
r

.
Assuming an ohmic relationship between electric field intensity and current density, we can
write the Ampere’s law in the form

.0 HEEtr
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×∇=+∂ σεε (8)

In the discretization of (8), a quasi-implicit interpolation in the conductivity term is used:
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Figure 1. Yee’s unit cell.

The resulting equation is easily turned into an explicit time step. As an example, let us write
the update step of Ex:
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While writing (7) and (10), we have emphasized that the material parameters εr, µr and σ are
allowed to be functions of position, yet not complicating the modeling of inhomogeneous
problems. Running an FDTD program is essentially nothing but repeatedly updating the field
values according to Equations (7) and (10) (and similar update steps for the other
components), and recording desired field quantities during the simulation.

Even though the update equations involve only the time-dependent Maxwell’s equations, the
discretized divergence equations will be automatically satisfied, that is, the FDTD algorithm
introduces no artificial sources [12].

2.1.2 Spatial grid, time step and computational burden

While defining an FDTD model for a given problem, one has to choose proper grid
parameters. There are two rules that restrict this choice: (i) the spatial increment must be
small enough to resolve the shortest wavelength well enough. A rule-of-thumb is that the
shortest wavelength must correspond to at least five unit cell diagonals. (ii) Any geometrical
detail must be represented well enough by FDTD cells. Another rule-of-thumb is that the
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smallest geometrical dimension should be divided into at least two or three cells. The final
choice of the grid parameter is the more restrictive of these two.

Once spatial increments are chosen, the time step is bounded from above via a stability
condition [11]:

( ) ,/1/1/1
1

222
−

∆+∆+∆≤∆ zyxct (11)

where c is the highest wave propagation velocity in the problem, usually the speed of light in
vacuum. Since a shorter time step does not improve the accuracy, one usually chooses a value
for ∆t that is close to the stability limit. The corresponding coefficient is frequently called the
Courant-number.

After definition of grid parameters, one can estimate the computational burden [13]. For an
inhomogeneous problem with finite conductivity, there are six real variables (field variables)
and nine 1-byte integers (material parameter indexes) to be stored for each cell. A typical
problem comfortably solvable by a present day PC spans, say, 100×100×100 = 1.000.000
cells. If one uses double-precision arithmetic (8 bytes/word), such a problem requires about
(6×8B + 9×1B) ×1M = 57 MB of memory. There is certain overhead due to a number of
auxiliary variables, but one easily gets an idea of the order of the resources needed.

2.1.3 Excitation

Special attention has to be paid to the excitation of the FDTD simulation. Application of
update equations makes sense only if either some initial conditions are given, or if energy
source is applied. Since nontrivial initial conditions cannot usually be specified, the system is
most often excited by a source.

There are many case-dependent source models available. The simplest one is the so-called
hard source: some field components at some locations are given pre-defined values in time-
domain, while the other field values are updated normally. The problem of the hard source is
that any reflected wave returning back to the source will be perfectly re-reflected – hence the
name.

To make the source transparent for the reflected waves, the system can be excited using an
additive source term [11]. Since the source is totally separated from the field interactions, it
can be placed inside a structure yet not forming part of it [14].

Exciting a single electric field component at one location represents a Hertz dipole. To
simulate a magnetic dipole, one can correspondingly excite a single magnetic field
component. Such point sources are sometimes useful in theoretical considerations, but most
practical problems involve more complicated source fields. One frequently used source
model is a plane wave source, already used in the very first applications [11]. In the simplest
case, one can produce a plane wave by choosing field locations along a line parallel to some
of the coordinate directions, and applying the added source technique. This can be
generalized easily to diagonal directions also. A plane wave propagating in arbitrary direction
can conveniently be realized as follows: one can separate the incident and scattered fields (in
linear media), and use FDTD equations only to the scattered field, provided the incident field
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is known analytically [13]. This is especially useful in pure scattering problems, like radar
cross-section (RCS) calculations.

Considering transmission lines, to excite a certain propagation mode, one must first find out
the transverse field distribution, at least approximately. For many simple transmission line
structures, like a microstrip line enclosed in a waveguide, the excitation can be done as
follows: a 2-D FDTD is used to find the cut-off frequencies of the modes of interest [15-17].
Next, the simulation is repeated with a uniform excitation profile, and a Fourier-transform is
performed at the cut-off frequencies for all field locations. The field profile is then extracted
from the Fourier transforms [O7]. A simplified method is to excite an approximate transverse
field, and let the wave propagate some distance along the line before reaching the actual
scattering structure. There are cases supporting the conception that a quite rough
approximation of the field profile suffices, and the source can therefore put very close to the
scatterer [14].

Another important excitation case is the modeling of a coupling probe formed from an
extension of the inner conductor of a coaxial cable. This type of feed is common in antennas.
There are several modeling options, of which two common are: a) modeling the source as an
equivalent delta-gap [18], and b) modeling the coaxial cable as a separate 1-D structure and
connecting it to the FDTD volume using a special technique [19,P3]. Closely related to a), the
so-called resistive voltage source simulates also the feed port impedance, being otherwise
similar to the delta-gap [2,20,21]. The feed models are discussed further in Chapter 4.

Since FDTD is a time-domain method, one usually specifies the time variation of the
excitation as a Gaussian pulse containing a wide frequency band. If preferred, sinusoidal
excitation may also be used. Once the time step ∆t, center frequency f0 and bandwidth of the
pulse fw are chosen, a proper temporal discretized waveform u(n) of the excitation is
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2.1.4 Boundary conditions

Some boundary conditions must be applied on the outer boundary of the FDTD volume. In
most cases it is one of the following: (i) perfect electric conductor (PEC) or electric wall,

1−=ρ ; (ii) perfect magnetic conductor (PMC) or magnetic wall, 1+=ρ ; (iii) absorbing
boundary condition (ABC), ρ = 0. PEC is used to represent ideal conductors; PMC may be
applied on symmetry planes to reduce the size of the computational volume. ABC is used to
absorb outgoing waves, and it is sometimes called outer radiation boundary condition
(ORBC).

The most challenging boundary condition is ABC. It is needed to simulate an infinite open
space, to prevent outward going waves reflecting back to the solution region. Usually one
cannot choose the simulation volume so large as to causally isolate reflections from the outer
boundary from the solution region. There is a multitude of ABC’s for FDTD algorithm
available. Two common ABCs are the Mur absorbing boundaries [22] and Berenger’s
Perfectly Matched Layer (PML) [23]. In short, Mur ABC is extremely simple to implement
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while still providing satisfactory absorption for a great variety of problems. Berenger’s PML
requires considerable enlargement of the computational volume, but is essentially frequency-
independent, superior to most ABCs and rather easy to implement, too. Most often, if
computer memory and ease of programming is determinative, one uses Mur ABC; otherwise
the choice is PML. ABCs are discussed in more detail in Chapter 3.

Many structures are only partially open; the structure may contain an infinite ground plane, it
may be enclosed inside waveguide walls, it may have a plane of symmetry where PMC is
applicable etc. In these cases ABC has to be implemented in only some of the bounding
surfaces. This may make for example PML a much less expensive choice. For instance,
consider a structure spanning 100×40×20 = 80.000 cells. A typical PML requires extension of
the volume by 10 cells on each boundary. If the problem is totally open, a PML
implementation requires 120×60×40 = 288.000 cells = 3.6×size of the original problem. If,
instead, the structure is enclosed in a waveguide such that only the ends in the longitudinal
direction are open, the PML implementation would require only 120×40×20 = 96.000 cells =
1.2×size of the original problem.

In FDTD terminology, “boundary conditions” means usually the outer boundary conditions.
Of course, material interfaces are also boundaries, and some boundary conditions have to be
applied to connect each side of the interface. These conditions can be implemented in a very
simple manner. Referring to Figure 1, it is advisable to arrange the FDTD lattice such that the
electric field components are tangential to the interfaces. Since the physical boundary
condition requires continuity of the tangential electric field, this requirement is automatically
satisfied by this arrangement. To update the tangential electric field components at the
interface, one has to average the relative permittivities on each side [24].

2.2 On the accuracy of the FDTD algorithm

2.2.1 Second-order accurate differences

The arrangement of field components in Yee cell (Figure 1) allows using central differences
in the discretization of the spatial derivatives in the Maxwell’s equations. Also, the electric
and magnetic field components are interleaved by half a time step, in order to apply central
differences in the time derivatives.

A basic analysis of the accuracy of the finite differences is based on Taylor expansions of the
field quantities. Suppose u is a representative field component. We have the following
expansions:
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Subtracting and dividing by ∆x:
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Following the notation (6), we thus write the approximation to the derivative at point i:
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From the remainder term in (14), we see that the local error of the approximation (15) is
proportional to ∆x2. Accordingly, the local error in the approximation of the time derivative is
proportional to ∆t2. It follows from the Lax-Richtmyer equivalence theorem that if the
algorithm is stable (that is ensured by the stability condition (11)), then the difference
between the exact and numerical solutions is of the order O(∆x2)+O(∆t2) in a suitable norm at
all time steps [8, p. 64]. Hence, FDTD is called a second-order algorithm. Note that this
statement is based on the assumption of proper smoothness of the solution.

2.2.2 Numerical dispersion

For a fixed cell size, different frequency components of a wave propagate at slightly different
velocities. This phenomenon is called numerical dispersion, and it is inherently present in the
FDTD algorithm. Furthermore, velocity depends also on the angle of propagation with
respect to the coordinate axis. The latter is sometimes called numerical anisotropy, but
usually these two effects are combined in the single term “numerical dispersion”.
Incidentally, waves propagate in the numerical grid always at a velocity less than the physical
velocity.

The basic effect of numerical dispersion is that it produces a cumulative phase error that is in
general difficult to predict, even though bounds can be calculated. In sinusoidally excited
simulations, the phase error may distort the results significantly, e.g. if the operation is based
on phase cancellation. In wide-band simulations, numerical dispersion appears as a shift of
frequency domain results towards lower frequencies.

The analysis of numerical dispersion is rather easy, and is based on application of FDTD
equations to a representative plane wave. The dispersion is best expressed as the numerical
dispersion relation [P1]:
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where (kx, ky, kz) is the numerical wave vector. Equation (16) can be solved for numerical
wave vector using Newton iteration.

From (16) we see that numerical dispersion relation approaches quadratically the physical
one, as the grid parameters are decreased, manifesting the second-order nature of the
algorithm. In order to keep the numerical dispersion small, one has to choose small enough
grid parameters, with respect to smallest wavelength considered. For cubical cells, resolution
λ = 10∆x assures that the maximum dispersion error is less than 1.15 %. Resolution λ = 20∆x
reduces the maximum error to 0.28 %. For non-cubical cells the dispersion is more severe.

Section 2.4 deals with a dispersion error cancellation procedure developed in [P1].

2.2.3 Errors in quantities obtained via FFT

The frequency-domain information is efficiently obtained from an FDTD simulation via the
application of fast Fourier transform (FFT) to the time-domain response. A few points need
special attention, while interpreting the frequency-domain results. The most important is the
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effect of truncating a signal; FDTD simulations involve a finite number of time steps, and in
practice the simulation is truncated after a suitable criterion is met. Such criterion may be for
example sufficient dissipation of energy via losses or radiation. In practice, the monitored
signal is never completely died off. Truncation of a non-zero signal corresponds to high-
frequency noise that may be aliased to the desired band. An estimation of this noise is given
by the ratio of truncated amplitude to the maximum amplitude of the signal.

Basically the same applies, if one improves the resolution in frequency-domain via so-called
zero-padding, i.e. artificial lengthening of the signal by a suitable number of zeros, usually to
make the signal length equal to some power of two. Ideally, if a signal has compact support
in time-domain, i.e. if it is exactly zero after a finite number of time steps, zero-padding does
not introduce any error, but if the signal is suddenly switched off, truncation noise will occur.
Therefore, zero-padding can only be used for sufficiently damped responses.

As a final point, the dynamic range of the computer arithmetic plays sometimes a crucial role,
especially if single-precision arithmetic is used. Consider the following fictitious example:
only the fundamental mode is to be excited in a waveguide containing discontinuities. The
discontinuities excite higher-order modes. We do not want these higher modes to propagate
down the guide. The spectral components of the excitation at and close to the cut-off of the
fundamental mode will remain ringing, causing truncation noise. Therefore, the excitation
must be designed such that the spectral components are low enough at first cut-off, say –100
dB below maximum. Also, the propagation of higher modes will be suppressed by designing
the spectral components low enough at the cut-off of the 2nd mode, say –100 dB again. Since
the dynamic range of single-precision arithmetic is about 140 dB, we have only about 40 dB
dynamic range in our simulation at frequencies close to the cut-offs.

2.2.4 Cases where accuracy is reduced

The accuracy of FDTD is not always of second order. Optimal convergence assumes certain
smoothness, namely that third derivative of the solution is bounded. This requirement is not
met, for example, on the interface between two dielectrics; in this case, however, if the
material parameters are averaged on the boundary [24], overall second-order accuracy is
recovered.

Field singularities also reduce the smoothness of the solution. Consider a fin line [25]
depicted and schematically discretized in Figure 2. Close to the tips of the fins, the transverse
fields are singular and behave as 1/r1/2. Simulation tests with the structure reveal that the
convergence rate is clearly reduced to first order. Figure 3 shows the relative error of the cut-
off frequency of the lowest TE-mode as a function of grid parameter. The reference result is
obtained using FEM equipped with singular basis functions [P6].

Sometimes the error related to staircasing of a smooth structure results in reduction of
convergence rate. In [26], Harms et al. study the resonant frequencies of a circular cavity
using both conventional FDTD and a nonorthogonal modification. They find that staircasing
reduces the order of convergence of resonant frequency to approximately h1.5, where h
represents the cell size. Turkel reports in [8, Chapter 2] results related to circular annular
region, and the staircasing is seen to yield first-order convergence in L2-norm. Note,
however, that the error measure is different in these cases.
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Figure 2. Crosscut of a fin line supporting transverse field singularities.
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Figure 3. Relative error of the lowest cut-off frequency of the fin line shown in
Figure 2 as a function of grid parameter.

A ‘pathological’ combination is a circular fin line, where both staircasing and field
singularity are present. The exact cut-off frequencies are analytically known, and Figure 4
presents the relative error as a function of grid parameter. For comparison, the corresponding
error of an empty circular waveguide is also plotted. We see that the convergence rate is
again essentially linear. The nonmonotonic convergence for large values of h is due to
coarseness in the approximation of the geometry of the circular disk.

Linear convergence limits severely the obtainable accuracy: in 2-D problems, computational
burden is proportional to 1/h3, and linear convergence implies that gaining one order of
magnitude in the accuracy would require 1.000-fold work, to be compared with the usual 32-
fold work of second-order convergence. The corresponding numbers in 3-D problems are
10.000 versus 100. To restore second-order convergence, there is a wide selection of
variations of FDTD that take into account curved boundaries [27]. A good review is
presented in [28]. Modifications for the field singularity problem are found in e.g. [25,29].
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Figure 4. Relative error of the lowest cut-off frequency of a circular fin line and a
circular waveguide as a function of grid parameter.

2.3 High-order methods

There are schemes where the local truncation error is higher than second order with respect to
grid parameters, thus expecting better accuracy. A good review of high-order methods is
given by Turkel in [8, Chapter 2]. High-order finite differences belong to classical numerical
analysis, but their use in the solution of electromagnetic problems is a rather new subject. Of
the early works that are clearly FDTD-type let us mention [30] and [31]. Here, we review
high-order algorithms briefly and discuss the possible advantages over standard FDTD.

2.3.1 Fourth-order accurate spatial derivatives

Due to large number of field variables and time steps involved, any 3-D time-domain
algorithm must be essentially explicit. One cannot afford inversion of a very large system of
equations during each time step, apart from tridiagonal systems, whose inversion requires
only a linear amount of operations. A tridiagonal compact implicit scheme has been
introduced by Turkel and Yefet [32], and independently by Young et al. [33]. In this scheme,
the approximations of spatial derivatives are obtained through a fourth-order accurate implicit
equation compatible with the Yee’s stencil:
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Solution of (17) for ( ) niuD ih ,...,2,1 , =  involves a tridiagonal system of equations per grid

line, so the workload is acceptable. The spatial derivative operator defined by (17) is called
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Ty-operator of order four. If the associated time stepping scheme is of order p, then the
corresponding FDTD algorithm is called Ty(p,4).

2.3.2 Derivatives on the outer boundary

Even though scheme (17) uses exactly the same finite differences than standard FDTD, outer
boundary treatment requires special attention, because system (17) must be closed. For that,
Turkel proposes an implicit fourth-order one-sided approximation of the derivatives on the
boundaries [32]:
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The resulting closed system of equations can easily be manipulated back to tridiagonal form.

Gustafsson has proved [34] that the overall accuracy is not reduced, if the approximation
scheme is one order less accurate on the boundary, as compared to the inner domain.
However, if one applies the simple second-order accurate FDTD approximation to the
derivative on the boundaries, then the global accuracy is reduced to third order. Concluding,
use of (18) is recommended.

2.3.3 Time stepping

To approximate the temporal derivatives in the Maxwell’s equations, one can choose either
the standard second-order leapfrog time stepping scheme (Ty(2,4)-algorithm) or some fourth-
order scheme (Ty(4,4)-algorithm). The fourth-order time stepping schemes are realized either
using the classical Runge-Kutta integration, or using the Maxwell’s equations themselves to
convert time derivatives into space derivatives.

Generally, in a numerical algorithm, the error sources should be well balanced. In fourth-
order FDTD algorithms the error is proportional to O(∆tp)+O(∆x4), where p is the time
stepping order. We see that in a (2,4)-algorithm we have a control over the time discretization
error simply through the time step. Contrary to the Yee’s algorithm, the optimal choice of the
time step is much less than required by the stability criterion. In Ty(2,4) the optimal time step
in 2-D is seen to be about ∆t = ∆x/(18c0) [32]. For Ty(4,4) the optimal time step is about ∆t =
∆x/(4c0). It turns out that the resulting accuracy of Ty(2,4) and Ty(4,4)-algorithms is
comparable. The workload is about the same, because Ty(4,4) involves four-stage Runge-
Kutta integration, and therefore the effective optimal time step in Ty(4,4) is ∆t = ∆x/(16c0).

Since more storage and complexity is needed to implement the Ty(4,4)-algorithm without any
essential improvement over the simpler Ty(2,4)-algorithm, the latter is highly preferred.
Furthermore, it is more compatible to the existing FDTD codes. These reasons have resulted
in relative success of (2,4)-algorithms in the research community.

A peculiar observation is that the energy fluctuations in Yee’s FDTD are much smaller than
in Ty(2,4)-algorithm. Reducing the time step reduces the fluctuations in Yee’s FDTD but not
in Ty(2,4). This phenomenon is anticipated being related to unequal orders of convergence
with respect to space and time.
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2.3.4 Material interfaces

Discontinuous material parameters are an essential feature of most of the practical simulation
problems met in radio engineering. Material interfaces reduce the smoothness of the field
quantities.

In fourth-order algorithms, there are at least two ways of treating material interfaces, [8,
Chapter 2] and [35]. In [8], related to Ty(p,4)-algorithms, the discontinuous ε(r) is replaced
by a smooth implicit interpolation of ε(r). This results in change of the whole ε(r), not only at
discontinuities. However, the change is very small far from the discontinuity, see Figure 5.

In [35], the algorithm involves wider stencils than Ty(2,4), and the field values next to the
material interface are manipulated at each time step to enforce proper smoothness to the
solution. Both [8] and [35] report improved accuracy of the results compared to simple
arithmetical averaging of the material parameters. In [8] it is justified that the implicit
interpolation preserves the basic fourth-order accuracy of the Ty-algorithm, at least in the
cases studied.

In other words, even though the physical field quantities have reduced order smoothness, it is
advantageous to enforce additional non-physical smoothness to the numerical solution.
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Figure 5. Smoothing of material discontinuity by implicit interpolation.

For 1-D problems, the implicit interpolation is a simple matter. Things get much more
involved as the dimension of the problem increases. Especially in general 3-D problems, to
find the interpolated material parameters, one has to solve a system of equations having
essentially as many unknowns as there are field variables. Although the system is rather
sparse, this may still be a prohibitive factor. Therefore, more research work is desired to find
efficient ways to solve inhomogeneous problems using fourth-order algorithms.
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2.3.5 Discussion

The high-order methods, especially the Ty-class methods, have been developed to reduce the
large number of field variables in an FDTD simulation, while maintaining the accuracy. Of
these methods, the Ty(2,4)-algorithm resembles most the standard FDTD scheme, using
identical time stepping and same stencils for the spatial derivatives.

There are two main reasons to expect that the Ty(2,4)-algorithm (or any other so far known
high-order method) will not replace the standard FDTD in general use. First, the grid
parameter is frequently determined by geometrical considerations, not by the wave
resolution, and therefore it may not be feasible to increase the cell size. If the wave resolution
is already good, the use of a high-order method only increases algorithm complexity and code
execution time. Other modeling approximations usually dominate the total error in such cases
(see Section 1.3) and, hence, the improved accuracy will probably be covered by more
dominating error sources. Second, compared to standard FDTD, a consistent treatment of
discontinuous material parameters is much more elaborate, especially in 3-D problems.

The advantages of the high-order methods, when feasible, are undisputable. Therefore,
related research work of the CEM community is desired to find out how these advantages
could best be exploited.

2.4 Reduction of numerical dispersion in FDTD

2.4.1 Numerical dispersion as a measure of accuracy

Numerical dispersion and dissipation are characteristic properties of any finite difference
algorithm for wave-like equations. They describe how the algorithm preserves waveform
shapes. Qualitatively, for a pulsed waveform, dissipation appears as smoothening and
dampening of the waveform, while dispersion appears as widening of the pulse; numerical
anisotropy causes spherical waveforms to become slightly cubical. FDTD algorithm is
conservative which means that no dissipation is introduced by the algorithm itself. Therefore,
numerical dispersion alone describes the wave transport properties of the FDTD algorithm.
To the author’s understanding, dispersion error is the best problem-independent measure of
the accuracy of FDTD. One must note, however, that good wave transport quality does not
necessarily imply good ability to manage field singularities or some other peculiarities, but at
least the contrary holds: poor transport quality implies practically always poor accuracy in
any measure. Therefore, small dispersion error is a necessary condition of a useful algorithm.

2.4.2 Low-dispersion algorithms

In the research community, effort has been made in developing low-dispersion FDTD
algorithms. In [36], several of the recent approaches are compared, including [32,37-41]. The
method in [37] is based on wavelet expansions while [38] involves a high-order method
similar to [32]. Paper [39] introduces a modified finite difference operator where the
approximation error is minimized at a given design frequency. Paper [40] and a subsequent
paper [42] present an FDTD algorithm involving two overlapping grids, resulting highly
isotropic dispersion characteristics of the lattice. Paper [41] involves an error cancellation
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procedure quite similar to [P1], which is discussed in more detail in Section 2.4.3. In [8,
Chapter 4], Gedney et al. show that numerical anisotropy can greatly be reduced by using
triangular mesh, instead of rectangular.

Especially innovative is the so-called pseudospectral time-domain (PSTD) method by Liu
[43], where the spatial derivatives are computed using FFT. The dispersion error is entirely
controlled via the size of the time step, and is reduced asymptotically faster than any
polynomial of ∆t. Using perfectly matched layers (PML), Liu has circumvented problems
associated to the inherent assumption of periodicity of the structure, thus making the method
much more attractive. The spatial resolution in PSTD can be dropped to the Nyquist limit, i.e.
two cells per wavelength. The method itself needs further development to properly model
material inhomogeneities. An attractive application of PSTD could be the evaluation of field
distribution in a large 3-D domain – say in an office room – due to a radiating source. Such
studies have been performed for 2-D building models using a high-order FDTD [38].

2.4.3 Reduction of numerical dispersion through anisotropy

As argued in Section 2.3.5, it seems probable that the basic FDTD algorithm will be generally
used also in the future, despite the new algorithms. The standard way to control numerical
dispersion is via the density of the grid. Paper [P1] describes a new approach to partially
compensate the dispersion error. It is demonstrated in [P1] that unequal grid resolution along
different coordinate directions (∆x ≠ ∆y) influences numerical dispersion significantly. In
such cases the proposed reduction scheme provides most remarkable improvement.

In the following, we separate conceptually numerical dispersion into numerical anisotropy
(direction dependence) and actual dispersion (frequency dependence).

The starting point in the study [P1] is that an FDTD lattice resembles anisotropic medium,
because the phase velocity depends on direction. Note, however, that this is not the only
property of anisotropic media. In general, each direction in an anisotropic medium supports
two different propagation velocities, corresponding to two eigenpolarizations. Thus, an
arbitrary wave will be split into two independent wavefronts in anisotropic medium [44].

The following question arises: is it possible to choose the medium anisotropy parameters such
that the numerical anisotropy would be cancelled, and the resulting model would represent
isotropic free space? It turns out that in a sense optimal anisotropy parameters can easily be
found for fixed frequency, requiring only few lines of Matlab for a 3-D problem, given in the
Appendix (code “comp3d”). The eigenpolarization splitting can simply be avoided by setting
the relative permittivity and permeability tensors equal [P1]. The cancellation has been
realized via diagonal anisotropy tensors; the anisotropy parameters appear in only a few
update constants. In other words, the cancellation does not increase the computational
burden.

Unfortunately, perfect cancellation is not possible with this approach. However, the
parameters are designed such that the maximum dispersion error is minimized over all angles
of propagation, and the average error over all angles is approximately zero. Therefore, an
additional possibility to error cancellation via reflections takes place.
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Closer examination reveals that deviation from cubical cell shape makes the dispersion error
much larger. As an example, let us consider a 2-D problem. Let us define the grid resolution
measure as the square root of the number of cells per area in units of λ2, or

./ˆ yxR ∆∆= λ (19)

Note that a non-standard resolution measure is used in [P1]. Here, instead, R̂  reduces to the
standard resolution measure if ∆x = ∆y. Table I shows the maximum dispersion error for R̂  =
10 and a number of different cell shapes. The maximum error using the dispersion reduction
and an error reduction factor are also given. Table II shows corresponding numbers for R̂  =
20. It is obvious that the reduction is most significant for highly deformed cells.

TABLE I. Maximum dispersion error with and without dispersion reduction as a

function of cell shape for fixed grid resolution R̂  = 10. Stability coefficient = 0.99.
∆x/∆y max error without

reduction
max error with

reduction
Error reduction

factor
1 0.87 % 0.42 % 2.06
2 2.82 % 0.53 % 5.32
3 4.91 % 0.72 % 6.86
4 7.10 % 0.92 % 7.69
5 9.45 % 1.14 % 8.27

TABLE II. Maximum dispersion error with and without dispersion reduction as a

function of cell shape for fixed grid resolution R̂  = 20. Stability coefficient = 0.99.
∆x/∆y max error without

reduction
max error with

reduction
Error reduction

factor
1 0.21 % 0.10 % 2.04
2 0.67 % 0.13 % 5.18
3 1.14 % 0.17 % 6.57
4 1.60 % 0.22 % 7.21
5 2.05 % 0.27 % 7.55

A few 3-D examples given in [P1] demonstrate that the reduction parameters improve the
accuracy in a reasonable band around the design frequency. Surprisingly, simulation
experiments suggest that the optimal design frequency should be at the low end of the desired
band, instead of center. It can be shown that if one designs the reduction parameters at
frequency f0, then the maximum dispersion error at all frequencies higher than f0 will be less
than in the standard FDTD. Towards lower frequencies, however, below a certain frequency,
the standard FDTD will eventually have less error. This explains qualitatively the above
experimental observation.

Inhomogeneous problems can also be treated straightforwardly. The change of wavelength
and Courant-number in different dielectrics has to be taken into account, but otherwise the
reduction parameters are simply averaged at material interfaces.
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3 Absorbing boundary conditions in FDTD

Virtually all FDTD simulations require use of absorbing boundary conditions (ABC).
Therefore, being of fundamental importance, it is natural that the subject has been under
widespread examination from the early days of FDTD. In the following sections, we briefly
review the most common ABCs, paying special attention to the perfectly matched layer
(PML) and the original work contained in this thesis.

Some practical cases, where ABCs are not needed, are the following: a) 1-D simulations,
since the computational volume can usually be made sufficiently large to prevent any
reflections from the outer boundary to interfere with the solution region; b) closed resonators
and c) compact 2-D FDTD waveguide models [16].

3.1 Traditional local ABCs

Next, we list the traditional local ABCs used in FDTD, and highlight some of their properties.
The listing follows the guidelines given in [45, Chapter 7] in condensed form. The so-called
global ABCs never enjoyed much popularity in FDTD, because they involve very expensive
integration of fields during each time step.

3.1.1 Bayliss-Turkel ABC

The Bayliss-Turkel ABC [46] can be applied most naturally in spherical coordinates.
Technically, it is a differential operator that annihilates a number of terms in a series
expansion of the outgoing field. The form of the annihilator resembles that of the
Sommerfeld radiation boundary condition, but the Bayliss-Turkel operators are enhanced to
annihilate not only 1/r-terms, but also higher-order terms. The order of the operator can be
taken as a parameter. Usually a second-order operator is used, providing remainder terms of
the order 1/r5.

With moderate modifications, the Bayliss-Turkel operator can be applied also in cylindrical
coordinates, but unfortunately the application in Cartesian coordinates is not feasible. The
practical realizations are reported to provide reflections on the order of –40 dB [45].

3.1.2 Engquist-Majda operator and Mur ABC

Engquist and Majda developed a famous pseudodifferential operator allowing wave
propagation in only one direction [47]. Theoretically, the ABC based on Enquist-Majda
operator is perfect for dispersionless media. The difficulty lies in the realization of the
pseudodifferential operator. Many subsequent practical ABCs involve different
approximations of the operator

./  where,1 2
tscSS ∂∂=− (20)

Above, c is the speed of light, and s represents x, y or z. Approximating (20) by polynomials
of S results in realizable algorithms. The simplest approximations are based on Taylor
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expansion, and efficiently implemented in FDTD by Mur [22]. The second-order Mur is a
notable simple ABC and a preferred choice if extremely good absorption is not crucial.

3.1.3 Trefethen-Halpern ABC

Basically, the proposition of Trefethen and Halpern [48] is just a more general approximation
of (20) via rational functions. Such an approximation can be chosen to interpolate (20) at a
number of points. It turns out that these points correspond to certain incident-wave angles,
where perfect absorption is theoretically obtained. One can increase the number of the exact
absorption angles by making the approximation order higher. However, a high-order
approximation results in increased algorithm complexity.

Trefethen-Halpern ABC has been tested in actual numerical experiment [45], revealing that
the theoretical performance is not realizable. Moving from second-order algorithm to a third-
order one improves the absorption, but not significantly. It seems that reflection level of
about 1 % cannot be made smaller using this approach, probably due to numerical dispersion.

3.1.4 Higdon ABC

Higdon differential annihilator [49] is designed to annihilate a set of propagating plane
waves. Higdon demonstrated that his operator is a further generalization of the Trefethen-
Halpern operator. In Higdon method, the angles of exact (theoretical) absorption are set by
the user as principal parameters. A distinct merit of Higdon ABC is that the FDTD realization
involves only stencils normal to boundaries. This considerably simplifies the more involved
Trefethen-Halpern ABC.

Unfortunately, the realized reflection level of Higdon ABC is of the same 1 % order than
obtained using the previous methods. There is one promise, however, to improve Higdon
ABC: the differential operators involve explicitly phase velocity of waves. If one uses the
numerical phase velocity, determined by the numerical dispersion relation, the performance
could possibly be enhanced.

3.1.5 Liao extrapolation

Another proposition for an ABC is given by Liao et al. [50]. As interpreted in [45], the Liao
ABC can best be understood as a simple extrapolation of the fields inside the computational
domain to the outer boundary. In the extrapolation, several time levels and several spatial
points inside the computational domain are involved to efficiently perform the extrapolation.
The extrapolated value is then used in normal manner in the update equations.

In numerical simulations, Liao ABC is seen to fulfill its theoretical performance better than
Trefethen-Halpern or Higdon ABCs. The reflectivity of a three-time-level Liao ABC is
reported to be much less than any of the computationally comparable versions of the other
ABCs discussed so far, and about 20 dB less than second-order Mur [45].
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3.1.6 Mei-Fang superabsorption

Mei and Fang proposed a method [51] to enhance the absorption of any existing local ABC.
In other words, they did not propose a new ABC, but described an error cancellation
procedure that involves application of the underlying ABC (Mur, Higdon or Liao, for
example) to both electric and magnetic fields on the outer boundary. Due to the similar action
of the ABC for both field components, this action can be extracted and cancelled. Mei and
Fang reported about 10 dB typical enhancement in the reflectivity of the underlying ABC.

3.1.7 Conclusion

Concluding, the classical ABCs applied in FDTD give a reflection level roughly 0.5 %…5 %.
To be comparable with high-quality anechoic chambers, an enhancement of at least 40 dB is
necessary. Until the invention of the perfectly matched layer, to be discussed next, this
limitation was among the most severe concerning FDTD simulations. Note that numerical
dispersion in part seems to prevent advantageous use of high-order local ABCs. The ABCs
based on differential operators had really reached a deadlock.

3.2 Perfectly Matched Layer (PML)

The idea of a perfectly matched layer originates most probably from the physical absorbers
commonly used in microwave engineering: the solution region is surrounded by properly
designed lossy material layer. As early as 1975 Taflove and Brodwin touched upon the ABC
based on this concept [11], but at that time an absorption layer appeared too expensive in
terms of computer storage. Also, Taflove and Brodwin realized the predictable problems
related to impedance mismatch of free space and the absorbing layer. Berenger’s far-reaching
idea was to perfectly match a lossy layer to free space by splitting field components into two
parts and non-physically associating independent conductivities to each part [23]. The
discussion in this section follows the general lines drawn in the more comprehensive survey
on PML given in [8, Chapter 5].

3.2.1 Original formulation

In 2-D TE case, the equations governing the original PML are the following [23]:

),(0 zyzxyxyxt HHEE +∂=+∂ σε (21a)

),(0 zyzxxyxyt HHEE +−∂=+∂ σε (21b)

,*
0 yxzxxzxt EHH −∂=+∂ σµ (21c)

.*
0 xyzyyzyt EHH ∂=+∂ σµ (21d)

Here, the Hz-component has been split: Hz = Hzx+Hzy. The cornerstone of the whole PML is
that *

xσ  and *
yσ  can be chosen independently. If they were constrained to be equal, Equations

(21c) and (21d) could be merged, resulting ordinary Maxwell’s equations with magnetic
conductivity. Note that Equations (21a)-(21d) allow direct implementation with FDTD.
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A PML can conveniently be parametrized by the set ( xσ , *
xσ , yσ , *

yσ ). Vacuum is a special

case, namely (0,0,0,0). Berenger showed in [23] that a PML is perfectly matched to vacuum
at an interface normal to x-direction, i.e. producing no reflection from the interface at any
angle of incidence and any frequency, provided it is of the form ( xσ , *

xσ ,0,0), and the

matching condition

0
*

0 // µσεσ xx = (22)

is fulfilled. At an interface normal to y-direction, matching is obtained by a medium
(0,0, yσ , *

yσ ), provided the conductivities again satisfy a similar condition than (22).

Berenger’s original paper involved only 2-D case; PML was soon generalized into 3-D [52].
Being revolutionary, PML has attracted a lot of attention by several researchers and research
groups. Since its first publication, hundreds of PML-related articles have been published.

3.2.2 Stretched-coordinate formulation

For theoretical examinations, a more compact form of the PML in terms of the so-called
stretched coordinates was given by Chew and Weedon [53] and Rappaport [54]. Although the
PML equations appear in a non-split form in the stretched-coordinate formulation, it cannot
be directly implemented in FDTD, because the new coordinates are frequency-dependent.
However, the advantage of the formulation lies in the unified appearance with the Maxwell’s
equations, helping subsequent mathematical manipulations related to e.g. developing PML
for other coordinate systems. As well, the complex-coordinate representation can directly be
utilized in frequency-domain algorithms.

3.2.3 Uniaxial formulation

A popular formulation of PML is the so-called uniaxial formulation [55]. In this formulation,
PML is realized through an anisotropic medium having complex permittivity and
permeability tensors. It is shown in [55] that if the tensors of the uniaxial medium have the
form

,/),,,(diag 00
111

0 εεµµεε == −−−
zyxzyxzyx sssssssss (23)

where sx, sy and sz are any complex numbers, then a plane wave experiences no reflection
from any vacuum/medium interface, independent of frequency or angle of incidence. By
proper choice of sx, sy and sz, a medium characterized by (23) is frequently called uniaxial
PML or UPML.  The corresponding choice is

)./(1),/(1),/(1 000 ωεσωεσωεσ jsjsjs yzyyxx +=+=+= (24)

UPML has essentially the same properties than Berenger’s split-field PML. Strictly speaking,
UPML is uniaxial only in regions where the absorbing layers do not overlap. Note also that
the fields are unsplit in UPML, but the parameters are frequency-dependent.
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There is an additional useful degree of freedom in UPML: one can increase the real parts of
the parameters sx, sy and sz in order to enhance evanescent wave attenuation, without
destroying the perfect matching [8, Chapter 5.5]. In standard PML, evanescent waves are not
attenuated.

In FDTD realization of UPML, the apparent memory advantage of unsplit formulation is
compensated by the need to introduce auxiliary variables to handle frequency-dependent
parameters. Auxiliary variables can be avoided by introducing time-dependent source terms
[56]. For typical simulation cases, a memory saving of about 25 % is obtainable, as compared
to split-field PML [56]. However, if memory is not a very critical factor, it is recommended
for ease of programming to introduce the auxiliary variables in the whole computational
space and double the memory requirement, exactly as in split-field PML.

To the author’s opinion, from FDTD point of view, the most significant improvement of
UPML over split-field PML is the promise for evanescent wave attenuation.

3.3 Optimization of the conductivity profile in PML

While implementing PML in FDTD, one is faced with the fact that too sudden increase of the
conductivity in the layer causes high reflections, although the continuous model allows in
principle arbitrary high absorption in arbitrary thin layer. Because the conductivity profile
can be freely chosen by the user, the question of profile optimality is reasonable.

3.3.1 Widely used conductivity profiles

Based on experiments, it was realized from the beginning [23] that the conductivity must
vary smoothly in FDTD implementation; otherwise reflection level increases. To find a
balance, Berenger proposed a polynomial variation of the conductivity in the layer [23]:

( ) ,/)( n
m δρσρσ = (25)

where δ is the thickness of the layer and ρ is the distance from the vacuum/PML interface.
The resulting theoretical reflection coefficient for a plane wave with angle of incidence θ  is

( ).))1(/()cos2(exp)( 0 +−= ncR m εθδσθ (26)

Subsequently, exponential profile has also been suggested [57]. There are at least two reasons
for using such profiles. First, for a given thickness, the profile is expressed by only two
parameters (σm and n), and second, one can estimate the reflection from PML using the
continuous model. Typically, PML thickness is 4-16 cells and theoretical normal reflection
coefficient is –80 dB. However, Equation (26) is useful only if the layer is thick enough and
the theoretical reflection high enough. For example, choosing R(0) = –150 dB for a 2-layer
PML yields actually very poor performance.

We put the problem as follows: for a given layer thickness, what is the least obtainable
reflection level in an FDTD realization? With which profile this optimum is obtained?
Previous studies about this question restrict the optimization to polynomial profiles only; in
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effect, parameters σm and n are optimized [57-65]. However, there is no reason to expect that
the arbitrary choice of polynomial or exponential profile is optimal. The optimization
problem is discussed in paper [P2] from more general standpoint.

3.3.2 Closed-form expression for the reflection in 1-D FDTD

The efficient profile optimization is based on an analytical formula relating discrete
conductivity values in PML and the reflection coefficient. The formula and its use are
described in [P2], but due to limited space in [P2], the derivation of the formula for 1-D case
is presented here. We analyze only the simplest 1-D case in detail; the general case follows
by recursion.

So, let us have a 1-D PML containing just one location where conductivity is nonzero, Figure
6. Here and in the following, PML is assumed to be backed by PEC.

Figure 6. The simplest 1-D PML.

In a steady-state situation, incident and reflected waves can be written as Fourier-modes
(outside the PML region):

( )xkitnj
inc

n
iinc eVV ∆−∆= ω

, , (27)
( )xkitnj

ref
n

iref eVV ∆+∆= ω
, . (28)

Here, V stands for both electric and magnetic fields. We agree the signs such that positive Eref

means opposite field to positive Einc. Thus, the total field is Etot = Einc–Eref. For the magnetic
field, Htot = Hinc+Href. Assuming free space, the discretized one-dimensional Maxwell’s H-
equation at point i = 1/2 takes the form

2/1
2/1

2/1
2/1

2/1
2/10

+++ −=+ n
x

nHn
t EDHHD σµ , (29)

where Dt and Dx are temporal and spatial centered finite difference operators, respectively.
The update step for 2/1

2/1
+nH  is
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Using the PEC-condition ( 02/1
1 =+nE  for all n), and the assumed time-dependence tnje ∆ω , we

have

( ) ( )[ ] )./(/2/cos/2/sin2 0
2/1

0
2/1

2/10 xEHtttj nnH ∆=∆+∆∆ ++ µµωσω (31)

Next, we introduce the Courant-number Q and the resolution parameter R:

,/,/0 xRxtcQ ∆=∆∆= λ (32)

ZKHUH� �LV�WKH�ZDYHOHQJWK�LQ�IUHH�VSDFH��,W�IROORZV�WKDW

./2/2 0 RQtct πλπω =∆=∆ (33)

Also the conductivity is normalized:

0/ησσ xHN ∆= . (34)

Here, ./ 000 εµη = To simplify notations, let us define the following parameters:

( ) ,//sin2 QRQW π= (35)

( ),/cos RQS N πσ= (36)
.jWST += (37)

Now, (31) can be rewritten as

./02/10 TEH =η (38)

The time dependence has been cancelled as a common term. At point i = 0 there are both
incident and reflecting waves, and the E-equation becomes:

( )
( ) ( ).2/12/100,0,

00,0,0

nnn
ref

n
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n
x

n
ref

n
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HHEEjW

HDEED
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−η

ε
(39)

Again, we cancel the time dependence. Inserting (38) into (39), we get

( ) ( ) TEEHHEEjW refincrefincrefinc /)( 0,0,2/1,2/1,00,0, −−+=− −−η . (40)

Since H-1/2 is outside the PML region, it can be decomposed into incident and reflected
waves. Taking the sign agreement into account, the relation between Hinc, Href and Einc, Eref is:

.and  2/1,2/1,02/1,2/1,0
n
ref

n
ref

n
inc

n
inc EHEH −−−− == ηη (41)
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Using (27) and (28),

., 2/
0,2/1,
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0,2/1,

xjkn
ref

n
ref

xjkn
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n
inc eEEeEE ∆−

−
∆

− == (42)

Combining (40) with (41)-(42), canceling again the time dependence, we get

( ) ( ) TEEeEeEEEjW refinc
xjk

ref
xjk

increfinc /0,0,
2/

0,
2/

0,0,0, −−+=− ∆−∆ . (43)

We define reflection coefficient ./: 0,0, incref EE=ρ  Rearranging (43), we finally have

),1/()( UeU xjk +−= ∆ρ  where (44)

( )TjWeU xjk /12/ += ∆ . (45)

The general formula is similar, only U takes a form of a continuous fraction [P2]. A Matlab-
program “rho_1d” is given in the Appendix, evaluating ρ for parameters Q, R and normalized
conductivity values σN.

3.3.3 Closed-form expression for the reflection in 2-D FDTD

The 2-D case can be analyzed similarly than the 1-D case, proceeding from the outer PEC
boundary towards vacuum/PML interface. The formula obtained this way takes explicitly into
account numerical dispersion in 2-D grid, and in all performed simulations it is observed to
predict the reflection exactly within computer arithmetic accuracy.

We do not repeat the analysis, but merely give the reflection formula. Let us consider an M-
layer PML normal to x-direction, defined by 2M+1 conductivity values. We choose an odd
number of conductivity values, because in that way the reflection formula is simpler. This is
not restrictive, since we can join σ = 0 to the profile if desired.

Given the propagation direction α, frequency f, and the grid parameters ∆x, ∆y and ∆t, we
define the following parameters to simplify notations later:
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Q2 is the Courant-number and R2 is a resolution parameter. Z is simply a cell-shape
parameter, and has nothing to do with impedance. The normalized conductivity values N

iσ
are defined as follows:
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In addition, we need the numerical wave vector ))sin(),(cos(),( ααkkk yx = , which is

obtained from the numerical dispersion relation (16). Having solved k, we proceed defining
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The reflection coefficient is finally

).1/()( )cos( UeU xjk +−= ∆αρ (53)

A Matlab-program “rho_2d_exact” is given in the Appendix, evaluating ρ for given
parameters α, Z, Q2, R2 and normalized conductivity values σN.

3.3.4 New proposition for the conductivity profile design

One may consider optimizing the profile by first defining a proper norm for the reflection
over wide frequency band and wide selection of angles, and then minimizing (53) in that
norm over all 2M+1 normalized conductivity values. There are efficient multi-dimensional
optimization algorithms available, for example the Hooke-Jeeves line search algorithm [66].
Note that the dimension of the optimization problem is not very large, of the order of 10 - 40.

We propose, however, another approach. Equation (53) reveals immediately that zero
reflection is possible, namely if xjkeU ∆= )cos(α . For one set of wave and grid parameters
(α, f, ∆x, ∆y, ∆t), the zeroing condition defines two equations for U:

),)cos(cos()(Re xkU ∆= α (54)
 ).)cos(sin()(Im xkU ∆= α (55)

Thus, M wave and grid parameter sets define 2M equations to be satisfied by U. Since we
assume 2M+1 normalized conductivity values, to be considered as independent variables of
U, we expect that M zeroing equations can be satisfied. The additional degree of freedom can
be “spent” at zero frequency, because at f=0, Equation (55) is trivially satisfied.

For given grid parameters, we propose designing PML by selecting M pairs (fi, αi) (and
possibly a pair (0, α0)). Then some numerical technique is applied to solve σN, such that zero
reflection is obtained for the corresponding plane waves. Next, the reflection at other
frequencies and angles of incidence is evaluated. If the result is not satisfactory, the design
parameters (fi, αi) are changed, and new conductivity values are solved.
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To find the solution of the zeroing conditions, a multi-dimensional Newton iteration has been
tested and found otherwise efficient, except that a good initial guess is required. In a recent
paper [65], it is suggested to treat 2-D wave essentially as a 1-D wave propagating with
velocity c0/cos(α). We explored this approach, and found the resulting simple formula
satisfactory in all cases studied. A Matlab-code “rho_2d” based on 1-D formula is given in
the Appendix. The results of “rho_2d” are essentially the same than that of “rho_2d_exact”.
The evaluation of “rho_2d” is simpler and faster, and therefore it is a preferred code to be
used in either Newton iteration or some other iterative solution of the zeroing conditions.

Furthermore, it seems reasonable to expect that a 3-D PML problem can also be reduced to a
1-D problem. For time being, however, we do not have numerical results verifying this claim.

Paper [P2] gives some examples about the advantages obtainable by the optimization. In a
parallel-plate waveguide problem, just four-layer PML can be designed to yield reflection
less than –82 dB for the dominant mode over a band 1.33 fc…3.22 fc, as compared to –54 dB
reflection of an optimal polynomial profile of the same thickness. There remains problem at
cut-off, a subject deserving further development. The promises of evanescent wave
attenuation of UPML mentioned in Section 3.2.3 (and applied in e.g. [67]) point towards a
preferred direction of development of the present theory.

An optimized PML should be especially useful in scattering problems employing
total/scattered field formulation [22,68], because only the scattered field needs to be
absorbed, and it is usually much more radial than the total field. This would make almost
problem-independent optimization of PML profiles feasible.

3.4 Ramahi’s complementary operators method (COM)

A recent advancement in ABC theory is Ramahi’s Complementary Operators Method (COM)
[69]. Like Mei-Fang superabsorption scheme, COM is not an ABC by itself, but is an error
cancellation procedure associated to a ‘host’ ABC, especially to that of Higdon. There is
evidence that COM can be made comparable or superior to PML [70]. COM is reported to
provide naturally absorption of both propagating and evanescent waves.

Despite being very interesting in principle, COM is not studied further in this thesis.
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4 Coupling probe models in FDTD

In microwave engineering, many devices of practical interest involve coupling of
electromagnetic energy via an extension of the inner conductor of a coaxial cable, also called
coupling probe. Probes can be used as monopole-type antennas, they might be bended to
form a coupling loop to a resonator, or they may contact a metal patch to feed a special
antenna. Probes are also commonly used to realize coaxial-to-waveguide or coaxial-to-
stripline transitions [71,72]. Due to its relative universality, proper modeling of the coupling
probe in FDTD is essential. Paper [P3] and Section 4.2 involve a generalization of a well-
known probe model [19]. Before considering that, the practical value of FDTD in modeling
an interesting antenna structure is discussed.

4.1 Simulation case: dielectric resonator antenna

In the Radio Laboratory, HUT, small-sized antennas are studied intensively. One of the
promising candidates to be used in wide-band mobile telecommunications is the half volume
dielectric resonator antenna (DRA) [73,74,P3]. A dielectric resonator is basically a piece of
high-εr material. FDTD can be utilized efficiently in the design of DRAs. The size, shape and
εr of a DRA can easily be varied in simulations. Visualization helps understanding resonance
phenomena in the DRA. For example, Figures 7a and 7b depict snapshots of the electric
fields in model 1) of [P3]. Snapshots are taken on the symmetry plane at center frequencies of
the first and second resonances.

Figure 7a. First resonance at Figure 7b. Second resonance at
2.159 GHz. 3.900 GHz.

The figures above, and especially the related ‘movies’ obtained from a sequence of
snapshots, help understanding operation of the antenna. For the programmer, a quick look at
such a figure is a qualitative test for the code. Above, for example, we can inspect that the
electric field is normal to the short circuit (the thick vertical line) and to the ground plane
(bottom horizontal line).

We understand from Figure 7a the shape of the first resonance mode, and that the field has a
hot spot on top of the short circuit. Figure 7b tells us that the second resonance mode
resembles quarter-wave monopole resonance, and that significant portion of the
electromagnetic energy is concentrated near the probe. These facts explain why the second
resonant frequency depends crucially on the length of the probe and on the air gap between
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the probe and the dielectric; the former is obvious, and the latter is due to high energy density
in the air gap – a small change in the air volume affects significantly the energy distribution
in the whole system, and sensitivity to dimensions of the air gap is expected. A sequence of
simulations can be selected to quantify the sensitivity analysis.

4.2 Generalized model of a coaxial probe

The coaxial probe model of Maloney [19] assumes that ∆x = ∆y = ∆, and that the radius of the
outer conductor of the coaxial cable (ro) equals ∆. Quite often, proper modeling of the
dimensions of the structure requires ∆x ≠ ∆y. Assumption ro = ∆ is also restrictive, though it
seems that small variations in the physical size of the cable aperture do not play a significant
role, if the ground plane area is large enough. More important is to model properly the radius
of the inner conductor (ri). A thin-wire model [75,76] is included in [19] and [P3]. In [P3], we
have especially studied removing the restriction ∆x ≠ ∆y.

Maloney’s idea was to model the coaxial cable separately from the FDTD volume as a 1-D
TEM-line, using the transmission line matrix (TLM) concepts. On the interface between the
transmission line and FDTD grid, voltages and currents of the TLM are transformed into
electric and magnetic fields of the FDTD, and vice versa. We retained this ideology, and
made a simple generalization to Maloney’s method: referring to Figure 8, the voltage/electric
field transformation is performed at relevant locations in the FDTD grid (in the white area),
using the known field distribution in the cable:
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Figure 8. Cross-section of the coaxial cable in the aperture plane.

The only restrictions for the dimensions of the cable are: a) ri < min(∆x/2,∆y/2) and b) ro >
max(∆x/2,∆y/2).

For comparison, we simulated the DRA of Section 4.1 using both our and Maloney’s models.
We modeled the cross-section of the DRA by 6×6 cells (the physical size of the cross-section
is 8×17.5 mm2), yielding ∆x = 1.333 mm and ∆y = 2.916 mm. To see if our model gives any
improvement, we applied Maloney’s model ‘blindly’, using the same grid. Since Maloney’s
model requires in principle ∆x = ∆y = ro, our ‘blind’ application corresponds effectively to
modeling a different ro for x- and y-directions. Note, however, that ri is modeled similarly in
both models.
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The results of the comparison are given in Figure 9. We see that our model predicts the width
and location of the second resonance very well. Maloney’s model predicts the bandwidth
equally well, but there is a noticeable shift in the center frequency. The first resonance is
associated mainly to the short circuit (see Figure 7a), and there is no essential difference
between Maloney’s method and ours. As pointed out in [P3], the second resonance is very
sensitive to the air gap between the probe and the DRA. Because the discretization here is
slightly different from that used in [P3], the air gap and the |S11|-curve are also different from
[P3]. However, the air gap is exactly the same in both simulations of Figure 9.

Concluding, the modification presented in [P3] removes the restriction ∆x = ∆y.
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Figure 9. Comparison of our model and Maloney’s coaxial probe model.

4.3 Resistive voltage source model

A simple alternative to the coaxial probe model is the widely used resistive voltage source
(RVS) [2,21]. Paper [P4] pays special attention to two matters associated to RVS, namely the
source impedance distortion due to cell capacitance, and dependence of input impedance Zin

on source cell height. The source impedance distortion can be avoided trivially, as explained
in [P4], but the latter question deserves some comments.

A coaxial probe is normally realized using RVS in the following manner. The probe itself is
modelled as a perfectly conducting wire, either using a thin-wire model or simply defining a
row of PEC cell edges. The lowest cell in the probe is replaced by the RVS. In that cell,
proper conductivity is defined resulting desired resistance of the cell, usually 50 Ω. The
system is excited via Ez-component of the RVS cell, as described in [2].

If the probe height is N cells, the model consists of an N-1 cells high PEC structure and a one-
cell RVS. One may justifiably ask, does the RVS form a part of the probe or not? Paper [P4]
sheds some new light on this question.
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One can try to answer the above question by making a straightforward test: fix a monopole
length, and perform several simulations with varying ∆z. The result is that Zin is different in
each case, see Figure 10. The obvious conclusion is that Zin depends on cell height. This
conclusion, however, is too straightforward.
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Figure 10. Real part of the simulated input impedance of a 30 mm
monopole. ∆x = ∆y = 5 mm, ∆z is shown in the legend.

We anticipate that the singular field on top of the monopole plays a significant role in the
simulations. Variations in grid density result in different representations of the singular field,
and we claim that the observed discrepancies in Zin are primarily caused by this phenomenon.
In other words, RVS is a part of the probe, and its height should not be compensated. The
problem is not on bottom of the probe but on top of it.

It is well known by the users of FDTD that a PEC object looks effectively a bit larger than
the geometry employed [13]. Therefore, to test our claim, we must choose a structure that
eliminates the uncertainty related to both field singularity and effective size expansion. A
structure satisfying fairly well the above criteria is depicted in Figure 11. The singularities
near PEC corners are much less intensive than in the monopole example. Furthermore, the
block on top of the monopole is thick enough to be modelled rather consistently, despite the
effective expansion of its dimensions.

The results for three values of ∆z are given in Figure 12, complementing the results of [P4].
Only real part of Zin is plotted in order to keep the picture clear. We have assumed that the
feeding point of the antenna is in the middle of the RVS cell, and transformed this point to
the ground plane by multiplying the computed return loss S11 by exp(-jω∆z/(2c0)), and
computing )1/()1( 11110

cor
in SSZZ −+= . The curves in Figure 12 almost overlap, justifying our

claim. Without reference point transformation, there would remain notable differences in Zin.
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Figure 11. Sample structure used to test dependence of Zin on ∆z. The PEC
piece on top of the monopole (height h = 30 mm) has
dimensions 20×20×30 mm3.
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Figure 12. Real part of the simulated input impedance of the structure
depicted in Figure 11. ∆x = ∆y = 5 mm, ∆z is shown in the
legend. The feed point has been transformed a distance ∆z/2
downwards in each case.

4.4 Improved thin-wire model

In a recent study [P5], the thin-wire model is studied further. The study covers so far only 2-
D models. Here, we discuss briefly the reason why the standard model [75] is unsatisfactory.
Novel propositions for the treatment of thin wires are also given in [77] and [78].

The treatment of a thin wire is based on the static solution: a static current in an infinite long
wire produces a rotationally symmetric 1/r dependent circulating magnetic field, and a 1/r
dependent radial electric field. We can assume similar 1/r dependence in the local
neighborhood of the wire also in the time-varying case. Using this assumption and integral
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form of Faraday’s law, update equations for the magnetic fields surrounding the wire are
obtained. The wire radius appears as a parameter in these equations.

This procedure is perfectly adequate. There is a problem, however, that is readily seen while
considering the current flowing in the wire. In a symmetric case, the four magnetic field
values looping the wire are equal, say H0. Because H0 represents rotationally symmetric
magnetic field at a distance ∆/2 from the center of the wire, the total loop integral of the
magnetic field is 2π⋅∆/2⋅H0. However, conventional FDTD evaluation of the total loop
integral of the magnetic field yields 4⋅∆⋅H0. In other words, conventional FDTD
interpretation yields current that is a factor of 4/π too large. The same problem is met also in
updating the adjacent axial electric fields. In short, the problem arises from mixing rotational
symmetry and Cartesian grid. Figure 13 depicts this confusion.

H
0
 

Figure 13. Ampere’s law contour path in thin-wire model [75] (circular
path) and in standard FDTD (square path). The gray patch
represents the wire and the black dot the adjacent axial electric
field location. The arrows looping the wire represent magnetic
field components computed using the thin-wire update
equations. One of these is used also in the square loop.

In updating the adjacent electric field (pointing outward from the paper), it is assumed that
the magnetic field value H0 in the middle of the solid vertical line represents the average of
the field along that line. However, the 1/r assumption used in the thin wire model implies that
H0 is actually maximum of the field along that line. It is straightforward to calculate that the
correct contribution to the line integral over the square loop is obtained by multiplying H0 by
the length of the 90o arch, depicted in Figure 13, not by the cell edge length. This is in
accordance with the requirement of consistent current evaluation.

Concluding, for a 2-D mesh with ∆x = ∆y, the magnetic field values obtained by the standard
thin-wire algorithm must be multiplied by π/4 to obtain correct contributions to the magnetic
field loop integrals in Ampere’s law. If ∆x ≠ ∆y, the correction factor is (∆x/∆y)tan-1(∆y/∆x)
at points (±∆x/2,0) relative to the wire center, and (∆y/∆x)tan-1(∆x/∆y) at points (0,±∆y/2).  In
3-D, the same confusion exists, but the solution is somewhat more involved, and is a current
research topic. An important factor in 3-D is the field caused by the accumulated charge on
top of a wire antenna.
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4.5 Symmetry considerations and future work

The results of [P5] suggest that the thin-wire model in [P3] should be modified to accurately
represent the probe diameter; unfortunately, the 3-D theory is still under development, and no
comparisons are available yet. In addition to the inaccurate thin-wire model, there is an other
shortcoming in both Maloney’s and our coaxial probe model, namely both models assume
that the electric field is rotationally symmetrical in the aperture of the cable. Both structures
considered in [P3] have one plane of symmetry intersecting the cable aperture, so the
assumption is somehow justifiable. Sample simulations and measurements with structures
possessing no symmetry reveal that the coaxial probe model does not always work properly
in such circumstances. The most probable explanation is the irrelevant symmetry assumption.

The symmetry assumption can be released by using the RVS model, Section 4.3. A possible
disadvantage is that RVS neglects the dimensions of the aperture of the coaxial cable.
Moreover, the z-directed electric field used in RVS, and also in the so-called delta-gap source
[18], is non-physical. In practice, the RVS works well in many situations, but problems may
arise, if there are interacting structures close to the aperture. In such case a non-physical
coupling via the Ez-field may take place.

Another possible solution to improve the coaxial probe model would be looking some
distance downwards the cable using FDTD, and assuming the TEM-mode far enough from
the aperture. A modification of Maloney’s model in this spirit is presented in [79], where the
boundary between the transmission line and FDTD is half cell below the aperture, allowing
non-symmetrical electric field in the aperture. It should be possible to move the boundary
further downwards, using the methodology of [79].

A third possible option is using FDTD in cylindrical coordinates. Then, in the aperture, the
cylindrical coordinates would be transformed into rectangular ones and vice versa. A coupled
cylindrical and Cartesian grid has been used in [80]. A coaxial line study involving only
cylindrical coordinates is presented in [81]. Here, only FDTD is used, and proper geometrical
resolution inside the cable is obtained by dense subgridding. The reported results are very
good, but assumed cylindrical geometry restricts the applicability of the method.
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5 Finite Element Method

5.1 Introduction

The finite element method is one of the classical tools of numerical analysis, suitable for the
solution of a wide class of partial differential or integral equations in almost arbitrary
geometries. Traditionally, FEM was applied in mechanical engineering for structural
analysis, starting from 1950’s. Soon after that, FEM found applications also in electrical
engineering. Apparently, the first application of FEM to the solution of cut-off wavenumbers
of waveguides was reported in 1968 [82].

The mathematical theory of finite elements is deep and wide, and involves a great deal of
functional analysis and especially Hilbert space theory. Several textbooks deal with the finite
element mathematics, e.g. [83]. A comprehensive treatment taking especially electromagnetic
aspects into account can be found in e.g. [84] and [85]. Due to the limited scope of this text, it
is not possible to go into details; after a brief general introduction we outline the original
work contained in this thesis in Sections 5.4 and 5.5.

As a numerical tool, FEM can be considered complementary to FDTD. Obviously,
simulations with several independent methods provide higher degree of reliability. Some
advantages of FEM as compared to FDTD are: 1) FEM is based on well-established
mathematical theory, and the error control is somewhat more robust than in FDTD; 2) since
FEM mesh is completely unstructured, complicated geometries can be modeled more
accurately than in FDTD; 3) having fixed mesh, the user still has the freedom of selecting a
proper basis (see Sections 5.2 and 5.3) and thus affecting the accuracy. This corresponds
roughly to switching between 2nd- and 4th-order algorithms in FDTD, which is not a standard
option.

5.1.1 Vector finite elements

In electrical engineering, the so-called vector finite elements [86-90] have emerged especially
a) to enforce continuity of tangential components in material interfaces; b) to allow proper
discontinuity of normal field components in material interfaces; c) to provide divergence-free
solutions over the entire computational domain. Property c) is usually considered to be the
key in avoiding the so-called spurious, non-physical solutions.

Vector FEM is particularly well suited for general inhomogeneous 3-D problems. However,
compared to scalar elements, their construction is more cumbersome, especially if high-order
elements are considered. Therefore, when feasible, scalar elements are preferred. This is the
case in many 2-D problems, including e.g. many waveguide analysis problems. In
homogeneous waveguides, TE and TM modes decouple, and a single field component
suffices to describe each mode. Inhomogeneous waveguides, on the other hand, are properly
solved in terms of transverse magnetic field, i.e. in terms of two scalar fields [91]. This
assumes that the materials are non-magnetic. The solution is assured to have zero divergence,
and spurious solutions are thus avoided.
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Despite being a hot research topic, vector finite elements are not considered further in this
thesis, but only scalar FEM is discussed.

5.1.2 Basic idea of FEM solution construction

First, we define the frequently used L2- and H1-norms of a function f defined on Ω:
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For example, the space H1(Ω) is the collection of functions f defined on Ω having finite H1-
norm. Occasionally, we also use the concept of H1-seminorm:
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As explained in Chapter 2, FDTD is constructed such that Maxwell’s equations are
approximately satisfied at each grid point. FEM, instead, is based on global approach.
Oversimplifying, the FEM solution is constructed such that the integral of the residual error
between the exact and numerical solution is zero with respect to several weighting functions.
Symbolically, if L is some linear operator (representing e.g. Helmholtz or Laplace operator),
and f is a ‘source’ or ‘data’ function, then a wide class of problems can be formulated as

.fLu =  (59)

The residual error is defined as the difference of each side of Equation (59):

.fLur −= (60)

Roughly speaking, the FEM solution uh is constructed such that

.0)( =Ω−∫
Ω

dfLu jh φ (61)

Here, Ω represents the domain where (59) is to be satisfied, and φj are the weighting
functions. There are at least two ways of interpreting the FEM solution that we call ‘physical’
and ‘geometrical’. The physical interpretation says that the FEM solution is the particular
finite-dimensional approximation that, for given boundary conditions, minimizes the stored
energy in the problem. The geometrical interpretation says that the FEM solution is the
projection of the exact solution to the finite-dimensional approximation space. Adopting the
so-called Galerkin procedure to be described in the following section, the physical and
geometrical solutions coincide.

FEM solution provides explicit control over the global error, contrary to the FDTD. Another
characteristic distinction is that FEM is normally applied as a frequency domain method, i.e.
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time-harmonic fields are assumed. There are hybrid methods that combine the geometric
versatility of FEM and efficiency of time-domain algorithms [92], and they are potentially
interesting alternatives in the future; nevertheless, hybrid methods are not considered in this
work.

5.2 Trial and testing functions

We look for the FEM solution in a finite-dimensional subspace Vh of the infinite-dimensional
function space V where the solution is assumed to be found, usually V = H1. For convenience,
we choose a set of basis functions Φi such that

N
iihV 1}{span =Φ=  . (62)

The approximation uh is then expanded as a sum of the basis functions:
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From the FEM point of view, there are two types of boundary conditions, essential and
natural. The essential boundary conditions are implied in the choice of the basis, while the
natural boundary conditions will be approximately satisfied during the solution without any
special effort. Typically, essential boundary conditions are Dirichlet type (fixed boundary
values), and natural boundary conditions are homogeneous Neumann type (zero normal
derivative).

Inserting (63) into Equation (61), using the linearity of the operator L and arranging terms,
we have
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In conventional terminology, functions Φi are called trial, approximating or expansion
functions, and functions φj are called testing functions.

Although Equation (64) already provides a means to construct a set of linear equations for the
solution of the expansion coefficients ci, the form of the operator L often allows integration
by parts (= application of Green’s identities), resulting a symmetric bilinear form, which can
be expressed symbolically as

),(),(partsby n integratio)( ijjiji aadL Φ=Φ==ΩΦ∫
Ω

φφφ KK . (65)

So far, we have left the choice of φj open. Usually a satisfactory choice is to make the testing
functions equal the trial functions: φj = Φj. This choice leads to a weak Galerkin solution of
the original problem. The name “weak” comes from weaker assumptions made to the
solution. Typically, strong solution of (59) belongs to H2, but the weak solution is only
assumed to belong to H1, which is a larger space. The symmetry of the form ),( ⋅⋅a results in
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symmetric coefficient matrix for the Galerkin solution, enabling special matrix
decomposition techniques to be applied.

5.3 Choice of basis functions

There are no restrictions for the choice of basis functions Φi, apart from the linear
independence, proper smoothness, and fulfillment of essential boundary conditions.
Otherwise one may construct the basis as desired, compromising between simplicity and
efficiency. For convenience and programmability, the basis should be easily generated and
convergent, such that the approximation space Vh becomes eventually dense in V. Loosely
speaking, any given point in V should be able to be approximated within any given accuracy
by a linear combination of a finite number of basis functions.

The simplest and most traditional basis consists of piecewise linear functions. The degrees of
freedom are simply the nodal values of the finite element mesh. This basis leads to very
sparse element matrices and is therefore widely used, allowing problems with tens of
thousands of unknowns to be solved in a moderate workstation. The accuracy is controlled
solely by the mesh density. The associated method is often labeled as an h-version FEM.

A classical alternative to the h-version FEM is the p-version FEM [9], where the basis
functions are piecewise polynomials, and the degree of the polynomials is taken as a
parameter. The justification for the use of more complicated p-elements lies in the fact that
the approximation properties improve exponentially with respect to the basis order, but only
algebraically with respect to the mesh density: typically error is proportional to hp, the actual
formula depending on the error measure. p-elements lead to denser element matrices, because
the basis functions are more overlapping. For a given number of degrees of freedom, p-
elements require more storage and CPU-time for the solution, but on the other hand, the
accuracy is usually considerably better. For a given level of accuracy, the required number of
degrees of freedom is typically so much less that the total computational burden is in favor of
p-elements. The accuracy is controlled by both the mesh density and the order of the basis.

p-elements allow very sparse meshing of the geometrical domain. This may be crucial in 3-D
problems, where automatic mesh generation is considerably more difficult than in 2-D. In
order to fully exploit large elements, one must be able to treat curved boundaries accurately.
This is discussed further in Section 5.5.

There are several possibilities for constructing high-order bases. A classical construction [9]
is a high-order interpolating basis: a set of additional nodes is introduced in the element, and
to each such node there corresponds one basis function. The basis function attains value 1 at
one node and 0 at all other nodes. Figure 14 depicts a six-node 2nd-order element, and one of
the local basis functions. The values at the nodes specify completely the form of the
approximation, and thus, the nodal values are also the degrees of freedom.

There are at least two shortcomings in the interpolating basis. First, a basis of order p is
completely different from the basis of order p-1, which makes the convergence analysis
expensive, because each order has a separate set of basis functions. Second, it is difficult to
join two elements of different orders. An early proposition to allow variable-order elements is
given in [93].
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Figure 14. Second-order six-node element and the local basis function
associated to one of the vertex nodes.

In so-called hierarchic basis [94], the local basis functions for 2-D elements are divided into
three categories: 1) vertex modes, 2) edge modes and 3) inner modes. For a pth-order basis,
they are grouped as follows:

- one linear basis function associated to each vertex. Vertex modes attain value 1 at one
vertex and vanish at the other vertices.

- one basis function of each degree 2…p associated to each edge. Edge modes attain
polynomial form at one edge and vanish at other edges.

- q-2 inner basis functions of each degree q = 3…p. The inner modes vanish on all
edges.

Thus, there are (p+1)(p+2)/2 basis functions altogether spanning a complete 2-variable
polynomial of degree p. In the construction, Lagrange polynomials are used, providing some
level of orthogonality between the basis functions, and consequently, stable numerical
properties. Hierarchy means that a basis of order p-1 is a subset of the basis of order p. A
single integration provides system matrices for all orders up to p, simplifying considerably
the convergence analysis along increased order of the basis.

Varying the order of the individual elements over the mesh is also a simple matter. The
common degrees of freedom of two adjacent elements are the coefficients of the vertex and
edge modes associated to the common vertices and edge. Suppose we wish to have element
of order eight on the right and of order four on the left. To make the two elements
compatible, we can simply supply the 4th-order basis on the left by the 5th-, 6th-, 7th- and 8th-
order edge modes. Now, the approximation space on the left is not purely 4th-order but a bit
larger, while the space on the right is completely 8th-order. The variable-order mesh can be
used easily and efficiently, if one can justifiably assume slow variations of the field in some
regions of the problem, allowing the use of low-order elements in those regions [P6].

Due to the above advantages, especially the clear organization and possibility for simple
realization of variable-order mesh, we used exclusively the hierarchic basis in all the studies
reported in [P6].
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5.4 Field singularities

It is well known that sharp re-entrant corners result in local field singularities to the
electromagnetic field [95-99]. If the corner geometry is regular enough, the form of the
singularity is known. For example, if the corner is an infinite perfectly conducting wedge
with angle α, then the longitudinal field components behave as rν close to the wedge tip,
where ν = π/(2π−α). Always ν ������7KH�WUDQVYHUVH�FRPSRQHQWV�DUH�RQH�RUGHU�PRUH�VLQJXODU�

behaving as rν−1.

The singularity problem in FEM point of view has been discussed previously in [100-105] for
scalar elements and [106-108], for vector elements. Singularity is also treated in some length
in the textbook [84]. In paper [P6], an error estimate for eigenvalues of the scalar Helmholtz
equation is derived: the relative error of the eigenvalues is bounded by the sum of relative
errors of the corresponding field distributions in H1-seminorm and L2-norm. Since the latter is
typically much smaller, the relevant measure for the accuracy of the eigenvalues (= cut-off
frequencies) is the H1- error.

In the most singular case, the solution is of the order r1/2, corresponding to zero-angle wedge
in e.g. idealized model of fin lines or microstrip lines. If the approximation is a polynomial,
then the gradient of the difference between exact and approximate solutions is unbounded.
Therefore, it is obvious that the immediate neighborhood of the singular point contributes
significantly to the H1-error, resulting high error bound to the computed eigenvalues.

Let us mention, that although we can formally write the Helmholtz equation also to the
transverse field in a singular problem, the transverse field does not belong to the space H1.
This implies that the usual weak formulation of the Helmholtz equation for the transverse
components is not valid – we could in principle obtain a convergent sequence of
approximations, but each approximation belongs to H1, and so does their limit, because H1 is
a complete space [83]. In other words, even if we happened to obtain a convergent sequence
of approximations, the limit would be incorrect, because the true solution is not in H1. This
example highlights the importance of the concept of smoothness of the solution and proper
formulation of a problem.

In paper [P6] we supply the polynomial basis by an additional function, especially
constructed to have the correct singular form. Now, this singular basis function serves to
‘catch’ the most rapidly changing part of the field close to the singularity. What is not caught
by the singular function is the smooth part of the field, which is easily caught by the
polynomial part of the basis. Convergence analysis and comparison with other published
results suggest that our approach with hierarchic p-elements is comparable or superior to
previous studies in terms of degrees of freedom required to reach a certain error level. Also,
there seems to be novel aspects in relating the H1-error of the solution and the accuracy of the
computed eigenvalue.

5.5 Curved boundaries

Classical construction of FEM solution assumes that the boundary of the problem is
polygonal, i.e. the entire domain can be subdivided into a finite number of triangles. If,
however, the boundary contains curved parts, one has several options. The simplest option is
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to approximate the curved boundary by a polygon. This is an adequate choice for low-order
elements. Another classical option is to use polynomial approximation of the boundary
geometry. Quite often, the basis functions themselves are also used as mapping functions: if
the basis is a 2nd-order one, then curved parts of the boundary are approximated by 2nd-order
polynomial curves. This approach leads to so-called isoparametric elements [84]. Third
option is to use the so-called blending function method to exactly describe an arbitrary curved
boundary geometry [109-111]. This option is especially efficient if combined with high-order
basis [94].

In [112], Kärkkäinen utilizes the blending function method to a number of cases having
curved boundaries. Hierarchic high-order basis is combined with singular basis function [P6]
where necessary. A circular fin line serves as a singular reference problem having a known
analytical solution. The results clearly demonstrate that to obtain high accuracy and to avoid
large number of elements, it is advisable to use the blending function method. An exponential
convergence of the computed cut-off frequency with respect to degrees of freedom is
obtained. The results of [112] provide further verification of the use of the singular basis
functions, because the examples treated in [P6] lack analytical reference solutions.
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6 Summary of publications

Paper [P1] describes a simple way to reduce numerical dispersion in the FDTD method. The
starting point is the observation that the numerical dispersion resembles anisotropy. Would it
be possible, then, to define the model medium as intentionally anisotropic in such a way that
these anisotropies somehow cancel each other? The answer is yes, and the compensation
possibility is revealed through careful examination of the numerical dispersion relation of
anisotropic medium in FDTD. The compensation is realized through diagonal permittivity
and permeability tensors, and there is no increase in CPU-time and memory requirements of
the compensation. The compensation parameters are easily found for given grid resolution,
cell shape and Courant-number. The main deficiency of the method is its frequency-
dependence. It is demonstrated, however, that a considerable improvement can be achieved
for a reasonable band by optimizing the reduction parameters at the low end of the band.
Several examples in 2-D and 3-D are given to validate the compensation efficiency, involving
both homogeneous and inhomogeneous problems. For highly non-cubical cells, a typical
improvement in the accuracy is seen to be approximately equivalent to doubling the grid
density.

Paper [P2] deals with a recently proposed absorbing boundary condition called perfectly
matched layer (PML) [23]. A closed-form expression is given for the realized performance of
PML in 1-D FDTD algorithm for propagating plane waves. It is confirmed that the simple 1-
D formula can be used also to predict the reflection in 2-D simulations, and it seems probable
that similar possibility exists also for 3-D problems. The analysis reveals that PML can be
designed to absorb perfectly plane waves at discrete frequencies. It was not recognized before
that zero reflection is possible for finite thickness PML. The formula is tested with a number
of simulation experiments, and also some previously published simulation results [65] are
reproduced using the closed-form expression. A novel design process for optimal
conductivity profile in PML is outlined; the user is allowed to choose M independent
(frequency,angle)-pairs for an M-layer PML such that the corresponding plane waves are
perfectly absorbed. The application of the theory is demonstrated by a parallel-plate
waveguide example, where in a four-layer PML, an improvement of 28 dB over a wide
frequency band is gained, as compared to a traditional PML having the same thickness.

To achieve really optimal use of PML, the applicability of the reflection coefficient in 3-D
should be verified, and the theory should be extended to evanescent waves.

Paper [P3] is an application of FDTD to a small-sized wide-band dielectric resonator antenna
(DRA). The novelty in the algorithmic point of view is the improved coaxial probe model
applied in the FDTD simulations. The improvement allows releasing the condition ∆x = ∆y
that was assumed in the previously published model. From the engineering point of view, the
capabilities of FDTD have been used to gain physical insight to the complicated resonance
phenomena taking place in the DRA structures. In addition, a sensitivity analysis has been
carried out using FDTD to determine the critical prototype and simulation parameters
(accuracy of dimensions, numerical dispersion, air gaps in different locations, losses etc.).
Summarizing, we have showed that FDTD is very well suited for DRA analysis, and
provided a generalized coaxial probe model to be used in any relevant simulations.

In paper [P4], the properties of the so-called resistive voltage source (RVS) are discussed.
RVS is commonly used in FDTD simulations as an excitation model of coaxial probes or
dipole antennas. In the RVS formalism, the intended source impedance is given as a
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parameter. The actually modeled source impedance is known to be distorted due to the cell
capacitance [21]. In [P4], examples are given demonstrating that the distortion may be
significant, thus affecting the S11-parameter evaluation. To make the parameter evaluation
insensitive to the distortion, we recommend evaluating only the input impedance, the
simulation of which is confirmed to be independent of source cell capacitance. Furthermore,
contrary to the preconception, the input impedance is seen to be independent on cell height as
well, provided that the feed point is properly transformed to a suitable reference location, e.g.
to the ground plane.

Paper [P5] presents a corrected thin-wire model in 2-D FDTD. It is shown that the traditional
thin-wire model mixes rotational symmetry and Cartesian grid inconsistently, resulting in e.g.
incorrect induced current in the wire. A simple modification to the thin-wire FDTD update
equations is provided. Several tests are performed to investigate the new model. The results
are convincing, demonstrating that the traditional thin-wire model simulates actually a
significantly larger wire radius, while all tests performed with the new model indicate that the
wire radius is correctly simulated.

The implications of paper [P5] may be far-reaching, since thin-wire structures are very
common. After proper extension to 3-D, FDTD simulations involving e.g. coupling probes or
wire antennas are expected to gain more accuracy. The improvement is expected to be
especially high with very thin wires (wire radius of the order of 0.001λ or less).

Paper [P6] deals with the use of finite element method (FEM) in the analysis of waveguide
structures containing concave singularities, e.g. fin lines. Only scalar bases are considered in
this work. Error analysis of the cut-off wavenumber shows that the accuracy is bounded by
the H1-error of the field solution. This is important, because the conventional polynomial
bases approximate singular fields poorly in H1-norm. Therefore, a solution that might look
physical and essentially correct (L2-error of the order of 1 %) may have significant H1-error
(of the order of 10 %). Because the scalar solution represents a longitudinal component of the
field, other field components are obtained by differentiation. Obviously differentiation of a
polynomial solution cannot give correctly the unbounded transverse components in the
neighborhood of the singularity. To overcome these shortcomings, inclusion of a novel,
locally supported singular basis function is proposed. Several examples are considered, and
the results are compared with previously published works. In this context, the hierarchic p-
version elements have proven to be advantageous, allowing variable-order mesh to be
realized.
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7 Conclusions

In this thesis, we have considered a number of topical themes related to numerical methods in
radio engineering. Most of the work concentrates on algorithm developments for the finite-
difference time-domain method, while a secondary part is devoted to the finite element
method. The results of the thesis work are published in refereed international journals and
conferences, and they are hoped to serve general use.

The novel scientific contents of the thesis are the following, ordered according to the author’s
personal opinion in decreasing order of importance:

• [P2] Closed-form reflection coefficient for the discretized PML. Observation and
demonstration that a finite-thickness PML in FDTD can be designed to absorb plane
waves with zero reflection. Description of an efficient optimization procedure for the
conductivity profile. Demonstration that optimization can yield orders of magnitude
improvement of the reflection coefficient in a wide frequency band, when compared
to classical PML of same thickness.

• [P5] Correction of the thin-wire equations in FDTD. Verification of the accuracy of
the corrected model by direct evaluation of the effective radius, and indirectly by
consistency tests.

• [P6] Derivation of a simple error estimate in FEM for the cut-off frequencies of a
homogeneous waveguide in terms of field solution errors. Proposition of a novel
singular basis function. Comparative experiments with variable-order meshes.

• [P1] Development of a novel numerical dispersion reduction scheme for FDTD
through anisotropy compensation. Recognition of prominent dependence of numerical
dispersion on cell shape.

• [P4] Demonstration that the simulated input impedance of an antenna does not depend
on source cell height in the resistive voltage source model, if the reference point is
properly moved to a common reference plane. Justification that the apparent
discrepancies observable in monopole antenna simulations result from different
modeling of field singularity on top of the monopole.

• [P3] Development of a generalized coaxial probe model for FDTD simulations.

The order is of course disputable, and would be different, if the criterion were e.g. practical
applicability. In that case, the order could be [P5], [P4], [P3], [P2], [P1], [P6].

In the author’s view, the following are examples of interesting themes that deserve further
development in the future:

- Effective modeling of inhomogeneous materials in pseudospectral time-domain
(PSTD) method and in high-order FDTD.

- Development of efficient FDTD algorithms to model thin multilayer printed circuit
boards, applying 2-D FDTD between the layers.

- Further examination of the field singularity problem in FDTD, aiming at better
accuracy in microstrip structures, patch antennas etc.

- Further development and application of lumped elements in FDTD, especially active
and nonlinear components.

- Examination of time-domain FEM algorithms.
- Development of singular basis functions for 3-D vector finite elements.
- Development of singular basis functions for the method of moments.
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Appendix

Matlab-code “comp3d” finds anisotropy parameters (εx, εy, εz) that compensate numerical
dispersion in a 3-D FDTD grid. Input parameters are: Courant-number Q3, cell shape

parameters Zy = ∆x/∆y, Zz = ∆x/∆z, and resolution parameter ./ 222 zyxR ∆+∆+∆= λ

function [ex,ey,ez]=comp3d(Q3,Zy,Zz,R);
% Jaakko Juntunen 21.11.2000

Amax = pi/(3*R*asin(sin(pi/(R*sqrt(3)))/sqrt(3))); E = (Amax - 1)/2;
K1 = pi/(R*sqrt(1+1/Zy^2+1/Zz^2));
a = sin(K1/(1-E))^2/(Zy^2*sin(K1/((1-E)*Zy))^2);
b = sin(K1/(1-E))^2/(Zz^2*sin(K1/((1-E)*Zz))^2);
K2 = sqrt(1+a*Zy^2+b*Zz^2);
ex = K2/(K1*Q3*sqrt(a*b))*asin(Q3*sin(K1/(1-E))/K2); ey = a*ex; ez = b*ex;

Matlab-code “rho_1d” evaluates the reflection coefficient from 1-D PML. Input parameters
are: Courant-number Q, resolution parameter R = λ/∆x, and normalized conductivity values
σN. R can be given as vector.

function rho = rho_1d(Q,R,s);
% Jaakko Juntunen 21.11.2000

N = length(s); W = 2/Q*sin(pi*Q./R); k_delta = 2*asin(W/2);
for i = 1:N, T(i,:) = j*W + s(i)*cos(pi*Q./R); end;
CUM = zeros(size(R));
for i = 1:N, CUM = CUM + T(N+1-i,:); CUM = 1./CUM; end;
U = (j*W + CUM).*exp(j*k_delta/2);
rho = (U - exp(j*k_delta))./(1 + U);

Matlab-code “rho_2d_exact” evaluates the reflection coefficient from 2-D PML. Input
parameters are: angle of incidence α, Z = ∆x/ ∆y, Courant-number Q2, resolution parameter

,/ 22
2 yxR ∆+∆= λ and normalized conductivity values σN. Either α or R2 can be given as

vector. “rho_2d_exact” calls function “disper”, given below.

function rho = rho_2d_exact(alpha,Z,Q2,R2,s);
% Jaakko Juntunen 21.11.2000

v = disper(alpha,Z,Q2,R2); r = pi./(v.*R2*sqrt(1 + Z^2));
kxdx2 = Z*r.*cos(alpha); kydy2 = r.*sin(alpha);
W1 = pi*Q2*Z./(R2*(1 + Z^2)); W = 2*sqrt(1 + Z^2)*sin(W1)/Q2;
P = 4*Z^2*sin(kydy2).^2./W.^2;
ss = size(s); [Ls,b] = max(ss); if b==2, s = s’; end;
if 2*floor(Ls/2)==Ls, s=[0;s]; Ls = Ls + 1; end;  % let length(s) be odd

for i = 1:Ls,
   S(i,:) = s(i)*cos(W1);
   if 2*floor(i/2)==i,
      T(i,:) = S(i,:) + j*W;
   else
      T(i,:) = (S(i,:) + j*W).*(1 - P);
   end;
end;
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CUM = 0; for i = 1:Ls, CUM = CUM + T(Ls + 1 - i,:); CUM = 1./CUM; end;
U = 2./W.*sin(kxdx2).*exp(j*kxdx2).*(j*W + CUM);
rho = (exp(j*2*kxdx2) - U)./(1 + U);

Function “disper” evaluates numerical dispersion in the 2-D FDTD grid using Newton
iteration. This function is called from “rho_2d_exact”.

function v = disper(alpha,Z,Q2,R2);
% Jaakko Juntunen 21.11.2000

for i = 1:length(R2),
   R = R2(i);
   c1 = (1 + Z^2)/(Q2^2*Z^2)*sin(pi*Q2*Z/(R*(1+Z^2)))^2;
   tol = pi/(R*sqrt(1 + Z^2))*1e-10;
   r_old = pi/(R*sqrt(1 + Z^2))*ones(size(alpha)); err = 2*tol;
   while err>tol,
      f = sin(r_old.*sin(alpha)).^2 + sin(Z*r_old.*cos(alpha)).^2/Z^2 - c1;
      df = cos(alpha).*sin(2*Z*r_old.*cos(alpha))/Z + ...
         sin(alpha).*sin(2*r_old.*sin(alpha));
      r_new = r_old - f./df; err = max(abs(r_new - r_old)); r_old = r_new;
   end;
   v(:,i) = pi./(R*sqrt(1 + Z^2).*r_old);
end;

The operation of the Matlab-code “rho_2d” is equivalent to “rho_2d_exact”, except that only
R2 can be given as vector. “rho_2d” calls function “rho_1d”, given above.

function rho = rho_2d(alpha,Z,Q2,R2,s);
%  Jaakko Juntunen 21.11.2000
Q1 = Q2/(cos(alpha)*sqrt(1+Z^2));
R1 = R2*sqrt(1+Z^2)/(Z*cos(alpha));
rho = rho_1d(Q1,R1,cos(alpha)*s);



63

References

[O1] Zhao, A. P., Juntunen, J. S., Räisänen, A. V.: Generalized material
independent PML absorbers for the FDTD simulation of electromagnetic
waves in arbitrary anisotropic dielectric and magnetic media. IEEE Microwave
and Guided Wave Letters, Vol. 8, No. 2, 1998, pp. 52-54.

[O2] Zhao, A. P., Juntunen, J. S., Räisänen, A. V.: Relationship between the
compact complex and real variable 2-D FDTD methods in arbitrary
anisotropic dielectric waveguides. IEEE MTT-S International Microwave
Symposium Digest, Denver, 1997, pp. 83-87.

[O3] Zhao, A. P., Juntunen, J. S., Räisänen, A. V.: A generalized compact 2-D
FDTD model for the analysis of guided modes of anisotropic waveguides with
arbitrary tensor permittivity. Microwave and Optical Technology Letters, Vol.
18, No. 1, 1998, pp. 17-23.

[O4] Zhao, A. P., Juntunen, J. S., Räisänen, A. V.: An efficient FDTD algorithm for
the analysis of microstrip patch antennas printed on a general anisotropic
dielectric substrate. IEEE Transactions on Microwave Theory and Techniques,
Vol. 47, No. 7, 1999, pp. 1142-1146.

[O5] Juntunen, J. S., Tsiboukis, T. D.: On the FEM treatment of wedge singularities
in waveguide problems. IEEE AP-S International Symposium Digest, Orlando,
1999, pp. 464-467.

[O6] Juntunen, J. S.: Curved high-order finite elements for numerical solution of the
Helmholtz equation in complicated geometries. Proceedings of the 4th
International Conference on Unconventional Electromechanical and
Electrical Systems (UEES’99), St. Petersburg, 1999, pp. 867-872.

[O7] Juntunen, J. S., Zhao, A. P.: Auto-extraction of the correct field distribution of
guided modes from 2-D FDTD simulation. URSI/IEEE/IRC XXI National
Convention on Radio Science, Espoo, 1996, pp. 135-136.

[1] Waldschmidt, G., Taflove, A.: The determination of the effective radius of a
filamentary source in the FDTD mesh. IEEE Microwave and Guided Wave
Letters, Vol. 10, No. 6, 2000, pp. 217-219.

[2] Piket-May, M., Taflove, A., Baron, J.: FD-TD modeling of digital signal
propagation in 3-D circuits with passive and active loads. IEEE Transactions
on Microwave Theory and Techniques, Vol. 42, No. 8, 1994, pp. 1514-1523.

[3] Li, B.-J., Liu, P.-L.: Analysis of far-field patterns of microdisk resonators by
the finite-difference time-domain method. IEEE Journal of Quantum
Electronics, Vol. 33, No. 9, 1997, pp. 1489-1491.

[4] McKown, J. W., Hamilton, R. L.: Ray tracing as a design tool for radio
networks. IEEE Network Magazine, Vol. 5, No. 6, 1991, pp. 27-30.



64

[5] 3DQWLü��=���Mittra, R.: Quasi-TEM analysis of microwave transmission lines by
the finite-element method. IEEE Transactions on Microwave Theory and
Techniques, Vol. MTT-34, No. 11, 1986, pp. 1096-1103.

[6] Salazar-Palma, M., Ferragut, L., Mustieles, F.-J., Hernández-Gil, F.: Assessing
the error of transmission-line quasi-static analyses by means of a mixed finite
element method. IEEE AP-S International Symposium Digest, Ontario, 1991,
pp. 1232-1235.

[7] Carson, C. T., Combrell, G. K.: Upper and lower bounds on the characteristic
impedance impedance of TEM mode transmission lines. IEEE Transactions on
Microwave Theory and Techniques, Vol. MTT-14, No. 10, 1966, pp. 497-498.

[8] Taflove, A. (editor): Advances in Computational Electrodynamics: The Finite-
Difference Time-Domain Method, Artech House, Norwood, MA, 1998, 724 p.

[9] Zienkiewicz, O. C.: The Finite Element Method. 3rd expanded and revised ed.,
McGraw-Hill, London, 1977, 787 p.

[10] Yee, K. S.: Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and
Propagation, Vol. AP-14, No. 3, 1966, pp. 302-307.

[11] Taflove, A., Brodwin, M. E.: Numerical solution of steady-state
electromagnetic scattering problems using the time-dependent Maxwell’s
equations. IEEE Transactions on Microwave Theory and Techniques, Vol.
MTT-23, No. 8, 1975, pp. 623-630.

[12] Celuch-Marcysiak, M., Gwarek, W.K.: On the nature of solutions produced by
finite difference schemes in time domain, invited paper, International Journal
of Numerical Modelling – Electronic Networks, Devices and Fields, Vol. 12,
No. 1/2, 1999, pp. 23-40.

[13] Kunz, K. S., Luebbers, R. J.: The Finite Difference Time Domain Method for
Electromagnetics, CRC Press, Boca Raton, FL, 1993, 448 p.

[14] Zhao, A. P., Räisänen, A. V., Cvetkovic, S. R.: A fast and efficient FDTD
algorithm for the analysis of planar microstrip discontinuities by using a
simple source excitation scheme. IEEE Microwave and Guided Wave Letters,
Vol. 5, No. 10, 1995, pp. 341-343.

[15] Mroczkowski, C., Gwarek, W. K.: Microwave circuits described by two-
dimensional vector wave equation and their analysis by FD-TD method,
Proceedings of 21st European Microwave Conference, Stuttgart, 1991, pp.
199-204.

[16] Asi, A., Shafai, L.: Dispersion analysis of anisotropic inhomogeneous
waveguides using compact 2D-FDTD. IEE Electronics Letters, Vol. 28, No.
15, 1992, pp. 1451-1452.



65

[17] Xiao, S., Vahldieck, R., Jin, H.: Full-wave analysis of guided wave structures
using a novel 2-D FDTD. IEEE Microwave and Guided Wave Letters, Vol. 2,
No. 5, 1992, pp. 165-167.

[18] Tirkas, P. A., Balanis, C. A.: Finite-difference time-domain method for
antenna radiation. IEEE Transactions on Antennas and Propagation, Vol. 40,
No. 3, 1992, pp. 334-340.

[19] Maloney, J. G., Shlager, K. L., Smith, G. S.: A simple FDTD model for
transient excitation of antennas by transmission lines. IEEE Transactions on
Antennas and Propagation, Vol. 42, No. 2, 1994, pp. 289-292.

[20] Sui, W., Christensen, D. A., Durney, C. H.: Extending the two-dimensional
FDTD method to hybrid electromagnetic systems with active and passive
lumped elements. IEEE Transactions on Microwave Theory and Techniques,
Vol. 40, No. 4, 1992, pp. 724-730.

[21] Pekonen, O. P. M., Xu, J., Nikoskinen, K. I.: Rigorous analysis of circuit
parameter extraction from an FDTD simulation excited with a resistive voltage
source. Microwave and Optical Technology Letters, Vol. 12, No. 4, 1996, pp.
205-210.

[22] Mur, G.: Absorbing boundary conditions for the finite-difference
approximation of the time-domain electromagnetic-field equations. IEEE
Transactions on Electromagnetic Compatibility, Vol. EMC-23, No. 4, 1981,
pp. 377-382.

[23] Bérenger, J.-P.: A perfectly matched layer for the absorption of
electromagnetic waves. Journal of Computational Physics, Vol. 114, 1994, pp.
185-200.

[24] Zhang, X., Mei, K. K.: Time-domain finite difference approach to the
calculation of the frequency-dependent characteristics of microstrip
discontinuities. IEEE Transactions on Microwave Theory and Techniques,
Vol. 36, No. 12, 1988, pp. 1775-1787.

[25] Przybyszewski, P., Mrozowski, M.: A conductive wedge in Yee’s mesh. IEEE
Microwave and Guided Wave Letters, Vol. 8, No. 2, 1998, pp. 66-68.

[26] Harms, P. H., Lee, J.-F., Mittra, R.: A study of the nonorthogonal FDTD
method versus the conventional FDTD technique for computing resonant
frequencies of cylindrical cavities. IEEE Transactions on Microwave Theory
and Techniques, Vol. 40, No. 4, 1992, pp. 741-746.

[27] Gwarek, W. K.: Analysis of an arbitrarily-shaped planar circuit – a time-
domain approach. IEEE Transactions on Microwave Theory and Techniques,
Vol. MTT-33, No. 10, 1985, pp. 1067-1072.



66

[28] Railton, C. J., Schneider, J. B.: An analytical and numerical analysis of several
locally conformal FDTD schemes. IEEE Transactions on Microwave Theory
and Techniques, Vol. 47, No. 1, 1999, pp. 56-66.

[29] Mur, G.: The modeling of singularities in the finite-difference approximation
of the time-domain electromagnetic-field equations. IEEE Transactions on
Microwave Theory and Techniques, Vol. MTT-29, No. 10, 1981, pp. 1073-
1077.

[30] Fang, J.: Time domain finite difference computation for Maxwell’s equations,
Ph.D. dissertation, Univ. California, Berkeley, CA, 1989, 174 p.

[31] Deveze, T., Beaulieu, L., Tabbara, W.: A fourth order scheme for the FDTD
algorithm applied to Maxwell’s equations. IEEE AP-S International
Symposium Digest, Chicago, 1992, pp. 346-349.

[32] Turkel, E., Yefet, A.: Fourth order method for Maxwell equations on a
staggered mesh. IEEE AP-S International Symposium Digest, Montreal, 1997,
pp. 2156-2159.

[33] Young, J. L., Gaitonde, D., Shang, J. J. S.: Toward the construction of a
fourth-order difference scheme for transient EM wave simulation: staggered
grid approach. IEEE Transactions on Antennas and Propagation, Vol. 45, No.
11, 1997, pp. 1573-1580.

[34] Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and
Difference Methods, Wiley-Interscience,  New York, NY, 1996, 656 p.

[35] Haussmann, G., Piket-May, M.: Modeling interface discontinuities and
boundary conditions for a dispersion-optimized finite-difference time-domain
method. IEEE AP-S International Symposium Digest, Atlanta, 1998, pp. 1820-
1823.

[36] Shlager, K. L., Schneider, J. B.: Relative accuracy of several low-dispersion
finite-difference time-domain schemes. IEEE AP-S International Symposium
Digest, Orlando, 1999, pp. 168-171.

[37] Krumpholz, M., Katehi, L. P. B.: MRTD: new time-domain schemes based on
multiresolution analysis. IEEE Transactions on Microwave Theory and
Techniques, Vol. 44, No. 4, 1996, pp. 555-571.

[38] Hadi, M. F., Piket-May, M.: A modified FDTD (2,4) scheme for modeling
electrically large structures with high-phase accuracy. IEEE Transactions on
Microwave Theory and Techniques, Vol. 45, No. 2, 1997, pp. 254-264.

[39] Cole, J. B.: A high-accuracy realization of the Yee algorithm using non-
standard finite differences. IEEE Transactions on Microwave Theory and
Techniques, Vol. 45, No. 6, 1997, pp. 991-996.



67

[40] Forgy, E. A., Chew, W. C.: An efficient FDTD algorithm with isotropic
numerical dispersion on an overlapped lattice. IEEE AP-S International
Symposium Digest, Atlanta, 1998, pp. 1812-1815.

[41] Nehrbass, J. W., -HYWLü�� -�� 2��� /HH�� R.: Reducing the phase error for finite-
difference methods without increasing the order. IEEE Transactions on
Antennas and Propagation, Vol. 46, No. 8, 1998, pp. 1194-1201.

[42] Forgy, E. A., Chew, W. C.: A new FDTD formulation with reduced dispersion
for the simulation of wave propagation through inhomogeneous media. IEEE
AP-S International Symposium Digest, Orlando, 1999, pp. 1316-1319.

[43] Liu, Q. H.: The PSTD algorithm: A time-domain method requiring only two
cells per wavelength. Microwave and Optical Technology Letters, Vol. 15, No.
3, 1997, pp. 158-165.

[44] Lindell, I.: Radioaaltojen eteneminen, (in Finnish) Otatieto Oy, Helsinki,
1996, 262 p.

[45] Taflove, A.: Computational Electrodynamics. The Finite-Difference Time-
Domain Method, Artech House Inc., Norwood, MA, 1995, 599 p.

[46] Bayliss, A., Turkel, E.: Radiation boundary conditions for wave-like
equations, Communications on Pure and Applied Mathematics, Vol. 23, 1980,
pp. 707-725.

[47] Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical
simulation of waves. Mathematics of Computation, Vol. 31, 1977, pp. 629-
651.

[48] Trefethen, L. N., Halpern, L.: Well-posedness of one-way wave equations and
absorbing boundary conditions. Mathematics of Computation, Vol. 47, 1986,
pp. 421-435.

[49] Higdon, R. L.: Numerical absorbing boundary conditions for the wave
equation. Mathematics of Computation, Vol. 49, 1987, pp. 65-90.

[50] Liao, Z. P., Wong, H. L., Yang, B. P., Yuan, Y. F.: A transmitting boundary
for transient wave analyses. Scientia Sinica (series A), vol. XXVII, 1984, pp.
1063-1076.

[51] Mei, K. K., Fang, J.: Superabsorption – a method to improve absorbing
boundary conditions. IEEE Transactions on Antennas and Propagation, Vol.
40, No. 9, 1992, pp. 1001-1010.

[52] Katz, D. S., Thiele, E. T., Taflove, A.: Validation and extension to three
dimensions of the Berenger PML absorbing boundary condition for FD-TD
meshes. IEEE Microwave and Guided Wave Letters, Vol. 4, No. 8, 1994, pp.
268-270.



68

[53] Chew, W. C., Weedon, W. H.: A 3D perfectly matched medium from modified
Maxwell’s equations with stretched coordinates. Microwave and Optical
Technology Letters, Vol. 7, No. 13, 1994, pp. 599-604.

[54] Rappaport, C. M.: Perfectly matched absorbing boundary conditions based on
anisotropic lossy mapping of space. IEEE Microwave and Guided Wave
Letters, Vol. 5, No. 3, 1995, pp. 90-92.

[55] Sacks, Z. S., Kingsland, D. M., Lee, R., Lee, J. F.: A perfectly matched
anisotropic absorber for use as an absorbing boundary condition. IEEE
Transactions on Antennas and Propagation, Vol. 43, No. 12, 1995, pp. 1460-
1463.

[56] Zhao, L., Cangellaris, A. C.: GT-PML: Generalized theory of perfectly
matched layers and its application to the reflectionless truncation of finite-
difference time-domain grids. IEEE Transactions on Microwave Theory and
Techniques, Vol. 44, No. 12, 1996, pp. 2555-2563.

[57] Berenger, J.-P.: Perfectly matched layer for the FDTD solution of wave-
structure interaction problems. IEEE Transactions on Antennas and
Propagation, Vol. 44, No. 1, 1996, pp. 110-117.

[58] Fang, J., Wu, Z.: Closed-form expression of numerical reflection coefficient at
PML interfaces and optimization of PML performance. IEEE Microwave and
Guided Wave Letters, Vol. 6, No. 9, 1996, pp. 332-334.

[59] Lazzi, G., Gandhi, O. P.: On the optimal design of the PML absorbing
boundary condition for the FDTD code. IEEE Transactions on Antennas and
Propagation, Vol. 45, No. 5, 1997, pp. 914-916.

[60] Zhao, L., Cangellaris, A. C.: The generalized theory of perfectly matched
layers (GT-PML): numerical reflection analysis and optimization. IEEE AP-S
International Symposium Digest, Montreal, 1997, pp. 1896-1899.

[61] Marengo, E. A., Rappaport, C. M., Miller, E. L.: Optimum PML ABC
conductivity profile in FDTD. IEEE Transactions on Magnetics, Vol. 35, No.
5, 1999, pp. 1506-1509.

[62] Wu, Z., Fang, J.: Numerical implementation and performance of perfectly
matched layer boundary condition for waveguide structures. IEEE
Transactions on Microwave Theory and Techniques, Vol. 43, No. 12, 1995,
pp. 2676-2683.

[63] Berenger, J.-P.: Improved PML for the FDTD solution of wave-structure
interaction problems. IEEE Transactions on Antennas and Propagation, Vol.
45, No. 3, 1997, pp. 466-473.

[64] Moerloose, J. D., Stuchly, M. A.: Reflection analysis of PML ABC’s for low-
frequency applications. IEEE Microwave and Guided Wave Letters, Vol. 6,
No. 4, 1996, pp. 177-179.



69

[65] Winton, S. C., Rappaport, C. M.: Specifying PML conductivities by
considering numerical reflection dependencies. IEEE Transactions on
Antennas and Propagation, Vol. 48, No. 7, 2000, pp. 1055-1063.

[66] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming, John
Wiley & Sons, Inc., New York, NY, 1993, 638 p.

[67] Fang, J., Wu, Z.: Generalized perfectly matched layer for the absorption of
propagating and evanescent waves in lossless and lossy media. IEEE
Transactions on Microwave Theory and Techniques, Vol. 44, No. 12, 1996,
pp. 2216-2222.

[68] Umashankar, K. R., Taflove, A.: A novel method to analyze electromagnetic
scattering of complex objects. IEEE Transactions on Electromagnetic
Compatibility, Vol. EMC-24, No. 4, 1982, pp. 397-405.

[69] Ramahi, O. M.: The complementary operators method in FDTD simulations.
IEEE Antennas and Propagation Magazine, Vol. 39, No. 6, 1997, pp. 33-45.

[70] Ramahi, O. M., Schneider, J. B.: Comparative study of the PML and C-COM
mesh-truncation techniques. IEEE Microwave and Guided Wave Letters, Vol.
8, No. 2, 1998, pp. 55-57.

[71] Pozar, D. M.:  Microwave Engineering. Addison-Wesley, Reading, MA, 1990,
726 p.

[72] Izadian, J. S., Izadian, S. M.: Microwave transition design. Artech House,
London, 1988, 150 p.

[73] Tam, M. K., Murch, R. D.: Half volume dielectric resonator antenna designs.
IEE Electronics Letters, Vol. 33, No. 23, 1997, pp. 1914-1916.

[74] Lehmus, O., Ollikainen, J., Vainikainen, P.: Characteristics of half-volume
DRAs with different permittivities. IEEE AP-S International Symposium
Digest, Orlando, 1999, pp. 22-25.

[75] Umashankar, K. R., Taflove, A., Beker, B.: Calculation and experimental
validation of induced currents on coupled wires in an arbitrary shaped cavity.
IEEE Transactions on Antennas and Propagation, Vol. AP-35, No. 11, 1987,
pp. 1248-1257.

[76] Taflove, A., Umashankar, K. R., Beker, B., Harfoush, F., Yee, K. S.: Detailed
FD-TD analysis of electromagnetic fields penetrating narrow slots and lapped
joints in thick conducting screens. IEEE Transactions on Antennas and
Propagation, Vol. 36, No. 2, 1988, pp. 247-257.

[77] Craddock, I. J., Railton, C. J.: A new technique for the stable incorporation of
static field solutions in the FDTD method for the analysis of thin wires and
narrow strips. IEEE Transactions on Microwave Theory and Techniques, Vol.
46, No. 8, 1998, pp. 1091-1096.



70

[78] Douglas, M., Okoniewski, M., Stuchly, M. A.: Accurate modeling of thin-wire
antennas in the FDTD method. Microwave and Optical Technology Letters,
Vol. 21, No. 4, 1999, pp. 261-265.

[79] Mäkinen, R., Salonen, P., Kivikoski, M.: A new model for coupling a one-
dimensional transmission line to FDTD grid for transient excitation of
antennas. Proceedings of the Asia-Pacific Microwave Conference, Sydney,
2000, pp. 369-373.

[80] Hese, J. V., Zutter, D. D.: Modelling of discontinuities in general coaxial
waveguide structures by the FDTD method. IEEE Transactions on Microwave
Theory and Techniques, Vol. 40, No. 3, 1992, pp. 547-556.

[81] Maloney, J. G., Smith, G. S., Scott, W. R.: Accurate computation of the
radiation from simple antennas using the finite-difference time-domain
method. IEEE Transactions on Antennas and Propagation, Vol. 38, No. 7,
1990, pp. 1059-1068.

[82] Arlett, P. L., Bahrani, A. K., Zienkiewicz, O. C.: Application of finite elements
to the solution of Helmholtz’s equation. Proceedings of the IEE, Vol. 115, No.
12, 1968, pp. 1762-1766.

[83] Johnson, C.: Numerical solution of partial differential equations by the finite
element method. Studentlitteratur, Lund, 1987, 279 p.

[84] Silvester, P. P., Ferrari, R. L.: Finite Elements for Electrical Engineers.
Cambridge University Press, Cambridge, 1996, 494 p.

[85] Jin, J.: The Finite Element Method in Electromagnetics. Wiley-Interscience,
New York, NY, 1993, 442 p.

[86] Nedelec, J. C.: Mixed finite elements in R3. Numerische Mathematik, Vol. 35,
1980, pp. 315-341.

[87] Wong, S. H., Cendes, Z. J.: Combined finite element-modal solution of three-
dimensional eddy current problems. IEEE Transactions on Magnetics, Vol. 24,
No. 6, 1988, pp. 2685-2687.

[88] Bossavit, A., Mayergoyz, I.: Edge-elements for scattering problems. IEEE
Transactions on Magnetics, Vol. 25, No. 4, 1989, pp. 2816-2821.

[89] Lee, J.-F., Sun, D.-K., Cendes, Z. J.: Full-wave analysis of dielectric
waveguides using tangential vector finite elements. IEEE Transactions on
Microwave Theory and Techniques, Vol. 38, No. 8, 1998, pp. 1262-1271.

[90] Cendes, Z. J.:  Vector finite elements for electromagnetic field computation.
IEEE Transactions on Magnetics, Vol. 27, No. 5, 1991, pp. 3958-3966.



71

[91] Fernandez, F. A., Lu, Y.: A variational finite element formulation for dielectric
waveguides in terms of transverse magnetic fields. IEEE Transactions on
Magnetics, Vol. 27, No. 5, 1991, pp. 3864-3867.

[92] Ledfelt, G., Edelvik, F., Andersson, U.: Hybrid time domain solver for the 3D
Maxwell equations. Proceedings of the Nordic Antenna Symposium Antenn 00,
Lund, Sweden, 2000, pp. 57-62.

[93] Taylor, R. L.: On completeness of shape functions for finite element analysis.
International Journal for Numerical Methods in Engineering, Vol. 4, No. 1,
1972, pp. 17-22.

[94] Szabó, B. A., Babuška, I.: Finite Element Analysis. Wiley-Interscience, New
York, NY, 1991, 368 p.

[95] Meixner, J.: The behavior of electromagnetic fields at edges. IEEE
Transactions on Antennas and Propagation, Vol. AP-20, No. 4, 1972, pp. 442-
446.

[96] Vafiadis, E., Sahalos, J. N.: Fields at the tip of an elliptic cone. Proceedings of
IEEE, Vol. 72, No. 8, 1984, pp. 1089-1091.

[97] Van Bladel, J.: Field singularities at metal-dielectric wedges. IEEE
Transactions on Antennas and Propagation, Vol. AP-33, No. 4, 1985, pp. 450-
455.

[98] De Smedt, R., Van Bladel, J.: Field singularities at the tip of a metallic cone of
arbitrary cross section. IEEE Transactions on Antennas and Propagation, Vol.
AP-34, No. 7, 1986, pp. 865-870.

[99] De Smedt, R.: Electric singularity near the tip of a sharp cone. IEEE
Transactions on Antennas and Propagation, Vol. 36, No. 1, 1988, pp. 152-
155.

[100] Tracey, P., Cook, T.: Analysis of power type singularities using finite
elements. International Journal for Numerical Methods in Engineering, Vol.
11, 1977, pp. 1225-1233.

[101] Pantic, Z., Mittra, R.: Quasi-TEM analysis of microwave transmission lines by
the finite-element method. IEEE Transactions on Microwave Theory and
Techniques, Vol. MTT-34, No. 11, 1986, pp. 1096-1103.

[102] Cendes, Z. J., Lee. J.-F.: The transfinite element method for modeling MMIC
devices. IEEE Transactions on Microwave Theory and Techniques, Vol. 36,
No. 12, 1988, pp. 1639-1649.

[103] Webb, J. P.: Finite element analysis of dispersion in waveguides with sharp
metal edges. IEEE Transactions on Microwave Theory and Techniques, Vol.
36, No. 12, 1988, pp. 1819-1824.



72

[104] Gil, J. M., Zapata, J.: Efficient singular element for finite element analysis of
quasi-TEM transmission lines and waveguides with sharp metal edges. IEEE
Transactions on Microwave Theory and Techniques, Vol. 42, No. 1, 1994, pp.
92-98.

[105] Gil, J. M., Zapata, J.: A new scalar transition finite element for accurate
analysis of waveguides with field singularities. IEEE Transactions on
Microwave Theory and Techniques, Vol. 43, No. 8, 1995, pp. 1978-1982.

[106] Miniowitz, R., Webb, J. P.: Covariant-projection quadrilateral elements for the
analysis of waveguides with sharp edges. IEEE Transactions on Microwave
Theory and Techniques, Vol. 39, No. 3, 1991, pp. 501-505.

[107] Gil, J. M., Webb, J. P.: A new edge element for the modeling of field
singularities in transmission lines and waveguides. IEEE Transactions on
Microwave Theory and Techniques, Vol. 45, No. 12, 1997, pp. 2125-2130.

[108] Pantic-Tanner, Z., Savage, J. S., Tanner, D. R., Peterson, A. F.: Two-
dimensional singular vector elements for finite-element analysis. IEEE
Transactions on Microwave Theory and Techniques, Vol. 46, No. 2, 1998, pp.
178-184.

[109] Gordon, W. J.: Blending function methods of bivariate and multivariate
interpolation and approximation. SIAM Journal on Numerical Analysis, Vol. 8,
No. 1, 1971, pp. 158-177.

[110] Gordon, W. J., Hall, C. A.: Construction of curvilinear co-ordinate systems
and applications to mesh generation. International Journal for Numerical
Methods in Engineering, Vol. 7, No. 4, 1973, pp. 461-477.

[111] Gordon, W. J., Hall, C. A.: Transfinite element methods: blending function
interpolation over arbitrary curved element domains. Numerische Mathematik,
Vol. 21, No. 2, 1973, pp.109-129.

[112] Kärkkäinen, M.: Use of finite-element method in the analysis of waveguides
containing wedge singularities. Diploma thesis (in Finnish), Helsinki
University of Technology, 2000, 57 p.



HELSINKI UNIVERSITY OF TECHNOLOGY RADIO LABORATORY REPORTS

S 232 Hahkio, T.
Mapping of ILS Scatterers and Suppression of Scatter Errors, Oct. 1998



HELSINKI UNIVERSITY OF TECHNOLOGY RADIO LABORATORY REPORTS

S 233 Zhang, J.
Diode Modeling and Circuit Design of Microwave and Millimeter-wave
Frequency Multipliers and Mixers, Dec. 1998

S 234 Heikkilä, E.
Tutkatekniikka, Feb. 1999

S 235 Heikkilä, E.
Tutkan signaalinkäsittely, Feb. 1999

S 236 Räisänen, A.V., Lindberg, S.
HUT Radio Laboratory Research and Education 1998, April 1999

S 237 Piironen, P.
Microwave Circuits and Systems for Space Applications, July 1999

S 238 Räisänen, A.V.
Opinnäytetyöt radiotekniikassa 1924-1999
Theses in Radio Engineering 1924-1999, July 1999

S 239 Sehm, T.
Development of Low-profile Radio Link Antennas for Millimeter Waves,
Feb. 2000

S 240 Vainikainen, P., Ollikainen, J., Kivekäs, O., Kelander, I.
Effect of Phone Chassis on Handset Antenna Performance, March 2000

S 241 Räisänen, A.V., Lindberg, S.
HUT Radio Laboratory Research and Education 1999, April 2000

S 242 Lundén, O-P.
Low Noise Amplifiers and Local Oscillators for Wireless 
Communications Receivers, April 2000

S 243 Nyfors, E.
Cylindrical Microwave Resonator Sensors for Measuring Materials under
Flow, April 2000

S 244 Kivinen, J.
Development of Wideband Radio Channel Measurements and Modeling
Techniques for Future Radio Systems, March 2001

S 245 Räisänen, A.V., Lindberg S.
HUT Radio Laboratory Research and Education 2000, March 2001

S 246 Ala-Laurinaho, J.
Numerical Studies on a Radio Frequency Hologram and its Use in
Antenna Measurements, May 2001

ISBN 951-22-5473-5
ISSN 1456-3835


