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Abstract

This Thesis describes ultralow temperature studies of helium quantum crystals. Ow-

ing to the surrounding superfluid, small latent heat of crystallization and correspondingly

short relaxation times, which are unreachable in ordinary crystals, helium crystals offer a

unique and clean modeling system to study surface phenomena in a solid. The measure-

ments of the crystal shape and growth rates are essential in providing the microscopic

understanding of crystal growth.

Optical observations are probably the most direct way to quantify the surface of crys-

tals. The results presented in this Thesis were obtained with the help of two very powerful

experimental techniques that were successfully adopted for ultralow temperature applica-

tions: optical interferometry and high-precision pressure measurements.

The optical investigations on 3He crystals revealed altogether eleven types of facets at

temperatures well below 1 mK, while previously only three facet types have been seen.

The growth rates of rough and smooth surface states were explored and show significant

anisotropy. The measured growth velocities of different facet types indicate that the

main growth mechanism is spiral growth in the regime of suppressed mobility. Important

thermodynamic parameters of an interface such as the width of an elementary step and the

step free energy were directly deduced from the observed growth kinetics. Results suggest

that coupling of the interface to the underlying crystal lattice is relatively “strong” in 3He

crystals.

Measurements of the spiral growth of the c-facet on 4He crystals in the presence of a

small number of 3He atoms were also conducted. They show suppression of the crystal

growth velocity with the increase of the 3He atom concentration and indicate “weak”

coupling of the interface to the crystal lattice in 4He.
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1 Introduction

The recent development of low-temperature technologies has shed light on many physical

phenomena previously hidden by Nature. Perhaps the most fascinating secrets revealed

until now are the superconductivity of metals and the superfluidity of the helium liquids.

Not quite as widely known, but definitely also very exciting, are the properties exhibited

by the quantum crystals of helium.

Helium crystals are truly exceptional. The crystalline phase can stay in equilibrium

with the liquid down to zero temperature because of the quantum fluctuations which

dominate over the weak van der Waals interaction of the atoms. To solidify helium, a

moderate external pressure has to be applied even at T = 0 K. Depending on pressure

and temperature, solid helium exhibits hcp, bcc or fcc crystal structures. At low enough

temperatures, the melting curve is nearly horizontal so the latent heat becomes very

small. At the same time, the highly mobile superfluid phase makes the crystal growth

and equilibrium practically independent of heat and mass flow considerations.

Owing to the quantum nature of the helium crystals, point surface defects such as

elementary kinks on an atomic step can be regarded as quasiparticles, which move along

the step as free particles. Motion of the crystal surface is therefore only hampered by

interactions with elementary excitations in the bulk phases. Thus the morphological

changes in helium crystals can take place very rapidly on a time scale of a fraction of a

second. Among other properties worth noting is the ultimate purity of the sample, since

all other substances are frozen out. To complete the picture, it should be pointed out that

helium has two stable isotopes, 4He and 3He. They differ substantially from each other,

since a 4He atom is a boson while 3He is a fermion. The short shape relaxation time of

helium crystals has enabled systematic experimental and theoretical studies of both their

equilibrium and kinetic properties. In summary, helium crystals thus offer a unique and

clean modeling system to study surface phenomena in solids.

Generally, the crystalline boundary can exist in two different states: rounded (atomi-

cally rough) or faceted (atomically smooth). Let us imagine a step on an otherwise flat

surface, with the left part one atomic layer higher than the right one. The step has a finite

width which is determined by the coupling strength of the interface to the crystal lattice.

If the coupling is strong the step is sharp, while in the case of weak coupling it is blurred

over some distance ξ, see Fig. 1. The number of thermally nucleated steps on the crystal

surface increases with temperature and when the distance between the steps and their

width become comparable, the surface becomes rough. The phase transition between
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Figure 1: Profile of an elementary step: a) strong- and b) weak-coupling limit.

the rough and faceted surface states is called the roughening transition. It is generally

believed that the roughening transition belongs to the Kosterlitz-Thouless universality

class [1, 2].

According to many theoretical models, crystal shapes are believed to be entirely faceted

at zero temperature [3], although there has been some controversy on this point when zero-

point fluctuations are large [1, 4]. The surface of quantum crystals has been predicted to

be in a quantum-rough state even at absolute zero due to the delocalization of steps and

kinks [4]. On the other hand, it has been shown that this is unlikely to happen [1]. The

experiments conducted show arguments in favor of both theories, for reviews see Refs. [5,6]

and references therein.

Important thermodynamic parameters of an interface can be directly deduced from

the equilibrium crystal profile and its growth kinetics. Measurements of macroscopic

quantities, such as the size of a facet, the growth rate and the roughening transition

temperature can reveal microscopic parameters, such as the free energy of the step, and

the coupling of the interface to the crystal lattice.

Optical observations are probably the most direct way to quantify the surface of crys-

tals. However, all practical technicalities such as the imaging optical scheme, data collec-

tion procedure, etc., may vary for different experimental conditions and according to the

goals that one is trying to achieve.

Most of the solid-helium related studies have so far been carried out using a conven-

tional optical cryostat with several sets of windows and with most of the optical com-

ponents located at room temperature [7–9]. Accessing temperatures lower than 20 mK

in such a configuration is an extremely difficult task; the thermal radiation through the

optical windows limits the lowest achievable temperature of the measurements. Recently,

optical studies conducted at much lower temperatures have become possible after a new

type of technical approach has been put forward by two groups of investigators [10–12].

Both groups had their optical instruments, including a high-resolution imaging system,

confined inside the 4-K vacuum jacket of their experimental apparatus. Owing to this
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technical improvement, the external heat loads caused by the presence of the “hot” optical

windows can be avoided, or at least greatly reduced.

The results presented in this Thesis were obtained with the help of two very power-

ful experimental techniques that we have successfully adopted for ultralow temperature

applications: optical interferometry and high-precision pressure measurements. Morphol-

ogy and growth kinetics of bcc-3He crystals were the major subject of these studies during

the past four years. To achieve temperatures well below 1 mK, the cryogenic part of

the low-temperature probe was considerably improved as compared with the one used

before [13]. A low-temperature multiple-beam interferometer was developed and built for

these studies. Publications [P1, P2] report on the first successful attempts to nucleate and

study 3He crystals below 1 mK using this new interferometric setup. Measurements on

the crystal morphology conducted with the help of the phase-shift technique are described

in detail in publication [P3]. The studies of growing 3He crystals revealed a number of

new types of facets never seen before [P4—P6]. The growth rates of the rough and faceted

surfaces were measured at 0.55 mK. The results suggest that the step-step interactions

are of elastic origin [P5]. The step energies for most of these newly observed facets were

calculated in the same publication. Finally, the width of an elementary step on the c-facet

of 4He crystals was probed by scattering of 3He atoms, as described in publication [P7].

1.1 4He crystals

4He is the more common of the two stable isotopes of helium. It is used, as we all know,

to inflate balloons. In some wells, natural gas can contain as much as 10% of 4He. The

liquid-solid phase diagram of 4He as a function of pressure and temperature is shown in

Fig. 2. Helium gas liquefies at a temperature of 4.2 K (p = 1 bar) and remains liquid

down to zero temperature. Liquid 4He becomes superfluid at Tλ = 2.17 K, where it has

effectively zero viscosity and can flow through “superleaks”, the tiny channels which are

impermeable for ordinary liquids.

To solidify 4He, a minimum pressure of about 25 bars is required. At these pressures

the most common lattice structure of helium crystals is hexagonal close packed (hcp),

besides that there exists only a tiny region where the lattice is a body centered cubic

(bcc), see Fig. 2. At very high pressures (above 1000 bar), the 4He lattice can be face

centered cubic (fcc). Most of the experimental studies on 4He crystals have been performed

for the hcp phase, including the measurements presented in this Thesis.

The melting curve of 4He nearly flattens below 0.9 K, where the entropies of the solid
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Figure 2: Liquid-solid phase diagram of 4He.

and liquid phases are very small. In this temperature range, growth dynamics becomes

fast and the 4He crystals can follow the pressure deviations from equilibrium in a time

scale of milliseconds. Under such unique conditions it becomes possible to observe weakly

damped melting-freezing waves on the rough crystal surface [4,7]. As a consequence, 4He

crystals are able to reach their equilibrium shape almost instantly.

Optical measurements on hcp-4He crystals have revealed three different roughening

transitions. The first facet observed was the c-facet (0001), the basal plane of the hexag-

onally symmetric 4He with the highest roughening temperature, TR1 = 1.3 K [8, 9, 14].

When lowering the temperature, six a-facets (1100) appear on the vertical edge of the

crystal at TR2 = 0.9 K [8, 14]. Below TR3 = 0.36 K, s-facets (1101) are formed between

the c- and a-facets [15]. This evolution of the equilibrium shape of a helium crystal as a

function of temperature is illustrated in Fig. 3.

As mentioned above, according to Ref. [1], crystals are expected to become completely

faceted as temperature is decreased. However, no new roughening transitions have been

observed in 4He down to 2 mK [13].

The rough and faceted crystal surfaces grow differently. Owing to thermal and quan-

tum fluctuations, a certain density of nucleation sites is always present on the rough

surfaces, so these surfaces have no threshold for their growth. Facets grow slowly because

there is a problem in finding a landing site for an atom to stick to.
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Figure 3: Shape of 4He crystals at different temperatures. For simplicity, the effect of gravity

is neglected. a) The presence of c-facets at TR1 < 1.28 K. b) Appearance of the six a-facets at

TR2 < 0.9 K. c) The 4He crystal shape with all observed facets; c, a and s-facets at TR3 < 0.35 K.

The growth kinetics of 4He crystals has been studied in detail on rough surfaces [16],

on facets [13] and on surfaces in the vicinity of the facet edge [17]. This Thesis presents

results on how even very small amounts of 3He atoms can influence the spiral growth of

c-facets, which is governed by screw dislocations. The measurements reveal the reduction

of growth velocities with the increase of 3He concentration, and yield an estimation of the

effective width of an elementary step on the interface [P7].

1.2 3He crystals

Compared with 4He, 3He is a very rare (and expensive!) element. It is mainly obtained

as a byproduct in industrial nuclear reactors. The phase diagram of 3He in Fig. 4 is more

complicated than that of 4He. The 3He gas liquefies at a temperature of 3.2 K (p = 1 bar).

A 3He atom has a nuclear spin of 1/2 and a collection of 3He atoms obeys Fermi-

Dirac quantum statistics. Similar to 4He, it also becomes superfluid, but at a much lower

temperature (TC = 2.5 mK at melting pressure). However, the underlying physics here is

completely different and the pairing of 3He atoms can be described in terms of the BCS

theory [18]. The complicated broken-symmetry state characterizing the superfluidity leads

to the existence of several distinct superfluid phases, or different pairing states. In zero

magnetic field, the A–phase is stable only in a small region of temperature and pressure

near TC while the main body of the phase diagram is occupied by the B–phase.

The light mass of a 3He atom and the correspondingly large zero-point energy require

a pressure of about 34 bar to solidify liquid 3He at T = 0 K. Up to 100 bar, 3He crystals

possess the bcc-lattice structure. At higher pressures the hcp and fcc structures can form

as well. Optical studies of 3He crystals were conducted only for the bcc-phase.

The phase diagram of 3He crystals has a low-temperature side of the melting curve
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Figure 4: Phase diagram of 3He.

with a negative slope, which is due to the lower entropy of the liquid in comparison with

that of the solid phase. The entropy of the solid is that of a system of disordered nuclear

spins and is equal to R ln 2, until the spins order at the Néel temperature, TN = 0.93 mK.

The entropy of liquid 3He, which behaves as a Fermi liquid below 1 K, decreases linearly

with temperature well below its Fermi temperature. At the minimum of the melting curve

(pmin = 29.315 bar, Tmin = 319 mK) [19] the entropies of liquid and of solid are equal.

Such unusual behavior in solid 3He was predicted by Pomeranchuk [20].

As temperature deviates from that of the melting curve minimum, the large latent

heat along with the poor thermal conductivity of liquid 3He results in very slow shape-

relaxation times. Well below the ordering transition in the solid phase, the latent heat

of crystallization decreases rapidly, the surrounding liquid is in the superfluid state, and
3He crystals are expected to show fast growth kinetics similar to 4He crystals [4].

Solid 3He can be studied by nuclear magnetic resonance (NMR) due to its intrinsic spin

angular momentum of �/2. Ultralow temperature (T < 1 mK) NMR measurements of

single 3He crystals were pioneered by Osheroff et al. [21]. The first growth-rate measure-

ments were performed by Feng et al. [22]. NMR studies on the melting of 3He crystals

reported that below 0.78 TN the melting rate was too rapid to be measured quantita-

tively [23]. The much slower growth velocities were attributed to the presence of slowly

growing facets which have screw dislocations. Unfortunately, the NMR measurements
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provide only indirect information on the surface state and direct visualization is required.

The equilibrium shape of 3He crystals has been observed only in the vicinity of the

melting curve minimum where the latent heat of crystallization is very low [24]. At this

temperature the crystals are nicely rounded and facets are not present.

The first facets of (110) type on the surface of growing 3He crystals have been detected

at T � 100 mK [25]. The measured roughening transition temperature TR1 = 100 mK,

however, should be taken with caution since in this temperature region the shapes of the
3He crystals are highly sensitive to the growth conditions.

Two more types of facets, (100) and (211), have been identified in 3He during crystal

growth from the superfluid phase at T ≥ 0.7 mK [26, 27]. The highest temperature

where these facets were observed has been reported to be about 10 mK. The crystal

growth rates, measured at T = 0.7 mK [27], showed good agreement with the earlier

NMR measurements. However, only the average growth velocity of the crystal has been

reported. In these experiments, the crystal images were analyzed using two-dimensional

projections of facet edges.

In our measurements, bcc-3He crystals were imaged with a low-temperature multiple-

beam interferometer [P1, P2]. Altogether, eleven types of facets were identified on the

crystal surface at a temperature of 0.55 mK [P3–P6] and the growth rates were measured

for almost all of the observed facets [P5].
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2 Experimental apparatus

2.1 Ultralow temperature probe for optical measurements on

3He crystals

All measurements described in this Thesis were performed with help of the “Interface”

low-temperature facility of the Low Temperature Laboratory at Helsinki University of

Technology. This cryostat has been modified to conduct optical studies of helium inter-

faces at low temperatures. The first cooling stage of the cryostat is a commercial dilution

refrigerator, Oxford 600 [28]. The original mixing chamber of the refrigerator has been

replaced with a custom-made one that has an effective heat-exchange area of 600 m2. In

performance tests, the modified cryocooler reached a base temperature of 5.0 mK. It was

also possible to achieve a cooling power of 5.3 µW at 15 mK with a circulation rate of

500 µmole/s. A melting-curve thermometer and a nuclear-orientation thermometer were

used to monitor the temperature of the cryostat during the performance tests.

Several different interferometric schemes were utilized in the measurements, the actual

geometry of each was determined by the goals of the particular experiment. However,

all optical schemes shared a common principle: all vital optical components, with the

exception of a He-Ne laser and a shutter, were located inside the 4-K vacuum jacket of

the cryostat.

To study the morphology and growth kinetics of 3He crystals well below 1 mK the

experimental setup used previously [13] was considerably remodeled. A sketch of the

latest optical arrangement is depicted in Fig. 5. The optics was completely redesigned:

the incoming and outgoing optical arms are now more separated, which simplifies the

optical design and adjustments. Most of the optical components (the beam expander, the

beam splitter and the light dumper) are housed below the mixing chamber to minimize

the optical path length between the end of the fiber and the interferometer. They are

thermally anchored to the cold plate (T ≈ 70 mK) in order to reduce the heat load to the

mixing chamber of the dilution refrigerator.

The heart of our optical system is a Fabry-Pérot multiple-beam interferometer with

a phase-shift feature [P1–P3]. The multiple-beam interferometry allows us to observe

the whole crystal shape as well as the fine details on the solid/liquid interface. It also

enables us to significantly reduce the imaging light intensity, which is very essential at

ultralow temperatures. As compared with the two-beam path interferometry principle, the

multiple-beam interferometry allows a simpler experimental implementation and sharper
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dumpers (LD), beam expander (BE), M50 and M70 - mirrors with 50% and 70% reflectivity.

For details, see text.

fringes.

The optical part of the cell has a cylindrical copper body (ø = 16 mm, h = 12 mm),

which is sealed off by two fused-silica windows with an antireflection coating on all the

optical surfaces. A multiple-beam interferometer is formed by two parallel mirrors with

50% (M50) and 70% (M70) reflectivities, placed above and below the cell. Both mirrors

are thermally anchored to the mixing chamber of the dilution refrigerator. The top mirror

can be moved in the vertical direction by a cylindrical piezoelectric crystal to which this

mirror is attached.

A He-Ne laser beam (λ = 632.8 nm) is guided into a single-mode fiber that enters the

vacuum jacket, where the beam expander (BE) widens it to a diameter of 8 mm. Via a 50%

beam splitter the beam enters the interferometer through the top mirror (M50). The light
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undergoes multiple reflections between the mirrors and the interference pattern, formed

by the interfering beams, is reflected back through the top mirror. An objective and a

periscope focuses it to a cooled slow scan CCD-sensor which has 575 x 383 light-sensitive

elements (pixels). A thermal filter (8 mm of CaF2) cuts off the thermal radiation from

the CCD-sensor (operated at about 80 K) from entering the cell. The “unused” beams

are absorbed by light dumpers (LD) made of black velvet.

The vertical resolution in the interface position achieved in this instrument is a few

micrometers, while the horizontal resolution of about 15 µm is limited by the pixel size of

the CCD-imager. Crystal surfaces with a slope less than 70◦ with respect to the bottom

mirror of the interferometer could be resolved.

A new nuclear demagnetization stage of the cryostat was designed and constructed as

well. The new stage has 104 moles of copper in total, while the effective amount of 36.6

moles is in a magnetic field of 8 T. Before installation, the copper stage was carefully

annealed in a vacuum oven at 960 ◦C for 100 h. The nuclear stage is fixed to the mixing

chamber of the dilution refrigerator by four rods made of SiO2. The adjustable thermal

link between the mixing chamber and the nuclear stage is achieved with a superconducting

heat switch made of four aluminium foils. The aluminium foils were connected to the

copper pieces by diffusion bonding. The total electrical resistance of the heat switch

measured at 4.2 K was 44 nΩ.

To monitor the temperature of the nuclear stage, a new platinum NMR thermometer

was built. The platinum sensor is a brush of 1100 high-purity 25 µm Pt-wires, arc-welded

to a silver holder. The Pt-thermometer was calibrated at low temperatures 6 to 25 mK

against the primary 60Co nuclear orientation thermometer.

As mentioned above, the melting curve of 3He has a minimum at T = 319 mK, see

Fig. 4. If temperature is lowered below the minimum, it becomes impossible to change

the liquid pressure in the cell from room temperature: the filling line will always have a

plug of solid 3He. The standard solution to this problem is to use a Pomeranchuk-type

cell [20].

Figure 6 illustrates the practical design used to build our experimental cell. The total

inner volume of the cell is about 13 cm3 and it can be changed up to 8% by means of

BeCu bellows. The cross-section area of the 4He bellows is roughly three times larger

than that of the 3He-side, thus the 4He pressure must be kept in the range 6 to 10 bars.

Calibrated flows of 4He were used to compress the cell to grow the 3He crystals.

The optical part has a ring made of Stycast 1266 [29] with a diameter of 18 mm, see
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Fig. 6. It stops the direct flow of the liquid to the optical part of the cell while pressurizing

and also serves as a holder for the tungsten-tip nucleator, to which a high voltage can be

applied. The nucleator is placed just outside the field of view to ensure that crystals will

appear at the desired spot in the cell.

The 3He pressure was monitored with capacitance measurements using a Straty-Adams

type strain gauge [30] implemented in the cell. The BeCu membrane of the gauge is

0.4 mm thick and has a diameter of 9 mm. On each cooldown from room temperature,

the pressure gauge was calibrated at 1 K. The resolution of the pressure gauge is a few

µbar at 35 bars, when measured with an AH 2500A capacitance bridge [31]. The pressure

of 4He was monitored at room temperature.

The experimental cell is thermally connected to the copper nuclear stage and liquid
3He is cooled via a silver heat exchanger having an effective area of 50 to 60 m2. The

temperature in the cell was determined from the equilibrium melting curve pressure using

Adams’ temperature scale [32]. The temperature calibration was checked after every

demagnetization: the small 3He crystal was kept in the cell during warmup [P5].

2.2 Setup for c-facet studies on 4He crystals

Figure 7 illustrates the scheme of the optical setup for 4He crystal studies. It is quite

similar to the one described in the preceding Section. The goal of the experiments was

to study the growth of the c-facet in the presence of small amounts of 3He atoms. The

desired temperature range was above 20 mK and we removed the nuclear demagnetization

stage and concomitant devices.

The crystals were grown inside an optical experimental chamber monitored by a two-
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beam reflection interferometer. The body of the cell is a polished copper cylinder (φ =

19 mm, h = 15 mm) which is sealed off by two fused-silica windows. The normal of

the top window is tilted by 2◦ off the cylinder axis in order to avoid ghost reflections.

The antireflection-coated wedge-shaped (2◦) bottom window acts as the optical reference

plane. The interference pattern was formed with beam reflections of the crystal surface

and the reference plate. The laser beam is circular with a diameter of 5 mm.

The “reflection” type of two-beam interferometry [33] used in this setup has very

high spatial resolution. The height change of a 4He crystal between two nearest fringes

corresponds to λ/2n ≈ 310 nm and the actual precision is at least two orders of magnitude

higher. However, the high spatial resolution results in a very narrow angular resolution.

The interference pattern can only be observed for crystals with the c-facet parallel to

the reference plate within 5 mrad. This feature was utilized to nucleate a crystal with

the desired alignment. The crystals could be nucleated by applying a high voltage to a
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capacitive nucleator–bifilar coil wound around a bakelite holder, placed outside the field

of view.

The liquid and solid phases of 4He have approximately a 0.7% difference in their

dielectric permittivity. This was employed to measure the position and the growth velocity

of the liquid/solid interface. The level gauge (interdigital capacitor) was mounted on the

cell wall and it has a vertically aligned fingered structure (finger width 10 µm, spacing 10

µm), produced by evaporating a thin layer of chromium on fused-silica glass.

The liquid pressure in the cell was monitored with a Straty–Adams type strain gauge

[30]. The thickness and the diameter of the gauge membrane are 0.3 mm and 9 mm,

respectively. The resolution of the gauge is about 0.3 µbar at 25 bars, when measured with

a high-precision AH 2500A capacitance bridge [31]. The pressure gauge was calibrated

against the hydrostatic pressure change encountered during crystal growth through the

whole 4.8 mm range of the level gauge. The temperature was measured with a carbon

resistor, calibrated against the melting-curve and nuclear-orientation thermometers.

13



3 Experiments on solid-liquid interface of 3He

3.1 Nucleation of crystals

It is commonly known that it is extremely difficult to nucleate and grow single 3He crys-

tals from the normal liquid. The negative latent heat of crystallization, which is absorbed

during the growth of the crystal, cools down the surrounding liquid. Since the thermal

conductivity of the normal liquid is rather poor, the temperature gradients in the exper-

imental cell are large. As a result, it becomes favorable to nucleate a new crystal seed

somewhere else in a warmer spot instead of growing the already present crystal. Figure

8a shows several 3He crystals which were nucleated in the field of view from the normal

liquid.

a) b)

Figure 8: a) Multiple crystals nucleated from normal liquid 3He. b) A single 3He crystal nu-

cleated at T = 0.78 mK with −900 V applied to the nucleator. The background pattern arises

from the liquid helium wedge (due to the 2◦-tilt of the top window) and non-parallel alignment

of the mirrors.

Single crystals of 3He can be produced relatively easily below TN = 0.93 mK where

the latent heat of crystallization is significantly reduced and the surrounding liquid is

superfluid. After the liquid 3He was cooled to the desired temperature, the nucleation of

the solid phase from the superfluid 3He was obtained by increasing the pressure of 3He

above the melting curve. Figure 9 presents the pressure trace of one of the nucleation
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Figure 9: Pressure trace during 3He crystal nucleation, measured at T = 0.78 mK, displaying

(�) 3He pressure variation from the melting curve value and (◦) 4He pressure.

events at T = 0.78 mK. This crystal, see Fig. 8b, was created with a high voltage (−900 V)

applied to the nucleator.

In the beginning of the experiment, compression of the 3He-cell was started with a

constant mass flow of 4He from the room-temperature ballast volume. The 4He-flow

was kept constant until region C where the cell compression was stopped. Region A

corresponds to the all-liquid state, an increase of the 3He and 4He pressures is induced by

a flow of 4He. The change of slope of the 4He pressure during the constant compression

rate (region B) is due to a nucleation of solid 3He and the subsequent supply of matter

required for its growth. Shortly after the appearance of the crystal, it grows rather fast and

reduces the excess pressure δp to a constant level, which is determined by the mechanism

of crystal growth, the cell compression rate and temperature. After the 4He-flow was

stopped (C) the pressure relaxes towards the equilibrium melting curve value δp = 0

(region D). For nucleation and for crystal growth, δp is 2.6 and 0.90 mbar, respectively.

Attempts to nucleate crystals in the field of view with pulses of laser light having
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different duration (up to 2 min) were not successful. The application of a high voltage

(up to −900 V) to the nucleator in order to enhance the pressure locally by high electric

field did produce a crystal seed in the field of view at a few times lower excess pressure

than that for the spontaneous nucleation.

3.2 Morphological studies

The equilibrium crystal shape reflects the internal structure of the crystal lattice along

with other properties. For example, crystals with a repulsive step-step interaction can

exhibit the “devil’s staircase” — the presence of facets with arbitrarily high Miller indices

(hkl) on the crystal surface [34–36]. This phenomenon has been recently observed in

lyotropic liquid crystals where the crystal surface revealed almost 60 different types of

facets [37]. The planes which are most likely to appear as external facets are the ones

with the highest reticular density which is directly proportional to the interplanar spacing

dhkl for a given type of plane [38]. In the bcc-lattice dhkl = a/2(h2 + k2 + l2)1/2, where a

is the lattice constant.

The number of facets expected to be present at a given temperature can be estimated

from:

kBTR =
2

π

√
γ‖γ⊥ d2, (1)

where kB is the Boltzmann constant, TR the roughening transition temperature of a

particular facet, d the interplanar distance (height of an elementary step on the facet)

and γ‖ and γ⊥ the principal components of the surface stiffness for that surface [1, 2].

Both components of γ should be measured at a temperature above — but close to — the

expected transition temperature for that part of the surface.

In any crystal the angles between the different types of facets have fixed values. This

property was used to identify each of the observed facets on the 3He crystal surface. The

measured angles between the facets were compared with the theoretically possible ones

for the ideal bcc-structure. Of course, one can find a large number of facets which are in-

finitesimally close to each other and that satisfy the selection criteria within experimental

precision. However, we have always chosen the most “stable” facets consistent with the

experimentally determined angles.

Analysis of the crystal morphology was usually started from samples which had the

lowest number of facets and then proceeded to the more complicated ones. First, each

facet (region with equidistant parallel fringes on the interferogram) was selected and the

corresponding normals were found. Then a conversion to the physical sizes was carried

16



0
1

2
3 0

1

3

0

0.5

1

1.5

mm

mm

m
m

211

211211

2

110

211 100

110
110

211

Figure 10: Surface profile of a bcc-3He crystal measured at T = 0.55 mK. Three types of facets,

(110), (110) and (211), are present.

out, and the angles between the different regions were calculated. Next a guess for the

facet type was made and, subsequently, the angles between all facets were cross-checked.

Two different approaches were utilized to determine the normals of the facets on the

observed crystals. A phase-shift technique [39], which yields a simple and reliable mea-

surement of the surface profile of the crystal was applied when a crystal was under stable

conditions. Intensity-based analysis methods [40], which require only single interfero-

grams, were used during the crystal growth. Both methods yielded the same results and

are described in detail elsewhere [P3, P5]. Figure 10 illustrates an example of the surface

profile of a 3He crystal measured with the phase-shift technique.

During the measurements, altogether eleven types of facets were observed on the

surface of bcc-3He crystals at T = 0.55 mK. Figure 11 indicates the positions of these

facets on one elementary patch of the whole crystal habit. Also the positions of those

facets which were not observed, but have a higher (or equal) reticular density and thus a

higher (or equal) roughening temperature than the (311) plane, are shown in Fig. 11 as

open circles.

Each of the facets identified was detected on more than one interferogram and at least
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Figure 11: Diagram with the Miller indices of facets in the bcc structure of 3He. Filled points

represent experimentally observed facets, empty ones correspond to facets expected to be seen.

The diameters of the circles are proportional to the interplanar distance. The coordinates are

obtained by projecting to the [111] plane the points at which the corresponding facet normals

pass through the surface of a spherical crystal.

three equally spaced parallel fringes were observed. The typical difference between the

expected and measured angles was up to 2◦; in the worst cases it was around 6◦ for the

shortest fringes. All facets were uniquely determined with the exception of the (510) facet

which is rather close to the (410) facet, but as mentioned above in such cases the most

“stable” facets were chosen.

3.3 Anisotropy of growth kinetics

Most of the facets identified were visible at a non-zero growth rate. Crystals were grown

and melted at constant temperature by compressing or decompressing the cell with a

controlled flow of 4He from the ballast volume at room temperature. During growth,

images of the crystals were taken every 4 s.

Most of the growth measurements were started with rounded crystals. Almost im-

mediately after the growth was initiated, the facets appeared and the crystals became

completely faceted. The sizes of the facets appeared to be mainly determined by the

shape of the crystal just before growth.
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Figure 12: Anisotropy of 3He crystal growth at T = 0.55 mK.

The analysis pointed out that, initially, mostly facets with high Miller indices covered

the crystal surface. When the growth was continued, the slowly growing densely populated

facets increasingly determined the shape of the crystal. Typically, only the two most

“stable” facets, (110) and (100), remained on the final crystal shape. When the growth

was stopped the facets diminished and the crystal became more rounded on a time scale

of some tens of seconds.

The growth rates were measured for most of the observed facets. The growth velocities

were calculated by tracking the positions of fringes between the subsequent interferograms

[P5]. Figure 12 summarizes the growth rates obtained for the different types of facets.

The scatter in the growth velocities and overpressure values are not determined by the

resolution of the measurement technique, but rather have a physical origin. The higher

the applied overpressure was, the larger were the deviations, and during melting of the

crystal the scatter in pressure was approximately ten times smaller.
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Figure 13: Step energies of different facets on a 3He crystal at T = 0.55 mK. The linear fit has

a slope of 3.9± 0.5.

The observed growth displays rather strong anisotropy: for instance, the velocities of

the (110) and (510) facets differ by about one order of magnitude. The nearly linear de-

pendence of the growth velocity on the applied driving force suggests that the dominating

growth mechanism is spiral growth in the regime of suppressed step mobility [13,41]. The

growth rate of a smooth surface when the step speed exceeds critical velocity vc is [P5]:

v =
vcd

2

2πβ

∆ρ

ρl
Kδp. (2)

Here d and β are the height and free energy of an elementary step, ∆ρ is the difference

between the densities of the solid (ρs) and liquid (ρl) phases, δp is the difference between

the actual pressure and the equilibrium melting curve value and K is the number of steps

produced by one dislocation. The lowest critical velocities in 3He are the magnon velocity

c and the pair-breaking velocity vpb. At low magnetic fields both are approximately equal

to 7-8 cm/sec [42, 43].

The step energies of different facet types were calculated from the measured growth

velocities using Eq. (2). In the calculations it was assumed that one dislocation produces

a single step [P5]. The step energies obtained are plotted in Fig. 13. The linear fit in
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Table 1: Miller indices of the experimentally observed types of facets, their reciprocal lattice

vectors <hkl>, the squared interplanar distance ratio with respect to the (110) facet, the mea-

sured free energy of the elementary step β, and the highest temperature Tmax
obs at which the facet

has been observed.
Miller index <h k l> (d110/dhkl)

2 β (erg/cm) Tmax
obs (mK)

110 <1
2

1
2
0> 1 4.2 · 10−10 100 [25]

100 <1 0 0> 2 9.5 · 10−11 10 [26]

211 <1 1
2

1
2
> 3 3.2 · 10−11 <10 [26]

310 <11
2

1
2
0> 5 1.3 · 10−11 0.55

111 <1 1 1> 6 — 0.55

321 <11
2
1 1

2
> 7 8.1 · 10−12 0.55

411 <2 1
2

1
2
> 9 8 · 10−13 0.55

210 <2 1 0> 10 5.6 · 10−12 0.55

510 <21
2

1
2
0> 13 3.2 · 10−12 0.55

431 <2 11
2

1
2
> 13 2.1 · 10−12 0.55

311 <3 1 1> 22 1.3 · 10−12 0.55

the log-log coordinates yields approximately a quartic power-law dependence of the free

energy on the height of an elementary step.

The theoretical calculations conducted by Landau in the case of van der Waals inter-

action between elementary steps (r−3) reported on the fifth power dependence of the free

step energy versus the height of the step [44]. Similar calculations for the step-step inter-

actions of elastic origin (r−2) resulted in fourth power dependence [45], thus measurements

conducted agree well with later model.

Table 1 lists all the identified types of facets with the corresponding step free energies

obtained. The energy β110 of an elementary step on the (110) facet is equal to 4.2 ·
10−10 erg/cm. Unexpectedly this value is the same as that observed in 4He crystals for

the (1000) facet [17]. According to Nozières [2], at any temperature below TR the width

of an elementary step ξ is connected to the free energy of the step as follows:

ξβ ∼ kBTR. (3)

The calculated width of the elementary step ξ110 equals 2-3 lattice constants, which is

one quarter of that in 4He. As mentioned above, the step width reflects the strength of

coupling between the interface and crystal lattice. In 4He, the step width of approximately
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10 a has been attributed to the rather weak coupling [2, 17]. The smaller step width in
3He crystals suggests that the coupling of the interface to the crystal lattice is stronger.

The measurements of the melting velocity seem to be a far more difficult task than that

of growth. The underpressure developed is small, the crystal is changing its curvature,

and the velocity is rather high. The analysis showed that crystals initially melt very fast

near the edges between facets, and the melting rate slows down as the crystals achieve a

certain shape or a larger surface is involved in the melting.

At a temperature of 0.55 mK, the average melting velocity v was 1.67 µm/s with the

corresponding overpressure δp = −11.3 µbar [P5]. These measurements yield the effective

growth coefficient

keff =
ρsρl

(∆ρ)

v

δp
= 2.3 · 10−3 s/m. (4)

The growth rate of a rough surface, which should be essentially the same as that for

melting, was also measured [P5]. During 8 s the crystal gained about 60 µm in height,

while the overpressure was about 65 µbar. The volume of the crystal grown is in good

agreement with the cell-compression rate, which was 5.3 · 10−5 cc/s of solid 3He. The

calculated effective growth coefficient keff = 2.6 · 10−3 s/m is close to the value obtained

during melting.

The growth and melting velocities of rough surfaces were about two times higher than

the growth rate of the fastest facet (411). Thus processes measured on smooth surfaces

exhibit intrinsic properties and are not limited by thermal impedances of the bulk phases

as in the case of rough surfaces.

During melting some of the most “stable” facets were preserved, which suggests that

they should be observed on the equilibrium crystal shape. The equilibrium size of any

facet Lhkl is proportional to the free energy of the step [44]:

Lhkl ≈ βhklR/(dhklγ), (5)

where R is a characteristic size of the crystal and γ is the surface stiffness. Using γ =

γ0 = 0.06 erg/cm, measured at high temperatures [25], and the step energies obtained, it

is easy to estimate the equilibrium sizes of the facets. The equilibrium size of the (110)

facet should be approximately 0.2R and the higher-order facets should be smaller. The

typical size of the crystals studied was 4-10 mm, which means that the (110) facets should

be easily detected with optical observations.

Unfortunately, the equilibrium sizes of the facets were not measured. The observed

crystals were either growing or melting due to the pressure instabilities in the 4He filling
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line caused by the thermal effects. In order to measure the equilibrium shape of the

crystal, a low-temperature valve should be installed in the system.
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4 Growth kinetics of c-facets of 4He crystals

Spiral growth of hcp-4He crystals was studied with 40 ppm, 110 ppm and 220 ppm of 3He

atoms in the liquid phase in the temperature range of 10 mK ≤ T ≤ 225 mK. Initially,

a crystal was nucleated at T ≈ 20 mK from regular commercial helium, with nominal
3He concentration less than 100 ppb. Two-beam interferometry was employed to obtain

a crystal with its c-facet almost parallel to the reference plate.

The number of 3He atoms was gradually increased each time after the complete series of

growth measurements were accomplished with the current concentration. The mixture was

prepared using calibrated ballast volumes at room temperature and a new concentration

of 3He in the cell was achieved by driving helium in and out of the cell. Prior to adding

the 3He, the crystal was always melted to a small size, since the amount of 3He atoms

dissolved in the solid phase is negligible for temperatures well below 0.3 K [46].

While the crystal was periodically grown and melted, the level of the solid-liquid

interface and the liquid pressure were simultaneously monitored. The measured growth

velocities [P7] were described with the classical spiral growth (quadratic) dependence

[2, 13]

v =
Λµ

πβ

(
∆ρ

ρ

)2

a2δp2. (6)

Here β/a = 0.011 erg/cm2 [17] is the free energy of a step, a is the lattice constant,

Λ = 0.33095 . . . is a constant, and δp is the pressure deviation from the equilibrium

melting curve value.

The step mobility µ is determined by the friction due to the step colliding with phonons

and with 3He atoms in the bulk liquid. The collisions of the steps with phonons dominate

at temperatures T ≥ 100 mK and the corresponding growth resistance (inverse mobility)

is 1/µph ∝ T 3 [17]. Since at T < 100 mK the phonon resistance is very small, the

scattering of impurities plays a major role.

For the range of temperatures (T ≥ 10 mK) and low concentrations, the 3He atoms in

the liquid behave as a nondegenerate 3D Fermi gas [47]. The contribution of the impurities

to the growth resistance due to elastic scattering at the interface is predicted to be equal

to
1

µsc

=

√
2

π

a2
√
m3T

ξ
n3, (7)

where ξ is the effective step width, m3 and n3 are the effective mass and the concentration

of 3He atoms in the liquid, respectively. The total growth resistance including both

mechanisms is the sum, 1/µ = 1/µsc + 1/µph.
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Figure 14 presents the step mobilities obtained as a function of temperature for differ-

ent 3He concentrations. As the concentration of 3He atoms is increased, there is a clear

decrease in the mobilities at low temperatures, in accordance with the theory presented in

Ref. [47]. The solid lines were calculated by fitting the 3He collision mobilities to the data,

and summing the respective contributions to the growth resistance. The phonon-limited

mobility was fitted to the high-temperature data as 1/µph = AT 3, where A is a fit param-

eter, yielding A = 10−7.5 g / s cmK3. The effective step width ξ was estimated by fitting

Eq. (7) to the mobility data at temperatures T ≤ 100 mK, resulting in ξ = 5± 2 nm.
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Figure 14: Step mobilities µ calculated from measurements with 3He concentrations of 40 ppm

(�), 110 ppm (•), and 220 ppm (♦). Earlier data, measured with regular 4He (purity 0.1 ppm)

by Ruutu et al. [13] are represented by the dashed line. The solid lines denote theoretical curves,

calculated using an effective step width of ξ = 5 nm (see text for details).

This value is larger than the one currently assumed in the “weak-coupling” picture

[17, 48], and it also exceeds the estimate ξ ≈ 3 nm obtained from zero-point oscillations

[47]. When discussing the difference between the calculated and measured values of ξ, one
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should recall that the calculations were made using the simple harmonic approximation

which is not expected to be very accurate in the case of such large amplitudes. From this

point of view, the measured value of ξ rather than the calculated one should be considered

as a new and important characteristic of the step structure.
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5 Discussion

This Thesis reports on studies of solid-liquid helium interfaces at ultralow temperatures.

All research was conducted in the Interface group in the Low Temperature Laboratory at

Helsinki University of Technology.

A new low-temperature setup was designed and constructed for interferometric studies

of both of the stable helium isotopes. Multiple-beam interferometry was employed for

investigations of the morphology and growth kinetics of 3He crystals below 1 mK. The

experimental setup with a two-beam interferometer was used for growth studies of the

c-facet in 4He crystals.

The 3He crystals were nucleated and grown at a lowest temperature of T = 0.55 mK.

The growth measurements revealed altogether eleven types of facets as compared with

only three facets observed previously. The number of facets obtained is in good agreement

with theory, which predicts an even larger amount of the facets at this temperature. All

types of facets were identified within the framework of a simple bcc-lattice, and possible

effects of the antiferromagnetic (u2d2) structure were not considered.

The growth rates of the rough and smooth surface states were explored. Both the

growth and melting of the rough crystal surface yielded for the effective growth coefficient

a value of 2 to 3·10−3 s/m, which is influenced by the thermal impedances of the bulk

phases at a temperature of 0.55 mK.

The growth velocities of facets were slower than those of rough surfaces and they

revealed a significant anisotropy. The growth rates of different facets varied by more

than an order of magnitude. The measurements conducted exhibit a linear dependence

of the facet velocity on the overpressure applied, which points out that the main growth

mechanism is spiral growth in the regime of suppressed mobility.

The calculated step energies of the facets in 3He crystals feature a quartic dependence

on the step height and suggest that the steps experience elastic interactions. The step

energy of the most “stable” (110) facet is equal to 4.2·10−10 erg/cm and the corresponding

step width (ξ110 ∼ 2 to 3 a) reflects relatively strong coupling of the interface to the crystal

lattice.

The sizes of the equilibrium facets estimated from the free energy of the step show

that the most “stable” facets, (110) and (100), should be observed on the crystal surface,

while the higher-order facets, such as (311) or (411), can be more easily detected during

crystal growth. Unfortunately, the equilibrium facet sizes were not studied in the present

measurements.
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A low-temperature valve for the 4He filling capillary is strongly recommended for future

measurements on equilibrium crystal shapes. Studies of the actual roughening transition

temperatures are necessary to prove the validity of current theories. The growth measure-

ments of rough surfaces at lower temperatures and their temperature dependence should

reveal the feasibility of melting-freezing waves in 3He. The optical measurements with

magnetic fields can provide information on the crystal shape influenced by the magnetic

structure of the lattice.

The measurements of the spiral growth on the c-facet in 4He crystals were conducted

in the presence of small amounts of 3He in liquid 4He in the temperature range of 10 mK

< T < 225 mK. In the phonon collision regime (T > 100 mK), good agreement was found

with earlier measurements by Ruutu et al. [13]. The decrease of the growth velocities

at low temperatures was attributed to the elastic scattering off the moving step of the

nondegenerate 3D Fermi gas. The analysis of the growth rates for different amounts of

impurities resulted in the step width of 5 ± 2 nm. The obtained value is in reasonable

agreement with theoretical predictions and shows rather “weak” coupling between the

interface and crystal lattice in 4He.

The measurements on the interface mobility conducted with both isotopes result in

a rather large step width in 4He and a smaller one in 3He. This result is somehow

surprising since 3He has larger zero-point fluctuations. However, maybe it is due to the

influence of the magnetic structure which is present in the 3He crystals. Another question

which is raised by the measurements conducted: why have only three types of facets been

observed in 4He crystals? Is it a property of the hcp-structure, the very high mobility of

the interface, or just lack of careful measurements? It would be interesting to measure

the shape of 4He crystals using the new setup which has been developed. However, a

real-time high-resolution imaging sensor is probably required due to the high mobility of

the interface.
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6 Publications

This Thesis is based on the following original publications:

P1. J. P.H. Härme, H. Alles, A. Babkin, R. Jochemsen, A.Ya. Parshin, V. Tsepelin,

and G. Tvalashvili, Optical Observations of 3He Crystals at mK-Temperatures, Physica B

284-288, 349 (2000).

The new optical setup is described, which employs multiple-beam interferometry for

measurements on 3He crystals. The first images of 3He crystals obtained with a phase-shift

technique are presented.

P2. V. Tsepelin, H. Alles, A. Babkin, J. P.H. Härme, R. Jochemsen, A.Ya. Parshin,

and G. Tvalashvili, Nucleation and Growth of 3He Crystals below 1 mK, Physica B 284-

288, 351 (2000).

The first measurements on the nucleation of 3He crystals at temperatures down to

0.55 mK are described. The growth kinetics of the solid-liquid interface was studied by

combining a low-temperature multiple-beam interferometer and high-precision pressure

measurements. Preliminary results on the effective growth coefficient are presented.

P3. V. Tsepelin, H. Alles, A. Babkin, J. P.H. Härme, R. Jochemsen, A.Ya. Parshin,

and G. Tvalashvili, Direct Observation of (110), (100) and (211) Facets on 3He Crystals,

J. Low Temp. Phys. 121, 695 (2000).

A systematic description of the phase-shift technique and its application to 3He crystal-

morphology studies is presented. Optical observations on 3He crystals grown from the

superfluid phase below 1 mK are reported. The angles between the crystal facets were

measured and the surface profiles of the observed crystals were reconstructed on the basis

of the information obtained. Three different types of facets, (110), (100) and (211), were

clearly visible in these experiments.

P4. V. Tsepelin, H. Alles, A. Babkin, J. P.H. Härme, R. Jochemsen, A.Ya. Parshin,

and G. Tvalashvili, Observation of Higher Order Facets on 3He Crystals, Phys. Rev. Lett.

86, 1042 (2001).

Faceting was observed on 3He crystals investigated with a low-temperature Fabry-
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Pérot interferometer. Altogether nine types of facets were identified during the growth

of a bcc-3He single crystal at a temperature of 0.55 mK. The number of facets observed

under our experimental conditions was compared with dynamic roughening theory.

P5. V. Tsepelin, H. Alles, A. Babkin, R. Jochemsen, A.Ya. Parshin, I. Todoshchenko,

and G. Tvalashvili, Morphology and Growth Kinetics of 3He Crystals below 1 mK, TKK

report (2001).

Growth and melting of 3He crystals investigated with a low temperature Fabry-Pérot

interferometer are reported. Eight new types of facets were observed during growth of bcc-
3He single crystals at temperature well below 1 mK. The interferogram analysis based on

intensity methods is described in detail. The growth-rate anisotropy for faceted crystals

was measured and a linear dependence of the growth velocity on the driving force was

observed. The free energies of the steps were calculated and results obtained suggest that

coupling of the solid-liquid interface to the lattice in 3He is stronger than was expected.

P6. H. Alles, V. Tsepelin, A. Babkin, R. Jochemsen, A.Ya. Parshin and I. To-

doshchenko, Observations on Faceting of 3He Crystals at T = 0.55 mK, accepted for

publication in J. Low Temp. Phys. (2001).

Recent observations, in which on growing 3He crystals in total eleven different types of

facets were found, are described. The facets were identified with the phase-shift technique

and intensity-based analysis methods. The possible reasons why only three types of facets

have been observed in 4He crystals are discussed.

P7. V. Tsepelin, J. P. Saramäki, A.V. Babkin, P. J. Hakonen, J. J. Hyvönen, R.M. Lu-

usalo, A.Ya. Parshin, and G.K. Tvalashvili, Elementary Steps on the 4He Crystal Inter-

face Probed by 3He Atoms, Phys. Rev. Lett. 83, 4804 (1999).

The growth dynamics of c-facets, studied in the temperature range of 10 < T <

225 mK in the presence of low concentrations of 3He atoms in the liquid, is described. The

interactions of 3He atoms with moving elementary steps induced by the screw dislocations

are considered. The results are in a good agreement with the theory, where high-frequency

zero-point oscillations of the steps are taken into account, if an effective step width ξ ≈
5 nm is assumed.
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7 The author’s contribution

The research work presented in this Thesis is a result of team work.

Starting from March 1996 as a group member, I was involved in all phases of the

design, construction and testing of the new experimental setup for 3He crystal studies.

I had major responsibility of the day-to-day operations and maintenance of the cryostat

from the beginning of 1997 to early 2000.

All of the measurements presented (for 3He and 4He) were carried out by myself. I

wrote the main part of the software for the measurements and data analysis. I have also

conducted most of the data analysis of the 3He crystal measurements. I was involved in

the initial stages of the 4He data analysis.

I was mainly responsible for the writing of publications P2–P5.
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