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“ Abstract

A set of constants of motions is chosen which is found suitable for numerical solving of the three-dimensional neoclassical
kinetic equation for low collisionality plasmas in tokamaks. With the chosen set, the constants of motion space is well filled
with a unique correspondence to the orbits allowed in the configuration. The numerical treatment of the boundary between
the trapped and counter-passing particles becomes more straightforward, because the boundary becomes a function of only
one constants of motion coordinate. © 1997 Elsevier Science B.V.
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1. Introduction

When the particle and energy confinement in a fu-
sion reactor are considered, transport processes in a
toroidal configuration are of great interest. Within a
so-called neoclassical theory of transport [ 1], various
important experimentally observed mechanisms like
the decrease in conductivity along field lines, the in-
creased pinch effect, and the generation of a bootstrap
current have been predicted. The transport coefficients
obtained from this theory also give the minimum par-
ticle and heat flux in a real experiment. The neo-
classical transport resulting from collisions in an axi-
or nonaxisymmetric toroidal plasma with an arbitrary
cross section can nowadays be calculated to a good
accuracy [1,2] when the particle drift-trajectories do
not deviate significantly from constant-density and
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constant-temperature surfaces. Here, also various an-
alytical models exist under various approximations.
However, accurate modelling of drift-trajectories has
been found important in the simulation of the trans-
port of the fusion products and nonthermal ions. In
order to incorporate the finite orbit effects, a direct
modelling of the transport processes with an orbit
following Monte Carlo method has appeared [3] in
various applications. However, in this technique, it is
complicated to preserve momentum conservation in
collisions, and the good accuracy necessitates very
costly numerical calculations. To model the plasma be-
haviour correctly in thermonuclear plasmas, in which
the fast ion populations with wide drift-trajectories are
an important component, solution methods for a more
complex kinetic equation than the drift-kinetic equa-
tion [1] in a thin-trajectory approximation are called
for. To satisfy the momentum conservation, a nonlin-
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ear collision operator [ 1] has to be included.

Recently, a three-dimensional nonlinear kinetic
equation for low collisionality axisymmetric tokamak
plasmas with consistent consideration of neoclassical
effects has been obtained using a formalism based
on noncanonical variables [4]. The method allows
treatment of large drift-trajectory widths and large
inverse aspect ratios, conserves momentum in col-
lisions and is suitable for computer modelling of
neoclassical transport of thermal and nonthermal dis-
tributions. The study of phenomena arising from non-
Maxwellian distributions is important, in particular,
in the study of plasma heating and current drive by
Ohmic or radio-frequency heating, and in the study of
the effects, confinement and heating, by the energetic
fusion products. The noncanonical variables have
been shown in Refs. [4,5] to be more convenient for
numerical solution and physical interpretation than
canonical variables. The nonlinear kinetic equation in
general coordinates can be written as

af 1 3 af
. =7 Apm—= B, ,
ot 1"2333" Z ( ”'axm)+ /

m=1,2,3

(D

where f is the distribution function, X = (g, vg, A), J
is the Jacobian and the detailed forms of the collisional
coefficients A,, and B, are given in [4].

In an axisymmetric tokamak, three constants of mo-
tion (COM) are required to completely characterize
the guiding-centre motion of a particle. Three con-
servation laws, conservation of total particle energy
€ = mv?/2 + q®, conservation of the magnetic mo-
ment u = mv} /2B, and conservation of the toroidal
momentum pyr = mRu| Bior/ B — qif fix the trajectory
of the particle in phase space. Here, ¢ and m are the
particle charge and mass, respectively, @ is the elec-
trostatic potential, v is the velocity, v, and v are the
perpendicular and parallel components of the veloc-
ity with respect to magnetic field B, respectively. Bor
is the toroidal component of the magnetic field, ¢ is
the poloidal flux of the magnetic field and R is the
major radius. In principle, the orbits could be repre-
sented in €, wu, por-space, but for the numerical sim-
ulation this set is inconvenient. For the ‘good’ set of
constants of motion, it is required that (a) coordinates
should be physically meaningful, (b) representation
should be unique in the sense that a given point in

the COM space corresponds to one and only one or-
bit, and (c) phase space should be well filled [6]. In
€, ., Dror-Tepresentation, the configuration space and
velocity space are mixed, there is an indeterminacy of
the sign of particle pitch vy /v = cos 6, and the phase
space proves to be mostly empty and multi-sheeted.

A new choice for the variables was suggested in [4].
Instead of €, coordinate vg is chosen, which is the
speed corresponding to the total energy including elec-
trostatic potential. As a spatial coordinate, a conve-
nient variable is y being the flux surface label on the
innermost point of the drift trajectory for passing par-
ticles and at the bounce point for trapped particles. As
the third coordinate, the pitch angle 6y at the outer-
most point of the trajectory was used in [4] and has
been programmed in the FPP code [7], but here it is
found to be inconvenient, because the boundary be-
tween trapped and counter-passing particles (TPB) is
not continuous with respect to 6y and the numerical
treatment of this would be complicated. Also, the re-
quirement that the space is well filled is not satisfied,
because the trapped particles have only positive val-
ues of cos gy due to the fact that negative cos 8 values
at the outermost point of the orbit occur only for the
counter-passing particles. This leaves a large region in
the middle of the COM-space empty (black region in
Fig. 1a).

Another choice for solving a Fokker-Planck equa-
tion in 3D phase space was suggested by Rome and
Peng [6]. Here, the pitch and the flux surface co-
ordinates were determined at the position where the
poloidal flux function along the guiding-centre or-
bit obtains its maximum. For this choice of the co-
ordinates, the boundary between counter-passing and
trapped particles is continuous neither in pitch angle
nor in flux surface coordinate. Also the forbidden re-
gion inside the COM-space is larger and more cum-
bersome to treat numerically.

In order to avoid the above-mentioned problems, we
adopt here the coordinates vy and g as in Ref. [4],
but for the third COM-coordinate we suggest

A= 6'(Bmax, & =), for passing particles,
" | €(Bmax, 8 =/2), for trapped particles,

which is the pitch angle ' in the innermost point of
the trajectory for passing particles and the poloidal
angle £ at the bounce point for trapped particles. With
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Fig. 1. Trapped and passing regions (a) in (g, 6p) space and
(b) in (yp, A) space, in whiﬁ_th the distribution function at & = 7
is continuous to the one at ' = /2.

this choice, the requirement of the well-filled space
is satisfied, which can be seen in Fig. 1b, and the
treatment of the trapped-passing boundary is simpler,
because vy and A are defined at the same point and both
are continuous across the TPB. It is also important to
note that the trapped-passing boundary with present
coordinates is independent of ¢ and vy which makes
the differencing straightforward.

2. Solving the trajectories

In Ref. [4] seven transcendental algebraic equa-
tions were needed to solve for y, v and 6, being the
local values of the flux surface label, velocity and
pitch angle, respectively, and four subsidiary variables
¥°,v°, 0" and £ or @ for a given set ¥, &, vp and 6.
Here superscripts i and ¢ denote the innermost and
outermost values of the variables, respectively. In our
new coordinates only four equations

2 2 2
mug _ mo- _m(v')

5 =t === +4qP(y), (2
mv’sin’@ 3 m(v')2sin’@’ )
2B(y.£) ~ 2B(y0,é) ’
and
mu cos OF mui cos OiF
Borh MY =Boea W) @

are needed with v’ being the only subsidiary variable
and we have defined F = RB,,;. Now, we can solve for
v from Eq. (2) and 8 from Eq. (3), both as a function
of v, £ and the COM coordinates, and put them into
Eq. (4) where we can iterate the value of y and after
that, other local coordinates can be easily solved.

3. Trapped-passing boundary

In differencing Eq. (1), the grid for A, according
to Fig. 1b, is given by A; = jw/N, j=0,..., N, in the
passing particleregime, and by A; = (M+N—j)o /M,
J=N,..., N+ M, in the trapped particle regime. As is
evident from this, the same numerical value can appear
twice in the grid. The corresponding values of 8/, & at
the grid points are found according to Table 1, where
N and M are the number of different # and £’ values,
respectively, and N is assumed to be even. Typically,
M > 5 and N = M gives accurate results for the
particle and energy fluxes. The three regions - co-
passing, trapped and counter-passing - are connected
via the TPB layer. The distribution function at the grid
point Ay in the trapped regime is continuous to the
one at Ay, in which ¢’ = 7 and ¢’ = 77/2. In Fig. 1b,
the co-passing, counter-passing and trapped regions
are limited by the TPB and by the boundaries at ' = 0
@' = 7 and & = 0, respectively, in which the particle
flux becomes zero. Differencing over the TPB layer
needs a more careful consideration. For convenience,
let us consider the one-dimensional case,

fy 14 afx

LA Ly

= Jaa Mgy TBIY
. A1 Biii)2
=7[{“—r},/ (frs1 — fi) + Ailj fk+1/2}

Ap-
~{ =2 (fi

AR = fr-1) + B l/sz 1/2}}
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Table 1
Corresponding values of 6/, ¢ at the grid points
A I’ f[
/\_3 Ay Al (1/\\1N2/2 T)l Anj2 TPB ;\/vz/z 4 AN-1 AN
o' 0 = % )2 W% (N;' = -
& il T T I T T T
AN+l 7/2 W
Co-passing : Counter-passing
AN+M—1 w/2 o
AN+M /2 0
Trapped
| ) ‘ —— . —
=‘j|{ﬂux from fy | to fi} fa(t, X)) = folt,X_) = folt, Xy) (7
—{flux from fi to fk_1}1/4A, (5) given in [4] is fulfilled. Here, “+”, “~7, and “tr” de-

ignoring the yg and vg derivatives. Here, grid spacing
is AA = 7r/N in the passing region and AA = 7/M in
the trapped region. We notice that the change in the
distribution function f in the grid point & is just the
difference of incoming and outgoing fluxes divided by
the distance between the grid points. However, when
the TPB point is considered, derivative over the &'
region can be done normally, but also the contribution
of the trapped region has to be taken into account.
In our coordinates the coefficients Ay.1/2 and By 1,2
connect the distributions fy and fy/2 (not fx), and
the flux from the trapped region to the TPB layer is

- ANtz
JN+|/2'—J[ AL (fver

—fn2) + Bnsrafue|-

The interaction between the three regions of differ-
ent orbit topologies can be described by

fnpe 1 [ANnps12
ot _7[ AN
Byjaiay2
AA
_Anpap
A)t2
_Bypoip

(e — fug2)
+ Fn2v12
(fw2 = fap-1)

Snp—12

(fner — fap2)

Byi2
AA

Snsip2|s (6)

which also guarantees that the condition

note the boundary points taken from the co-passing,
counter-passing and trapped regions, respectively. The
formalism presented in [4] to get Eq. (1) by aver-
aging over the “fast” coordinates (poloidal, toroidal
and gyroangles) is not valid near the trapped passing
boundary, where characteristic times for motion over
these coordinates become comparable to the Coulomb
relaxation time. In our new coordinate system the dif-
fusion coefficient A, at the TPB goes to infinity as

~tan’ 8 — oo,

l/aB 00
! ’

where the second equation is true only in up-down
symmetric plasmas. From the infinite A,, follows
that 4f/0A = 0 at the TPB, which is consistent with
Eq. (7).

lim A():gx
6 —m/2

lim Agf:

o

4. Benchmark test

The outward flux of the ions calculated by the code
using the new set of COM coordinates is here com-
pared with the analytical estimate, which is calculated
in the banana region in a tokamak with circular flux
surfaces and by neglecting the effect of the ambipolar
radial electric field [4]. Assumptions are that the in-
verse aspect ratio € = y/R is small, distributions are
close to Maxwellian and that deviations of the drift-
trajectories from flux surfaces are small. The expres-
sion for the local radial particle flux is
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(2)
oo oTPB

I‘i=—27r//jJ_vz_sin0d0dv, (8)

ol

where the pitch angle has been restricted to trapped
particles, as to lowest order in €, the flux of passing
particles is zero, and the flux through the magnetic
surface labeled 7y is approximately

An Ifm
J v’

assuming that the contributions of other coefficients
vanish in integration. Contributions of the other ion
species and electrons have been neglected. The ana-
lytical estimates have been calculated from these for-
mulas using predetermined radial shapes for the dis-
tribution. The code calculations have been done using
the complete form

(9)

jL=j-n= >
JIV'yl e azn

9
x> (Anmﬂf)+3nf .
m=1,2,3

(10)

for the flux with X = (0,00, A) and including also
the contribution of the background electrons.

In the calculations, parameters a = 2.8 m, B =
6.157T, I = 15MA, np.o = 0.4 x 102 m~3 and
Tp,e0 = 10 keV are chosen for the minor radius, mag-
netic field, plasma current, and plasma deuteron and
electron density and temperature, respectively. The
plasma density, temperature and current density are as-
sumed to have radial dependencies n, T, I = ng, Tp, Ip X
(1- ‘yz/az)“"v’-' with a, = ar = 0.5 and a; = 1. Nu-
merical results are given for the initial deuterium dis-
tribution ¢ = 0 and for ¢t = 0.3 s, which do not differ
much, because the deuterons already have the back-
ground temperature in the beginning of the time evo-
lution. The grid size is (N,,,N,,N2) = (20,25,16).
The results have been presented in the regime, where
further increasing the number of grid points changes
the results less than two percent.

In Fig. 2a, a good agreement between the analyti-
cal and numerical results can be seen. In calculating
the analytical estimate, the assumption of a smatl in-
verse aspect ratio was done. For this reason, we can

(a)

8E16
7TE16| o | }
[ —0—t=0 ;
7 SBl6r . (035
E SEL6[ '« analytic )
= 4E16} .
~ 3E16f '«
2E16}
1EIG3~%7 12 17 22 27
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b
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Fig. 2. (a) Particle flux I'; for R =7.75 m; (b) ratio between the
numerical and analytical result as a function of aspect ratio; and
(c) particle flux for five different major radii R with a =2.8 m.

see that the analytical result, although in good agree-
ment with the numerical one near the axis, begins to
diverge when going towards the edge of plasma. In
Fig. 2b, the ratio between the numerical and analytical
result is presented as a function of the local aspect ra-
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tio R/ from five different tokamaks with fixed minor
radius @ = 2.8 m and with different major radii R. It
can be seen that the analytical flux strongly underesti-
mates the true flux obtained from the numerical result
for small aspect ratios R/y < 5 and thus the validness
of the large aspect ratio approximations for the neo-
classical fluxes is clearly limited. In Fig. 2c, the neo-
classical particle flux calculated numerically from the
initial distribution is presented for the cases shown in
Fig. 2b as a function of . The flux becomes essentially
larger near the plasma edge where the density and tem-
perature gradients are large. Here, the requirements to
keep the accuracy are made more significant than else-
where at weak gradient regimes. A much more dense
grid locally in v is required for 0.9 < y/a < 1 in our
example to keep the same accuracy.

The performance of the code using the new coor-
dinate system has been measured on the IBM 9076
SP1 computer. The critical parameters for the total
CPU-time usage are the size of the distribution grid
(Nyy, Ny, Ny ), the number of integration points Nap
in the three-dimensional integral over the fast variables
and the number of background particle species Ngpec.
For the time advancement of the distribution function,
a two cycle six stage operator splitting scheme [7,8]
is used. The estimate of the runtime of the code is

Lun = NynggNA[2~4N3DNspec + Nsteps(zNyo + NA)]
x 10 us, (11)

where Ngeps is the number of time steps needed. If
time evolving collisional coefficients are used, the first
term inside the brackets has to be multiplied with
Ngieps meaning a huge increase of runtime. Possible
decrease in computation time when compared to pre-
vious treatment [7] is due to reduction in the num-
ber of needed grid points to get accurate results. Also,
solving the tractories in real space for given COM
space grid points is more efficient because only four
equations are needed instead of seven. A correspond-
ing law for memory size allocation is more difficult
to give. Memory occupation is mainly dictated by the
grid size and the number of points in integration over
the trajectory.

5. Conclusions

A new choice of constants of motion coordinates
has been found to be suitable for the modelling of the
different orbit topologies with the kinetic equation for
tokamaks. The treatment of the TPB has been found
to be simpler when compared to previous approaches.
Solving the local coordinates for the trajectory de-
fined by the COM coordinates is easier, because only
four equations and variables are needed here instead
of seven in Ref. [4]. The code using the new set of
COM variables has been tested by comparing the out-
ward neoclassical ion flux to the analytical estimates,
and a good agreement within the range of validity of
the analytical model has been found. The numerical
method presented here is suitable for the study of neo-
classical transport of electrons and ions in weakly col-
lisional (banana regime) axisymmetric toroidal plas-
mas of arbitrary cross section in the presence of ther-
mal and nonthermal plasma components with momen-
tum conservation in collisions and in the presence of
finite drift-trajectory widths. The applications of the
present code are of particular interest for the heating
and current generation by energetic fusion products
and by auxiliary heating methods as well as for the
studies of the loss of fast particles from the plasma
configuration and for calculations of the ambipolar ra-
dial electric field in the presence of nonambipolar loss
of some plasma component.
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