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Abstract. The neoclassical return current and parallel viscosity due to the radial electric field (non-

equilibrium poloidal rotation) in tokamaks are calculated using the 5-D (3-D in configuration space and

2-D in velocity space) Monte Carlo code ASCOT. Results are compared with the known neoclassical

non-ambipolar return current expressions by Shaing [Phys. Fluids B 2 (1990) 2847] and Stringer [Nucl.

Fusion 33 (1993) 1249] over a wide range of poloidal Mach numbers Mp = Er/(vtiBθ) and for various

collisionalities. Here, vti is the ion thermal velocity, Er is the radial electric field and Bθ is the poloidal

magnetic field. Quantitative differences exist due to a simpler collision operator and the various other

approximations used in deriving the analytic expressions.

1. Introduction

Although the radial transport due to anomalous
processes clearly exceeds the neoclassical transport
in present tokamaks, the latter may play a domi-
nant role in advanced confinement regimes, in radial
current balance, bootstrap current and conductivity.
In standard neoclassical theory, particle transport is
automatically ambipolar and independent of radial
electric field. However, this is not true in the presence
of sources or sinks of toroidal momentum such as
biased internal electrode or ion orbit loss current [1].
In experiments on TEXTOR [2], with an externally
biased radial electric field, it has been shown that
different theories for viscous damping of the poloidal
rotation [3–7] are capable of predicting the radial
conductivity better than to ‘order of magnitude’
level. The verification of these analytic expressions
is important because one proposed explanation for
the L–H transition is based on a multivalued balance
between the non-ambipolar loss of fast ions and the
return current [7] (Fig. 1). Such a balance with other
types of non-ambipolar currents may play a role for
internal thermal barriers in tokamaks. However, in
the first self-consistent simulations of the ion orbit
loss current and return current in a realistic geom-
etry, bifurcation of solutions has not been observed
[8, 9]. To investigate the bifurcation theory in more
detail, it is essential to know the correct value of
the neoclassical current, as well as the ion orbit loss
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Figure 1. Current balance at the edge occurs when the

ion orbit loss current jL is balanced by the non-ambipolar

neoclassical return current jNC .

current, as a function of various parameters such as
electric field and collisionality. In this article, the
return current is more accurately determined using
the 5-D Monte Carlo code ASCOT [10]. The simu-
lation is done using a full collision operator, without
assuming the orbit widths to be small.
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Both the parallel ion viscosity and the non-
ambipolar ion neoclassical flux in the plateau and
Pfirsch–Schlüter regimes with a given large poloidal
rotation in the absence of orbit loss have been cal-
culated analytically [11–13] from a Fokker–Planck
equation with a simplified collision operator and in a
simplified quasi-toroidal geometry. Here, somewhat
arbitrarily, the parallel ion fluid velocity has been
assumed to be zero. Steady state ion distributions
in response to thermodynamical forces and to the
electric field have been calculated from the kinetic
equation for ions, but in the absence of any external
force which would be required to sustain the given
radial electric field, poloidal rotation and parallel
flow velocity. This has been accomplished by expand-
ing the guiding centre kinetic equation of ions to first
order in the inverse aspect ratio with a fixed radial
electric field, assuming a Maxwellian as the zeroth
order ion distribution and neglecting the zeroth order
parallel ion flow velocity. This assumption, which
is validated by experimental observations, is made
in many related analytic models. To find physical
solutions, the ion fluxes obtained in this manner in
Refs [4, 11, 13, 14] were then used to find a bal-
ance with external or internal forces ensuing from, for
example, the externally applied radial electric field
[2], torque from the orbit loss [7, 14] or inclusion
of electron dynamics providing an ambipolar field
[15]. In the derivation in Ref. [13], the poloidal varia-
tions of electrostatic potential, ion density and tem-
perature were neglected, the distribution integrals
were performed without non-resonant particles and
in a restricted pitch angle space, and the finite orbit
effects were omitted. Some of these effects are consid-
ered in later works of the author [16]. The solutions in
Ref. [11] include the poloidal variations of the electro-
static field, density and temperature, and are based
on full velocity integrals. As in Ref. [13], they include
gradient and curvature drifts of the particles, but
neglect finite orbit effects and radial variation of the
electric potential along the particle orbits. In both
Refs [11] and [13], the collision operator conserves
momentum, but particle number and total energy
were conserved in collisions only in Ref. [11]. Actu-
ally, the momentum is not exactly conserved because,
in both cases, the parallel flow is assumed to be zero
in the evaluation of the viscosity.

In this article, we calculate the parallel viscosity
and the non-ambipolar ion radial current due to the
radial electric field Er by solving numerically the
guiding centre equations of motion in toroidal co-
ordinates for an ensemble of test ions with a fixed

electrostatic potential Φ(r) which depends on radius
r only. This method neglects the poloidal variation
of the potential but includes that of density and tem-
perature. We use the guiding centre Monte Carlo
code ASCOT [10], where the finite orbit effects and
full velocity and configuration space dynamics in a
global tokamak geometry are taken into account. A
momentum and energy conserving collision operator
based on a binary collision model [17] is adopted to
simulate ion–ion collisions. The collisions with elec-
trons are omitted because the related friction leads
to ambipolar fluxes which are not of interest to us at
present. The comparison is best made in the absence
of the orbit loss mechanism, and helps in assess-
ing the validity of the various assumptions made
in deriving the analytic expressions of the return
current in Refs [11, 13].

Section 2 describes the Monte Carlo orbit follow-
ing code, the tokamak model and the methods of
calculating the ion orbit loss, radial non-ambipolar
return flux and parallel viscosity. A comparison of
the return ion flux with the analytic expressions is
presented in Section 3.

2. Monte Carlo model of radial flux
and parallel viscosity

2.1. Orbit integration

In this article, the orbit following Monte Carlo
code ASCOT [10] is used to follow the guiding cen-
tre orbits of the test ions in the presence of colli-
sions and an electric field. Inside the separatrix, the
axisymmetric equilibrium field is given by

B = g(Ψp)∇ζ + µ0I(Ψp)∇θ + δ(Ψp, θ)∇Ψp (1)

with Ψp the poloidal flux, θ the poloidal angle and
ζ the toroidal angle. The co-ordinate system is a
straight field line one, i.e. the safety factor q(Ψp)
gives the local helicity of a field line q = dζ/dθ. The
function g(Ψp) is the poloidal current flowing outside
the surface Ψp and I(Ψp) is the toroidal current flow-
ing inside the surface. The volume element is given
by d3x = JdΨpdθdζ, where the Jacobian is given by
J = (gq + I)/B2 [18]. The form of the latter defines
the poloidal angle co-ordinate. The magnetic field
strength B(Ψp, θ) is independent of ζ. The function
δ(Ψp, θ) describes the degree of non-orthogonality of
the co-ordinate system.

In order to achieve the best accuracy and CPU
time efficiency of the orbit solution, ASCOT applies
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the magnetic field representation (1) with the Hamil-
tonian guiding centre equations [18] for the parti-
cle co-ordinates and parameters Ψp, θ, ζ, and ρ‖ =
miv‖/eiB. Here, mi, ei and v‖ are the ion mass,
charge and parallel velocity component with respect
to the magnetic field, respectively. The electrostatic
potential in the equations is assumed to be of the
form Φ(r, θ). In this article, the poloidal dependence
has been neglected. The simple fourth order Runge–
Kutta method without error monitoring has, in
addition to being very fast, proven satisfactory in
reproducing the orbit topology consistently and con-
serving the constants of motion in tests where large
numbers of consecutive collisionless guiding centre
orbits were followed for test particles with varying
initial parameters. As the numerical guiding centre
solution method does not linearize the drift kinetic
part of the equation, non-linear mechanisms and all
zeroth and first order effects in ρ/L are kept. Here,
L is a characteristic dimension over which the fields
change and ρ = mivti/eiB is the Larmor radius.

2.2. Collision operator

During the guiding centre steps described above,
the magnetic moment µ = miv

2
⊥/(2B), the toroidal

canonical angular momentum Pφ = miRv‖Bφ/B +
eiΨp and the total energy of the particle E =
Ek + eiΦ(r), where Ek = miv

2/2, remain constant
within the accuracy of the integration. Here, v⊥ is
the perpendicular component of the particle velocity
with respect to the magnetic field, v is the velocity
composed of the gyro-motion and parallel motion,
and Bφ is the toroidal component of the magnetic
field. However, because of collisions, µ, Pφ and Ek
are changed after each time step. These changes
lead to neoclassical diffusion of the particle in a
torus. The collisional changes are calculated instan-
taneously by keeping the particle guiding centre posi-
tion in the configuration space intact. Thus, the clas-
sical gyrotropic diffusion [19] of the particle is not
included.

A binary collision model, exploited earlier in
particle-in-cell and gyrokinetic simulations [17], is
used to model ion–ion collisions. The simulation
region is divided into poloidal and radial cells with
size such that the plasma parameters do not vary
significantly inside the cells. Particles in each cell are
paired randomly and small angle collisions are per-
formed pairwise. The chosen collision operator con-
serves the number of particles, the total momentum
and the total energy quasi-locally. Using this method

with fixed radial electric field and in the absence of
other forces, test particle flux parallel to the mag-
netic field arises to compensate for theE×B/B2 and
diamagnetic poloidal rotation resulting from the zero
radial ion flux and thus satisfying the stationary con-
ditions required by the fully momentum conserving
collision operator in the absence of electron effects.
In order to compare the results with analytic esti-
mates for small parallel velocity, the measurement
has to be done before significant parallel velocity has
developed.

Alternatively, in the calculation of radial current,
an ad hoc parallel force can be used to support sta-
tionary solutions with non-zero rotation. This can
be done most efficiently by using a test particle col-
lision operator instead of a full collision model. This
operator keeps the test particles in a thermal bath
of background ion species at temperature Tj. Here,
momentum is not fully conserved but an external
force F ii =

∫
mivi[C(FMi, fi)−C(fi, fi)] dv appears

in addition to that ensuing from the full momentum
conserving collision operator C(fi, fi). Here fi is the
total ion distribution function, FMi the Maxwellian
part of the ion distribution and C(FMi , fi) the test
particle collision operator. This force is proportional
to the mean parallel ion flow u‖i. This approxima-
tion is based on the assumption that the fluxes are
mainly determined from the lowest order moments
of the Boltzmann equation. This is verified by com-
paring the results of this method with simulations
done using the momentum conserving binary colli-
sion model (parameters as in Section 3). In Fig. 2, it
is shown that both methods give initially the same
radial ion flux before the parallel velocity develops in
the momentum conserving case and the flux decays.

The calculation of parallel viscosity can only be
done with the binary collision model and, also, in
the simulation of radial current it is used as the main
method.

2.3. Calculation of the
non-ambipolar radial flux

We calculate the non-ambipolar flux surface aver-
aged ion radial current density due to a fixed radial
electric field Er with a Monte Carlo technique from
the number of particles ∆N crossing a flux surface
during time ∆t as

jNC =
ei
A

∆N
∆t

(2)
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Figure 2. (a) Particle fluence and (b) toroidal velocity for n = 5× 1019 m−3

and T = 300 eV with electric fields Er = 15 kV/m (dotted curves), Er =

30 kV/m (solid curves) and Er = 60 kV/m (dashed curves). Curves with

crosses are calculated with the momentum conserving binary collision operator

and curves without crosses are calculated with the fixed background collision

model.

where A is the area of the flux surface. The sim-
ulation is done for zero density and temperature
gradients in order to neglect the influence of gradi-
ents. Test particles are initialized over a regime wide
enough to avoid a decay of flux due to the exhaust
of test particles. This would occur if the outermost
particles have time enough to reach the flux surface
where the flux is measured. A test particle in the

simulation represents a group of initially uniformly
(in configuration space) and Maxwellian (in velocity
space) distributed particles, and it is weighted with a
number that corresponds to the relative phase space
volume of the initial position and velocity of the par-
ticle. To show the convergence of the method, the
accumulated fluence of the particles per area element
ei∆N/A is plotted as a function of time in Fig. 3.
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Figure 3. Particle fluence as a function of time for

various sizes of test particle ensemble. Statistical noise

decreases when the number of test particles is increased.

If the initialization regime is too narrow, the fluence

grows with a decaying rate.

Here, were have initialized 1800–7500 particles in a
region ρN = 0.3–0.55 in normalized radius ρN = r/a.
Particles are distributed uniformly in 10–20 poloidal
angles between 0 and 2π, in 10–20 pitches between
−1 and 1, and in 10–30 radius slots. The fluence is
measured at the radius location ρN = 0.5 over 4 ms.
The pedestal at the beginning is due to initialization.
We see that already with 3750 particles we obtain a
smoothly growing fluence. In addition, a case with
1800 particles is shown in Fig. 3, where a too nar-
row initialization regime (ρN = 0.46–0.52) has been
applied. The fluence here grows with a decaying rate
since the test particles from the edge of the simula-
tion regime can reach the flux measurement radius
within the simulation time. In this example a test
particle collision model with fixed background was
used. When a binary collision model is used, at least
ten times more particles are needed for convergent
results.

2.4. Calculation of the parallel viscosity

Starting from the momentum balance equation

nimi
dui
dt

= eini(E + ui ×B)−∇pi −∇ ·Πi + F i

(3)

one can calculate the parallel viscosity using the
Monte Carlo technique. Here ni and ui are the ion
fluid density, and velocity, respectively. E = −∇Φ
is an electrostatic field, pi is the scalar pressure and
Πi is the viscous stress tensor of fluid ions. F i is the
friction force arising from collisions of the ion with

the other species. Assuming that the electric field is
electrostatic and there are no other external forces,
one can take an inner product with B in Eq. (3)
and, after flux surface averaging, the equation for the
parallel flow dynamics is〈
mi

∂(niB · ui)
∂t

〉
= −〈B ·∇ ·Πi〉

− 〈mi(B · ui)∇ · (niui)〉

− 〈nimiB · ui ·∇ui〉 (4)

where the right hand side can be interpreted as the
total parallel viscosity value, consisting of the stan-
dard parallel viscosity and convection terms valid for
arbitrarily large centre of mass velocities. The stan-
dard parallel viscosity in terms of pressure anisotropy
is

〈B ·∇ ·Πi〉 =
〈

(p⊥ − p‖)
B ·∇B
B

〉
(5)

and it can be calculated directly from the code in
terms of the statistically measured pressure compo-
nents p‖ =

∫
m(v‖ − u‖)2f d 3v and p⊥ =

∫
[m(v⊥ −

u⊥)2/2]f d 3v, i.e. parallel and perpendicular pres-
sure, respectively. In a quasi-toroidal system, Eq. (4)
can be written as

∂

∂t

〈
nBu‖

〉
= −

〈
B

rR

∂

∂r
(rRnuru‖)

〉
+
〈

2nuθu‖
B sin θ
R

〉
−
〈

(u2
θ + u2

φ)
Bθ sin θ
R

〉
−
〈

(p⊥ − p‖)
Bθ ·∇B

B

〉
−
〈
nur

(
Bφuφ
R

cos θ +
Bθuθ
r

)〉
(6)

where ur, uθ and uφ are the radial, poloidal and
toroidal components of flow velocity, respectively. All
the velocity components, as well as p‖ and p⊥, are
calculated from the code as time and ensemble aver-
ages of the particle velocities.

3. Simulation of the
neoclassical return current
and the parallel viscosity

In this section, the results from the analytic
expressions in Eqs (9), (10) and (12) of the Appendix
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for the return current and parallel viscosity are com-
pared with the results from the ASCOT simula-
tion. Circular symmetry with no Shafranov shift
is assumed in the simulations, consistent with the
assumptions in the derivation of the analytic forms.
We determine the flux at the normalized radius
ρN = 0.5 as an average over a time which is short
enough (typically milliseconds) so that the bound-
aries of the initialization regime do not have an
influence on the results. Temperature, density and
current density profiles are assumed to be flat in
order to ignore the influence of gradients. Parame-
ters similar to those of ASDEX Upgrade, a = 0.5 m,
Ip = 1 MA and Bφ = −2.5 T, are used for minor
radius, plasma current and toroidal magnetic field
on the axis, respectively. The major radius, how-
ever, is chosen to have a larger value (R = 3 m)
in order to neglect the effect of small aspect ratio
corrections (the analytic results were derived in the
large aspect ratio limit). The background ion density
in the basic case is n = 5 × 1019 m−3 and the tem-
perature T = 150 eV, corresponding to a normalized
collisionality ν∗i = 22.6. Collisionality is varied by
changing both the temperature and the density.

Figures 4 and 5 show the return current from
ASCOT and from the analytic expressions as a func-
tion of the poloidal Mach number Mp = Er/vtiBθ.
In calculating the currents in Fig. 4, the collision-
ality is changed by varying the density with values
n = 2 × 1019, n = 5× 1019 and n = 10× 1019 m−3

at a temperature T = 150 eV, corresponding to nor-
malized collisionalities ν∗i = 9.4, 23 and 45, respec-
tively. In Figs 5(a) and (b), the density is n = 5×1019

m−3, and the temperature has the values T = 100 eV
and T = 300 eV with collisionalities ν∗i = 49 and 6,
respectively. We see that the best match between the
currents from the ASCOT simulation and from the
analytic expression (9) by Stringer is in Fig. 4(b),
which is the case in the plateau regime not too
near either the banana or Pfirsch–Schlüter regime.
Comparison of Figs 5(a) and 4(c) suggests that the
match between the curves depends on ν∗i, not the
density or temperature alone. In addition Figs 5(b)
and 4(a) have similar collisionalities and the rela-
tions between the curves are similar in both fig-
ures. Since the collisionality regime near the limit
of banana regime is most interesting when the bifur-
cation theory of Ref. [7] is considered, we make the
comparison of neoclassical return currents for a tem-
perature T = 300 eV with a density n = 2 ×
1019 m−3, corresponding to a collisionality ν∗i = 2.5.
In Fig. 5(c), Shaing’s result and the ASCOT simula-

Figure 4. Neoclassical current jNC as a function of

poloidal Mach number for different densities (a) n =

2 × 1019 m−3, (b) n = 5 × 1019 m−3 and (c) n =

10 × 1019 m−3. Here, the dashed lines with squares are

the ASCOT results, the chain curve (shown only for low-

est ν∗i) is calculated from the expression of Shaing and

the solid curves from the expression of Stringer.

tion give nearly equally high maxima for the radial
current although not for the same poloidal Mach
number. Closer to the banana regime, the separation
between the ASCOT result and Eq. (9) increases
because toroidal trapping effects make the expansion
in powers of inverse aspect ratio with a Maxwellian
zeroth order distribution invalid in the derivations
in Refs [11, 12]. Somewhat surprisingly, there is no
such tendency of ASCOT results to deviate from

1592 Nuclear Fusion, Vol. 40, No. 9 (2000)



Article: Non-ambipolar ion diffusion in tokamaks

Figure 5. Neoclassical current jNC as a function of

poloidal Mach number for different temperatures (a) T =

100 eV and (b) T = 300 eV with density n = 5×1019 m−3

and (c) for the low collisionality case with T = 300 eV

and n = 2 × 1019 m−3. The meaning of the lines is the

same as in Fig. 4.

Eq. (12) by Shaing for this range of collisionality.
This should be regarded as a pure artefact because
the same expansion is used in both analytic models.
The location of the maximum of the current in
Eq. (12) by Shaing shifts strongly to higher values
of Mp when collisionality is increased, but for the
current in Eq. (9) by Stringer, the maximum is at
Mp ≈ 1 for all cases. The latter is in better agree-
ment with the numerical results, which show only a
small shift of the maximum.

Figure 6. Comparison of the maximum values of the

current jNC from the different methods. Shaing’s expres-

sion gives the lowest maximum, but near the banana

regime agreement with the numerical result is better. The

maxima are normalized to the maximum of jNC ,str .

In Fig. 6, the maxima of the three expressions for
return current are compared. In all the cases shown,
Eq. (12) by Shaing gives the lowest maximum, but
it approaches the numerical result when collision-
ality decreases. Deviations in the collisional regime
are natural since this expression of Shaing does not
include Pfirsch–Schlüter effects and, thus, does not
give the total radial current. In addition, some of
the differences obtained here may be explained by
the different collision models used. In the derivations
of Eqs (9)–(12), essentially the Krook model (in a
somewhat modified form) for collisions was applied.
Although with proper coefficients the Krook model is
known [20] to reproduce viscosity and fluxes obtained
from a more complete collision operator in a rela-
tively wide collision regime for weak rotation, in the
present case of large poloidal Mach number its valid-
ity is not guaranteed. The main difference between
the expressions of Shaing and Stringer is most prob-
ably that only the latter is based on full velocity
integrals, which might be the reason why it has a
tendency to agree better with the numerical results
which also take into account the whole velocity
space.

As an example of the importance of convection
and compressibility in the calculation of total par-
allel viscosity we compare in Fig. 7 the numerical
ASCOT simulation of total parallel viscosity, i.e. the
RHS of Eq. (4), with the parallel viscosity calcu-
lated numerically from Eq. (5) and analytically from
Eq. (10). Here, the density is n = 5× 1019 m−3, and
temperatures (a) 100 eV and (b) 200 eV correspond
to the collisionalities ν∗i = 46 and 12, respectively,
the first being in the Pfirsch–Schlüter regime and
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the latter in the plateau regime. The measurement is
made transiently after the effect of initialization has
been lost, but before any significant parallel velocity
develops. This causes an inaccuracy which can be
20–30%. Both in the Pfirsch–Schlüter regime and in
the plateau regime, for large poloidal Mach numbers,
the standard parallel viscosity 〈B · ∇ · Πi〉 has a
different sign than the sum of all the RHS terms,
i.e. its effect is to resist the growth of the paral-
lel rotation which is driven by the other terms. The
reason for this qualitative difference in results may
be the strong poloidal dependence of density which
develops for large Mp and is neglected in Ref. [23].
This is under investigation and will be published else-
where. With small poloidal rotation, parallel viscos-
ity also drives parallel rotation, which leads to the
decay of poloidal rotation. Here, a good agreement
between the numerically obtained standard paral-
lel viscosity and the analytic result is found in the
plateau regime. Although, in our simulations, we can
clearly see the strong effect of both convection and
compression in the parallel momentum balance for
large values of Mp, for the poloidal component of
the momentum equation in the case of zero radial
current the effect of convection can be shown to be
weak [21]. In Fig. 7(c), the same comparison is made
for the low collisionality case, i.e. for a temperature
T = 300 eV also with a density n = 2 × 1019 m−3

corresponding to a collisionality ν∗i = 2.5. Again, we
find that the parallel viscosity from the code changes
sign for large poloidal Mach numbers but, somewhat
surprisingly, a fairly good agreement can be found
between Shaing’s expression for the standard parallel
viscosity and the ASCOT result for the total parallel
viscosity.

4. Conclusions and discussion

In this article, the neoclassical ion flux in the
presence of a radial electric field (non-equilibrium
poloidal rotation) is calculated using the Monte
Carlo technique and is compared with analytic
results. Qualitatively the results agree, and quan-
titatively the results are of the same order. There-
fore, the analytic expressions should be valid for an
order of magnitude estimate of the bifurcation condi-
tion near the ν?i region. It should also be noted that
in experiments in TEXTOR [2] with an externally
biased electric field, the return current was found to
be between the expressions of Shaing and Stringer as
found in the present work. To isolate the influence of
the different approximations and assumptions made

Figure 7. Parallel viscosity as a function of the radial

electric field for temperatures (a) 100 eV and (b) 200 eV,

with density n = 5× 1019 m−3 and (c) for the low colli-

sionality case with T = 300 eV and n = 2×1019 m−3 cal-

culated with the ASCOT code (squares), from the expres-

sion of Shaing (crosses) and the sum of the RHS terms

in Eq. (4) calculated with the ASCOT code (circles).

in deriving the analytic expressions, more work is
needed. In addition, the standard neoclassical the-
ory breaks down if the density scale length is short
enough, which might be the case near the edge. In the
numerical simulation of the parallel viscosity it was
found that, for large poloidal Mach numbers, the par-
allel viscosity term has a different sign than the ana-
lytic expression, but with convection and compres-
sion terms the total effect is always to drive parallel
rotation, which leads to the decay of poloidal rota-
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tion. With small poloidal rotation, parallel viscosity
also drives parallel rotation. As the primary goal here
is the study of the ion orbit loss based bifurcation
theory, instead of investigating the limits of the neo-
classical theory, parallel work has concentrated on
the development of the method of self-consistent cal-
culation of the electric field profile at the edge. The
aim was to iterate the electric field in the presence of
a momentum and energy conserving collision opera-
tor, ion source for the return current, and orbit loss
providing the force to sustain the rotation, mean-
ing also that many of the heuristic assumptions in
this work can be avoided. From this work [8, 9] one
has found that the self-consistent radial electric field
does not bifurcate at ν∗i = 1, and that the shear in
E ×B rotation from the solution for the transition
conditions of discharge 8044 at ASDEX Upgrade, i.e.
at ν∗i = 3.8, in fact is sufficient for turbulence sta-
bilization according to the Biglari–Diamond–Terry
criterion [22] for the observed L mode solution.
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Appendix

Analytic expressions

The derivation of the neoclassical return current
in Ref. [11] includes poloidal variation of the electro-
static field, density and temperature, and is based on
full velocity integrals. Gradient and curvature drifts
are included, but the finite orbit effects and the radial
variation of the radial electric field along the particle
orbits are neglected.

As the poloidal electric field is not taken into
account in ASCOT, it is also neglected here, and the
steady state neoclassical current in Ref. [12] can be
written as

jNC ,str = − 1
2πB0R0

∫ 2π

0

(p‖ + p⊥) sin θ dθ (7)

where R0 is the major radius, B0 the magnetic field
at the axis, and p‖ and p⊥ are the parallel and per-
pendicular pressure, respectively. Using the expres-
sions for p‖ and p⊥ given in Eqs (9) and (10) in

Ref. [12], and assuming zero radial density gradients,
we can write the sum of pressure components as

p‖ + p⊥ = εnT

(
(1 + 2x2)2Λ + 2x2 − 1 +

V0(1− I)
irν − V0

)
× exp (iθ) (8)

with V0 = −Er/B , ε = r/R and zeroth order (no
poloidal variation) densities and temperatures n and
T , respectively. The functions I and Λ are defined as

I(z) =
1√
2π

∫ ∞
−∞

w

w −
√

2z
exp

(
−w

2

2

)
dw

Λ = I[I + 2ixyI + (1− I)x/z]−1

where z = x + iy, x = Er/vtiBθ = Mp and
y = ν∗iε

3/2 with normalized collisionality ν∗i =
νRq/vtiε

3/2 and ion–ion collision frequency ν. Under
these approximations, θ integration in Eq. (7) is triv-
ial, and by knowing that only the real part of the
equation has physical significance, the radial current
becomes simply

jNC,str = −DIm
(

(1 + 2x2)2Λ +
1− I

irν − V0
V0

)
(9)

where D = nTε2/2rB0 is related to the diffusion
coefficient.

The expression for parallel viscosity by Shaing
[13, 23] in the absence of temperature and density
gradients can be written as

〈B ·∇ ·Π〉 =
√
πε2

4r
nmvtiBIpUθ (10)

where the poloidal flow velocity is Uθ = (UφBθ −
Er)/B. Neglecting the toroidal velocity Uφ the
integral Ip is

Ip =
1
π

∫ ∞
0

w2e−w
∫ 1

−1

(1− 3ξ2)2

× χ

(ξ − x/√w)2 + χ2
dξ dw (11)

where ξ = v‖/v is the velocity pitch and χ =
yνT /ν

√
w. Here, νT is the collision frequency for

anisotropy relaxation. Using the expression for νT
given in Ref. [20], results in the Pfirsch–Schlüter
regime obtained with a more complete collision
operator have been reproduced within 20% [13].
The radial current to lowest order in ε, in the
regime where Pfirsch–Schlüter effects are not sig-
nificant, can be expressed in terms of the parallel
viscosity as

jNC,sha = −〈B ·∇ ·Π〉
BθB

= −xD
√
πIp. (12)
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