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Monte Carlo ion simulation based on neoclassical radial current balance near edge in a divertor
tokamak geometry gives a stationary sheared ~E× ~B flow. The neoclassical radial electric field Er shows
no bifurcation in contrast with earlier orbit loss models, but the shear in Er reaches values at which
a transition to enhanced confinement has been observed. Also, MHD turbulence analysis shows that
a smooth transition can occur through the neoclassical ~E × ~B flow shear suppression. The parameter
scaling of threshold temperature for suppression of turbulence agrees with the H-mode threshold scaling
in ASDEX Upgrade.

1 Introduction

Enhanced energy confinement is important in thermonuclear magnetic fusion since it can
lead to an economically more attractive reactor. Experimentally, the anomalous transport has
been found to decrease remarkably in the L–H transition, which, since its discovery in ASDEX
tokamak in 1982 [1], has been observed in many divertor and limiter discharges, and also in
some stellarators. Transition occurs when a threshold in the heating power is exceeded. In
the L–H transition plasma jumps from the Low (L–) confinement mode into the High (H–)
confinement mode, and the energy confinement time of the plasma is increased by a factor
fH ≈ 2. This improvement in confinement is assumed to be due to sheared poloidal ~E × ~B-
rotation which builds up fast (≈ 100µs) in a narrow layer near the plasma edge during the
transition. This rotation suppresses the turbulent fluctuations, and thereby the anomalous
transport, by decorrelating neighboring eddies by the differential rotation [2]. Consequently,
an edge transport barrier, with a width of 1-3 cm, is formed and fluctuations in magnetic field,
density and electrostatic potential are reduced there. Particle diffusivity and heat conductivity
are reduced by a factor of 5-10, which for ions means that, in this narrow layer, transport can be
close to its neoclassical value. Although the rapid improvement in confinement has been known
for long, the mechanism how the radial electric field is formed in the transition is still unclear.
Spectroscopic measurements used for detecting Er-profile do not have sufficient time resolution
to decide the causality between the electric field and the improved confinement. The CX-signal,
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observed by a neutral particle analyzer, gives a measure of Er in the plasma periphery with much
better time resolution but only a slow increase in Er has been observed in those measurements
so far [3].

At least three theories exist that can explain an L–H transition in agreement with the experi-
mental observations. One candidate is the so-called ‘Stringer spin-up’ [4], in which a bifurcation
in poloidal rotation occurs due to poloidally asymmetric particle source or transport. The sec-
ond proposed explanation is based on an asymmetric fluctuation spectrum (Reynold’s stress) [5]
causing a flow generation. In both of these cases, the spin-up of the poloidal flow is assumed
to occur due to anomalous processes. In the theory in Ref. [6], anomalous processes are not
included, but the bifurcation is assumed to happen due to a multivalued balance between the ion
orbit loss (OL) current and the neoclassical return current, when poloidal Mach number exceeds
one.

In this paper, edge Er profile from self-consistent, fully kinetic 5D neoclassical simulation
of the tokamak edge with various plasma conditions is solved. Two different methods are used:
Time dynamics of Er are solved from the polarization equation or, alternatively, a steady-state
Er, which maintains a given density profile, is found by iteration. The orbit loss of both thermal
and tail ions, the neoclassical ion return current, and the ion distribution asymmetrization by
divertor losses and through redistribution by replacing ions (for charge neutrality) is included.
For ASDEX Upgrade parameters no bifurcation in Er is found, but the field changes smoothly,
following the change in the plasma parameters. Although the poloidal Mach number can reach
values larger than one, this occurs only in a region of a few mm, close to the separatrix, and
is sensitive to changes in viscosity and the boundary conditions. The small radial extent of
this region makes it unlikely that it plays an important role in the stabilization of turbulence.
However, although the Mach number is smaller than one over most of the domain, it still has
a high enough shear for turbulence suppression. This shear can appear within a wide enough
radial region to a typical radial decorrelation length of the fluctuations.

Paper is organised as follows: The numerical methods, including the Monte Carlo code
ASCOT and different methods for solving the radial electric field, are presented in Sec. 2. In
Sec. 3, simulated Er profiles are presented for different plasma parameters, classified according
to their shear with respect to the BDT criterium, and the results are compared to the experimental
scaling. In Sec. 4, the turbulence model and its results are presented. Finally, in Sec. 5,
conclusions are given.

2 The numerical models

2.1 The Monte Carlo code ASCOT

In the 5D Monte Carlo code ASCOT [7], charged particle motion is followed in all three
configuration space variables, but only in pitch and magnitude in velocity space, i.e., guiding
centre approximation for the particle trajectories is used. Gyroangle dependence is not taken into
account, because the time scale of the gyromotion is orders of magnitude faster, which would
shrink the time step and, thus, increase the required CPU resources enormously. However,
the effect of gyroviscosity is added using a simple analytic model. ASCOT is able to use
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experimental background data as input. The collision operators are derived from the respective
Fokker–Planck terms including slowing-down, energy diffusion and pitch angle scattering. The
ion-electron collisions are now switched off, since we are not interested in ambipolar transport,
which does not contribute to the current balance. The background density and temperature
profiles are assumed to be due to anomalous effects due to their much larger transport fluxes.
Anomalous fluxes are assumed to be ambipolar, i.e, they do not influence the current balance.
Therefore, the requirement for zero steady-state radial current is dictated only by neoclassical
effects. In modelling ion orbit loss current, neoclassical current and viscosity, the guiding centre
equations of motion are solved for an ensemble of test ions, which are left to collide with a
Maxwellian background distribution. As the background should rotate with the ~E× ~B -velocity,
the influence of the electric field to the test particle velocity is omitted when evaluating the effect
of collisions. A test particle in the simulation represents a group of particles initially distributed
uniformly in configuration space and according to Maxwellian distribution in velocity space.
Each test particle is weighted with a number that corresponds to the relative phase space volume
of the initial position and velocity of the particle. Because the simulation of the whole plasma
volume would require huge amounts of computer resources, and since only the edge region
is interesting for our problem, it is well justified to limit the simulation only to a small radial
region near the separatrix. In order to avoid losing particles from the simulation regime, inside
the inner simulation boundary we switch off the collisions and evaluate the unperturbed particle
trajectories as shown in Fig. 1. Since in the code the density is calculated from the accumulative
time the particles spend in each cell, the particle time is not advanced while the particle is outside
the simulation regime, i.e., every particle that crosses the inner boundary flux surface comes
back to the simulation regime instantaneously.

The particle is lost if it intersects the divertor plate or wall structure. These particles are
promptly reinitialized back to the plasma at the separatrix with local thermal velocity and
uniformly in pitch and poloidal angle in order simulate the replacement of lost charge through
separatrix which is much more uniform in phase space than the loss process. The reinitialization
is done at the separatrix, because it is important not to introduce any unphysical currents which
could influence the balance between the neoclassical return current and the ion orbit loss current.
Outside the separatrix the electric field cannot be determined. Similarly to the inner boundary,
also at the separatrix the accumulation of particle time is stopped when the particle leaves the
simulation regime until it comes back, or until it is lost and reinitialized back to the simulation
regime. However, here we do not turn off the collisions outside the simulation regime but the
particle is allowed to collide with the background plasma outside the separatrix.

2.2 Solving Er from polarization equation

In the code, the ion ensemble corresponding to the main plasma ions is initially distributed
according to the assumed background density and temperature with Maxwellian energy distri-
bution. Each ion is followed along its guiding centre orbit determined by the ~E × ~B-, gradient-
and curvature-drifts, collisions as well as polarization- and viscosity-drifts. The radial electric
field Er on a magnetic surface with coordinate ρ is evaluated from [8]

∂Er/∂t = −(ΩBt/n)ΓNC , (1)
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Fig. 1. If the inner boundary is crossed, the particle trajectory is followed in the absence of collisions
until it comes back to the simulation regime. Outside the separatrix collisions are present. Lost particles
are reinitialized to the separatrix, with thermal velocity and randomly distributed in pitch and poloidal

angle.

where n is the density, Bt is toroidal magnetic field, Ω = eiB/mi with test particle mass mi and
charge ei, and ΓNC is the particle flux at the radius ρ as calculated from ion motion excluding
the flux due to polarization drift. Therefore, ΓNC = Γtot −Γpol, where

Γpol = (n/ΩBt)∂Er/∂t (2)

is the polarization drift and Γtot is the total radial velocity of the ensemble at ρ. From Eqs. (1)
and (2) it follows that Γtot = 0 which, in fact, is the condition jr = 0 for current density.
Thus, the density profile 〈n(ρ, θ)〉, where θ is the poloidal angle, is automatically kept constant.
Formally, the radial flux ΓNC can be written as

ΓNC = Γcoll + Γloss + Γgyro, (3)

in which the last term is included using an analytic theory [9] where the radial drift due to
gyroviscosity is estimated to be

Γgyro = −
η

eiB2

∂2Er

∂r2
, (4)

with the Braginskii viscosity coefficient η = (3/10)nT (νii/Ω
2) with temperature T and ion-

ion collision frequency νii. This is explicitly added to the particle motion, as it has importance
especially in high shear regions. Since gyroviscosity is a contribution of the form ∂tEr = f∂rrEr

where f = f(n, T, Bt, ...), the timestep τ and the other simulation parameters have to fulfil the
Courant condition, τ ≤ (∆r)2/2f , in order to obtain stable solutions.
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Fig. 2. Radial electric field profile as a function of time as calculated from Eq. (1).

An example of the time dynamics of the electric field radial profile is shown in Fig. 2. Because
initialization is only an approximation of the distribution of the particles in phase space, it is
important to do the simulations in a collisional time scale so that the effect of the initialization
will be erased and steady-state is reached.

2.3 Iterating for Er in a realistic geometry

Here, an alternative method to solve Er is introduced. We do not follow the evolution of
the electric field in time, but rather try to find the steady-state value. Our aim is to iterate the
self-consistent electric field that maintains the test particle density profile consistent with the
background density profile and, thus, gives zero radial ion flux. The self-consistent steady-state
radial electric field is here defined as the field for which the following two requirements are
fulfilled:

1. the density profile is stationary

2. the test particle density profile remains consistent with the background

In standard neoclassical theory a change in the gradient of the density profile corresponds to a
change in the electric field because, in steady-state, the flux Γ is zero. However, updating the
electric field by calculating the derivative of the test particle density profile and comparing it
to the background density profile would cause large errors, because the stochastic noise would
have a great effect in calculating the derivatives. Also, the requirement of the vanishing flux
alone is not enough to get the correct electric field since the test particle distribution changes in
the beginning of the iteration, and we most probably would find the balance for a wrong density
profile. To avoid this, we reformulate our second requirement in a following way: Beginning
from the background density profile, the test particle density profile after time t is consistent
with the background if ∫ t

0
Γ(r)dt = 0, (5)
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for which, using the continuity equation,

∂n

∂t
+ ∇ · Γ = 0 (6)

we get the expression ∫ t

0
rΓ(r)dt = −

∫ a

r
rn(r, t)dr + C, (7)

where n is the test particle density, the integration constant is C =
∫ a
c rnbg(r)dr, nbg is the

background density and c is the inner edge of the simulation region. Typically the simulation
regime spans only a few centimeters, i.e., only the regime where the ion orbit losses are likely.
The test particle density is calculated as a time average over the iteration time step τit. Based on
Eqs. (1) and (7), the following method has been found successful in a non-circular geometry:
After time τit, the radial electric field at location ρ is updated to the value E∗

r = Er + dEr with

dEr(ρ, t) = α
∫ ρsep

ρ
[n(ρ, t) − nbg(ρ)]dV, (8)

where the upper boundary ρsep is at the separatrix, dV is the volume element, and α is an
iteration parameter depending on τit and plasma parameters. In order to avoid fluctuations, the
update in Eq. (8) is done only if the difference in test particle and background density profiles is
increasing in time. If the test particle density profile is close enough to the background density
profile after k iterations, only a slight change in Er due to stochastic oscillations in density can
be observed, and the obtained Er is considered to be self-consistent.

Unlike in the previous section, when iterating for the steady-state Er-profile, the polarization
drift is neglected, and we assume that Γ is purely caused by the neoclassical flux due to Coulomb
collisions. Leaving out the polarization drift allows us to use a relatively small number of test
particles and a large iteration time step. In order to avoid the effect of an unphysical initialization
in the results, simulation time has to span collisional time scale τcoll ∼ 1/νii as in the previous
section.

As an example of an iteration of the electric field, starting at the ambipolar value using
ASDEX Upgrade data is shown in Fig. 3. Although the iteration shows similar charateristics
as in Fig. 2 where Er is solved from polarization equation, evolution of Er is here purely
numerical, i.e., only the steady-state has a physical meaning. Both the solving the evolution of
Er from polarization equation and the iteration method presented here have resulted with the
same steady-state.

3 Results

In this section we study the dependence of Er on temperature and density profiles. We first
look at the region ρ ≥ 0.99, where the Er-gradient in the absence of gyroviscosity is very steep
due to strong effect of ion orbit losses. Later, gyroviscosity is included, and we assume that the
relevant region for confinement improvement is broader and the gradient of Er further inside,
although it is much more gently sloping, may still be sufficient to fulfil the BDT criterium. As
the criterium requires strong enough shear at least in a 0.7 cm wide region inside the separatrix,
we simulate a 2 cm wide regime.
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Fig. 3. Convergence of the electric field during an iteration.

3.1 Steady-state profiles

In the simulations, ASDEX Upgrade configuration and parameters are used. The minor
radius is a = 0.5 m, major radius R = 1.65 m, elongation 1.6, plasma current I = 1 MA, and
Bt = −2.5 T. Corresponding to the shot #8044 for a deuterium plasma, a separatrix density
1.2 × 1019 m −3 and temperature 120 eV with about 1.9 times larger values at r = a − 2 cm are
adopted as a reference case.

In order to compare our results to the OL theory in Ref. [6] we first leave out the gyroviscosity.
We express Er in terms of poloidal Mach number because, according to the theory, bifurcation
occurs when Mp exceeds unity due to decreasing collisionality. In Fig. 4, the collisionality is
varied by scaling the temperature and density profiles by constant factors. The electric field
profiles of are plotted in terms of M∗

p = (Er − Eambi)/vtiBp. The electric fields Er and Eambi

are defined at the outboard equator. Contribution of the ambipolar electric field is substracted in
order to see how much Er deviates from its ambipolar value. In contradiction to OL theory, the
magnitude of Er and, thus, |M∗

p | reduces if the collisionality is decreased by scaling the density.
Also, changing the collisionality by scaling the temperature shows the desired ν∗i-dependence
only within a region which is less than 1 mm within the separatrix.

It is clear that, without gyroviscosity, the monotonically (in radius) increasing ion orbit loss
would cause monotonically increasing negative electric field towards the separatrix, which is
inconsistent with the experiments, where the field outside the separatrix is positive and has a
positive gradient. For this reason it is important to take into account classical effects. In the
simulations, electrons are not included. Outside the separatrix, the rapid motion of the electrons
along the field lines guarantees that, at all surfaces, the electrostatic potential stays close to that
of the divertor plates. This deficiency in the model can be eliminated by imposing a positive
or zero electric field outside the separatrix, and by including the effect of viscosity. Viscosity
couples the rotation speeds at neighbouring magnetic surfaces inside the separatrix, causing Er

to bend towards the imposed zero electric field at the edge.
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Fig. 4. M∗
p = (Er − Eambi)/vtiBp values for the iterated Er profiles. Inside the plasma Er is close to

Eambi, i.e. |M∗
p | � 1, but near the edge where the ion orbit losses have strong effect, |M∗

p | can exceed
one.

Fig. 5 shows the steady-state profiles of −dΦ/dρ in the region 0.96 < ρ < 1 (ρsep = 1)
for different temperature profiles which are obtained by scaling the reference profile. The
numerical value for Er at the outboard equator is found by multiplication by the geometric factor
dρ/dr = 2 m −1 The higher the temperature, the steeper the gradient of Er. In the simulation,
the dependence of the gradient of Er on density, plasma current and toroidal magnetic field
was found to be weak. The best fit for the shear in the numerical (deuterium) data is given by
〈dEr/dr〉/B = 2964 · T 1.06n0.06B −0.81

t I −0.27 s −1 with ±0.25 error in exponents.

3.2 Scaling of the critical edge temperature

The experimental scaling for the critical edge electron temperature at ASDEX Upgrade is
[10]

Te(a − 2cm) = 145
(

n

1019m −3

) −0.3 (
Bt

1T

)0.8 (
Ipl

1MA

)0.5

eV, (9)

which shows the relevant variables for the L–H transition. In order to compare our simulation
results to the experiments, the iterated Er-profiles are here classified using the BDT criterium
[2] for the suppression of turbulence. The criterium is based on the assumption that the turbulent
fluctuations consist of eddies of radial extent ∆rt, with a typical lifetime τeddy, and a poloidal
extent 1/kθ, where kθ is a typical poloidal wavenumber for the fluctuations. From the radial
derivative of the ~E × ~B -velocity, one can calculate the time it takes to tear apart neighbouring
eddies. Comparing this to a typical eddy lifetime leads to the criterium

∣∣∣∣∣
dEr/dr

B

∣∣∣∣∣ > Lshear ∼ 105 − 106s −1, (10)

in which Lshear = (∆rtkθτeddy)
−1. If this condition holds for at least a 0.7 cm-wide regime

inside the separatrix, the shear can be considered to be strong enough to suppress the transport.
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Fig. 5. Iterated electric fields for different temperatures.

Otherwise, the shear is assumed to be too low, corresponding to L–mode. For the limit, we choose
a value Lshear = 5 × 105 s −1. In Fig. 6, the electric field profiles of all simulation are classified
using the criterium. To ease the comparison with experiments, the simulation temperature is
plotted as a function of the experimental scaling of Eq. 9. The experimental scaling is plotted
with a dashed line. Comparing the numerical simulations and the experimental results, a good
agreement is found. By introducing Lshear = 5 × 105 s −1 into the numerical fit of the shear in
the previous section, one obtains for the critical temperature Tcr = 126n −0.06|Bt|0.76I0.25 eV.
The parameters were varied in the range Bt = −1.1 − ( −5.0) T, I = 0.6 − 1.5 MA, n =

0.6 − 9 × 1019 m −3, and T = 30 − 400 eV, broader than in the experiments. Shear dependence
on n and T was found to be stronger in the lower n and T data range, respectively. However,
the number of data points in Fig. 6 is small and there is some freedom in choosing the values
for the BDT criterium.

4 Turbulence

To show that the sheared flow generated by orbit loss can significantly suppress turbulence
near Tcr in Fig. 7, MHD turbulence with the simulated ~E × ~B flow shear was resolved. As
a paradigm for self-organized tokamak plasma edge turbulence, resistive drift wave equations
[11] for the nonlinearly unstable vorticity, density, temperature, and parallel electron velocity
fluctuations were adopted, and they were complemented with the equation

∂vE/∂t =
M∑

m= −M

imk0(Φ −m∂2Φm/∂x2)/B2
0 + ν[v(x, t) − vE] (11)

describing the evolution of the average poloidal ~E × ~B flow velocity vE = ẑ × ∇Φ0/B0 =

(∂Φ0/∂x)ŷ/B0 in the presence of the electrostatic potential Φ =
∑M

m= −M Φm(x)exp(imk0y)

and orbit loss driven poloidal ~E × ~B flow v(x, t). Here, a sheared two-dimensional slab with
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Fig. 6. Classified ~E × ~B velocity shear from ASCOT simulations. If condition |dEr/dr|/B > 5 × 105

s −1 holds within 0.7 cm inside the separatrix, the shear is here considered to be strong, otherwise low.
The results agree well with the experimental scaling (dashed line).

x and y corresponding to the radial and poloidal directions, respectively, was adopted with

Ly = 2π/k0 and 2Lx the lengths of the slab in the y and x directions, respectively. The first term

on the right hand side in Eq. (11) is the turbulent Reynolds stress, and the second term with ν =

qvT/R models the viscosity. Single-helicity turbulence resonant at x = 0, and local magnetic

shear B = B0(1 + x/Ls) with background gradients dn/dx = −n0/Ln and dT/dx = −T0/LT

were considered. Using our reference parameters, and T0 = 100 eV, n0 = 4 × 1019 m −3,

Ln = LT = 0.02 m, Ls = 2 m, Ly = 0.02 × π m, and Lx = 0.015 m, turbulence was followed

for various values of shear, V ′ = dv/dx, at x = 0 with nonlinearly unstable initial amplitudes

of Φm. Fig. 7 shows the evolution of the kinetic energy Ek = m
∫
A |∇Φ̂/B0|2da/2Ly in units of

mk −2
0 ω2

?rL/2 for V ′ = 0, 3, 6, and 9×105 s −1. Here, ω? = k0T0/eB0Ln is the drift wave angular

frequency, rL is the ion Larmor radius, Φ̂ = Φ − Φ0, and
∫
A denotes surface integral over the

slab. In simulations, 2M + 1 = 121 modes with 151 grid points in x were used. A nonlinearly

saturated turbulence with a strongly suppressed level for largest V ′ is found. Suppression

grows gradually with V ′ and becomes significant for V ′ ∼ 5 × 105 s −1. Quantitatively similar

results were also found for the pressure-gradient driven turbulence, which was resolved using

a model similar to that in Ref. [12]. Turbulence suppression and perturbations in vE by the

Reynolds stress were weak and always dominated by the orbit loss driven flow near the threshold

conditions in Fig. 7. The results thus support the picture of Fig. 7 that the orbit loss driven

shear suppresses the turbulence, and that this effect becomes pronounced around the transition

threshold. The results also support the measurements in reversed field pinch configurations,

where a naturally occuring double velocity shear layer has been identified at the edge with a

shear value comparable to that in tokamaks and stellarators, and most probably originating from

finite Larmor radius losses [13].
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Fig. 7. Kinetic energy Ek in potential fluctuations (in arbitrary units) with various shears V ′.

5 Conclusions

The main result of this study is that, although we did not see a bifurcation, the gradient
of Er for typical H–mode parameters at the edge can be large enough to suppress turbulent
fluctuations there. When compared to the experimental scaling for the H–mode threshold,
numerical simulations show similar characteristics, when BDT criterium was used to classify
the Er-profiles according to the magnitude of their shear. The present simulations do not explain
the reason for the L–H transition, but it was shown that, in H–mode conditions, the radial electric
field due to purely neoclassical effects is sufficient to suppress anomalous transport. If the edge
ion temperature grows slowly during external heating, only a slow transition can appear, if the
shear reduces transport smoothly as in the MHD turbulence simulation presented here. Some
tokamak experiments [14, 15] see a neoclassical ambipolar Er just before the transition, and
a fast suppression of turbulence at the transition on a time scale much shorter than changes in
background temperature. In order to reconcile the present findings with them, a mechanism
which can restrain OL driven rotation in L-mode and allow it in H-mode is required.

This work benefited from the computing resources of the Centre of Scientific Computing in Espoo,

Finland.
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