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Abstract

One of the principal problems en route to a fusion reactor is that of insufficient
plasma confinement, which has lead to both theoretical and experimental research
into transport processes in the parameter range relevant for fusion energy produc-
tion. The neoclassical theory of tokamak transport is well-established unlike the
theory of turbulence driven anomalous transport in which extensive progress has
been made during last few years. So far, anomalous transport has been dominant
in experiments, but transport may be reduced to the neoclassical level in advanced
tokamak scenarios.

This thesis reports a numerical study of neoclassical fluxes, parallel viscosity, and
neoclassical radial current balance in tokamaks. Neoclassical parallel viscosity and
particle fluxes are simulated over a wide range of collisionalities, using the fully ki-
netic five-dimensional neoclassical orbit-following Monte Carlo code ASCOT. The
qualitative behavior of parallel viscosity derived in earlier analytic models is shown
to be incorrect for high poloidal Mach numbers. This is because the poloidal de-
pendence of density was neglected. However, in high Mach number regime, it is
the convection and compression terms, rather than the parallel viscosity term, that
are shown to dominate the momentum balance. For fluxes, a reasonable agree-
ment between numerical and analytical results is found in the collisional parameter
regime. Neoclassical particle fluxes are additionally studied in the banana regime
using the three-dimensional Fokker-Planck code DEPORA, which solves the drift-
kinetic equation with finite differencing. Limitations of the small inverse aspect
ratio approximation adopted in the analytic theory are addressed.

Assuming that the anomalous transport is ambipolar, the radial electric field and its
shear at the tokamak plasma edge can be solved from the neoclassical radial current
balance. This is performed both for JET and ASDEX Upgrade tokamaks using the
ASCOT code. It is shown that shear high enough for turbulence suppression can be
driven at the Low (L) to High (H) transition conditions without taking into account
anomalous processes. In agreement with experiments, simulations indicate a higher
threshold temperature for the L–H transition in JET than in ASDEX Upgrade. The
parametric dependence of the shear on temperature, density, and magnetic field,
however, is similar for both devices. In agreement with some theoretical models and
experimental observations, the results also suggest that the critical shear for strong
turbulence suppression in JET should be lower than in ASDEX Upgrade.

i



Preface

This work has been carried out in the Laboratory of Advanced Energy Systems at
the Department of Engineering Physics and Mathematics of Helsinki University of
Technology, from 1996 to 2000. The work has been carried out under the Association
Euratom-TEKES Agreement.

I would like to thank my instructor Dr. Jukka Heikkinen for his guidance during
the work, and for the critical reading of the manuscript. I would also like to thank
all the staff of IPP Garching and JET who have helped me with this work. Espe-
cially, I am grateful to Dr. Arthur Peeters for his guidance during my three visits
to Germany, Prof. Hartmut Zohm for the original suggestion to use the ASCOT
code for investigating the L–H transition in ASDEX Upgrade, Prof. Kaufmann for
allowing me to work at ASDEX Upgrade, and Dr. Parail for his guidance during my
visit at JET. I am indebted to Dr. Seppo Sipilä for providing me with the ASCOT
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Chapter 1

Introduction

The population explosion and an increasing standard of living combine to increase
the world’s energy consumption. There are many different ways to face this need.
Conventional energy sources entail several problems: resources of fossil fuels are
limited and they pose a serious environmental threat. As a solution, using renewable
energy sources, such as solar and wind energy, is often called for, but until a proper
method for energy storage is found, they have limitations due to strong daily and
seasonal variations in the primary source of the energy. Earlier, nuclear energy
through fission was thought to be the final solution to energy problems because its
emissions to air and water are minimal. More recently, however, public opinion has
turned against it. Furthermore, like fossil fuels, the fuel of nuclear power plants,
Uranium isotope 235U, has limited resources. All such problems can be avoided,
if we can exploit fusion reaction rather than fission. Nuclear fusion is considered
an environmentally friendly energy source with inexhaustible resources. However,
to exploit the reaction, high technology is required, which makes nuclear fusion
expensive compared to conventional energy sources. In this thesis, one of the chief
problems in nuclear fusion, plasma confinement, is explored.

The goal of controlled nuclear fusion research is to generate energy by combining
two low-mass nuclei to form a more massive nucleus. This reaction is the power
source of the sun and other stars, where confinement and heating occurs through
compression under enormous gravitational forces. Harnessing the energy of stars on
Earth sets demanding requirements for temperature, density, and confinement time
in order to force positively charged particles to fuse at a rate that makes energy
production possible. In order to reach the so-called break-even, where the fusion
energy released exceeds the amount of energy applied to heating, particles must be
confined for a sufficient period at a sufficiently high temperature. A step further is
the fusion ignition, where the auxiliary heating can be turned off. The ignition is
best achieved in reactions with relatively large cross-sections

2
1D +2

1 D→3
1 T(1.01MeV) + 1

1p(3.03MeV)
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2
1D +2

1 D→3
2 He(0.82MeV) + 1

0n(2.46MeV)

2
1D +3

1 T→4
2 He(3.57MeV) + 1

0n(14.06MeV)

2
1D +3

2 He→4
2 He(3.67MeV) + 1

1p(14.67MeV).

Here, the lowest threshold for net energy production involves a reaction in which
Deuterium (D) and Tritium (T) fuse, producing a helium nucleus (He) and a neutron
(n), and, most importantly, releasing energy, which is given in parentheses for each
reaction product (p denotes proton). For this reaction, the necessary requirement
for the ignition is

nτE > 1.5× 1020m−3s,

where n is the density, and τE is the energy confinement time. The required tem-
perature is in the order of T = 108K. If a gas is heated to such a high temperature,
it does not remain electrically neutral; electrons are stripped from the atoms. Thus,
two populations of oppositely charged particles, electrons and ionized atoms, are
formed. This is known as a ‘plasma’. Because it is not a solid, liquid, or gas, it is
sometimes referred to as the fourth state of matter.

1.1 Fusion devices

Since an extremely high temperature is needed for nuclear fusion, it is obvious that
the plasma confinement is not a trivial problem. In inertial fusion a dense, hot
plasma is produced and confined only for a very short time (nanoseconds) dictated
by its inertia. In magnetic fusion, the fact that the charged particles in a magnetic
field are tied to the field lines is exploited. In linear machines, magnetic field lines
end on a material wall. This concept suffers from end losses, although the losses can
be decreased by using magnetic mirrors to reflect the particles. In a toroidal device
the magnetic field lines are closed, and the problem of end losses is avoided. However,
in addition to the motion of particles along the field lines and the gyromotion around
the field lines, the particles have a drift velocity in the direction perpendicular to
the magnetic field and its gradient. For this reason, the magnetic field consists of
a strong toroidal and a weaker poloidal field component, forming helically winding
field lines around the torus. The helicity of the magnetic field lines prevents the
particles from escaping confinement due to the perpendicular drift. The magnitude
of the field varies roughly as B ∝ 1/R, where R is the distance from the symmetry
axis of the torus.

In a Tokamak, the poloidal field component is produced by a toroidal plasma current,
and the toroidal field component by external coils. The magnetic field is axisym-
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Figure 1.1: A schematic picture of a tokamak [3]. The toroidal magnetic field is
produced by external coils, and the poloidal field by the plasma current Ip.

metric in toroidal direction, if the small toroidal ripples due to the finite number
of field coils are not taken into account. A schematic of a tokamak is shown in
Fig. 1.1. In a Stellarator, both the poloidal and toroidal magnetic field components
are produced by external coils, which leads to a very complicated geometry of the
coils. Although a device with closed magnetic field lines guarantees the confinement
in parallel direction, Coulomb collisions are always present, inducing particle and
heat transport across the magnetic field.

So far the best fusion performance has been obtained in the largest currently existing
tokamak, JET (Joint European Torus), in which a transient fusion power of 16.1
MW and a quasi-steady-state fusion power of 7 MW have been obtained [1]. The
next-step device ITER (International Thermonuclear Experimental Reactor) is in its
design phase [2]. The latest plan for ITER, referred to as ITER-FEAT, is aiming at
a gain of Q ≥ 10 with an inductively driven plasma, and at Q ≥ 5 in a steady-state.
Here, Q is the ratio of fusion power to auxiliary heating power.

1.2 Transport processes

In a toroidal plasma, particle and energy transport result from two different mech-
anisms. The first one, deriving from Coulomb collisions in toroidal geometry, is
referred to as neoclassical transport [4], to distinguish it from the classical transport
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in cylindrical geometry. Although evaluating the neoclassical transport is mathe-
matically quite difficult, it can be calculated accurately with sophisticated numerical
methods, such as orbit-following Monte Carlo codes [5–10]. In a simplified geom-
etry, analytic estimates for the transport coefficients exist under certain approxi-
mations [4, 11, 12]. The neoclassical transport theory gives the minimum level of
particle and heat flux in a real experiment. However, in recent high performance
experiments, transport levels even below the standard neoclassical level have been
observed. This calls for revisions in the neoclassical theory [13, 14] to allow for
steeper pressure gradients, among other things. In Ref. [15], the revised theory is
shown to lead to sub-neoclassical heat fluxes. Also, the validity of the expressions
for parallel viscosity and other components of parallel momentum balance equation
have been extended to allow for large electric fields observed at the tokamak plasma
edge [16,17].

The second type of transport, known as anomalous transport, results from fluctu-
ating electric and magnetic fields which are generally observed in auxiliary heated
toroidal plasmas. So far this type of transport has been observed to be dominant.
In particular, the electron heat conductivity is found to be 10 − 100 times higher
than the neoclassical value, and also the ion transport and heat conductivity are
not sufficiently accounted for by the standard neoclassical theory. In electrostatic
turbulence the confining magnetic field is unperturbed, and the transport is driven
by fluctuations in the electric field and the fluid quantities. In magnetic turbulence
the confining magnetic field is perturbed by current fluctuations in the plasma.
Experimental evidence indicates that the electrostatic turbulence dominates [18].
Based on experiments, different scaling laws have been proposed, e.g., ‘Bohm’ and
‘gyro-Bohm’ -models, which give the energy confinement time as a function of di-
mensionless variables [19]. These variables can be, for example, the normalized
collisionality ν∗, which gives a measure of collisions during a bounce period, the
plasma beta β, which gives the efficiency of confinement, and the normalized gyro-
radius ρ∗. An adequate analytic theory for the anomalous transport is still missing,
but in the numerical modeling of turbulence a lot of progress has been made [20].

Experimentally, the anomalous transport has been found to decrease remarkably in
the so-called H–mode, which is described in the next section. In addition to the
H–mode also other regimes of enhanced confinement have been found (see a review
in Ref. [21]). For example, the so-called VH–mode [22, 23] has many features in
common with the normal H–mode, but the energy confinement time can be two
times higher than in the H–mode.

1.3 L–H transition

Since its discovery in ASDEX tokamak in 1982 [24], the L–H transition has been
observed in many divertor and limiter tokamak discharges, and also in some stellara-
tors. In the L–H transition plasma jumps from the Low (L–) confinement mode into

4



Figure 1.2: The BDT (Biglari-Diamond-Terry) criterion for the strong suppression
of turbulence is |∇E/B| > ∆ωt/kθ∆rt [27]. Here, ∆ωt is the turbulent decorrelation
frequency, ∆rt is the radial correlation length, and kθ is the mean poloidal wave
number of the turbulence.

the High (H–) confinement mode, and the energy confinement time of the plasma is
increased by a factor fH ≈ 2. An L–H transition is characterized by a threshold in
the heating power, which is roughly proportional to the product of the line-averaged
electron density n̄e and the toroidal magnetic field Bt. The power threshold also
strongly depends on the direction of Bt. The transition is observed as a reduction
of the particle flux out of the plasma.

The leading paradigm for the reduction of turbulent transport in H–mode edge
plasma is based on sheared radial electric field. The shear in the radial electric field
Er can reduce transport either through stabilizing the linear modes [25], by reducing
amplitudes or correlation lengths of turbulence, or by changing phases between the
turbulent fluctuations [26]. In the analytic theory of Ref. [27] a criterion for the
strong suppression of turbulence is |∇E/B| > ∆ωt/kθ∆rt (see Fig. 1.2). If this
criterion is satisfied, the radial correlation between neighboring turbulent eddies
is effectively suppressed by sheared poloidal rotation. An edge transport barrier,
with a width of 1-3 cm, is formed, and fluctuations in magnetic field, density and
electrostatic potential are reduced there. Particle diffusivity and heat conductivity
are reduced by a factor of 5-10, which for ions means that, in this narrow layer, the
transport can be close to its neoclassical value. Although the sudden improvement
in confinement has been known for long, the mechanism how the radial electric
field is formed in the transition is still unclear. Finding the mechanism for the
L–H transition is of great interest because operation in an H–mode allows smaller
tokamaks, which is beneficial for developing an economical fusion reactor.
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Many models seek for a bifurcation in Er (or in the poloidal rotation Uθ) in order to
explain the fast time scale (∼ 10−4s) of the transition. One candidate is the so-called
‘Stringer spin-up’ [28], in which a bifurcation in the poloidal rotation occurs due to
a poloidally asymmetric particle source or transport. Another proposed explanation
is based on an asymmetric fluctuation spectrum (Reynolds stress) [29] that causes
a flow generation. In both of these cases, the spin-up is assumed to occur due to
anomalous processes. In the model of Shaing [30], in which the anomalous processes
are not included, the bifurcation arises from a multivalued balance between the ion
orbit loss current and the neoclassical return current. At a low edge temperature,
the balance occurs for a low value of Er (the L–mode solution). Heating the plasma
will make two stable solutions possible, and a further heating will make the L–mode
solution to disappear, causing a bifurcation to a higher electric field value and,
hence, to higher ~E × ~B-rotation (H–mode solution). Also, there exist theories in
which anomalous transport is assumed to be due to some special mode (e.g. ITG
mode [31]), and the transition occurs when this mode is stabilized. In Ref. [14],
the neoclassical theory of an impure plasma is extended to allow for steeper density
and temperature gradients than usually. There, the possibility of an L–H transition
is found due to particle fluxes that are non-monotonic functions of the pressure
gradients.

1.4 Outline of this thesis

This thesis is an introduction to and a review of Publications 1–7. In Chapter 2,
certain basic neoclassical phenomena are briefly introduced. This includes charged
particle motion in a tokamak, the various collisionality regimes, the Fokker–Planck
and momentum balance equations, the particle fluxes and parallel viscosity, and
the automatic ambipolarity of neoclassical transport. An equation for solving Er
from the current balance is derived, different models arising from this approach are
reviewed, and two numerical codes, DEPORA and ASCOT, simulating neoclassical
transport quantities, are presented. In addition, a numerical study of neoclassical
particle fluxes in the banana regime is carried out using the 3D Fokker–Planck code
DEPORA.

In Chapter 3, the principal results of Publications 2–7 are reviewed and discussed.
All the simulation results presented in this chapter are obtained using the 5D
guiding-center orbit-following Monte Carlo code ASCOT. The importance of the
convection and compression terms and the poloidal dependence of density in cal-
culating the total parallel viscosity in high Mach number regime is addressed in
Section 3.1. The neoclassical fluxes in the presence of an externally applied Er are
studied in Section 3.2, and a reasonable agreement between the numerical and the
analytic results is found over a wide range of Mach numbers and collisionalities. In
Section 3.3, as a starting point for a study of current balance, the model of Shaing
is investigated by simulating ion orbit loss numerically in realistic ASDEX Upgrade
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geometry. In Section 3.4, current balance is simulated by solving all the neoclassi-
cal current components at the tokamak plasma edge self-consistently with ASCOT.
Simulations are carried out both for ASDEX Upgrade and JET, and the results are
compared. At L–H transition conditions, the results show sufficiently high shear for
turbulent suppression for both devices although no anomalous current component
is included. In addition, the analysis implies a higher threshold shear for ASDEX
Upgrade than for JET.

In Chapter 4, the results presented in this thesis are summarized. Also, limitations
and further applications of the current approach are discussed.
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Chapter 2

Neoclassical theory and radial
current balance

In this Chapter, a brief introduction to neoclassical physics is given. First, in Sec-
tion 2.1, the charged particle motion in a tokamak and the different collisionality
regimes are described. In Section 2.2, the Fokker–Planck equation and its first mo-
ment, the momentum balance equation, are introduced. These equations describe
the collective motion of the particles. Also, the automatic ambipolarity of the neo-
classical transport is derived and discussed. When the automatic ambipolarity does
not hold, two different approaches can be chosen: First, the particle flux in response
to a fixed and maintained Er can be calculated, or, second, the ambipolar Er main-
taining the current balance can be solved. The knowledge gained from the first
approach can be used to facilitate the current balance analysis. Section 2.3 quotes
analytic expressions of pressure anisotropy, parallel viscosity and neoclassical return
current in response to an externally applied Er in a collisional plasma. In Sec-
tion 2.4, an equation for solving Er from the current balance is derived and different
models arising from this approach are reviewed. Two numerical codes simulating
neoclassical physics without thin-orbit approximation are presented in Section 2.5.

2.1 Charged particle motion in a torus

A charged particle follows the magnetic field lines only in the first approximation.
The gradient of the magnetic field causes ions and electrons to drift perpendicular
to the field line (so-called ∇B-drift). For electrons, the effect is smaller by a factor
(me/mi)

1/2. Here, m is the mass of the particle, and subscripts i and e refer to
ions and electrons, respectively. Two types of trajectories exist, the passing particle
trajectories which rotate around the torus without reversing their direction, and
the trapped particle trajectories. The conservation laws for total energy, magnetic
moment and toroidal momentum, needed for calculating the trajectories of particle a,
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are

Etot =
1

2
mav

2 + eaΦ = constant, (2.1)

µ =
mav

2
⊥

2B
= constant, (2.2)

Pφ = maRvφ + eaψ = constant, (2.3)

where Φ is the electrostatic potential, vφ and v⊥ are the toroidal and perpendicular
components of total velocity v, respectively, ea = Zae is the charge of the particle
with the charge number Za, and e is the elementary charge. The total magnetic field
vector B = Bpeθ + Bteφ consists of the poloidal magnetic field component Bp and
the toroidal magnetic field component Bt. The coordinate system is chosen so that
the unit vectors eρ, eθ, and eφ, showing the radial, poloidal, and toroidal direction,
respectively, form a right-handed coordinate system (eρ, eθ, eφ). The poloidal flux
ψ(ρ) =

∫
RBpdR on a magnetic surface is integrated on the equatorial plane from

the magnetic axis outward to the R-value of the surface ρ.

The magnetic trapping of particles results from the conservation of total particle
energy and magnetic moment. This makes the particle with a small velocity com-
ponent parallel to the magnetic field to be reflected at the point of higher magnetic
field. In the absence of collisions, a trapped particle bounces indefinitely between
the reflection points at the so-called bounce frequency ωb, which depends on the
magnetic field geometry and the properties of the particle. Because of the vertical
∇B-drift, the particle first deviates from its original flux surface and later returns
to it. The bounce motion combined with the ∇B-drift leads to so-called banana
orbits. Also other types of trapped orbits may exist, e.g., kidney orbits, D-shaped
orbits or pinch orbits (see the classification in Ref. [32]).

The deterministic motion of the particles in a tokamak described above is perturbed
due to Coulomb collisions with other particles. This leads to the neoclassical dif-
fusion where the term ‘neo’ refers to the enhancement due to toroidal geometry as
compared to the classical diffusion in a cylinder. In standard neoclassical theory,
three collisionality regimes are distinguished according to the typical bounce fre-
quency and the ion-ion collision frequency νii = Z2

ae
4n ln Λ/(4πε2

0m
2v3
T ). Here, lnΛ

is the Coulomb logarithm, ε0 is the vacuum permittivity, vT = (2kBT/m)1/2 is the
thermal velocity of the particle at temperature T , kB is the Boltzmann’s constant,
and n is the density of the ions. In order to define the collisionality regimes, it is
convenient to adopt the normalized collisionality ν∗i = νiiRq/vT ε

3/2 ≈ νii/ωbε
3/2.

Here, ε = r/R is the inverse aspect ratio with minor radius r, and q = εBt/Bp

is the safety factor. In the collisional Pfirsch-Schlüter regime where ν∗i > ε−3/2, a
fluid approximation can be used because regular particle orbits in a torus are de-
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stroyed by collisions. For weaker collisions, 1 < ν∗i < ε−3/2, passing orbits exist;
this region is called the plateau regime. Finally, if ν∗i < 1, collisions are very weak,
and both passing and trapped orbits exist. This parameter range is known as the
banana regime because of the presence of banana shaped trapped particle orbits. In
the present high performance tokamaks, the bulk plasma is normally in the banana
regime, while higher collisionalities, corresponding to plateau and Pfirsch-Schlüter
regimes occur near the plasma edge.

2.2 Momentum balance equation and ambipolar-

ity of neoclassical transport

Collective motion of particle species a in axisymmetric toroidal plasmas can be
described by the equation

∂fa
∂t

+ v · ∇fa +
ea
ma

(E + v ×B)
∂fa
∂v

= Ca(f) (2.4)

where fa is a single particle distribution function, i.e. the quantity fa(x,v, t)d
3xd3v

presents the number of particles in the six-dimensional phase space volume element
d3xd3v at time t. E is the electric field, x is the location in the configuration space,
v is the velocity vector. The Fokker–Planck collision operator is Ca =

∑
bCab where

Cab gives the change per unit time in the distribution function for particles of species
a due to Coulomb collisions with the particles of species b. A realistic collision op-
erator must conserve particles, momentum and energy. Two examples of numerical
codes, DEPORA and ASCOT, using the Fokker–Planck equation are presented in
Section 2.5. In DEPORA, the Fokker–Planck collision operator has been used in
deriving the transport coefficients, and, in the particle orbit-following code ASCOT,
when the fixed background collision model is used, the collision operators are based
on a Fokker–Planck operator.

Taking the first two velocity moments of Eq. (2.4), the particle conservation equation

∂na
∂t

+∇ · (naua) = 0, (2.5)

and the momentum balance equation

nama
dua
dt

= eana(E + ua ×B)−∇pa −∇ ·Πa + Fa, (2.6)

for the species a are obtained. Here, na and ua are the fluid density and the flow ve-
locity of the species, respectively. E = −∇Φ is an electrostatic field, pa is the scalar
pressure, Πa is the viscous stress tensor, and Fa =

∑
b

∫
mavCabd

3v is the collisional
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friction. Following the derivation of Rutherford [33], the automatic ambipolarity of
the neoclassical particle transport is here demonstrated. The analysis can be done
in a general axisymmetric magnetic configuration, but for simplicity concentric cir-
cular flux surfaces are considered. In a quasitoroidal system, the magnetic field can
be expressed as B = (0, Bp0, Bt0)/h, in which h = 1 + ε cos θ. Here, the subscript 0
denotes the value at R = R0, and θ is the poloidal angle. In the toroidal component
of Eq. (2.6), the pressure tensor can be eliminated by multiplying the equation by
h2 and integrating over poloidal angle, which gives

ma

〈
hna

duaφ
dt

〉
= eaΓaBp0 +

〈
h(naeaE

A
φ + Faφ)

〉
(2.7)

where EA is the applied electric field (due to axisymmetry there is no electrostatic
field in the φ direction), Γa = 〈nauar〉 is the mean radial particle flux with radial flow
velocity uar, and 〈...〉 denotes the flux surface average. If an equilibrium is assumed,
the left hand side of Eq. (2.7) vanishes. Summing over all particle species, the friction
term vanishes due to momentum conservation, and the ambipolarity,

∑
eaΓa = 0, is

obtained. This automatic or intrinsic ambipolarity is not to be confused with the
ordinary ambipolarity arising from the quasi-neutrality condition. In the absence of
charge sources and sinks, the ordinary ambipolarity holds in all conditions for the
total flux, i.e., including also anomalous fluxes [34].

In the derivation of the automatic ambipolarity of neoclassical fluxes three assump-
tions were made:

1. Plasma is in equilibrium

2. There are no external momentum sources

3. Magnetic configuration is axisymmetric.

If these assumptions are valid, the particle fluxes are independent of the radial
electric field (to the order (rL/L)2), and ambipolarity is ‘automatically’ guaranteed.
Here, rL is the Larmor radius and L is the gradient scale length. However, in
many cases one or more of these assumptions are not valid. Initial state of the
plasma with an externally driven poloidal flow may be characterized by arbitrary
values of uθ and toroidal angular momentum. When the external drive is turned
off, the poloidal flow is rapidly damped by parallel viscous forces. Two different
time scales can be distinguished: the damping time of poloidal rotation τp, and the
toroidal angular momentum damping time τT . Typically τp � τT , and thus the
toroidal angular momentum is constant on the τp time scale. The non-ambipolar
state terminates in a quasi-stationary state in which the ‘ambipolar’ Er is determined
by the toroidal angular momentum and the pressure gradient driven diamagnetic
flows. An expression for this ambipolar Er given in the literature is [4]
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Er =
T

e

(
n′

n
+ γ

T ′

T

)
+BpU‖, (2.8)

in which U‖ is the average parallel flow velocity and γ is a coefficient depending on
the collisionality [4]. Derivatives with respect to radius are denoted by the prime and
upper case letters Ux = 〈n(θ)ux(θ)〉 / 〈n(θ)〉 are used for the weighted flux surface
averages of the flow velocity components. In the ambipolar state, the mean parallel
viscous force vanishes, and the second-order cross-field fluxes are driven solely by
the toroidal friction forces. The automatic ambipolarity (independent of the value
of Er) requires time scales t > τp, which is implicitly assumed in many transport
calculations.

The automatic ambipolarity does not hold in the presence of a biased internal elec-
trode, ion orbit loss current, or other sources or sinks of toroidal momentum [34].
Different expressions predicting the radial conductivity from viscous damping of
the poloidal rotation [30, 35–38] have been compared to the probe experiments of
TEXTOR in Ref. [39]. In Section 3.2, some of these expressions are tested using
the Monte Carlo approach. The requirement of axisymmetry in automatic ambipo-
larity does not hold in stellarators and, in practice, neither in tokamaks because a
finite magnetic ripple is always present. Neoclassical theory of transport processes
in these non-axisymmetric toroidal magnetic configurations is reviewed in Ref. [40].
Analytically magnetic ripple has been shown to play a role in the current balance
under some conditions and assumptions [41]. However, in numerical simulations its
contribution has been shown to be negligible [42].

2.3 Parallel viscosity and neoclassical particle fluxes

in response to an externally applied Er

In this section, some of the analytic expressions [16,43] existing in the literature for
parallel viscosity and neoclassical particle fluxes in the plateau and Pfirsch–Schlüter
regime (for a given poloidal rotation) are presented. These expressions are compared
to numerical simulations in Chapter 3. In the analytic theory, the non-ambipolar
ion neoclassical current and the parallel viscosity are calculated from the Fokker–
Planck equation using a simplified collision operator. A quasi-toroidal geometry is
used, in which cylindrical coordinates are appropriate and the magnetic field has a
1/R -dependence. Both in the approximations of [43] and [16], the collision operator
conserves momentum, but only in Ref. [43] the particle number and total energy are
conserved in collisions. Actually, the momentum is not conserved exactly because
the parallel flow is assumed to be zero, while naturally the plasma would rotate
toroidally. In both cases, a simplified BGK model [44] for the collision operator
is used, poloidal Larmor radius ρp is assumed to be small compared to the scale
length L, and the small inverse aspect ratio expansion is used. The steady-state ion
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distribution function in response to the thermodynamic forces and electric field is
calculated from the kinetic equation for the ions, but no external force required for
sustaining the given radial electric field, poloidal rotation and parallel flow velocity
is included.

The derivation of the neoclassical return current in Ref. [43] includes poloidal varia-
tion of the electrostatic field, density and temperature, and is based on full velocity
integrals. The gradient and curvature drifts are included, but finite orbit effects and
radial variation of the radial electric field along the particle orbits are neglected. In
order to simplify the problem, the poloidal electric field is neglected here. Neglect-
ing the radial dependence of density and temperature, the steady-state neoclassical
current in Ref. [45] can be written as

jNC,str = −D Im

[
(1 + 2x2)2Λ +

(I − 1)Er
irνB + Er

]
, (2.9)

where D = n0T0ε
2/2rB0 is related to the diffusion coefficient. Here, n0 and T0 are

the zeroth-order (no poloidal variation) densities and temperatures, respectively, B0

is the magnetic field at the axis, and x = Mp = |Er/vTBp| is the poloidal Mach
number. The functions I and Λ are defined as

I(z) =
1

(2π)1/2

∫ ∞
−∞

w

w − 21/2z
exp

(
−w2/2

)
dw, Λ = I[I + 2ixyI + (1− I)x/z]−1,

where z = x+ iy, and y = ν∗iε
3/2.

The standard parallel viscosity in terms of pressure anisotropy reads as

〈B · ∇ ·Πi〉 =

〈
(p⊥ − p‖)

B · ∇B
B

〉
(2.10)

where p‖ and p⊥ are the parallel and perpendicular components of the pressure,
respectively. Using the expressions for p‖ and p⊥ given in Ref. [45], the pressure
anisotropy can be written as

p‖ − p⊥ = T0(2x2 − 1)n1(θ) + εn0T0

[
4x2 +

Er(1− I)

irνB + Er

]
exp (iθ), (2.11)

where the poloidal dependence of the density n = n0 + n1(θ) is

n1(θ) = −εn0[1− (1 + 2x2)Λ] exp (iθ). (2.12)

An alternative expression for the pressure anisotropy is given in Refs. [16,46]

p‖ − p⊥ = −2π1/2Ipsn0mUθvTB/Bp

[
∂

∂θ
(lnB)− 2

3

∂

∂θ
(lnn)

]
, (2.13)
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where Uθ = (UφBp−Er)/Bt is the poloidal flow velocity, and the integral Ips is given
in Ref. [46]. The expression for parallel viscosity by Shaing [16, 47] in the absence
of temperature and density gradients can thus be written as

〈B · ∇ ·Π〉 =
π1/2ε2

4r
n0mvTBIpsUθ. (2.14)

Note that also the poloidal density dependence was neglected here. This assumption
is discussed in Section 3.1. In the regime where Pfirsch-Schlüter effects are weak
the radial current can be expressed, to the lowest order in ε, in terms of the parallel
viscosity as

jNC,sha = −〈B · ∇ ·Π〉
BpB

= −xDπ1/2Ips. (2.15)

This expression can be compared to Eq. (2.9).

2.4 Er from the radial current balance

The electric field in a tokamak plasma edge can be solved either from Poisson equa-
tion

∇ · E = σ/ε0, (2.16)

where σ is the charge density, or from Ampere’s law

∇×B = µ0j + ε0µ0
∂E

∂t
, (2.17)

where j is the total current and µ0 is the vacuum permeability. Since the polarization
current is jpol = (

∑
amana/B

2)(∂E/∂t), Eq. (2.17) can be written as

1

µ0

∇×B = j− jpol + ε0

(
1 +

∑
amana
ε0B2

)
∂E

∂t
. (2.18)

From vector identities one obtaines 〈∇r · ∇ ×A〉 = 〈∇ · (A×∇r)〉 = 0 which holds
for any vector A. Thus, by taking the radial component of Eq. (2.18) and averaging
it over the flux surface, the polarization equation

∂Er
∂t

= − 1

ε⊥ε0
〈jr − jpolr〉 (2.19)
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is obtained. Here, jpolr and jr are the radial components of the polarization current
and the total current, respectively, Er = −(∂φ/∂ρ) 〈∇ρ〉 denotes the flux surface
averaged radial electric field, and

ε⊥ = 1 +
〈
(neme + nimi)∇ρ/ε0B2

〉
/ 〈∇ρ〉 ≈

〈
nimi∇ρ/ε0B2

〉
/ 〈∇ρ〉

is the perpendicular dielectric constant. In the last step, typical tokamak plasma
parameters with ω2

pi/Ω
2
i � 1 are assumed. Here, ωpi = (nie

2
i /ε0mi)

1/2 is the ion
plasma frequency, and Ωi = eiB/mi is the ion gyrofrequency. The steady-state
electric field is obtained when the different current components balance each other.
Solving Er using this method means an enhancement of computing speed by factor
(ωpi/Ωi)

2 when compared to the standard solution of Poisson equation.

There are many different physical processes affecting the radial current balance. In
Ref. [48], for singly charged ions, the current balance at a phenomenological level is
written as

∂Er
∂t

=
e

ε0ε⊥
(Γanome−i − Γv∇vi − Γlci − ΓNCi − ΓNC,oi + ΓNC,oe − Γcxi ) (2.20)

in which Γxi (Γxe) is the radial flux of ions (electrons) due to some process x. Here,
Γanome−i is the anomalous contribution, Γv∇vi is the Reynolds stress contribution arising
from the global flow, ΓNCi is the contribution of collisional bulk plasma viscosity
coupled to the magnetic field inhomogeneity, Γlci is the ion loss cone flux, and Γcxi
is the ion loss due to charge exchange. Notations ΓNC,oi and ΓNC,oe are used for
the contributions of collisional flux arising from sources other than bulk viscosity,
e.g., ripple diffusion, or the contribution of gyroviscosity. Different models consider
different terms of Eq. (2.20), and often a bifurcation is sought for. In Itoh’s model
[49], the ion orbit loss current is balanced by the anomalous viscosity current. The
plasma is assumed to rotate in the toroidal direction, but not in the poloidal direction
as in the model of Shaing [30]. In Shaing’s model a bifurcation due to a multivalued
balance between the ion orbit loss current and the neoclassical bulk viscosity current,
Γlci = ΓNCi , is found. In a modification of this theory [50], the loss current is
calculated from the fast ion population, and in a recent paper by the same author
[41], the bulk viscosity current is balanced by the current due to magnetic ripple. In
Refs. [51, 52], a one-dimensional simulation of the shear in Er has been performed
using multi-fluid equations including Γlci , ΓNCi , Γcxi , and also some turbulent effects.
All these models assume a circular geometry and many simplifications have been
made in evaluating the ion orbit loss current.

In Section 3.4, Er is solved from the radial current balance with a fully kinetic five-
dimensional neoclassical Monte Carlo simulation of the tokamak plasma edge in a
realistic ASDEX Upgrade divertor geometry, thus avoiding many of the assumptions
made in earlier analytic and numerical fluid approaches. Bifurcation is not found,
but the level of shear is sufficient for turbulent suppression although all the anoma-
lous components of the current are neglected. A similar simulation for the limiter
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device TEXTOR is done in Ref. [53], including also the current due to neutral fric-
tion as well as the probe current. There a bifurcation and a solitary-structured Er
are found. Different mechanisms proposed for the generation of Er are reviewed in
Refs. [48,54,55].

2.5 Numerical codes

The neoclassical transport resulting from collisions in an axi- or non-axisymmetric
toroidal plasma with an arbitrary cross-section can nowadays be calculated to a good
accuracy [4,11,12] as long as the particle drift-trajectories do not deviate significantly
from constant-density and constant-temperature surfaces. Also, analytical models
making various approximations exist. However, when simulating the transport of
fusion products and nonthermal ions, an accurate modeling of drift-trajectories has
been found important. This requires heavy numerical computations. There have
been at least two approaches to incorporate the finite orbit effects in numerical mod-
eling of neoclassical fluxes. First, the appropriately averaged drift-kinetic equation
can be solved with finite differencing. Here, the standard approach has been to av-
erage kinetic equation over the flux surface, but more recently an equation for which
the averaging is done over the trajetories has been derived [56]. To satisfy momen-
tum conservation, a nonlinear collision operator [4] has to be included. Another
approach is the orbit-following Monte Carlo method [5–10] in which guiding-center
orbits of individual test particles are followed. If the distribution function is needed,
it can be evaluated by averaging over particles in a certain part of phase space.
Collisions can be modeled either by using operators derived from the Fokker-Planck
terms for fixed background density and temperature profiles, or by using the binary
collisions technique [57]. In the latter method the particles are paired randomly in a
small cell in the configuration space, and small angle collisions are performed pair-
wise. The problem with the former model is that the momentum is not conserved.
In the latter one a good accuracy requires very costly numerical calculations.

Here, two codes are presented: the Fokker–Planck code DEPORA (Distributions of
Energetic Particles using ORbit Averaging), and the guiding-center orbit-following
Monte Carlo code ASCOT (Accelerated Simulation of Charged Particle Orbits in
a Tokamak), which both can solve neoclassical fluxes in a realistic geometry using
magnetic background from an experimental data base, and which are not limited by
the thin orbit approximation. However, DEPORA is valid only in the collisionless
parameter regime. Also, the boundary between the confined orbits and the loss
orbits is inconvenient in DEPORA, because the distribution function is simulated
in a finite multi-dimensional grid. Consequently, ASCOT is a better tool for solving
the neoclassical current balance at the tokamak plasma edge which often is in the
collisional regime. However, for solving neoclassical particle and heat fluxes further
inside in a low collisional plasma DEPORA needs less CPU resources to obtain
accurate results.
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2.5.1 Fokker-Planck code DEPORA

Using a formalism based on noncanonical variables, a three-dimensional nonlinear
kinetic equation for the low-collisionality axisymmetric tokamak plasmas was ob-
tained in Ref. [56]. The method allows treating large drift-trajectory widths and
large inverse aspect ratios, conserves momentum in collisions, and is suitable for com-
puter modeling of neoclassical transport of thermal and nonthermal distributions.
Non-Maxwellian distributions are important, in particular, when plasma heating
and current drive, or the effects due to energetic fusion products are studied.

Assuming that the particle motion is fast compared to Coulomb relaxation time,
the kinetic equation can be averaged over the gyroangle, poloidal angle and toroidal
angle. This, however, limits the validity of the method to the banana regime. Un-
der this approximation, the evolution of the distribution function of the charged
particles can be solved in three dimensions using the so-called constants-of-motion
(COM) coordinates. Each set of COM coordinates corresponds to a certain trajec-
tory. In an axisymmetric tokamak, the trajectories are completely characterized by
the constants of motion equations (2.1)–(2.3). The kinetic equation with Coulomb
collision terms is averaged over these trajectories, not over the flux surface. In these
coordinates, the nonlinear kinetic equation can be written as [56]

∂f

∂t
=

1

J

∑
n=1,2,3

∂

∂x̄n

 ∑
m=1,2,3

(
Anm

∂f

∂x̄m

)
+Bnf

 , (2.21)

where x̄ refers to COM coordinates, J is the Jacobian, and the collisional coefficients
Anm and Bn are given in [56].

In DEPORA, Eq. (2.21) is solved using finite differences. What makes DEPORA
special as compared to the earlier approaches [32,56] is the novel choice of the COM
coordinates, which enables an easier treatment of the trapped-passing boundary
(TPB). For the ‘good’ set of the constants of motion, it is required that: a) the
coordinates should be physically meaningful, b) the representation should be unique
in the sense that a given point in the COM space corresponds to one and only one
orbit, and c) the phase space should be well-filled [32]. In order to avoid the problems
of the coordinates used in Refs. [32,56], the choice of COM coordinates for DEPORA
is done with special care. The coordinates γ0 and v0 are chosen as in Ref. [56], i.e.,
γ0 is the flux surface label at the innermost point of the drift trajectory for the
passing particles and at the bounce point for the trapped particles, and v0 is the
speed corresponding to the total energy of the particle including the electrostatic
potential. For the third COM-coordinate we have chosen

λ =

{
ζ i(Bmax, θ

i = π), for passing particles;
θi(Bmax, ζ

i = π
2
), for trapped particles,
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Figure 2.1: Ratio between numerical and analytic result as a function of aspect ratio

which corresponds to the pitch angle ζ i in the innermost point of the trajectory for
passing particles, and the poloidal angle θi at the bounce point for trapped particles.
With this choice, the requirement of the well-filled space is satisfied, as shown in
Publication 1. Also, the treatment of the trapped–passing boundary is simpler,
because γ0 and λ are defined at the same point, and both are continuous across
TPB. With the present coordinates, TPB is independent of γ0 and v0, which makes
the differencing straightforward.

The performance of the code and limitations of the analytic theory have been tested
by comparing the fluxes calculated by the code to the analytic estimates in the
banana regime [56]. In the simulation, parameters a = 2.8 m, B = 6.157 T, and
I = 15 MA are chosen. Electric field is here neglected. The plasma density and
temperature are n, T = n0, T0 × (1 − γ2/a2)0.5 with n0 = 0.4 × 1020 m−3 and T0 =
10 keV. Grid size is chosen so that the further increasing the number of grid points
changes the results less than two percents. In Fig. 2.1 the major radius R and
the radial coordinate γ are varied. The analytic and numerical results are in a
good agreement for large aspect ratios, but for R/γ ≤ 5 the analytic flux strongly
underestimates the true flux obtained from the numerical simulation. Thus, the
validity of the large aspect ratio approximation in analytic theory is shown to be
clearly limited.

A more detailed description of the code is given in Ref. [58] and in Publication 1.
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2.5.2 Orbit-following Monte Carlo code ASCOT

The Monte Carlo guiding-center orbit-following code ASCOT [59,60] is a 5D (3D in
configuration space and 2D in velocity space) code, which can be used in a numerical
simulation of neoclassical physics. Because this thesis concentrates on neoclassical
fluxes, viscosity, and radial current balance, only those properties of ASCOT which
play a role in these simulations are described here. In addition to the quantities
simulated in this thesis, ASCOT has been used to study problems such as the
reverse runaway phenomenon [61], radio frequency heating and current drive of both
electrons [62] and ions [60], the internal transport barrier physics and the effect of
magnetic ripple [42], just to mention a few applications.

The flow chart of the ASCOT code is shown in Fig. 2.2. The initialization of the
ion ensemble can be done according to the assumed background density and tem-
perature. The test particles are distributed uniformly in radius, and in poloidal and
toroidal angle. The weight factors assigned to the test particles are proportional to
the total particle number contained in the initialization volumes, and thus reflect
the density profile. In the velocity space the particles are distributed evenly in the
particle pitch v‖/v, and randomly in speed according to a Maxwellian distribution
that corresponds to the local temperature. The guiding-center orbits of the test
ions are followed in a tokamak geometry. These equations are written in straight
magnetic field line coordinates [63] using canonical Hamiltonian variables to avoid
numerical drifts. However, outside the separatrix the conventional Cartesian coor-
dinate system is used. The magnetic background is assumed stationary. For each
individual particle, the total energy, magnetic moment and toroidal momentum re-
main constant in the Runge-Kutta integration of the orbit, but they are altered in
collisions. For a group of particles in each spatial cell, however, these quantities are
conserved in collisions if the binary collision model [57] is used for ion-ion collisions.
In some problems, collisions with a fixed Maxwellian background are appropriate
although in that case momentum is not conserved. The electric field can be constant
in time, or it can be solved self-consistently from the collective motion of the test
particles. If the self-consistent model is used, the net radial motion of the test par-
ticle ensemble in the presence collisions, guiding-center drifts, ion orbit losses and
gyroviscosity is first evaluated. Then, assuming that electrons provide a stationary
background, the change in Er is solved from the evaluated ion flux using Eq. (2.19).
The details of the self-consistent evaluation of Er can be found in Section 3.4.1.

In problems where neither the binary collision model nor the self-consistent Er
calculation is used, the test particles can be followed one by one until the end of the
simulation time since the particle interaction rates do not depend on the motion of
the other particles. Otherwise, the simulation time tmax is divided in ensemble time
steps ∆tens and all particles are advanced along their guiding-center orbits over this
time before the next ensemble time step. A new value for electric field is calculated
and/or small angle collisions are performed in the entire test particle ensemble after
each ∆tens. An ensemble time step is typically only a small fraction (∼ 1/100) of the
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Figure 2.2: The flow chart of the ASCOT code. The outermost loop is performed
only in simulations where the binary collision model and/or self-consistent Er model
is used. At each ensemble time step, all test particles are followed over a time ∆tens
which may consist of one or more Runge-Kutta steps ∆trg. Typically, tmax > τc ∼
τb > ∆tens ≥ ∆trg.
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collision time τc = ν−1
ii and the bounce time τb = ν−1

b . Since a relatively small time
step and a huge number of particles are often needed, the code has been parallelized
using the MPI standard to get simulation results in a reasonable time.

As mentioned above, two different collision models can be used in ASCOT, either
the binary collision model or the model in which collisions are performed with a
fixed Maxwellian background. In the binary collision model, the simulation region
is divided into cells (in r and θ) small enough so that the plasma parameters are
approximately constant inside the cell. In each cell, particles are paired randomly
and they are collided pairwise. When using this model with a fixed Er and in the
absence of other forces, a test particle flow parallel to the magnetic field arises to
compensate the E×B/B2 and the diamagnetic poloidal rotation. If only like-particle
collisions are included, this results in a zero radial particle flux in a stationary state.
If Er is solved self-consistently, then the zero radial flux results from the change in
Er and this happens in a faster time scale than the changes in parallel rotation.

The binary collision model is more rigorous but also heavier to run. Thus, in prob-
lems where it is not necessary to use the momentum conserving model (e.g., in the
simulation of minority ions), collisions with the fixed background are appropriate.
As shown in Publication 2, the fixed background collision model can also be used as
a parallel force to support stationary solutions with nonzero rotation in calculating
the radial current. This was verified by comparing the results of the fixed back-
ground collision model with the simulations done using the binary collision model.
Both methods give initially the same radial ion flux, but after that, in the momen-
tum conserving case, the parallel velocity develops and the flux decays. Also, when
the radial current balance at the tokamak plasma edge is simulated, collisions with
the fixed background can be used to maintain the temperature profile in longer
runs. Otherwise, with the full collision operator, the plasma starts to cool as the
hot ions lost to the wall are replaced by thermal ions. In Publication 6, the two
collision models are shown to produce the same Er profiles from the current balance
in shorter runs, where the temperature does not have time to change significantly.
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Chapter 3

Simulation of neoclassical fluxes,
viscosity and current balance

In present tokamaks, the radial transport due to anomalous processes clearly exceeds
the neoclassical transport. However, the latter may play a dominant role in advanced
confinement regimes, such as in the case of internal transport barriers or H–mode.
Indeed, the transport levels near, or even below [64], the standard neoclassical level
have already been observed in some experiments. For this reason, verifying of the
analytic expressions for the neoclassical fluxes is important. Also, the neoclassical
component can be relatively significant in the radial current balance. Er and its
shear can be determined from this balance and, if the balance is multi-valued, a
bifurcation may occur. In the model of Ref. [30], the balance between the non-
ambipolar loss of fast ions and the return current is studied and a bifurcation is
found. Thus, the numerical study of both of these current components as a function
of various parameters, such as radial electric field and collisionality, is of interest.
However, since the ion orbit loss current and the neoclassical return current consist
of the same current carriers, and since, in practice, the separation of these two is
impossible, a self-consistent test particle simulation of the edge plasma gives the
most reliable result. The anomalous current component is neglected here since it is
relatively small at least in the case of electrostatic fluctuations [65].

In all numerical work presented in this chapter, the 5D guiding-center orbit-following
Monte Carlo code ASCOT (presented in Section 2.5.2) is used. In Section 3.1,
the qualitative behavior of the bulk viscosity is shown to be inaccurate in earlier
analytic treatment [47] for high Mp due to the neglect of poloidal dependence of
density. The importance of the convection and compression terms in that regime is
shown. In Section 3.2, the neoclassical fluxes in the presence of an externally applied
Er are studied over a wide range of Mach numbers and collisionalities. Reasonable
agreement between the numerical and analytic result is found. In Section 3.3, the ion
orbit loss current as a function of collisionality is simulated within the framework of
Shaing’s model. The analysis is a simplified version of the current balance. Similar
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Figure 3.1: The LHS and RHS of Eq. (3.1) are compared for two different tempera-
tures and Er. In figure, RHS is also separated to the standard parallel viscosity term
(VISC) and to the sum of other terms (RHS-VISC). The time derivative is sensitive
to the noise due to the finite number of test particles.

assumptions are done as in the analytic theory and, thus, also the results are similar.
In Section 3.4, the neoclassical current balance is simulated self-consistently. The
shear in rotation is found high enough for significant turbulent suppression.

3.1 Parallel viscosity in collisional regime

Assuming that the electric field is electrostatic and that there are no other external
forces, one can take an inner product of Eq. (2.6) with B and, after the flux surface
averaging, the equation for the ion parallel flow dynamics reads〈

mi
∂(niB · ui)

∂t

〉
= −〈B · ∇ ·Πi〉 − 〈mi(B · ui)∇ · (niui)〉

− 〈nimiB · ui · ∇ui〉 , (3.1)

where the right hand side (RHS) can be interpreted as the total parallel viscosity
consisting of the standard parallel viscosity and convection terms valid for arbitrarily
large center-of-mass velocities. In this section, the standard parallel viscosity and
other components of Eq. (3.1) are studied numerically. These are calculated directly
from the ASCOT code in terms of the averaged parallel and perpendicular flow
velocities, u‖ and u⊥, and the pressure components p‖ =

∫
m(v‖ − u‖)

2fd3v and
p⊥ =

∫
[m(v⊥ − u⊥)2/2]fd3v, respectively. All the flow velocity components as well

as p‖ and p⊥ are calculated in the code as time and ensemble averages of the particle
velocities. Results are compared to the viscosity given by Eq. (2.14).

In the numerical simulation, a circular symmetry with no Shafranov shift is assumed,
consistent with the assumptions made in deriving the analytic forms. Viscosity
is determined at the radius r/a = 0.5, and to ignore the influence of gradients,
temperature, density and current density profiles are assumed to be flat. Parameters
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Figure 3.2: Parallel viscosity as a function of Mp for collisionalities a) 46, b) 12 and
c) 2.5 calculated with ASCOT and from the expression of Shaing, and the sum of
RHS terms in Eq. (3.1) calculated with ASCOT. In Fig. d) the case b) is redrawn,
but now using the pressure anisotropies of Eqs. (2.13) (SHA) and (2.11) (STR) with
poloidal density dependence of Eq. (2.12) in analytic formula.

similar to those of ASDEX Upgrade, a = 0.5 m, Ip = 1 MA and Bt = −2.5 T,
are used for minor radius, plasma current and toroidal magnetic field on the axis,
respectively. The major radius, however, is chosen to have a larger value (R = 3
m) to neglect the effect of small aspect ratio corrections (the analytic results were
derived in the large aspect ratio limit).

It is important to notice that Er is not allowed to develop. Thus, the changes
in Uθ are not due to changes in Er, but due to toroidal rotation which starts to
develop because the momentum conserving binary collision operator is used (see the
discussion of the different collision models in Section 2.5.2). Thus, the time scale is
τT rather than τp. As a test of the performance of the code, in Fig. 3.1, the LHS
(left hand side) and RHS of Eq. (3.1) are compared for two different collisionalities.
Within the accuracy of the simulation, the results agree. Noise due to finite number
of test particles causes inaccuracy especially in the time derivative which can be
seen in the figure. To investigate the relative importance of the standard parallel
viscosity term 〈B · ∇ ·Πi〉 (VISC), and the other RHS terms (RHS-VISC), these
are separated in the figure. Here, the RHS of Eq. (3.1) is the total parallel viscosity,
and (RHS-VISC) includes convection and compressibility terms. It is shown that
the convection and compressibility terms, which are neglected in many analysis,
indeed dominate the time behavior. In Fig. 3.2, to further study the importance
of these terms, the numerically obtained total parallel viscosity is compared to the
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standard parallel viscosity calculated numerically from Eq. (2.10) and analytically
from Eq. (2.14) as a function of Mp. Here, the density is n = 5 × 1019 m−3, and
temperatures a) 100 eV and b) 200 eV correspond to the collisionalities ν∗i = 46
and 12, respectively, the first one being in the Pfirsch-Schlüter regime and the latter
in the plateau regime. The evaluation is done transiently after the initialization
effects have been wiped away, but before any significant parallel velocity develops.
Choosing a right time instant introduces an inaccuracy which can be 20 − 30%.
Both in the Pfirsch-Schlüter regime and in the plateau regime, for large poloidal
Mach numbers, the standard parallel viscosity has a opposite sign than the sum of
all RHS terms, i.e., its effect is to resist the growth of the parallel rotation which is
driven by the other terms. With small poloidal rotation, also the standard parallel
viscosity drives parallel rotation which leads to the decay of the poloidal rotation.
For small Mp, a good agreement between the numerically obtained standard parallel
viscosity and the analytic result is found in plateau regime. In Fig. 3.2c, the same
comparison is made for the low collisionality case, i.e., for temperature T = 300 eV
with density n = 2× 1019 m−3 corresponding to a collisionality of ν∗i = 2.5. Again,
we find that the parallel viscosity from the simulation changes sign for large poloidal
Mach numbers but, somewhat surprisingly, a fairly good agreement can be found
between the Shaing’s expression for the standard parallel viscosity and the ASCOT
result for the total parallel viscosity.

The reason for the qualitative difference arising in standard parallel viscosity at high
poloidal Mach numbers is the strong poloidal density dependence that develops for
largeMp and is neglected in Ref. [47]. If the poloidal density dependence of Eq. (2.12)
is taken into account in the analytic expressions of pressure anisotropy of Eqs. (2.11)
and (2.13), the analytic theory agrees qualitatively with the numerical simulation.
This is shown in Fig. 3.2d and is further discussed in Publication 3. However, one
should note that, the qualitative behavior of the viscosity term in Ref. [17], defined
as 〈B · ∇ ·Πi/n〉, is different (no change in sign) from the behavior of the standard
parallel viscosity 〈B · ∇ ·Πi〉.

3.2 Neoclassical particle fluxes as a response to

externally applied Er

Several analytic expressions for the neoclassical return current have been derived
that are valid for different collisionality regimes and under various assumptions. In
numerical simulations, many of the simplifications adopted in theory are unneces-
sary, e.g., a more complete collision operator can be used. Here, the neoclassical
current obtained with the ASCOT code is compared with the analytic expressions
given by Eqs. (2.9), and (2.15). The simulation is done as a function of Mp for
several collisionalities varying the temperature and density. Other parameters are
the same as in the previous section. The nonambipolar flux surface averaged ion
radial current density due to a fixed radial electric field Er is simulated by accumu-
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lating the net radial ion motion of the test particle ensemble in ASCOT. The flux
is determined at the radius r/a = 0.5.

Figure 3.3 shows the return current from ASCOT and from the analytic expressions
as a function of the poloidal Mach number Mp for normalized collisionalities ν∗i = 49,
45, 23, 9.4, 6 and 2.5. Collisionality is varied by changing both the temperature and
the density (values are given in the figures). Qualitatively the results agree, and
quantitatively the results are of the same order. It can be seen that the agreement
between different approaches depends on collisionality and the best fit is obtained
in the middle of plateau regime. The location of the maximum of the current in
Eq. (2.15) by Shaing strongly shifts to higher values of Mp when collisionality is
increased, but for the current in Eq. (2.9) by Stringer, the maximum is at Mp ≈ 1
for all cases. The latter is in better agreement with the numerical results which
show only a small shift of the maximum. When the bifurcation model of Ref. [30]
is considered, the collisionality regime near the limit of banana regime (ν∗ = 1) is
the most interesting. As can be seen from Fig. 3.3f, near the banana limit Shaing’s
result and ASCOT simulation give a nearly equally high maximum meaning that
Eq. (2.15) gives a reliable estimate in the regime relevant for bifurcation analysis.

Some of the differences obtained here may be explained by the different collision
models used. In derivations of Eqs. (2.9)–(2.15), essentially the Krook model [12]
(in a somewhat modified form) for collisions was applied. Although with proper
coefficients the Krook model is known to reproduce viscosity and fluxes obtained
from a more complete collision operator in a relatively wide collision regime for
weak rotation, in the present case of large poloidal Mach numbers its validity is
not guaranteed. The main difference between Shaing’s and Stringer’s expressions
is most probably that only the latter one is based on full velocity integrals, which
might be the reason why it has a tendency to agree better with the numerical results
that also take into account the whole velocity space. As in the present work, also
in experiments in TEXTOR [39] the return current was found to be between the
expressions of Shaing and Stringer. There, an externally biased electric field was
introduced with a probe.

3.3 Ion orbit loss current

In Section 2.4, the current balance was considered on a phenomenological level by
separating different current components although they are produced by the same
current carriers. Different theories concentrate on different components of this bal-
ance. As a starting point for a study of the current balance, the model of Shaing
is first adopted, but now the ion orbit loss is simulated more accurately. The orbit
loss current is usually calculated in a cylindrical geometry, and a number of ap-
proximations are made to obtain an analytically tractable system. Here, the Monte
Carlo calculations of the orbit loss current are performed in a realistic geometry
and experimental data is used as input. The ion orbit loss rate can be determined
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Figure 3.3: Neoclassical current jNC as a function of poloidal Mach number for
various collisionalities. Here, the dashed line with crosses is the ASCOT result,
dotted line (shown only for lowest ν∗i) is calculated from the expression of Shaing,
and solid line from the expression of Stringer.
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accurately because actual particle orbits in a tokamak are followed. The loss cone is
determined from the condition that the orbit intersects either the divertor plates or
the wall structure. Temperature and density profiles are taken from the experiment,
and the collisionality is varied by scaling the temperature. Because the aim is to
simulate the orbit losses within the model of Shaing, an external force is required
to damp the toroidal rotation. In our model, this external force is provided by the
ion-ion collision operator which does not conserve momentum. The current obtained
is compared to the neoclassical return current, which is calculated analytically in a
circular geometry using Eq. (2.15). However, one should note that fluid parameters
are here computed within a regime ∝ ρp from separatrix although only the kinetic
approach would be rigorously justified [55].

In this simple, heuristic model, the ambipolar and non-ambipolar ion orbit losses are
separated using specific criteria: Only those escaping particles that cross the equator
outside the separatrix only once and are sufficiently collisionless, i.e., νi/νb < pc,
when they cross the separatrix, contribute to the non-ambipolar ion orbit losses.
Here, pc is of the order of unity, and νb = ωb/2π is the bounce frequency. Ions that
have νi/νb � 1 at the separatrix are expected to be accompanied with an almost
equal electron flux across the separatrix, while for the ions with νii/νb < 1, the
radial separation of the ion and electron orbits creates the non-ambipolarity. Here,
νi =

∑
j νij is the pitch collision frequency of the ion species i with the background

particle species j. From the accumulated number of lost particles, loss current
density can be determined as the accumulation velocity divided by the flux surface
area.

In the model of Shaing, a necessary condition for bifurcation is that the non-
ambipolar ion orbit loss current jL exceeds the maximum of the neoclassical return
current jNC,max. In Fig. 3.4a, the loss current jL from the simulations and jNC
from analytic theory, are compared at experimental L–H transition conditions. It
is assumed that jL does not vary as strongly with Er as the return current does,
and that jL(Er = 0) gives the largest loss as in the analytic theory [30]. Thus, jL
is simulated only for Er = 0, but jNC is calculated as a function of Er. In the
simulation, ASDEX Upgrade parameters for discharge #8044 at time of the L–H
transition are used (see Table 1 in next section). The ion orbit loss is much smaller
than jNC,max, meaning that the model is unable to explain the bifurcation at these
plasma parameters.

In Fig. 3.4b, the loss current jL(Er = 0) is presented as a function of ν∗i (by scaling
the temperature), and compared to the maximum value of the neoclassical return
current. At ν∗i = 3.8, which corresponds to real experimental ASDEX Upgrade
data, the ion orbit loss is much smaller than jNC,max, as already shown in Fig. 3.4a.
Decreasing collisionality increases the ion orbit loss, and at the same time jNC,max
decreases. In the figure, in the banana regime (ν∗i < 1), jL > jNC,max which means
that, according to the model, the L-mode solution disappears. In fact, the simulation
presented here is in agreement with the analytic model, which shows bifurcation for
the normalized collisionality ν∗i ≈ 1, which is much less than the collisionalities
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(a) (b)

Figure 3.4: a) The ASDEX Upgrade geometry is used in the numerical calculation of
the ion orbit loss current jL (dotted line). The neoclassical return current jNC (solid
line) is calculated analytically in circular geometry. In steady-state, the currents
balance each other. b) jL for Er = 0 (dotted line) and jNC,max (solid line) as a
function of ν∗i. Bifurcation in the model occurs when jL exceeds jNC,max. By scaling
up the temperature, we see that this would happen at ν∗i ≈ 1.

observed in the L–H transition. However, this simulation can be considered only
as a continuation of the analytic theory and, since both jL and jNC consist of the
same current carriers, a self-consistent guiding-center particle simulation is required
to confirm these results.

3.4 Self-consistent simulation of neoclassical ra-

dial current balance

The Er×B flow shear has been shown to have a stabilizing effect on plasma turbu-
lence level. This is assumed to explain the transport barriers observed at the plasma
edge in many tokamaks. In a transport barrier, turbulence is strongly suppressed.
The birth mechanism of the radial electric field and its shear are still not completely
understand. As reviewed in Section 2.4, determining Er from the radial current
balance has been considered by many authors under various approximations and
simplifications. For example, a circular geometry is often assumed. Although some
of the simplifications made in the analytic expressions of the current component ris-
ing from the neoclassical bulk viscosity were tested in Section 3.2, these expressions
may not be valid at the edge where the density and temperature gradients are large.
Also, the effect of ion orbit losses on shear formation may suffer from the simplifi-
cations made in analytic theory. A numerical simulation of the non-ambipolar ion
orbit loss current presented in the previous section is limited by some of these same
assumptions, since the separation of the neoclassical return current contribution
from the ion orbit loss current is not trivial.
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Figure 3.5: Real magnetic field background data, including wall and divertor struc-
tures, from experimental data bases of a) ASDEX Upgrade, and b) JET is used in
the simulations.

Here, Er is solved from the current balance, but now solving all the neoclassical
current components self-consistently with the fully kinetic five-dimensional ASCOT
simulation. Thus, many of the assumptions made in earlier analytic and numerical
fluid models are avoided. Simulation of the tokamak plasma edge is done in realistic
ASDEX Upgrade and JET divertor geometries (see Fig. 3.5). The validity of the
analysis is not limited to some special collisionality regime, the thin orbit approxima-
tion is not needed, the effect of radial electric field on ion orbits is correctly modeled
even for high Mach numbers, and there is no need to make various assumptions in
order to separate different current components, but they are consistently evaluated
from the guiding-center motion. The applied numerical model is presented in Sec-
tion 3.4.1. In Section 3.4.2, the Er profiles are simulated as a function of various
parameters, and in Section 3.4.3 these profiles are compared to the critical shear for
strong turbulence suppression.

3.4.1 Numerical methods

The radial electric field on a magnetic surface is solved from the radial current
balance, 〈jr〉 = 0, for the radial current density jr (quasineutrality condition). This
corresponds to resolving the gyrokinetic Poisson relation in the limit of k = 0, where
k is the wave vector. Here, all the turbulence is neglected except for the geodesic
acoustic modes [66] included in the electrostatic model. The radial current is

jr(ρ, θ) = jNCa + jpolr + jvisc
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in which jNCa is the neoclassical radial ion current arising from standard guiding-
center drifts in the presence of ion-ion collisions including also the effect of ion
orbit losses. The polarization current, jpolr, is here written separately, and also the
gyroviscosity current, jvisc, which is not a genuine guiding-center drift, is included
in jr. Current components jvisc and jpolr are generated by assigning, locally each
ion the following radial drifts [67]

vvisc = −(η/ΩB)[∂2Er(ρ, θ)/∂ρ
2]|∇ρ|2, (3.2)

vpol = (1/ΩB)∂Er(ρ, θ)/∂t. (3.3)

Here, the perpendicular (gyro)viscosity coefficient is given by [68] η = ηBr ≡
(3/10)kBTνii/mΩ2. The evolution equation for Er derived in Section 2.4 can thus
be written as

∂Er
∂t

= − 1

ε⊥ε0
〈jr − jpolr〉 ≈ −

1

ε⊥ε0
〈jNCa + jvisc〉 , (3.4)

where 〈jNCa + jvisc〉 is determined from the collective motion of the test particles. A
steady-state is found by extending the calculation over several bounce periods and
collision times. A more detailed description of the method is given in Publication 6.
Alternatively, a steady-state with ∂Er/∂t = 0 can be found by directly iterating
the Er-profile until the given n profile is established. This method is presented and
derived in Publication 7. Both methods have resulted in the same steady-state,
independent of the initial Er, indicating that the final state is stable and unique.

For the radial electric field, the ambipolar Er(ρ) from Eq. (2.8) is used as the initial
condition, and it is also used as an boundary condition at the inner boundary. At
the separatrix, Er(ρs) = 0 is adopted. The ions hitting the divertor or wall are
promptly reinitialized at the separatrix. The reinitialization is uniform in pitch and
poloidal angle, with the local Maxwellian velocity distribution. This reinitialization
does not create any unphysical current in the simulation domain and, being more
uniform (in phase space) than the loss process, it simulates well the replacement of
charge lost through the separatrix. The binary collision model is used as a default
in ASCOT, but in the present problem collisions with fixed background are used
in longer runs since the aim is to obtain the result for a given temperature profile.
When using the energy conserving collision operator the plasma would cool all the
time since the lost particles, which are mainly energetic, are replaced by thermal
particles. Thus, to maintain the experimental radial temperature, the plasma is
artificially heated with the collisions with a fixed Maxwellian background.
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Figure 3.6: −dΦ/dρ as a function of radius for various plasma a) isotope, b) mag-
netic field, c) temperature and d) density, where ’BASE’ refers to the JET L–H
transition conditions. In b) also the neoclassical ambipolar level (for U‖ ≈ 0) from
analytic theory is shown for the reference case (dashed line).

3.4.2 The dependence of the Er profile on various plasma
parameters

In Publication 5, simulated Er profiles are shown as a function of A, Bt, T and
n for the ASDEX Upgrade discharge #8044. Here, A is the mass number. In
Publication 6, the same simulation is repeated for JET using data from discharge
#49511 (deuterium plasma). In both cases, data at the time of the L–H transition
is used. Here, the results of both simulations are summarized and the profiles for
the JET case are shown. Parameters in the reference cases (referred to as ’BASE’
in the figures) are given in Table 1. Here, Ln = |n/n′| and LT = |T/T ′| are the
gradient scale lengths, and, ns and Ts are the separatrix density and temperature
(at ρ = 1). In the table, values on the outboard equator at the separatrix are given
for the gradient scale lengths and ∇ρ. In both reference cases elongation is ≈ 1.6
and the ∇B drift is in favorable direction, i.e., towards the divertor plates. Errors
in the measurements of density and temperature can be tens of percents.

Table 1. Reference parameters for ASDEX Upgrade (AUG) and JET.
case a(m) R(m) Bt(T) I(MA) Ln(m) LT (m) ns(m−3) Ts(eV) ∇ρ(m−1)
AUG 0.5 1.65 -2.5 1 0.023 0.026 1.2e19 120 1.73
JET ≈ 1 3 -2.56 2.5 0.205 0.09 1.4e19 315 0.87

Fig. 3.6a shows the steady-state profiles of −dΦ/dρ for JET in the region 0.97 < ρ <
1 for plasmas consisting of various hydrogen isotopes. Also a fictive hydrogen isotope
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with mass A = 10 is included to show the mass effect. A difference in the curves can
only be seen in about a one centimeter wide region inside the separatrix. Further
inside the results are almost identical. For the hydrogen (A = 1), one obtains a
narrow and deep Er structure which widens and becomes lower as a function of
increasing mass number. As discussed in Ref. [69], the width of the Er structure is
extended to Min(rp, Lr) from separatrix where the poloidal Larmor radius is rp =
vTm/eBp which in this case at the outboard equator gives rp ≈ A1/20.5 cm. Here,
Lr = vr/νii is the radial mean free path based on Coulomb collisions, and vr is the
radial drift velocity of the ion. Since vr ∝ T/ZBR we obtain Lr ∝ T 5/2A1/2/Z5nBR
for the radial mean free path. For further inside the plasma, |r − a| > 1 − 3 cm,
where the ion orbit losses become insignificant, Er is at its neoclassical ambipolar
level (determined by U‖ = 0 and shown in Fig. 3.6b).

In Figs. 3.6b–d, the steady-state profiles of−dΦ/dρ are shown for deuterium plasmas
for cases where the toroidal magnetic field, temperature and density profiles are
changed by scaling the values of the reference case by a constant factor, respectively.
As for ASDEX Upgrade, also here a clear effect is found only when changing the
temperature. As shown in Fig. 3.6c, the E×B shear increases approximately linearly
as a function of temperature if the gradient length is kept constant. Figs. 3.6b
and d show that increasing Bt or n both slightly deepen the well just inside the
separatrix, but at the inner plasma, the changes are very small. No bifurcative
solutions predicted earlier in an analytic model [30], were found here. In these
simulations, Lr � rp (except in the lowest T cases) and, thus, Er structure is
determined by rp. At the ASDEX Upgrade case, Lr and rp are of the same order.
However, if the impurities are taken into account, Lr may dominate in both cases
because Lr strongly decreases as a function of Z. Also, for helium Lr is smaller and
a higher edge T is required to obtain the same shear in the Er ×B flow.

The dominant part of the shear increase is assumed to come from the ion orbit loss
effect. When T increases, the orbit width grows, the mean free path of the particles
increases since νii decreases, and the radial drift velocity also increases. All these
effects increase the ion orbit loss, especially just inside the separatrix. In standard
neoclassical theory, the neoclassical return ion flux arising from guiding-center drifts
in the presence of Coulomb collisions (but excluding ion orbit losses) is an increasing
function of Er for Mp < 1. This means that increasing the ion orbit loss requires
higher return ion flux, i.e., higher Er, in order to get the current balance. When
going further in, the ion orbit loss flux decreases fast (dependence exp [−(r − a)2/r2

p]
is given in Ref. [51]) and, thus, its effect on Er decreases strongly as a function of
radius causing a radial gradient in Er. The absence of a bifurcation in the numerical
simulations gives support to models [49, 51, 69], in which ion orbit loss current is
assumed to have a similar dependence on Er as the neoclassical return current,
e.g., exp(−M2

p ), rather than the almost constant loss current which was assumed
in Ref. [30] for |Mp| < 1. A strong dependence on T and a weak dependence on
A, n and Bt, that were found here, have also been predicted with a semianalytical
analysis in a circular geometry in Ref. [69].
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In experiments, the threshold power needed for an L–H transition is essentially
higher when the ∇B drift is away from the X-point (unfavorable direction) than
when the drift is towards it (favorable direction). For this reason, the effect of
reversing the direction of Bt keeping n and T profiles and all the other parameters
unchanged was also studied in Publication 6. Within the limits of accuracy of the
simulation, the Er profiles do not change when Bt is reversed. Thus, the simulations
with reversed magnetic field can not explain the difference in L–H transition power
threshold unless one assumes that the critical shear is different in the reversed field
case.

3.4.3 Comparison to critical shear

From Ref. [70] an expression

ωE×B =
(RBp)

2

B

∂2Φ

∂ψ2
=

(RBp)
2

B

(
∂

∂ψ

)
Er
RBp

(3.5)

for the E × B flow shearing rate is obtained. Eq. (3.5) gives significantly higher
shear at the low field side of the tokamak, which is consistent with the fact that the
changes taking place inside the separatrix at the L–H transition are often initiated
at the outboard equator [54]. Thus, the shear values obtained from the simulation
are also analyzed there. In a series of ASCOT simulations, the plasma temperature,
density, and toroidal magnetic field have been varied over a wide parameter range
of ASDEX Upgrade and JET data. For the parametric dependence of the Er-shear
for ASDEX Upgrade we obtain

ωE×B ∝ T 1.06n0.06B−0.81
t [s−1], (3.6)

and for JET

ωE×B ∝ T 1.2n0.26B−0.89
t [s−1], (3.7)

with a ±0.25 error margin in the exponents. Also, Ip (or safety factor q95) values
have been varied, but not enough to make definitive conclusions.

In experiments, scalings for the critical temperature for an L–H transition have been
obtained recently both at ASDEX Upgrade [71] and JET [72] as a function of Bt,
n, and Ip or q. Comparison of these scalings shows that for typical parameters of
these two tokamaks, the transition temperature is essentially higher for JET than
for ASDEX Upgrade. Since the analysis of the multi-machine data base gives [73]

Te90 = 142q−0.53
95 B0.99

t R0.93n−0.13
e90 δ0.12 (3.8)
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Figure 3.7: Shear values of E×B flow from ASCOT simulation as a function of ex-
perimental parametrization of critical temperature of L–H transition for a) ASDEX
Upgrade and b) JET. Experimental critical temperature is shown as a straight line
in the figure.

for the L–H transition threshold temperature, the difference between the two devices
can be explained by the different major radius. Here, δ is the triangularity. The
dependence on major radius may arise, for example, due to mean free path that
decreases as a function of R and thus higher T is required to obtain wide enough high
shear region for strong turbulence suppression. Larger major radius also decreases
ion orbit loss current, which depends on the radial drift velocity vr ∝ T/R.

Assuming that the L–H transition occurs when a critical shear ωcrit is exceeded,
the parametric dependence of the obtained shear values can be compared to the
experimental scaling of the L–H transition threshold temperature. In Figs. 3.7a
and b, the ASDEX Upgrade simulations are compared to the scaling of Ref. [71],
and the shear values of JET simulations are compared to the scaling of Ref. [72].
Experimental scalings are given in horizontal labels of each figure. Here, an ad hoc
criterion for ωcrit is chosen separately for ASDEX Upgrade and for JET to get the
best fit between the numerical and experimental results. The chosen criterion has
to be fulfilled over a turbulence decorrelation length from the separatrix, at least.
In ASDEX Upgrade case the criterion ωcrit = 5 × 105 s−1, and in the JET case
the criterion ωcrit = 1.5 × 105 s−1, gives the best fit. This can be compared to
the BDT (Biglari-Diamond-Terry) criterion for the strong suppression of turbulence
(see Fig. 1.2 in Introduction) which is |∇E/B| > ∆ωt/kθ∆rt [27]. Typical values of
turbulence parameters observed at DIII-D are ∆ωt = 2.5× 105 s−1, ∆rt = 0.7 cm−1

and kθ = 1 cm−1 [74], which would give a threshold shear of 3.6× 105 s−1. Similar
values for ωcrit have also been obtained directly from Er measurements at DIII-D
and, also at TEXTOR [75]. Thus, in both cases the criterion is in rough quantitative
agreement with the experimental measurements of the critical shear. The question
still remains why the critical shear in the JET example seems to be lower than in the
ASDEX Upgrade case. The main differences in these two examples are the values
of plasma current, threshold temperature and the profile widths at the edge. The
critical shear as a function of A, Bt and Ip has been studied experimentally [75] in
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TEXTOR-94 and the dependence

∇Ecrit ≈ 61×B1.4
t A−1.2I−1.66

p (3.9)

in (kV m−2, T, amu, MA) was found. Thus the dependence on Ip would justify using
a lower threshold for JET plasmas than for the ASDEX Upgrade plasmas. In that
study, the temperature dependence was not investigated. Also, if one assumes that
the turbulence is due to ion temperature gradient modes, ωE×B should exceed the
maximum growth rate γmax ∼ vT/(R

αL1−α
T ) [54] (0 < α < 1) in order to stabilize

the turbulence. Again, in agreement with the simulations, a lower critical shear for
JET is obtained at L–H transition conditions, although the threshold temperature
is higher than in ASDEX Upgrade.

It is also interesting to speculate what the threshold temperature and the critical
shear would be in ITER–FEAT, which has nominal parameters R = 6.2 m, Ip = 15
MA, Bt = 5.3 T, and q95 = 3. Since the threshold temperature in Eq. (3.8) has
the dependence Tthr ∝ BtR

0.93q−0.53
95 , T95 at L–H transition conditions would be

approximately four times higher in ITER-FEAT than in JET. In the simulations,
the shearing rate in Eqs. (3.6) and (3.7) has approximately the dependence ωE×B ≈
Υ(a,R, Ip, ...)T/Bt, where Υ = ωcritBt/Tthr can be solved using ωcrit obtained from
the simulation and the experimental threshold temperature. From the results of this
section, ΥJET/ΥAUG ≈ 0.11 is obtained. Assuming, for example, that Υ = Rα, one
obtaines α ≈ −3.7 and the critical shearing rate ωcrit ∝ RαTthr/Bt ∝ R−2.76q−0.53

95

would be a factor 6–7 lower for ITER-FEAT than for JET. Also, assuming that
Eq. (3.9) indicates a dependence ωcrit ∝ B0.4

t B−1.66
p , critical shear for ITER-FEAT

would be a factor of 4–5 lower than for JET.
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Chapter 4

Summary and discussion

The rapid transition from low to high confinement is well documented and the im-
portant role of Er shear in turbulence suppression is widely recognized. The radial
electric field can be solved from the radial current balance, but the relative impor-
tance of different physical mechanisms affecting this balance is not fully understood.
In this thesis, the electric field is evaluated from the neoclassical current balance and
the parametric dependence of the shear in the electric field is investigated. Further-
more, the radial currents and parallel viscosity in a collisional regime as a response to
an externally applied electric field have been explored. Most of the simulations have
been done using ASDEX Upgrade parameters, but in the current balance study,
JET parameters were also used for comparison. All these simulations have been
performed using the 5D guiding center orbit-following Monte Carlo code ASCOT.
In addition, a study of neoclassical particle fluxes in a banana regime using the 3D
Fokker–Planck code DEPORA is included.

Using ASCOT, the parallel component of the momentum balance equation was
investigated for several values of collisionality over a wide range of poloidal Mach
numbers. It was found that, for large Mp, the parallel viscosity term changes sign
in the numerical simulation. In analytic expressions, this behavior is observed only
if the poloidal dependence of the density is taken into account consistently. The
other components of effective viscosity, i.e., the convection and compression terms,
however, are shown to dominate in a large Mach number regime. The effective
viscosity has a maximum at Mp ≈ 1, and the total effect is always to drive parallel
rotation, which in turn leads to the decay of poloidal rotation. With small poloidal
rotation, also the pure standard parallel viscosity term drives parallel rotation.

In the model of Ref. [30], the balance between the non-ambipolar loss of fast ions
and the return current is studied and a bifurcation is found. Thus, the numerical
study of both of these current components is of interest. The neoclassical ion flux in
the presence of a radial electric field has been calculated in a circular geometry and
compared with analytic results. The numerical result is in qualitatively agreement
with the analytic result, showing a maximum at Mp ≈ 1; quantitatively, the results
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are of the same order. To isolate the influence of the various approximations and as-
sumptions made in deriving the analytic expressions, more work is required. Based
on the results the analytic expressions should be valid at least for an order of mag-
nitude estimate of the bifurcation condition at the relevant collisionality regime.
Standard neoclassical theory, however, breaks down if the density scale length is
short enough, which might be the case near the edge. This effect is not investigated
here.

The limitations of large aspect ratio approximation have been studied in the banana
regime using DEPORA. The code solves the averaged drift-kinetic equation using the
finite difference method in three dimensions. In the simulations, radial electric field
was neglected, and the non-equilibrium flux due to finite density and temperature
gradients was studied. When comparing the analytic and numerical results, a good
agreement was found for large aspect ratios. However, as the aspect ratio decreases,
the analytic expression underestimates the particle flux. Thus, the validity of large
aspect ratio approximation in analytic theory is clearly limited.

As a starting point for a study of current balance in a realistic geometry, the ion orbit
loss current was simulated with ASCOT as a function of collisionality and compared
to the analytic expressions of the return current using ASDEX Upgrade parameters.
In the model of Ref. [30], the necessary condition for a bifurcation to occur is that
the non-ambipolar ion orbit loss current exceeds the maximum of the neoclassical
return current, which causes the L–mode root to disappear. In separating the loss
current from the bulk viscosity contribution in numerical simulation, assumptions
similar to those of analytic theory were made and thus, the results similarly showed
bifurcation at ν∗ ≈ 1. Thus, the model does not explain the L–H transition, which
in experiments can occur at higher collisionalities.

Since the ion orbit loss current and the neoclassical return current are carried by the
same particles, separating the two is difficult in practice. Thus, it was necessary to
perform a self-consistent test particle simulation of the edge plasma in which both
of these effects were included in the particle motion. This simulation demonstrated
that, at L–H transition conditions, pure neoclassical effects can generate sufficiently
high E×B shear for strong turbulence suppression. The results additionally suggest
that the critical shear in ASDEX Upgrade should be somewhat higher than in JET,
which is consistent with the experimental observations and theoretical models in
which critical shear decreases as a function of R, LT or Ip. The major source for
the shear originates from the ion orbit loss current, which is a strong function of
both the plasma temperature and the distance from the separatrix. The width of
the highest shear region in the simulation appears to approximate to the poloidal
Larmor radius, in agreement with certain experimental results. Also further in, the
shear can exceed the threshold shear.

Although the present simulations were able to find a cause for the high shear leading
to strong turbulence suppression at L–H transition conditions, several properties of
the L–H transition are not explained by the present model. The fast time scale
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of the transition observed in certain experiments, for example, is not explained by
the simulations, since Er in the model follows the changes in local density and
temperature that take place on a collisional time scale. No bifurcative solutions
predicted earlier in analytic theory [30] were found here. Thus, the simulations
agree only with those experimental results which suggest that the transition is a
continuous process [76]. If a bifurcative process is needed to explain the experiments,
it is likely to derive from turbulence theory rather than from neoclassical current
balance. Moreover, the simulation results do not explain the hysteresis and the effect
of the direction of the ∇B drift on the power threshold, which are both observed in
experiments. In the simulations, the Er profile does not change when Bt is reversed
if all the other parameters are maintained fixed and, in experiments, the density and
temperature profiles are similar for both directions of Bt for a given heating power.
Thus, the present simulations do not explain the difference in L–H transition power
threshold unless one assumes that the critical shear is different for reversed Bt.

The present fully kinetic 5D simulation does not suffer from many of the limitations
of the earlier approaches, but some important simplifications should be mentioned.
First, the scrape-off layer plasma was not simulated and, thus, the replacement of
the lost ions by such true sources as gas puffing and recycling was not modeled
from the first principles. Secondly, the boundary condition for Er at the separatrix
was arbitrarily set. However, it is shown in Publication 6 that the Er profile inside
the separatrix is affected by the boundary value only on a thin layer that is not
significant when the suppression of turbulence is considered. Numerical tests also
indicate that the shear in Er inside the separatrix to a large extent can be evaluated
without extending the calculation of the source of return current to the scrape-off
layer. However, the poloidal distribution of this source has been found to affect
the results. Thus, in the future, the experimental neutral distribution around the
separatrix should be taken into account. Poloidal dependence of the plasma density
and temperature profiles outside the separatrix may exert an effect on the ion orbit
loss rate, but this has not been investigated here.

Although the anomalous current can often be assumed ambipolar, the anomalous
convection may exert a non-ambipolar secondary effect; it may affect the loss cone
population, and thus influence the non-ambipolar ion orbit loss current. Neglecting
this may be a significant simplification in the current model, but inclusion of the
effect is far beyond the scope of this thesis. However, there are plans to incorporate
anomalous transport effects in the simulation by developing a gyrokinetic version of
the ASCOT code. With a gyrokinetic ASCOT, simulation of turbulence in a realistic
tokamak geometry becomes possible. For example, turbulence-driven small scale
zonal flows, which can reduce the thermal diffusivity [77], can be simulated without
many of the approximations made in earlier approaches. Furthermore, resistive X-
point modes [78], which may be dominant contributors to turbulent diffusion in the
boundary plasma of a diverted tokamak, can be simulated without the limitations
associated with the Braginskii fluid model.
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