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Abstract

We analyze the dynamic behavior of a single RED controlled queue interacting with a
large population of idealized TCP sources, i.e., sources obeying the rules of linear increase
and multiplicative decrease. The aggregate traffic from this population is modeled in terms
of the time dependent expected value of the packet arrival rate which reacts to the packet loss
taking place in the queue. The queue is described in terms of the time dependent expected
values of the instantaneous queue length and of the exponentially averaged queue length, for
which we also derive a pair of differential equations. This provides us with a complete model
for the dynamics of the system which we use to explore transient and equilibrium behavior.
The accuracy of the model is verified by comparison with simulated results.
Keywords: congestion control, Random Early Detection, TCP

1 Introduction

Active queue management (AQM) algorithms have been recommended by IETF as effective
mechanisms to control congestion in network routers. We consider one AQM method, namely
the RED algorithm [1], and model the interaction between a RED controlled queue and an
idealized TCP source population.

A full description of the problem consists of a closed system with two interacting parts (see
Figure 1.): a) a queue receiving an aggregate flow of packets and reacting dynamically to the
changes in the total flow rate under the control of the RED algorithm, and b) a population of
TCP sources, each of which reacts to the packet losses at the queue as determined by the TCP
flow control mechanism. Part a) of the problem was considered by Lassila and Virtamo [2]. Here
we aim at closing the control loop back to the TCP sources describing the interaction of parts
a) and b). However, we are not modeling the entire TCP behavior, but rather the so called
congestion avoidance part of it, i.e., the part where a source increases its congestion window
linearly and decreases it multiplicatively.

λ(t)

TCP source
population

RED controlled
queue

packet loss

Figure 1.: Interaction between the TCP population and the RED controlled queue.
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This paper describes a system of coupled differential equations for the population of TCP
streams and the RED controlled queue. Such a model can be used to explore, for example,
parameter settings or stability surfaces (which are difficult to study via simulation). Moreover,
the model can be extended to handle multiple classes and different round trip times. The
emphasis of this paper is to derive the model and verify its accuracy. A follow-up paper [3]
utilizes this model in analyzing the stability of the TCP-RED interaction and showing how
it depends on the system parameters. See also [3] for references on the stability of the TCP
behavior.

We use a model similar to Kelly’s [4] for TCP congestion avoidance behavior describing the
average arrival rate λ(t) of packets from a large collection of TCP sources. To rigorously derive
the analytical model we then assume that the arrival process to the RED controlled queue can
be approximated by an inhomogeneous Poisson process with a stochastically time varying arrival
rate λ(t). Such an approximation is reasonable as we are modeling the aggregate traffic from a
large collection of TCP sources. We emphasize on deriving equations carefully and indicating
the stochastic approximations that have been made. The accuracy of the model is verified by
simulations. In the simulation, none of the stochastic approximations are used, and the very
good agreement with the model shows that the stochastic assumptions are not important.

Recent independent modeling work by Misra et al. [5] is similar to our approach in which
differential equations are used to describe the system variables. The work in [5] is complementary
to ours; we develop a more detailed model for the queue dynamics, while [5] focuses more on
the source dynamics. In addition, our term describing the increase in the TCP window size
is more accurate. In the RED buffer model, [5] assumes an infinite and non-emptying buffer
and the model derivation results in an additional modeling parameter to be tuned. On the
contrary, our queue model takes overflows and empty queues into account, and does not have
additional parameters. Overall, we find that the most accurate system model is obtained by
using our RED model and dividing the TCP population into homogeneous subpopulations with
identical link delays, each described by the Kelly’s aggregate TCP model, and then making the
straightforward model extensions to handle queue dependent round trip times, timeouts and the
network case, as is done in [5].

In a recent paper Laalaoua et al. [6] model RED with adaptive traffic sources. The approach is
to iterate the packet loss probability and the traffic intensity in tandem with solving a diffusion
equation for the instantaneous queue length, thus giving the transient behavior of the queue
between the iteration steps. Altman et al. [7] consider a TCP behavior together with losses
that are presented by an exogenous stationary point process (and hence independent of the
TCP window sizes) and derive the first two moments of the TCP window size. Also, Brown [8]
provides a model for the window evolution of the TCP connections with different round trip
times in a tail-drop queue.

This paper is organized as follows: We begin by describing the RED algorithm in Section 2.
Models for the TCP population and the RED controlled queue are derived separately in Sec-
tions 3 and 4, and then combined in Section 5. In that section we also include the link delays
resulting in a retarded functional differential equation (RFDE) model, and discuss various ex-
tensions of the model, e.g., the possibility to handle differentiated service classes with simple
modifications and dealing with inhomogeneous round trip times. The accuracy of stochastic
assumptions and approximations are verified in Section 6 where we compare the model to a
simulated system. Conclusions are given in Section 7.

2 The RED algorithm

For the purpose of this paper we will use a simplified version of the original RED algorithm, which
is typical in RED analyzes and also done, e.g., in [5]. To be specific, the following simplifications
are made. We do not cover the case where the exponentially weighted average (EWA) queue
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length is computed differently when the arrival occurs into an empty queue. However, as we
are primarily interested in heavily loaded queues, the effect of this special handling is of less
importance. Additionally, we do not model the counter which measures the time (in terms of
packet arrivals) since the previous packet drop. (Note that the system with the counter can be
approximated by a counterless system simply by using a counterless system with twice the value
for the RED parameter pmax, see, e.g., [1], or [2].)

Our simplified RED algorithm works as follows: Consider a queue with a finite buffer which
can hold up to K packets at a time. Let qn be the queue length and sn be the EWA queue
length (to be defined below) at the nth arrival. For each arriving packet we compute the EWA
queue length sn with

sn = (1 − β)sn−1 + βqn,

where 0 < β < 1 is an appropriate constant, typically of the order 10−3. If the buffer is full, the
packet is lost. If sn < Tmin, the arriving packet is accepted; if sn > Tmax the packet is discarded.
In the intermediate range Tmin ≤ sn ≤ Tmax, the packet is discarded with probability

p(sn) =
pmax(sn − Tmin)

Tmax − Tmin
,

and accepted otherwise. Typical recommendations for setting the parameters are: Tmin = 5,
Tmax = K/2 and pmax = 0.1, see [9]

3 The TCP model

We aim at modeling the behavior of a TCP connection in its congestion avoidance phase. Our
model is essentially the same as in [4], however, we have altered its derivation to get a clearer
idea of the approximations involved.

Consider m identical TCP sources with constant round trip time R (random queuing delays
are not included). To simplify the notation, we temporarily neglect the delays in the time argu-
ments and derive the equations as if the changes to the window sizes occurred instantaneously
at packet transmission epochs. The time delays are introduced later in Section 5. Denote by
wi(t) the window of TCP source i at time t. Correspondingly, the aggregate has a window
W (t) =

∑
i wi(t). The throughput (arrival rate), λi(t), of source i is λi(t) = wi(t)/R. Consider

a small time interval (t, t + ∆t), or ∆t for brevity. Let Ai(∆t) denote the event that there is
exactly 1 arrival from source i during ∆t. Additionally, given that there is a packet arrival in
∆t from source i, let Li(t) denote the event that this packet is lost and Lc

i (t) its complement.
Our basic assumption on the traffic generated by a TCP source is that it is periodic with time
dependent periods, but for each TCP source the packet transmission phase is random. This
implies that given the current window size wi(t) of source i, the probability of an arrival in ∆t
is P{Ai(∆t) |wi(t)} = λi(t)∆t = wi(t)∆t/R and the probability of having more than 1 arrival in
∆t equals zero. In TCP congestion avoidance, for each successfully transmitted packet source i
increases its transmission window by 1/wi(t) (corresponding to an increase by 1 for wi(t) pack-
ets), and for each lost packet the window is halved. We can compute the expectation of the
change in the aggregate arrival rate λ(t) =

∑
i λi(t), E[∆λ(t)], by conditioning on the set of
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window sizes {wi(t)} and Ai(∆t) as follows

E[∆λ(t)] =
1
R

E [E [∆W (t) |{wi(t)}]] =
1
R

E

[
E

[∑
i

∆wi(t)
∣∣∣{wi(t)}

]]

=
1
R

E

[∑
i

E [∆wi(t)|{wi(t)}, Ai(∆t)] · P{Ai(∆t) |{wi(t)}}
]

=
1
R

E

[∑
i

(
P{Lc

i (t) |{wi(t)}} 1
wi(t)

− P{Li(t) |{wi(t)}}wi(t)
2

)
wi(t)

R
∆t

]

=
∆t

R2
E

[∑
i

(
P{Lc

i (t) |{wi(t)}} − P{Li(t) |{wi(t)}}w2
i (t)
2

)]
.

If we further assume that the wi(t) processes are independent of each other and that the number
of TCP sources is large, each individual source experiences a packet loss as determined by the
queue receiving the aggregate traffic. The conditional probability P{Li(t) |{wi(t)}} corresponds
then to the loss probability in the queue at time t, which is denoted here by PL(t). Proceeding
with the derivation, we obtain

E[∆λ(t)] =
m∆t

R2

(
(1 − PL(t)) − PL(t)

E[w2
i (t)]
2

)
.

We can next make a comment on the effect of the distribution of wi(t) on the coefficients
above. Here we temporarily suppress the time dependence from the notation. We assume that
the distribution of wi is such that it scales with E[wi], i.e. we assume that E[w2

i ] = k · E[wi]2,
where k is some constant. If wi is a fixed constant then we have trivially that E[w2

i ] = E[wi]2 =
E[W ]2/m2, i.e., k = 1. On the other hand, if each TCP source in the population is assumed to
vary its window between 2

3W/m and 4
3W/m and the phases in the population are random, then

each wi is uniformly distributed in [23W/m, 4
3W/m]. Now large windows contribute more to the

window decrease due to the packet loss. Then we obtain

E[w2
i ] =

3m
2W

∫ 4W
3m

2W
3m

w2
i

3m
2W

dwi =
28
27

(
W

m

)2

,

i.e. we have k = 28/27 ≈ 1. Thus, this extension practically results in the same model as
above. In addition, numerical experiments with more realistic window size distributions yield
only minor changes in the coefficient k. Hence, in this paper we use the simple assumption that
k = 1 and E[w2

i ] = E[wi]2.
Then, using the approximation E[w2

i (t)] = E[wi(t)]2 = E[W (t)]2/m2, we get

E[∆λ(t)] =
(

(1 − PL(t))
m

R2
− PL(t)

E[λ(t)]2

2m

)
∆t

By the linearity of the ∆ operator, E[∆λ(t)] = ∆E[λ(t)], denoting with E[λ(t)] = λ̄(t), and
letting ∆t → 0, we arrive at

d

dt
λ̄(t) = (1 − PL(t))

m

R2
− PL(t)

λ̄2(t)
2m

. (1)

4 Model for the RED Controlled Queue

The aim is to develop a continuous time model for the transient behavior of the expectations
of the two queue length processes, the exponentially averaged queue length s(t) and the instan-
taneous queue length q(t). These expectations are denoted here by s̄(t) and q̄(t), respectively.
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With the earlier assumptions on a large TCP population and random phases, the aggregate
stream can be approximated by a time varying inhomogeneous Poisson process with rate λ(t).
Strictly speaking, λ(t) is itself a stochastic process but we may assume that the fluctuations are
small and approximate λ(t) ≈ E[λ(t)]. With this, the queue part of our model consists of a RED
controlled queue receiving an inhomogeneous Poisson arrival stream with a deterministic time
varying rate E[λ(t)] = λ̄(t) governed by Eq. (1). This system has been previously studied in [2],
where by using a similar technique as in the previous section, the expected change in q̄(t) and
s̄(t) during ∆t has been obtained by conditioning on certain random variables. As a result the
following approximation has been obtained for describing the time dependent behavior of s̄(t)
and q̄(t):


d

dt
s̄(t) = λ̄(t)β(q̄(t) − s̄(t)),

d

dt
q̄(t) = λ̄(t)

(
1 − πK(t)

)(
1 − p(s̄(t))

)
− µ

(
1 − π0(t)

)
,

(2)

where π0 and πK denote the steady state probabilities for the queue to be empty and full,
respectively. Note that, in the equation for q̄(t) above, the first term is the expected rate at
which packets are admitted to the queue and the second term is the expected rate at which
packets leave the queue.

To evaluate the terms π0(t) and πK(t) we use a quasi-stationarity approximation. The idea
is to replace π0(t) and πK(t) with ones that relate π0 and πK directly to the system variable q̄(t)
by using known steady state relations for π0, πK and q̄, i.e., in our case those of the M/D/1/K
system (in [2] an M/M/1/K queue was considered). To this end let π∞

k (ρ) denote the steady
state probability of state k in the infinite capacity M/D/1 system with load ρ. These state
probabilities can be obtained by using, e.g., the algorithm by Virtamo [10]. Then the steady
state probability of state k, πk(ρ), in the finite system can be obtained from the following
relations (see [11, p. 230])

πj(ρ) =
π∞

j (ρ)
π∞

0 (ρ) + ρG(K)
, j = 0, . . . ,K − 1,

πK(ρ) = 1 − G(K)
π∞

0 (ρ) + ρG(K)
,

G(K) =
K−1∑
j=0

π∞
j (ρ).

Additionally, we have trivially that q̄(ρ) =
∑K

j=0 jπj(ρ).
The steady state functions π0(q̄) and πK(q̄) are computed by eliminating ρ from the above

relations. This approximation technique is also similar to the one used in [12]. In practice,
e.g., the function π0(q̄) is best derived by computing pairs of values (q̄(ρ), π0(ρ)) for a suitably
dense discretization of ρ providing a discretized version of π0(q̄). Then one can use interpolation
between the discretization points to compute π0(q̄) for any value of q̄.

In this paper we use the M/D/1/K system as an example, but the above procedure applies
more generally to any packet size distribution. The queue length distribution of the M/G/1
system is given by the well known Pollaczek-Khintchine formula [11, p. 230] and the distribution
can be computed algorithmically as presented in, e.g., [13, p. 266]. Finally, the distribution of
the M/G/1/K system is obtained from the infinite buffer system in the same way as was done
above.

The applicability of the M/G/1/K approximation depends on how fast λ̄(t) can change.
If λ̄(t) is slowly varying, the queue can be considered to be in a quasi-stationary state. In
our case the changes in λ̄(t) are driven by packet losses, which are primarily due to the RED
packet discarding (buffer overflows should be rare in a RED controlled queue). The RED packet
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discarding probability depends on the averaged queue length s(t), whose time scale of changes
is determined by β. In practice β is small (of the order 10−3), and thus the process s(t) moves
slowly and, also, the changes in λ̄(t) occur relatively slowly. Moreover, our simulations in
Section 6 verify the applicability of this approximation.

5 The Model for the Interacting System

In combining the models for the TCP population and the RED controlled queue we include the
link delays in the system (but queuing delays are not modeled and hence the delays are not time
dependent). In the following model λ̄(t) denotes the expected TCP throughput at the source.
The acknowledgments arrive at the source with the delay R causing the update action to the
current sending rate, and the amount of update depends on the current rate. Also, the TCP
population will adjust its current sending rate based on packet losses having taken place in time
R/2 prior to the current time. Similarly, the packets sent by the TCP population arrive at the
queue after the link delay of R/2 and hence the queue will observe the R/2 delayed throughput.
This gives rise to a delay differential equation (or RFDE):



d

dt
s̄(t) = λ̄(t − R/2)β(q̄(t) − s̄(t)),

d

dt
q̄(t) = λ̄(t − R/2)(1 − πK(q̄(t)))(1 − p(s̄(t))) − µ(1 − π0(q̄(t))),

d

dt
λ̄(t) = −PL(t − R/2)

2m
λ̄(t)λ̄(t − R) + (1 − PL(t − R/2))

m

R2

λ̄(t − R)
λ̄(t)

,

(3)

PL(t) = p(s̄(t)) + πK(q̄(t)) − p(s̄(t))πK(q̄(t)).

Here we have taken a symmetric delay structure, but any other delay structure can be handled
with obvious modifications. Also, note that in the TCP model in Section 3, PL denoted the
probability of the packet loss observed by the TCP population. In the above system, packets may
be dropped due to the RED admission control or the buffer overflow. Hence we approximate
the packet loss by PL = p(s̄) + πK(q̄) − p(s̄)πK(q̄) (see [2] for discussion on independence
assumptions). Additionally, observe that in the last differential equation in (3), λ̄(t) appears
with two time arguments: λ̄(t − R) represents the update rate at time t, whereas λ̄(t) arises
from the amount of change to the current rate.

After the TCP population activates at time t0, the queue dynamics activate at time t0 +R/2
whereas the TCP congestion dynamics activate at time t0 + R. Functions q̄, s̄ : [t0, R/2] → R

and λ̄ : [t0, R] → R are given as initial data. Also, note that when there are no packet losses,
the slope of the linear increase in the throughput is slightly less than m/R2 due to the term
λ̄(t − R)/λ̄(t), a fact also seen in the simulations.

5.1 Two traffic classes

We illustrate how the above model can be extended to different traffic classes following the
treatment in [14]. Assume that we have a population of m TCP sources, each with a constant
R, and the throughput of the aggregate in denoted by λ1. In addition there is some UDP traffic
with intensity λ2. For simplicity both traffic sources are assumed to send packets of equal size
and as a local approximation the packet arrival intensity from each source is assumed to be
Poissonian. Also the weight parameter β in the RED algorithm is assumed to be the same in
each class.

We refer to the TCP traffic as class 1 traffic and the UDP traffic is denoted by class 2. As in
Section 4 we can write differential equations describing the evolution of EWA queue lengths s̄i in
each class: ds̄i/dt = λ̄iβ (q̄i − s̄i) . As the packet size is the same in each class, we may consider
the queue with the aggregated arrivals from both classes and denote the expected queue length
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by q̄. In the queue we may label independently each packet in class i, i = 1, 2, with probability
λ̄i(1− pi(s̄i))/(λ̄1(1− p1(s̄1))+ λ̄2(1− p2(s̄2))), where we have taken into account that the RED
drops p1 and p2 will thin the arrival processes. Hence the expected queue length in class i
satisfies

q̄i =
λ̄i(1 − pi(s̄i))

λ̄1(1 − p1(s̄1)) + λ̄2(1 − p2(s̄2))
q̄.

The evolution of the total queue is given by

d

dt
q̄ = (1 − πK(q̄)) × (

λ̄1(1 − p1(s̄1)) + λ̄2(1 − p2(s̄2))
) − µ (1 − π0(q̄)) .

Finally, the TCP population is described by

d

dt
λ̄1 = −PL,1

2m
λ̄2 + (1 − PL,1)

m

R2
,

where PL,1 = p1(s̄1) + πK(q̄) − p1(s̄1)πK(q̄). (Note that there is no ODE for UDP traffic.)
This model views classes 1 and 2 uncoupled in the sense that the random packet drop in a

class is based on the EWA queue length of that class only. The RIO algorithm [15], in which
class 1 has priority and class 2 is admitted into the queue based on the exponentially averaged
total queue length, is obtained easily by replacing p2(s̄2) with p2(s̄1 + s̄2) in above.

5.2 Approximating variable round trip times

In our model the simplest way to approximate a TCP population with variable round trip times
is to partition the total TCP population into n sets so that in each set i, mi TCPs have the
same round trip time Ri. Each subpopulation i can be modeled and treated as TCP class i in
the previous generalization. No priority structure between the classes is introduced if the classes
are uncoupled and the RED parameters are the same in each class. This modeling paradigm is
scalable; even a large number of differential equations can be solved in a reasonable time.

6 Model validation

Here we illustrate the accuracy of our differential equations by comparing against simulated re-
sults and we use the model to explore equilibrium surfaces as functions of the system parameters.
Simulation is used to validate the accuracy of the model, i.e., that the stochastic assumptions
are not critical. In the simulation none of the stochastic approximations have been used. Also,
each TCP source is a periodic source with a time varying sending rate reacting independently to
successful packet transmissions or random packet drops according to the congestion avoidance
rate control rules. The only assumptions that have been retained in our simulations are the
omission of the counter, that the RTT is a fixed constant, and that TCP congestion control
works in the congestion avoidance phase.

6.1 Simulation implementation

To be specific, our simulation has been implemented in the following manner. The sources
model the behavior of a greedy FTP source population transmitting constant length packets.
Hence, each TCP source i has its own congestion window wi (as opposed to our model), and
R is a common constant for all sources. The idea is to describe the source as a fluid process
with instantaneous rate wi/R, and send a packet at those instants of time where the cumulative
fluid attains an integer value. Thus each source has the following behavior i) it tries to send
wi packets during R and ii) it tries to space them in a “smooth” manner, i.e., the packets are
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Figure 2.: Evolution of λ̄(t), q̄(t) and s̄(t) (unit of time is 1000 on the x-axis).

not sent in one burst, as may happen with the real TCP. Each sent packet arrives into the
queue after a delay of R/2. Upon arrival at the queue, an acknowledgement is sent back to the
source whether the packet was accepted or discarded (either by RED control or buffer overflow).
The acknowledgement reaches the source after a delay of R/2. The source either increases its
congestion window by 1/wi, i.e., sets wi ← wi + 1/wi, if the packet was accepted or halves
the congestion window, i.e., sets wi ← wi/2. Additionally, to avoid the sources from being
synchronized right from the start of the simulation, each source is initialized with a window
size of 1 but the sources are “turned on”, i.e., transmit their first packets, at a time which is
uniformly distributed in the range [0, R]. Thus, the aggregate traffic into the queue consists of
a superposition of periodic sources with a time varying sending rate.

In the numerical examples the following system parameters will remain constant. The buffer
size K = 75, the service time 1/µ = 1, R=1000 and β = 0.002 (as is suggested in the literature).
Also, the unit of time is taken to be 1/µ. Choosing R to be 1000 times the average packet trans-
mission time corresponds to a real life system where, assuming the packet size to be 500 bytes
and the link speed to be 155 Mbit/s, R is (1000 · 8 · 500 bit)/155Mbit/s ≈ 26ms. Additionally,
in the analytical model we start the system with initial data q̄(t) = s̄(t) = 0 for 0 ≤ t ≤ R/2 and
λ̄(t) = m/R for 0 ≤ t ≤ R which corresponds to setting q0 = s0 = 0 and wi = 1 for each source
in the simulation. The simulated results have been obtained by averaging over 100 independent
simulation runs.

6.2 TCP examples

Here we illustrate the accuracy of our model with two examples. The examples have been
chosen to demonstrate a case where the queue reaches equilibrium in a nice manner and a case
where severe oscillations are encountered. In both examples we fix the number of TCP sources
m = 100 and Tmax = K/2 = 37.5. (Note that a larger TCP population is expected to improve
the accuracy of the analytical model.) First we look at an example where we set the other RED
parameters to Tmin = 0 and pmax = 0.2. The results are shown in Figure 2. for the time evolution
of λ̄(t) (left figure), for q̄(t) (middle figure) and for s̄(t) (right figure). In all the figures in this
section, the solid lines show the results obtained from the RFDE system (3) and the dashed
lines correspond to simulated results. From the figures we can see that the results from the
RFDE system match well with the simulated results and the equilibrium values are quite close.
This also verifies, among other stochastic approximations, that our assumption in the model on
the locally Poisson nature of the aggregate traffic is applicable and gives accurate results, even
when the actual traffic consists of a superposition of non-Poisson sources.

Changing Tmin = 5 and increasing pmax = 0.5 results in strong oscillations (see Figure 3.).
Even in this case, we can observe rather good agreement between the analytical and the simulated
results. The only discrepancy is that apparently the simulated system contains elements (phase
mixing) that dampen the oscillations and prolong the oscillation periods, which does not take
place in the solutions of the RFDE system.

As a continuation of the work reported here, we have derived and submitted for publication

xx/8



9th IFIP CONFERENCE on PERFORMANCE MODELLING AND EVALUATION OF ATM & IP NETWORKS 2001, Budapest

5 10 15 20 25 30
time

0.2

0.4

0.6

0.8

1

1.2

1.4
E
@
λ
D

5 10 15 20 25 30
time

2

4

6

8

10

12

14

E
@
q
D

5 10 15 20 25 30
time

2

4

6

8

10

12

14

E
@
s
D

Figure 3.: Evolution of λ̄(t), q̄(t) and s̄(t) (unit of time is 1000 on the x-axis).
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Figure 4.: Evolution of λ̄(t), q̄(t) and s̄(t) (unit of time is 1000 on the x-axis).

(see Kuusela et al. [3]) the stability analysis of the system giving, not only sufficient, but also
necessary conditions for the asymptotic stability. Note that the stability analysis done in Hollot
et al. [16] as a continuation of [5], uses a different technique, and provides only sufficient con-
ditions for their system. For the examples shown here our stability analysis verifies the visual
observation of the first example being stable and the second one unstable.

6.3 Uncontrolled UDP traffic and the TCP steady state

Next we explore the effect of uncontrolled UDP traffic on the steady state of the system. In
this case, the UDP traffic is here modeled as a pure Poisson source with arrival rate λ = 0.2.
The rest of the system parameters are: m = 100 (same as earlier), pmax = 0.2, Tmin = 0 and
Tmax = 40. The system was started from an empty state, and at time 20 000 the UDP source
was turned on and shut off at time 50 000. The results are shown in Figure 4. for λ̄(t) (left
figure), for q̄(t) (middle figure), and for s̄(t) (right figure). Here λ̄(t) is the aggregate arrival rate
from the TCP population and the UDP traffic. Again we can observe a good correspondence
and the results show how the system first reaches an equilibrium, how it is affected by the UDP
pulse and how the equilibrium is reached after the pulse disappears.

6.4 Equilibrium surfaces

Here we plot some equilibrium surfaces of the system (3) as functions of the system parameters.
We consider a buffer of size 40 with RED parameters Tmin = 10 and Tmax = 30. The RED
drop parameter pmax is taken as a free parameter that varies in [0.01, 0.35]. The equilibrium
depends on the TCP population parameters only through TCPpar = m/R, which is allowed
to vary in [0.05, 0.7]. Figure 5. (left figure) illustrates the queue size at the equilibrium as a
function of pmax and TCPpar. We point out that if the RED drop probability is small but the
TCP population is aggressive (either m is large or R is small) the system (3) does not have an
equilibrium as the queue tends to fill up to Tmax and then oscillates at values slightly below
Tmax. In addition, even if an equilibrium exists it is not necessarily a stable one (see [3]). The
surface of the expected goodput of the TCP population is illustrated in Figure 5. (right figure).
Note that the surfaces clearly illustrate the problematic TCP feature (from the system designers
point of view) that the system performance depends on the number of TCP connections, which
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Figure 5.: The queue size at equilibrium (left figure) and the goodput of the TCP population
at equilibrium (right figure).

is also discussed in [17].
If one wishes to set a fixed target queue length q̄t ∈ [Tmin, Tmax] (which also coincides with

the exponentially averaged queue length) to be achieved at the equilibrium, the relationship

m

R
=

√
PL

(
1 − π0(q̄t)

)
√

2(1 − PL) (1 − πK(q̄t)) (1 − p(q̄t))
,

where PL = p(q̄t) + πK(q̄t) − p(q̄t)πK(q̄t), can be used to explore, e.g., how pmax has to be
adjusted to compensate the changes in m/R. The above relationship has been derived from (3)
at the equilibrium state.

7 Conclusions

We have developed a dynamical model to describe the evolution of the TCP aggregate and
the RED controlled queue. The TCP sources were idealized to operate only in the congestion
avoidance phase. It is worth mentioning that this approach can be easily applied to other
additive-increase-multiplicative-decrease schemes by changing the differential equation for the
throughput λ accordingly. In addition, the model of source and queue interaction can be used to
explore, for example, various parameter settings or stability surfaces. Moreover, this approach
can be easily extended to study the interaction of other traffic behaviors with RED, such as
TCP variants, equation-based controls, rate adaptive traffic etc. Because the mathematical
model is in terms of expected values of the source and queue variables, an equivalent simulation
study would require averaging over a large number of replications, making it easily an infeasible
approach.

In deriving the differential equation model several stochastic assumptions and approxima-
tions were necessary, in particular, the aggregate packet arrivals were approximated by an in-
homogeneous Poisson process. We point out that our main interest is the congestion control
aspect of the complete system, and partial justification to such approximation is the observa-
tion by Veres and Boda [18]: several statistical tests indicate that the aggregate TCP traffic
entering through a bottleneck buffer is short-range dependent. Moreover, our careful simulation
verification, in which neither TCP window nor stochastic assumptions were used, showed that
the approximations were well justified.
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The aim of this paper was to carefully derive and then validate the model. Additionally, in
[3] we have successfully performed the stability analysis of the system presented here, deriving
not only sufficient, but also necessary conditions for the system to be asymptotically stable.
This follow-up paper contains several illustrative figures that show how the system parameters
affect the system performance.
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