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Abstract

This thesis deals with the magnetic field analysis of electric machines by means of the finite
element method taking the ferromagnetic hysteresis into account. The hysteresis is considered
through a vector Preisach model, consisting of scalar Preisach models distributed along a
finite number of angular directions. The incorporation of the vector hysteresis model into a
two-dimensional time-stepping field solution in terms of the magnetic vector potential is
accomplished by the Fixed-Point iterative technique. A combination of the field formulations
and circuit equations of the windings presents a general voltage-driven solution with
hysteresis, applicable to a 2D analysis of any electric machine. The time discretization is
performed by using the Crank-Nicholson algorithm and the rotation of the rotor is modeled by
moving the finite element mesh in the air gap.

The verification of the scalar hysteresis model has been performed by comparison to dc-
field measurements. The vector hysteresis model has been validated indirectly by the
computation of the hysteresis torque and the associated losses in a rotor structure of an
induction motor. The computation of the power balance in a simplified structure has been
used to accredit the accuracy of the presented numerical techniques.

The method of analysis has been applied to the magnetic field simulation and core loss
computation of three individual cage induction motors. The computations have been carried
out for the motors running at synchronous speeds and supplied from a sinusoidal voltage
source. The computed core losses have been compared with the measured ones, yielding
generally acceptable results. The influence of the time-step size and the number of scalar
models included in a vector model has been studied. Many computations with the presented
method, which takes account of the ferromagnetic hysteresis already when solving the field,
have shown that although the technique is rather slow, it is robust, reliable and always
convergent. These findings are the most important results of the thesis.
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1 Introduction

1.1 Background of the study

A substantial part of the losses in electric machines is the loss in the iron core. For successful
design of electric machines it is important to get as accurate information about this loss as
possible. The information about the core loss is closely related to the knowledge of the
magnetic field in the machine. Therefore, the ability to produce an accurate prediction of the
flux density distribution throughout the motor both in spatial and time coordinates is of major

concern.

Owing to the complicated operation and geometry of electric machines, the variation of
the magnetic field in the machine is very complex, and a numerical technique is needed to
solve this field. In this respect, the finite element method (FEM) has proved to be an efficient
tool, which is widely used in the analysis of the magnetic field in electric machines. However,
the three-dimensionality and time-dependency of the magnetic field in an electric machine
render a comprehensive solution too large a task even for present-day computers. To ease the
computational burden, it is a common practice to assume the magnetic field to be two-
dimensional, independent of the coordinate parallel to the shaft of the machine. The field
analysis is performed over the cross-section of the machine, which is in a plane perpendicular

to the shalft.

As for the core losses, a conventional 2D finite element computation of the magnetic
field in an electric machine neglects the core loss effects. The negligence of the eddy-current
loss comes naturally, because the iron core is laminated and the currents flowing along the
laminations are not compatible with 2D analysis. The hysteresis loss is excluded from the
analysis by replacing a multi-valued hysteretic relationship of the iron core with a single-
valued function. Overall, this means that the iron sheets are assumed to be made from
nonhysteretic, nonlinear material with zero conductivity. The losses in the iron core of the
machine are not taken into account when solving the magnetic field, which means that the
damping response caused by these losses is missing from the analysis. These simplifications
limit the application of conventional methods to the computation of the core losses. The core
loss calculation is performed using empirical or semi-empirical formulae, after the magnetic

flux density distribution has been determined. Even if the formulae for predicting the iron loss
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were accurate, the obvious error is already present in the exclusion of the iron loss from the

field computation.

In order to accurately estimate the core losses, the hysteresis branching has to be
modelled instead of single-valued functions (Nakata, 1998). In general, it is a problem of
combining FEM with hysteresis modelling. This is a very complex task that has only recently
become solvable, primarily owing to the growth of computer capacities and the development
of methods combining accurate hysteresis models with suitable finite element field
formulations in the frame of robust iterative techniques, which are able to handle the

hysteretic nonlinearities efficiently.

In the following sections of the introduction, the two above-mentioned approaches of
the core loss computation come under closer scrutiny. In the frame of the conventional
approach, the FEM methodology is taken for granted (Silvester and Ferrari, 1991). Section 1.2
focuses on empirical formulae, where their evolution, state-of-the-art and applications are
briefly outlined. Section 1.3 introduces the necessary items of the hysteresis incorporation in
the finite element magnetic field analysis, namely a hysteresis model and an iterative
technique, which creates an important interface between the hysteresis model and a finite
element field formulation. This overview is followed by a literature review concerning the

inclusion of hysteresis into finite element field analysis.

1.2 Evolution in brief and state-of-the-art of empirical formulae
1.2.1 Core loss separation

According to the statistical theory (Bertotti, 1988), the average power loss per unite volume in
soft magnetic materials consists of the sum of the hysteresis, classical and excess loss

contributions

core — _ hys class exc (1 ) 1)

p p o tp T tp

The hysteresis loss originates from the discontinuous character of the magnetization process
(localized irreversible changes) on a very microscopic scale. The hysteresis loss is equal to the
area of the quasi-static hysteresis loop times the magnetizing frequency. The classical eddy-

current loss is associated with the material macroscopic large-scale behavior, where the
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presence of magnetic domains is disregarded, the magnetization process is assumed to be
perfectly homogeneous in space and in the range of magnetizing frequencies where the skin
effect is negligible. The excess loss is caused by the domain wall motion, which generates
local eddy currents in the vicinity of the moving walls, and by the wall interaction with

inhomogenities of the lattice.

In particular, the empirical and analytical formulae associated with these three
contributions depend on the nature of the flux density variation. In rotating electric machines,
owing to slotting and saturation, and owing to the harmonic contents of the voltage supply in
the case of inverter supply, the magnetic flux density may be significantly distorted from the
ideal sinusoidal variation. In addition, in some parts of the machine the magnetic flux density

becomes rotational rather then alternating.

1.2.2 Alternating losses

For a long time, the core losses in rotating electric machines have been computed using the
alternating core loss models. This was mainly because of the lack of data associated with the
rotational core losses and the lack of appropriate models. The computation of alternating core
losses is essentially based on the statistical theory of Bertotti (1988) and Fiorillo and Novikov
(1990a, 1990b). In all the papers discussed below, FEM was used to compute the flux density

distribution.

One-term formulae (total specific loss) and two-term formulae (hysteresis and eddy-
current loss) together with different distortion and correction factors to account for distorted
flux density waveforms and possibly minor hysteresis loops have been used, for instance, by
Jamil and Demerdash (1990), Smith and Phipson (1991), Jamil et al. (1992), Akbaba and
Fakhro (1992), Arkkio and Niemenmaa (1992) and Saari and Arkkio (1994).

A three-term formula has been used by Atallah et al. (1992), who also employed an
expression for the distorted excess loss and predicted the core loss in a radial-field brushless
DC motor under different operating modes. However, the rotational effects were disregarded,;
instead, the losses were computed from the contributions obtained for each of the two
equivalent orthogonal alternating flux density components. This loss computation approach
was adopted by Flack and Williamson (1996), who investigated the possibility of using the

magnetic slot wedges to reduce the core loss in cage induction motors, and by McClay et al.
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(1996), who proposed a reduced finite element model to calculate the rotor core loss in an
induction motor. The influence of the stator frame design on the no-load losses in large cage
induction motors was studied by Smith et al. (1996) and Ferreira da Luz et al. (2000)
computed the core losses and investigated the effect of different slot openings on the core loss

in a non-skewed induction motor.

1.2.3 Rotational losses

The iron loss associated with the angle of lag between the magnetic field H and magnetic flux
density B is called the rotational power loss. According to Moses (1990), this loss is at least as
important as the alternating one and it can account for 50% of the loss in a rotating machine
stator core. At low and medium flux density levels, the rotational loss may be three times
higher than the loss measured at the same alternating flux density level. The anisotropy
increases the rotational loss; thus, the more isotropic the material is the lower the rotational
loss, when compared to the analogous loss under alternating magnetization (Moses, 1990).
The rotational power loss occurs in the regions of electromagnetic devices, where the flux
direction varies in the plane of laminations. In rotating electrical machines these regions are at
the roots of the stator teeth and all along the yoke of the stator. Concerning induction
machines, the rotational loss also occurs to a certain extent in the rotors, owing to the
difference between the rotational speeds of the rotor and the field of the stator. Similarly to the
alternating loss, the rotational loss can also be separated into rotational hysteresis, classical

and excess losses (Fiorillo and Rietto, 1990; Zhu and Ramsden, 1998)

In respect of the loss measurements under 50 Hz sinusoidal alternating flux and purely
rotating flux, which have been performed by Fiorillo and Rietto (1990) in nonoriented SiFe
laminations, Bertotti et al. (1991) used the experimental ratio between circular and alternating
hysteresis loss components as a function of the peak flux density. The experiments indicated
that this ratio is a monotonically decreasing function of the peak flux density and it is fairly
independent of the type of lamination and always lower than 1 above 1.5 T. Hysteresis
rotational loss under distorted elliptical flux was computed using a linear interpolation
between alternating and purely rotational hysteresis loss. Rotational classical loss was
estimated through the analytical two-dimensional formula, and the same formula was also

used to estimate the rotational excess loss. The core loss of an induction motor was calculated
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with the results 20% lower than the measured ones. Bertotti et al. (1994) also introduced a
separate formula for the rotational excess loss, which involved the ratio between the circular
and alternating sinusoidal excess loss. This ratio is independent of frequency and its
dependence on the peak flux density is similar to the one associated with the hysteresis loss.
The computed loss for an induction motor with a slotless rotor was compared with the one
provided by the conventional model, where the flux density is assumed to be unidirectional
and sinusoidal. A considerable difference between the loss values estimated by the two
models was obtained in the regions where the flux is essentially two dimensional. However,

the differences were not so remarkable for the losses computed over the whole stator core.

Zhu et al. (1992) calculated the core losses in a permanent magnet motor by using the
three-term formula (Atallah et al., 1992), into which the rotational effects of the classical and
excess losses were included. However, the rotational hysteresis was replaced by alternating
because of the lack of data, and the calculated loss was about 20% less than the measured one.
Zhu and Ramsden (1993a) continued the research on the rotational hysteresis loss with
measurements using a square specimen testing system (Zhu and Ramsden, 1993b), where the
total loss was separated into appropriate rotational components (1.1) and the corresponding
coefficients have been worked out for the particular loss calculation. The error of 20% from
the previous paper has now been reduced to 10%; however, since the hysteresis loss under
elliptical flux was estimated by using a linear interpolation between alternating and circular
hysteresis losses, it was only a rough estimate. Therefore, Zhu et al. (1994) introduced a
quadratic interpolation and Zhu et al. (1995), based on their own measurements as well as
some other researchers’ (Cecchetti et al., 1978) measurements, proposed a model for the
circular hysteresis loss, which made use of the similarity between a curve of the circular
hysteresis loss versus peak flux density and a torque/slip curve of a single-phase induction
machine. The application of this new model (Zhu and Ramsden 1995, 1998) produced an
error of 13%. The model has also been adopted by Stumberger et al. (2000), who analyzed an
interior permanent magnet synchronous motor in steady-state under different loads, supply

conditions and speeds.

There are many papers in which the basic core loss formulae are modified and adjusted
for various types of electrical machines and for different types of nonsinusoidal excitation. For

switched reluctance motors, refer for instance, to Hayashi and Miller (1995). As for the
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permanent magnet motors, reference can be made to Slemon and Liu (1990). For the losses in
a DC bias field see, e.g. Kofler (1990). The approach for the core loss computation of an
induction motor supplied from a current source inverter has been reported by Klug and
Ibrahim (1987). How the core loss formulae are treated under PWM voltage excitation
conditions can be found, for example, in a series of papers by Amar et al. (1994), Amar and
Kaczmarek (1995) and Kaczmarek et al. (1996). An interesting contribution to the iron loss
evaluation in electrical machines was presented by Amin (1995), who proposed a simple

formulation, similar to that used for the evaluation of the copper loss.

1.3 Magnetic field analysis taking the hysteresis into account

The inclusion of hysteresis in the 2D field analysis is a complex task that requires

consideration of several relatively separate problems.

Firstly, taking hysteresis into account requires an accurate hysteresis model. From the
electromagnetic design and analysis point of view, the hysteresis model should be
computationally efficient and capable of describing hysteresis phenomena in ferromagnetic
materials as accurately as possible from the macroscopic behavior perspective. The detailed
explanation of microscopic processes does not have a superior importance. In particular, the
Preisach hysteresis model appears to be the most suitable choice. It is also the most used

hysteresis model (Bottauscio et al., 1999) and it has been chosen in this work as well.

However, zero dimensional hysteresis modeling is not appropriate for geometrically
complicated systems, such as an electric machine. Therefore, a hysteresis model has to be
coupled with the appropriate Maxwell equations, which would then provide a complete
description of a magnetic field problem from a macroscopic point of view. Furthermore, the
magnetic field equations should be combined with the circuit equations of a feeding electrical
network and a motion equation of the rotor. All these equations create a system of equations

that should be solved simultaneously.

Ultimately, since FEM is used to solve the field equations, the hysteresis model has to
be combined with FEM field formulation. The link between the hysteresis model and finite
elements is provided by a nonlinear iterative scheme, capable of handling hysteretic

characteristics. The Fixed-Point technique (FPT) has proven to have certain advantages over
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other methods, when complicated hysteretic relationships are considered (Saitz, 1999a,

1999b).

To sum up, in order to consider hysteresis in magnetic field analysis, firstly, an accurate
hysteresis model, and, secondly, an efficient procedure for handling hysteretic nonlinearities
associated with the incorporation of a hysteresis model into a finite element scheme are
needed. In this respect, the Preisach hysteresis model and the Fixed-Point technique have been
chosen in this work, and they are briefly reported in the following, together with the reasoning
supporting these choices. After that, a literature review concerning the magnetic field

computation taking the hysteresis into account is given.

1.3.1 Preisach hysteresis model

Many different hysteresis models have been proposed over the years. A comprehensive review
of available hysteresis models is given by Ivanyi (1997). The Preisach model of hysteresis
(Mayergoyz, 1991) seems to be the most common choice (Bottauscio et al., 1999) in many
different applications. Owing to its ability to provide relatively accurate predictions, and its
efficiency and robustness, the Preisach model is a prevailing hysteresis model in the area of

magnetic field analysis.

Another common hysteresis model is the Jiles-Atherton model (Jiles and Atherton,
1984; Jiles, 1994), which, in terms of the occurrence in applications takes the second place,

but well after the Preisach model (Bottauscio et al., 1999).

The Jiles-Atherton model is a physical model for ferromagnetic hysteresis based on the
energy balance exposed in a magnetic material. In this model, the energy supplied to a
material is equal to the sum of the stored magnetostatic energy and the energy dissipated
through the domain wall movement when overcoming the hindrance of microscopic
imperfections in the material, resulting in the hysteresis loss. In the case of no hysteresis loss,
the stored energy is equal to the supplied energy and the magnetization follows the

anhysteretic curve.

A comparison of the Jiles-Atherton and the Preisach hysteresis models in
magnetodynamics was presented by Philips et al. (1995). According to their findings, the
correspondence with measurements is generally better for the Preisach model than for the

Jiles-Atherton one. The identification of parameters in the Preisach model requires relatively
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extensive measurements, but hardly any fitting. The opposite is true for the Jiles-Atherton
model. Furthermore, Philips et al. (1995) concluded that the effort required for implementing
and running the models was about the same for both the models regarding their classical
versions. However, the generalized Preisach model (Bertotti, 1992) required considerably

more effort than the generalized Jiles-Atherton model (Jiles, 1994).

The following provides a brief description of the Preisach model and one of its vector
versions. For detailed information about the Preisach model, its properties, variations and

different extensions, refer to Mayergoyz (1991), Bergqvist (1994) or Ivanyi (1997).

Classical Preisach model

The Preisach model is a phenomenological model of hysteresis that was originally proposed in
1935 by F. Z. Preisach. Since then many variations of Preisach models have appeared. The

basis for all Preisach-type models is the classical Preisach model (CPM).

Philips et al. (1994a) demonstrated that, under static conditions, there is a reasonable
agreement between CPM and measurements, at least for silicon iron. CPM is frequency-
independent and it cannot account for the frequency dependence of hysteresis effects. In order
to include the frequency dependence in hysteresis modeling, a dynamic scalar Preisach model
of hysteresis was suggested by Bertotti (1992). For comparison between the static and
dynamic Preisach models in magnetodynamic field computation, see for example, Philips et

al. (1994a), or Rouve et al. (1996).
According to the Preisach theory, the magnetization M is determined as a superposition
of elementary hysteresis operators (EHOs). EHO, denoted as )A/(ha,hb) with 4, and A, being

the “up” and “down” switching fields, acts on the applied magnetic field H, giving the output

value according to the current value of H as well as its past history. If H is smaller than A, the

value of )A/(ha,hb)H is —1. If H is greater than /,, the value of )A/(ha,hb)H equals +1. Finally,
if H lies between Ay, and 4,, the value of f/(ha,hb) H does not change. EHO is defined only for

h, 2 hy,. The definition of the classical Preisach model reads

M = H/,ls(ha,hb))?(ha,hb)Hdhadhb (1.2)

hy 2hy,
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where us(ha, hb) is the Preisach (distribution) function, representing the distribution EHOs.

Vector Preisach model (VPM)

A scalar hysteresis can be considered to be a special case of vector hysteresis, in which the
magnetic field is restricted to vary along one fixed direction. In such a case, a scalar hysteresis
model can be employed. However, if the assumption of variation along the fixed direction is
not applicable (rotating electric machines), the hysteretic relation has to be handled by using a
vector hysteresis model. To account for the vector hysteresis, the Preisach model has been
generalized by Mayergoyz (1991).

The classical vector Preisach model is defined as a superposition of scalar Preisach
models continuously distributed along all possible angular directions. In the two-dimensional

case, the magnetization M is computed from

O O
e¢@ﬂ u (g, by, @ )V(ha,hb)Hd,dhadhbﬁiqb (1.3)

11
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where e, is a unit vector along the direction given by the polar angle ¢, u* (ha, hy,, ¢) is the

vector distribution function, and
H, = H ¢, (1.4)

is the geometric projection of H in the direction of e,. Since the distribution function

u’ (ha, hb,qf)) is sensitive to the selected direction, that is, it depends on the direction angle ¢,

the expression (1.3) introduces an anisotropic vector Preisach model. If the distribution

function is selected to be identical along any direction, that is, independent of the direction
angle ¢, it reduces to /.lv(ha,hb) and the resulting vector hysteresis model is considered

isotropic.
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Identification of the Preisach model

The Preisach model is a phenomenological hysteresis model. In order to use such a model in
practical applications, the model must be related to a particular material, the hysteretic
behaviour of which is intended to be modelled. This link between the model and the real
material is accomplished in the Preisach model through the distribution function.
Experimental determination of the distribution function, which in turn means fitting the model
to some experimental data, is called the identification of a hysteresis model. The identification

procedure as performed in this work is described in detail in Chapter 2.

1.3.2 Fixed-Point technique

The Fixed-Point technique (FPT) has been proposed in magnetics by Hantila (1975). The
technique splits the particular nonlinear function into a linear part and a variable nonlinear

residual, which has to be determined through an iterative process.

The Fixed-Point technique seems to be the most widely used numerical scheme for
handling the hysteretic nonlinearities (Bottauscio et al., 1999; Saitz, 1999a). Two versions of
the Fixed-Point scheme can be identified: B-version (B-FPT) and H-version (H-FPT). In
addition, some other Fixed-Point-based methods have been reported in the literature, which
retain the basic Fixed-Point feature of splitting the nonlinear function, but the coefficients

used do not guarantee the best convergence.

The analysis of major iterative schemes connected with the classical Preisach model on
a test application (Saitz, 1999a, 1999b) unveils their possibilities, advantages and drawbacks.
A combined Fixed-Point Newton-Raphson procedure (NRM) is found to be particularly fast,
but in some cases it may become unstable. The implementation difficulties for NRM are
greater than for Fixed-Point-based techniques. FPT is robust with sure convergence from any
starting value, but usually relatively slow owing to its linear convergence rate (Chiampi et al.,
1980, 1994a, 1994b; Mayergoyz, 1982; lonita, 1991a; Ionita et al., 1996). If a nonlinear
function is monotonous and its first derivative is continuos, the Newton-Raphson iteration is
unconditionally stable (Silvester and Ferrari, 1991). A numerical optimization method for
correcting the material data in order to improve the convergence of the Newton-Raphson
algorithm was proposed by Pahner et al. (1998). FPT does not impose constraints on the
smoothness of nonlinear curves, thus allowing their rough definition and even the presence of

inflection points. If FPT is involved, a simple piecewise linear approximation is adequate to
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model the nonlinear curves (Chiampi et al., 1995). For the purpose of this research, the
robustness and reliability are preferred to the speed, and therefore FPT has been chosen for the

implementation.

Using FPT following its B-version, a nonlinear function ¥" of the magnetic flux density

B is split into two parts
%' (B)=VepB + Ry (1.5)

where Vg, is the Fixed-Point coefficient and Ry, is the Fixed-Point residual, which is
computed iteratively. It is possible to show (Hantila, 1974) that the best convergence is

achieved if V, is chosen within an interval around the average between maximum v _, and

minimum V . slopes of a particular nonlinear curve

VFP — _ max min (16)

The iterative algorithm of FPT is illustrated in a nonlinear magnetostatic problem formulated

in terms of the magnetic vector potential 4 and represented by

x (x4 J (1.7)

where J is the current density. Applying FPT and substituting (1.5) into (1.7), the nonlinear

problem (1.7) reduces to a succession of linearized problems having the form
Ve kX 45 Fx  RY (1.8)

where k denotes the iteration step. The solution of this equation provides the unknown
magnetic vector potential A", provided of course that the residual Ré‘};1 is known (in the

beginning some initial guess Rgp is assumed). From the calculated A%, the flux density B*

is evaluated and then the residual nonlinearity
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is computed. After that, the second term on the right-hand side of (1.8) is updated, replacing

R} with R}, and the procedure is repeated until a convergence limit is satisfied.

From the graphical representation point of view, every nonlinear iterative scheme
replaces the nonlinear curve with a straight line. Regarding FPT, the slope of the substituting

line is fixed, since Vp is kept constant during the iterative process. This is unlike the

Newton-Raphson scheme, where the local slope of the linearized characteristic is updated in
each iteration step. In FPT, the slope never changes and the straight line is only vertically
shifted as the iteration proceeds. Consequently, in applying FEM, the finite element stiffness

matrix is never modified, which in turn means that the computational process is accelerated.

1.3.3 Literature review

One of the first papers dealing with the inclusion of hysteresis in the numerical magnetic field
analysis appears to be the contribution published by Del Vecchio (1980). He incorporated a
scalar Preisach model in the 1D diffusion equation and applied the finite difference method
for space discretization. Del Vecchio (1982) extended the previous approach to the 2D FEM
analysis of the diffusion equation over the cross-section of an infinitely long rectangular bar

carrying sinusoidal flux.

Since then, an abundance of papers on the subject of hysteresis incorporation in FEM
have appeared in the literature. In general, the studied 2D problems can be classified into two
basic categories: current- (voltage-) driven problems (analysis of electrical devices) and flux-
driven problems. As for current- (voltage-) driven problems, the field analysis is performed in
a plane perpendicular to the flow of the current (electric machines, transformers). Flux-driven
problems essentially refer to the 2D lamination analysis, which can be tolerably reduced to the
1D analysis, if the ratio between lamination width and thickness is greater than five

(Bottauscio et al., 2000a).

Since the research carried out in this thesis is associated with the analysis of electrical
devices, the survey presented below concentrates on current- (voltage-) driven problems. For a

detailed literature review concerning flux-driven problems refer to Saitz (1999a).
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A short reference to flux-driven problems

The Newton-Raphson method has been used in connection with a Preisach model in a 2D
lamination analysis by Boucetta et al. (1994) and Rouve et al. (1996). A method similar to the
simple iteration combined with a Preisach model in a 1D lamination analysis has been
reported by Philips et al. (1994a, 1994b), Gyselinck et al. (1996, 1998) and
Dupré et al. (1997a, 1997b, 1998b, 1998d). A technique for time-periodic flux-driven
problems has been proposed by Appino et al. (1996) and used by Bottauscio et al. (1996) and
Boglietti et al. (1996) in combination with a Preisach model and B-FPT or H-FPT (Boglietti et
al.,, 1998). Dupré et al. (1998c, 1999) compared the two different numerical procedures,
described by Boglietti et al. (1998) and e.g. Dupré et al. (1998b), both involving a dynamic
Preisach model (Bertotti, 1992) and intended for the magnetic field analysis of laminations

subject to a time-periodic flux excitation.

Among other papers dealing with 1D or 2D lamination problems with hysteresis,
contributions from Naidu (1991), Miano et al. (1995), Gourdin et al. (1998), Raulet and
Masson (1998), Tellinen (1998) or Machado and Ribeiro (1998) could be of interest.

Current- (voltage-) driven problems

Féliachi and Meunier (1985) and Ossart and Meunier (1991) studied a magnetic
recording problem in storage media by applying 2D FEM magnetostatic analysis with a Fixed-

Point-based technique and an astroid hysteresis model.

The idea of using VPM in computations of magnetostatic fields in media with hysteresis
was first realized by Friedman and Mayergoyz (1989). They used an integral equation
approach for the solution of a 2D magnetostatic problem. The approach has been extended by
Adly et al. (1993), where a 3D generalization of VPM (Adly and Mayergoyz, 1993) was

employed to simulate some magnetic recording processes.

Ionita (1991a) theoretically dealt with H-FPT and applied it to study a dynamic

hysteretic problem of permanent magnet magnetization (Ionita, 1991b).

Henrotte et al. (1992) combined a scalar Preisach model applied in the reversed fashion
and NRM to analyze a 2D magnetic circuit including an air gap and supplied by time-
dependent currents. The authors reported difficulties connected with the convergence of

NRM. The same computational algorithm was applied by Philips and Delincé (1993) for the
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computation of B-H trajectories in the torus. The track of this research was continued by
Delincé et al. (1994), who combined the field analysis with the circuit equations to study a
ferromagnetic core that coupled the primary and secondary coils. This paper clearly indicated
the influence of hysteresis on current and voltage waveforms in inductors and concluded that
the computations that are performed only with single-valued nonlinearities are unable to

correctly predict the actual behavior of such devices.

Bergqvist et al. (1993) adopted the approach of Henrotte et al. (1992) to express the
constitutive law, but the quantities involved were defined in a slightly different manner. A
VPM was employed and the field was computed in a 2D magnetic circuit used in a
magnetostrictive device. The influence of an electric circuit was accounted for by adding a
circuit equation. The nonlinear algebraic equations were solved by the simple iteration with a
relaxation factor. Bergqvist (1994) continued the previous work by employing a lag hysteresis
model. A NRM iteration formulation was derived to solve the obtained nonlinear system of

equations. An application to a simple current-excited 2D magnetic circuit was reported.

Some further research concerning NRM and problems involving scalar hysteresis (scalar
Preisach model) has been conducted, for example, by Leonard et al. (1995) and
Ninet et al. (1996, 1998).

Kurz et al. (1993) proposed an iterative process formulated in terms of M and H variables,
and combined it with a VPM and 2D time-stepping FEM. Several examples of relatively simple
current-driven magnetic circuits were computed and compared with analytical solutions showing
good accuracy. Fetzer et al. (2000) adopted the iteration scheme proposed by Kurz et al. (1993) and
studied a 3D magnetic field problem of a ferromagnetic sphere immersed in a time-varying
uniform field. The same iteration has also been used by Amor et al. (2000), who combined a
Preisach model and 2D FEM for a cylindrical ferromagnetic sample surrounded by a coil inductor

and studied the influence of a relaxation coefficient on the iterative scheme convergence.

Alotto et al. (1994) incorporated a scalar Preisach model and a VPM in 2D
magnetostatic finite element analysis. The resulting system was solved by a Fixed-Point-based
iterative technique. To test a vector model, a particular geometry was adopted, in which the
hysteretic material was surrounded by a double ferromagnetic nonlinear yoke, which was

supplied by two systems of coils with orthogonal magnetic axes. Along with this simple



25

geometry, a more complex problem, consisting of the simplified structure of a stepping

motor, was also analyzed.

Bottauscio et al. (1995) presented a method specially prepared for time-periodic
magnetic field problems driven by current. The method features a coupling of a Preisach
model with a finite element solution, formulated in terms of the magnetic vector potential.
The B-version of FPT is used to solve the nonlinear hysteretic system. The Preisach model is
applied in the reversed fashion through a secant method coupled with a backup bisection
procedure. In each iteration step, the solution for all the time samples is computed to provide
the instantaneous variation of the magnetic vector potential. From this variation, the periodic
evolution of the magnetic flux density in each element is obtained and, through the hysteresis
model, the symmetric hysteresis cycle is determined. Subsequently, the time variation of the
Fixed-Point residual is evaluated. The proposed method was applied to a 1D problem of
infinite ferromagnetic hollow cylinder. The same technique but with the Jiles-Atherton model
was reported by Chiampi et al. (1995) and with H-FPT by Bottauscio et al. (1998), who
combined a VPM and 2D FEM to study a 4-pole configuration, energized by two independent
sinusoidal currents with phases in quadrature, allowing an elliptical flux to be produced. Toms
et al. (2001) extended the approach presented by Chiampi et al. (1995) to a general 2D case

with scalar hysteresis.

Ionita et at. (1996b) proposed a hysteresis model based on CPM and completed it with
new rules to describe vector dynamic hysteresis. The model was combined with B-FPT and
incorporated into 2D magnetic field formulation in terms of the magnetic vector potential,
which was time-stepped by using the Crank-Nicholson scheme and applied to analyze an

impulse magnetizer.

Dupré¢ et al. (1997a) prepared a 2D FEM model of a single-tooth region of an induction
motor and connected it to a VPM. The fluxes through the boundary parts were obtained from
the local measurements in the motor and imposed by proper boundary conditions. The
computed field patterns in the tooth model served to derive the local excitation conditions for
the second-level magnetodynamic lamination model. This model comprised a 1D lamination
analysis in two directions, allowing the rotational effects to be taken into account. A
reasonable agreement was found between the global machine losses obtained by the combined

tooth region-lamination model and the measured losses.
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Dupré¢ et al. (1998a) utilized the differential permeability to facilitate the inclusion of the
vector hysteresis in the finite element scalar and vector magnetic potential formulation for
magnetostatic problems. The governing equations were rewritten in terms of the partial time
derivatives of H and B. Thus, the static equations became time-dependent (ordinary
differential equations) and the Crank-Nicholson time-stepping scheme was employed to solve
them. In each time step the nonlinear system is solved by an iterative technique involving the
differential permeability. A VPM, introduced through the differential permeability tensor,
takes care of the material hysteretic behavior. The developed numerical technique was applied
to a T-joint region of a three-phase inductor with rotating flux excitation and with the
inclusion of eddy currents by means of an additional conductivity matrix (Gyselinck et al.,
1999b) to the no-load simulation of a voltage-supplied three-phase transformer core

(Gyselinck et al., 1999a).

Deblecker et al. (1998) presented an algorithm for 2D magnetodynamic problems with
hysteresis based on the transmission-line modeling technique, and Kim et al. (1998a) employed
a VPM (Hong et al., 1994, 1995), FEM and a Fixed-Point-based technique to analyze the

magnetic field in a hysteresis motor.

Lee et al. (1998) and Lee and Hyun (2000) analyzed a synchronous reluctance motor using
2D FEM time-stepping included in a vector control scheme (Kim et al., 1998b). The hysteresis
was incorporated through a Preisach model applied independently for two orthogonal
components of the magnetic field. A Fixed-Point-based technique handled the nonlinear system.
The field equations were combined with circuit equations and a PWM voltage supply was
considered. The same computational methodology but with a current supply was applied for a

permanent magnet assisted synchronous reluctance motor by Lee and Hyun (1999).

Bottauscio et al. (2000a) modified a technique for periodic supply conditions developed
earlier (Bottauscio et al., 1995; Bottauscio et al., 1998), writing the linearized problem in the
frequency domain by introducing a truncated Fourier series. Thus, in each 2D FEM iteration
step (H-FPT), the computation of the field solution for the considered harmonic components
and the update of the residual are required. An inverse fast Fourier transform is used to obtain
the time dependence of the flux density and magnetic field; the latter serves as in input to a
dynamic Preisach model. Then, the time variation of the Fixed-Point residual is obtained and

the harmonic spectrum of it is evaluated by a fast Fourier transform. A coupling between the
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field and circuit equations enabled a voltage-driven solution of the field problem. The method
has been applied to the analysis of an Epstein frame and an eccentric toroidal core, fitted with
a number of localized pick-up coils, enabling to follow hysteresis branching in different parts
of the core. As a conclusion, the authors stated that introducing the magnetic hysteresis in core

modeling considerably improved the accuracy of the numerical computation.

In order to include eddy currents in the 2D FEM analysis, Bottauscio et al. (2000b)
extended their previous study (Bottauscio et at., 2000a) with the 1D lamination model (e.g.
Boglietti et al., 1998). In each 2D FEM iteration step (B-FPT), the solution provides the
waveform of the flux density in each element of the mesh. This waveform is then used as an
input to a 1D lamination flux-driven problem, comprising the classical or dynamic Preisach
model, and solved by means of H-FPT. The solution to the 1D problem provides the time
variation of the magnetic field intensity, which is used to update the Fixed-Point residual in
the 2D Fixed-Point iterative scheme. The method has been applied to a toroid constituted
from a single sheet and an eccentric toroid, as described in the previous paragraph. Based on
the numerous results presented in the paper, the authors concluded that the eddy-current
effects are important in the simulation of the behavior of laminated cores with negligible air
gaps. However, their effect decreases with the supply frequency; local quantities are affected
by the material modeling and a significant improvement is obtained considering the hysteresis
of the magnetic material. Regarding the method of analysis, the authors observed a significant

increase in the processing time by inclusion of eddy currents.

Gyselinck et al. (2000) incorporated the hysteresis and eddy-current losses in a 2D FEM
time-stepping no-load analysis of an induction motor. The hysteresis was modeled by a vector
Preisach model inverted by means of NRM. The authors observed fast convergence and stated
that the relaxation of the iteration scheme had been rarely required. The eddy-current losses
were accounted for by introducing an additional conductivity matrix into finite element
equations (Gyselinck et al., 1999a, 1999b), neglecting the skin effect in the laminations. The
field equations were combined with circuit equations and a sinusoidal voltage supply was
considered. The resulting nonlinear system of equations was solved by NRM. Comparisons
between computed and measured stator phase currents as well as computed loci of hysteresis
loops in different parts of the motor were reported. The total computed core losses were about

10% smaller than the measured ones. The proposed method has been reported to be
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computationally very expensive, when compared to the analysis with a single-valued B-H

curve.

Inclusion of other core loss components into 2D FEM

As mentioned earlier, the explicit inclusion of the classical eddy-current losses in 2D field
analysis is impossible. In order to model them explicitly, a very expensive 3D analysis is
required (Dular et al., 1998). However, the eddy-currents can be directly included in a 2D
field analysis, with certain limitations, by introducing an additional conductivity matrix into
the finite element equations, as proposed by Gyselinck et al. (1999a, 1999b, 2000). Another
possibility is the combination of 2D analysis with 1D lamination modeling (Bottauscio et al.,
2000b). The excess loss can be included by adopting a dynamic hysteresis model (Bertotti,
1992).

Application of a hysteresis model a posteriori

Another possibility of computing the core losses from the known variation of the flux density
is to use some hysteresis model a posteriori. This approach means that the flux density
distribution is determined in a conventional way (2D FEM with a single-valued function) and
afterwards this computed variation serves as an input to a hysteresis model or, in a more
advanced case, to a lamination model, in which the eddy currents and hysteresis are included.
Such an approach was presented, for instance, by Nee and Nipp (1994), where the core loss
was evaluated by using a combination of the Jiles-Atherton hysteresis model, Rayleigh theory
and empirical expressions, Jayaraman and Strangas (1994), where the Jiles-Atherton
hysteresis model and a 1D FEM model of a transformer limb were used to estimate the
hysteresis and eddy-current losses, or Gyselinck et al. (1996, 1998), who employed a 1D FEM
lamination model (Philips et al., 1994a, 1994b) to calculate the core loss in an induction

motor.

Summary

The dominance of Preisach-family hysteresis models in magnetic field computations taking
the hysteresis into account is undeniable. The hysteretic nonlinearity is mostly handled by
Fixed-Point-based techniques. Current-driven problems are found to be the largest application

area. They essentially include the 2D field computation of relatively simple geometrical and
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supply configurations (simple transformer-like and rotating machine-like structures).
However, in the last 2-3 years, the application areas have been slowly shifted from rather
simple current-driven problems into complete voltage-driven simulations of ferromagnetic

cores and rotating machines.

1.4 Objectives, scope and novelty of the presented work

The main purpose of this work is to develop and implement a method for finite element
modeling of the magnetic field in a rotating electric machine, taking the ferromagnetic
hysteresis into account through a vector Preisach model. When calculating the losses of a
machine, the time-dependence has to be solved with a general time-stepping method allowing
for the real time-variation of the magnetic field. In order to consider the damping effect of
hysteresis on this time-variation, the methods to be developed should work within a time-
stepping algorithm, and the losses should be taken into account already when solving the

magnetic field.

The work consists of two principal tasks. The first task is the actual development and
implementation of the method of analysis. This part involves the identification of a scalar
hysteresis model by DC-field measurements (Appendix B) on a wound-ring sample
(Appendix A), testing the prepared scalar model, identification and testing of a vector
hysteresis model, determination of the empirical core loss coefficients by core loss separation
measurement on the same wound-ring sample and theoretical development and construction
of computational routines with incorporated hysteresis suitable for a field analysis of voltage-

driven 2D magnetic circuits.

The next task is to apply the developed methods of analysis to the magnetic field
modeling and the core loss evaluation of actual electric machines. Since the developed
methods are general, the application to 2D analysis of any electric machine is possible,
provided of course that the construction and supply specifications of a particular machine are
respected. Primarily for the availability reasons, induction motors have been chosen as the test
samples. The methods of analysis have been applied to 30, 37 and 315 kW cage induction

motors.

The core losses are determined from the computed field, which includes the effects of

hysteresis. The other loss components (classical and excess) are evaluated by using analytical
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and empirical formulae. In order to compare the numerically obtained results with the
measured ones, an additional task involves the experimental measurements of the core loss on

actual induction motors.

Chapter 2 and Chapter 3 deal with the theoretical development and implementation of
methods of numerical analysis and measurements. Questions concerning the originality of the

material presented in these chapters are important and they are addressed in the following.

Chapter 2 describes the hysteresis model used in the study, which is a Preisach model
well known from the literature (for instance Mayergoyz (1991)). The procedure for
identification of the scalar model (Section 2.2.1) and the exponential approximation of the
magnetization curve close to saturation (Section 2.2.2) are based on the literature (Naidu,
1990; Macfadyen et al., 1973). The presentation, determination of the coefficients,
implementation of the formula for the exponential approximation and its combination with the
Preisach model are original. The theory of the vector model consisting of angularly distributed
scalar models (Section 2.3.1) is well-known from the literature (for instance Mayergoyz
(1991)). The idea for identification of the vector model comes from the literature (Gyimothy
and Ivanyi, 1994). However, the derivation and implementation of the particular formulae
associated with the identification of the vector model (Section 2.3.2) have been adjusted to be
suitable for the connection with the identification of the scalar model, as used in this work,

and therefore they are original.

Chapter 3 describes the incorporation of hysteresis in the field analysis of electric
machines. Section 3.1 summarizes the simplifying assumptions. The theory presented in
Section 3.2 related to the hysteresis model inclusion in FEM is original. The core loss model,
based mainly on the empirical formulae and presented in Section 3.3 is well-known from the
literature (for instance Zhu and Ramsden (1998)). The power balance model is original
(Section 3.4) with the components computed from the generally well-known formulae (for
instance Arkkio (1987)). The numerical computation of the hysteresis torque (Section 3.5.1) is
original. The method of the hysteresis torque and core loss measurement on induction motors
(Section 3.5.2) has been developed by Dr. Antero Arkkio, who has also performed or

supervised the measurements on actual motors and provided the measured data to the author.

The novelty of the thesis is connected with a suitable combination and implementation

of the finite element method, Preisach model and Fixed-Point iterative procedure and the



31

application of these techniques to the field solution and core loss calculation in cage induction
motors. This represents a voltage-driven solution in a rotating machine taking the hysteresis

into account.

The study is limited to a sinusoidal voltage supply and unskewed motors. The rotor of a
motor is forced to rotate at synchronous speed. The rotor cage is assumed to be perfectly
short-circuited. Apart from the simplifying assumptions mentioned above, other, say
“conventional”’, simplifications include: a 2D approach with 3D end-region fields modeled
approximately by constant end-winding impedances in the circuit equations of the stator
winding, negligence of the eddy-current loss in the stator winding, and treatment of the
laminated iron core as isotropic, and nonconducting material in the computation of the

magnetic field. The simplifying assumptions are discussed in detail in Chapter 3, Section 3.1.
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2 Hysteresis model

As discussed in Chapter 1, the hysteresis is modeled in this study by means of a vector
Preisach model that consists of angularly distributed scalar Preisach models. The principles of
the scalar and vector Preisach models have been summarized in Section 1.3.1. In this chapter,
the implementation and distribution function determination of both the scalar and vector
models, as performed in this work, are described. First, however, some notations regarding

hysteresis models and B-H relation are introduced.

2.1 Hysteresis models and B-H relation

Expressing the relation between the magnetic flux density B and magnetic field H in a
hysteretic case requires special attention. If the hysteresis is considered and H is taken as an
independent variable, the value of B is not uniquely determined by the current value of H but
it also depends on the past history of H. Thus, the function involved is multi-valued and
creates hysteresis branches. In practical computations such a hysteretic function is realized by

a vector hysteresis model, denoted here by the script 8"
B=¢"(H) 2.1)

This notation implies that the value of B at a given time depends on the current value of H
and on the whole past history of H until that instant in time. A configuration of input and
output variables represented by the script 8" is typical for direct application of the Preisach

model.

If the input H varies along one direction only, a scalar model 4° can be defined
B=¢°(H) (2.2)

expressing the relationship between a scalar input /4 and a scalar output B, which represent the

magnitudes of H and B, respectively.
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Now, choosing B as an independent input variable, the hysteresis models %" and %°, as

counterparts of 8" and £°, can be introduced

H =%"(B) (2.3)

H = 1(B) (2.4)

Since the Preisach model uses H as its input variable, the practical realization of hysteresis
models %" is not straightforward. One possibility of tackling this problem is to employ such a
computational algorithm and iterative scheme that would allow the use of H as an input
variable (Dupré, 1998a). Another possibility is the inversion of the Preisach model, which
means the application of the model 8" in the reversed fashion, using B as an input variable.
For this purpose, a suitable iterative search should be used. Henrotte et al. (1992) proposed
using the Regula Falsi method, Bottauscio et al. (1995) suggested a secant method coupled
with a backup bisection procedure, and Gyselinck et al. (2000) employed the Newton-
Raphson method. Alternatively, the Preisach model with B-input and H-output can be realized
by using the so-called “inverse distribution function method” used by Takahashi et al. (1998).
This allows the identification of the Preisach model so that it is possible to use it directly in

the form (2.3), which means that no iterations are needed to get H from B through 8" in (2.1).

If a vector model 8" or ¥ consists of angularly distributed scalar models, as is the case

in this work, two more hysteretic functions have to be introduced

B=5""(H) (2.3)

H=1"(B) (2.6)

The scripts £°" and ¥°"V represent scalar models working under a vector model. From the
implementation point of view, these models are the same as their pure scalar counterparts 4°
and %°. The difference lies in the distribution function, which is usually different for 5* and

%% from the one for #°* and %°.
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2.2 Scalar model

The scalar model /* used in this work is the classical Preisach model #°, which is applied in

the reversed direction
v(8) = ()" 2.7)

The inversion of ° is realized by a combined bisection-modified Regula Falsi iterative

search. In the following, the identification and implementation of 4° is outlined.

2.2.1 Implementation and identification of the scalar model

The standard identification process for CPM is based on the measurements of the first-order
reversal curves. This approach requires a substantial amount of experimental data. Simplified
identification procedures that require only a reduced set of measured data were proposed, for
example, by Biorci and Pescetti (1958) or Naidu (1990). The latter has been adopted in this

work.

The main advantage of the approach proposed by Naidu (1990) is that the measurement

of the reversal curves is avoided, because the only requirement to identify the model is the
descending (upper) branch of the limiting hysteresis loop, denoted here as By, (H) or
alternatively as M, (B) This function is determined from a DC-field measurement

(Appendix B) and is defined by the measured pairs [Him,B}“] , where i runs from 1 through

the total number of measured points N, , and

tot »

Hlm :HZ; Hmm = —HZ (2.8)
Niot
Blm = BZ; Bmm = —BZ (2.9)
Niot

where H, and B, denote the values of H and B near the saturation, after which the hysteresis is
no longer discernible by practical measurements. The B-H relationship is considered to be

hysteretic in between these values, whereas above and below these values the B-H relationship
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1s modeled by an analytical single-valued function, as described later. The linear interpolation

is used to compute the values lying in between the measured points on the limiting curve.

According to Naidu (1990), a distribution function F(H) is defined by the following

equations (H = 0)

F(-H)=,/By,(H) (2.10)
2F(H)F(-H)=By,(H) +B,,,(-H) (2.11)

The relation between the distribution functions F(H) and u° (ha,hb) is fully explained by
Naidu (1990) and is omitted here.

Using the distribution function F(H) defined by (2.10) and (2.11), an arbitrary
magnetization curve can be determined. For the upward curve from a reversal point (Hg, Br)

holds

B (H)= By, (- H) = By (Hy) +Bx *2F(-Hy)F(H)  H 2Hy (2.12)
and the downward trajectory from a reversal point (Hy, Br) is given by

B (H)= By, (H)+ By, (—Hy) +By 2 F(Hy)F(-H)  H <H,  (2.13)
The initial magnetization curve Bi(H) is calculated from

By(H) = ——— (B (H) = By (- 1)) (2.14)

Expressions (2.12)-(2.14) together with the definition of the distribution function (2.10)-(2.11)
fully define a scalar hysteresis model $°. It is obvious that the output from the model

completely depends on the limiting curve B, . For different limiting curves, different models

lim *
are obtained. Therefore, it can be emphasized that the identification of the scalar model, i.e.

the identification of the distribution function F(H), in fact means the determination of the

limiting curve B, . As indicated earlier, the limiting curve associated with the scalar model 5™
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working under a vector model is different from the limiting curve of a pure scalar model 5°.
To distinguish the two, the limiting curve of a pure scalar model £° (%°) will be denoted as

Bim (Hj

im

) and the limiting curve of a scalar model working under a vector model $°"

(¥V)as By (Hpy).

lim

2.2.2 Modeling of magnetization curve towards saturation

As previously mentioned, the last point considered on the upper branch of the limiting

hysteresis loop B, . is the point after which the hysteresis is no longer discernible by practical

lim

measurements, and the coordinates of this point are H, and B, (Fig. 2.1 b).

If the magnetic field (flux density) is larger than H, (B,), the B-H relationship is

modelled by a single-valued function B,,, schematically shown in Fig. 2.1 b). Assuming an

N

exponential behaviour of the permeability ., (Fig. 2.1 a)

H-H,

g, (H) = 1o +(u. —ptp)e ™ (2.15)

the following expression can be derived for the single-valued function B,

a) UA
H,

Hgy

b) B4

\4

/ / H, H, H

Fig. 2.1. Schematic diagram defining the hysteretic and single-valued parts of the B-H
relationship.
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H-H,

oo - 0
B, (H)=B.+po(H~H.) +(u. _.Uo)Hoa_e o E (2.16)

Here, L, represents the differential permeability defined as the average between the left and
right derivatives of the function given by the limiting curve By, at (H,, B,) and (-H,, —B,),
respectively. The permeability L, is the permeability of free space and Hp in (2.16) is

computed from

= Bs_ BZ_HO(HS _Hz)

H
° IJZ_IJO

2.17)

where H; and B; are the saturation values of the magnetic field and flux density, respectively.

According to Macfadyen et al. (1973), the exponential approximation of the form (2.16)
gives satisfactory representation of a magnetization curve over a limited region. The region
close to saturation, in which the exponential approximation is used in this work, can be
considered to be such a limited region. If, however, the exponential approximation over a
wider range, even starting from the origin, is desired, Macfadyen et al. (1973) recommended

using a series of terms similar to (2.16).

2.3 Vector model
2.3.1 Implementation of the vector model

The vector model used in this work is the classical vector Preisach model, essentially defined
by (1.3), considered in its isotropic form, applied in the reversed fashion and consisting of
scalar models distributed along angular directions. In particular, the output H from the vector

model #" (2.3) is computed from

g+¢o
[esy" (B2 )a0 2.18)

T
-+
5 $o

H=%"(B)=

~NRN)
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where the angle ¢, defines the integration half-plane (Fig. 2.2), e, is the unit vector along

the direction given by polar angle ¢ and %;" is the scalar model corresponding to the

direction given by polar angle ¢, working under the vector model and defined by (2.7).

After choosing a finite number of equally-spaced directions N, (Fig. 2.2), the integral

in (2.18) is transformed into a sum

Ny

2 qpS-V
H=2 003 e, (B2,,) (2.19)

where A¢ is the discretization angle
n is the direction index

ey is the unit vector along the direction given by polar angle é,

%> is the scalar model corresponding to the direction given by polar angle ¢,

working under the vector model and defined by (2.7)

and

B, =Bl&, (2.20)

is the geometrical projection of B in the direction of e, ~and the angle ¢, is given by

6 = —%T +¢, +nl; n=12,..,N, 2.21)

Figure 2.2. Finite number of directions in a vector model.
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Obviously, there is an infinite number of scalar models in a vector model defined by
Equation (2.18). The model exhibits the rotational symmetry, meaning that the output from
the model does not depend on the choice of the angle ¢,. The introduction of a finite number
of directions, however, disturbs the rotational symmetry, which causes the output from the
vector model defined by Equation (2.19) to depend on the angle ¢ . There is a possibility to
tackle this problem if the incorporation of the vector model in the finite element analysis is
considered. The angle ¢, is randomly chosen in each vector hysteresis model included in the

finite element analysis, whereby the error is diminished and may be considered statistically

negligible (Gyimoéthy and Ivanyi, 1994).

The setting procedure of the limiting curve H;,, associated with the scalar model %"
is described in the following subsection. Since only isotropic materials are considered, the

same distribution function is used for each direction of the vector model.

2.3.2 Identification of the vector model

The identification procedure for a vector model is in general naturally more involved than that
for a scalar one and it requires measurements in rotating fields (Mayergoyz, 1991). These
measurements are complex and require a special experimental set-up, which has not been
available. An advantageous feature of the vector Preisach model, which is the possibility, for
isotropic materials, to identify the vector distribution function directly from the scalar one
(Bottauscio et al., 1998) has been utilized. For the purpose of identification, a trivial condition
has been used, stating that the output from a vector model magnetized along one direction
should be equal to the output of the scalar model. A similar identification of a vector model
has been performed by Gyimoéthy and Ivanyi (1994), who calculated the Everett table for a

scalar model working under a vector model.

The simplifying assumptions related to the vector distribution function can be stated as
follows: In accordance with what has been stated above, the isotropic materials are considered
only and therefore also the vector distribution function corresponds to a hysteresis model for
an isotropic case. The determination of the vector distribution function is performed according

to a simple procedure described in the following.
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As previously discussed, the identification of a particular scalar model used in this work
practically means the determination of the limiting curve. Therefore, the goal here is to

determine the limiting curve Hj, of a scalar model working under a vector model from the

lim

limiting curve H},, of a pure scalar model, and thus from the only measured data.

Consider the input B to the vector model %" varying along one direction, in particular
along the direction coinciding with the y-axis in Fig. 2.2 and thus, assuming for simplicity ¢,

equal to zero, with the N, -th direction of the vector model
B=B,j; B. =0 (2.22)

The output H from the vector model %" is computed through (2.19) with B given by (2.22). In

particular, the components of H are computed from
H. =0 (2.23)
2
H,= 7_TA¢ Zl%s'v (By sing n)sin(l) , (2.24)

Now, if B, varies from positive saturation through the point B. and after that down to the
point —B, (2.9), the output from the scalar models in all directions will follow the upper

branch of the limiting curve. For the model in the n-th direction the following holds
%S'V(By sin¢n) = Hlsir;V(By sin¢n) (2.25)
Substituting (2.25) into (2.24) yields
2,
H, =09 ZleimV(By sing,,)sing, (2.26)

Since the input B varies along one direction only, a pure scalar model %° can be applied to

compute the output as well

H, =%(B,) = H},(8,) 2.27)
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The outputs from the two considered models, namely %% (2.26) and %° (2.27), should be

equal, meaning that

—A¢ z HlslmV Bsing, sm¢ = Hlsim(B) (2.28)

where, for the sake of clarity, the index y in B, is omitted. The expression on the right-hand
side represents the measured upper branch of the limiting hysteresis loop, provided that the
values of B are chosen to be the measured values B;", where i runs from 1 through the total
number of measured points N, . Substituting B into (2.28) yields a system of N,

equations
7—2_[A¢HZ Hlslmv( B sing , )Szn¢ hm( ,m) i=1..Ng (2.29)

All the values on the right-hand side of (2.29) are known quantities. What is to be determined

is H; " as a function of the measured B;". In order to express the function H;_ ' in terms of

lim lim

B™ instead of B" sin¢, the linear interpolation is used. Hence, say that the value B" sin¢,

1

falls into the interval between two general measured points B;| and B},

B < B"sing, < B, (2.30)

il =
Thus, Equation (2.29) can be finally written as

B5-B" - B™-pB"01
;Aebz o (B0) g i (82) g Bind = i (B i= 1w @3

The solution of this system of N,,, equations for N, unknowns provides the sought function

H;.'. The results of the solution for a different number of directions N, are reported in

lim

Chapter 4, Section 4.1. The limiting curve H} " expressed as 1.e. as a function of H, is

llm s

then substituted for B

lim

in (2.10)-(2.14) and defines the scalar model %° used under a

vector model ¥V .
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3 Incorporation of hysteresis in field analysis of electric machines

3.1 Simplifying assumptions

Owing to the complex operation and geometry of an electric motor, the magnetic field follows
complicated patterns. A complete analysis of the magnetic field of an electric motor, which is
in general three-dimensional and time-dependent, is limited by the computing power of
present-day computers. Especially if such an involved phenomenon as hysteresis is to be

included in the field analysis of an electric motor, certain simplifications are indispensable.

From the point of view of incorporating hysteresis, the numerical technique described in
the following is applicable to any electric machine. However, a close relation to induction
motors in the following presentation cannot be avoided, because they have been chosen as test

motors for the purpose of this thesis.

The simplifying assumptions adopted in this work can be divided into three categories.
The first category includes the main simplifying assumption of a two-dimensional magnetic
field; the second category comprises the simplifications related to modeling conductors of the
stator winding and rotor cage, and the third category concerns the assumptions related to the

nonlinear iron core modeling.

This work focuses on the computation of the core losses. In order to verify the computed
results, the core losses have to be measured on actual motors. The only reasonable
measurement of the core losses can be performed on motors running at no-load, because the
core losses can be quite reliably separated from other loss components. This is obviously not
true for other operation modes, such as full-load and locked-rotor ones. The simulations of
motors are undoubtedly to be performed for the same operation conditions as were present
during the measurements, that is the no-load conditions. Therefore, the magnetic field of the
motors is studied at no-load. The no-load operation conditions make many of the simplifying

assumptions fairly justifiable.

3.1.1 Assumption of a two-dimensional magnetic field

Apart from the complexity and high computational costs of the three-dimensional analysis of
an electric machine, the geometrical input data representation and viewing of the results are

inconvenient problems as well. Therefore, it is common practice to analyze an electric
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machine on the assumption of its infinite axial length. This allows the field to be treated as
two-dimensional, not dependent on the coordinate parallel to the shaft of the machine. Thus,

the field is computed in a plane perpendicular to the shaft of the machine.

There are three main problems connected with the 2D magnetic field modeling: the
influence of end-region fields, the skewing of rotor slots, and currents in the laminated iron

corc€.

The influence of end-region fields is accounted for by introducing constant end-winding
inductances into the voltage equations. Since the motors modeled in this work have unskewed
rotor bars, the skewing of the rotor slots is irrelevant. Anyhow, both the end-windings and

skewing of the rotor slots have only a small effect on the no-load characteristics.

All currents (both eddy currents or currents induced by potential differences of the rotor
bars) flowing along the iron laminations are inconsistent with two-dimensional field analysis.
Since the potential differences between the rotor bars in unskewed rotors are negligible, the

inter-bar currents are usually of insignificant magnitudes.

3.1.2 Simplifications related to stator conductors and rotor cage

The stator winding is modeled using a circuit theoretical approach that assumes the current
density distribution to be constant over the cross-section of the stator conductors. This means
that the eddy currents and skin effect in the stator winding are ignored. As a matter of fact, the
windings of modeled motors are made of such thin copper wires that the skin effect (and
therefore the eddy currents) are negligible, which makes the assumption of constant current
density permissible. If a detailed analysis of eddy-current effects in the stator windings is
required, a technique of eliminating inner nodes, which results in the formation of macro

elements, could be adopted (Sziics and Arkkio, 1999; Sziics, 2000).

Since the operation of motors is modeled at no-load, the rotor is forced to rotate at
synchronous speed. The potential differences between the rotor bars remain small, which
supports the assumption that the rotor cage is perfectly short-circuited. Nevertheless, the skin
effect in the rotor bars is taken into account, since the rotor bars are treated as solid

conductors.
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3.1.3 Simplifications related to the iron core

As already mentioned above, the currents flowing along the iron sheets are not consistent with
2D magnetic field analysis. Hence, the laminated iron core is treated as a nonconducting
medium, and the eddy-current losses are excluded from the field analysis. All core materials

are assumed to be isotropic.

The main focus in this work is on the proper modeling of magnetic nonlinearity of the
iron core, with the primary concern that the hysteresis is included in the field analysis.
However, in order to make the computations more suitable from the time-consumption
viewpoint, some further simplifications would be useful. The hysteresis loss in the rotor
running at synchronous speed is considerably smaller than other loss components and it is
negligible compared to the hysteresis loss in the stator. This allows the application of another
simplification to the analysis, which lies in the negligence of the hysteresis loss in the rotor
from the field analysis. The hysteretic relationship in the rotor core is replaced by a single-
valued function. Note, however, that this simplification has nothing to do with the principal
functionality of the method developed and is administered purely in order to save computation
time. The method developed allows the hysteresis to be modeled in any desired region of a

machine.

3.2 Field and circuit equations and their solution

3.2.1 Formulation of field equations

The two-dimensional solution region is the cross-section of the machine in a plane
perpendicular to the shaft. If the symmetry occurs, the whole cross-section can be divided into
a number of symmetry sectors with identical geometries and the field analysis is carried out
only in one of these sectors, whereby the computation time is reduced. The assumption that no
flux penetrates through the outer surface of the machine is adopted. This requires that the
magnetic vector potential has a constant value (usually zero) on the boundary. Periodic

boundary conditions are applied on the sides of a symmetry solution sector.

From magnetic materials’ point of view, the regions covered by the mesh can be divided
into magnetically linear regions and magnetically nonlinear regions. Depending on the nature

of the model describing the B-H relationship in nonlinear regions, these can be further divided
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into single-valued regions, 1.e. such regions in which the material nonlinearity is modeled by a

single-valued function and hysteretic regions, i.e. such regions in which the material
nonlinearity is governed by a vector model %". Consequently, the overall relationship

between H and B can then be defined by a nonlinear function J*

H =7"(B) 3.1)
such that
U v,B in magnetically linear regions
O
O
FV (B) = EVSV (|B|)B in magnetically nonlinear single - valued regions  (3.2)
O
O
E 7Y (B) in magnetically nonlinear hysteretic regions

with the following notation

Vo is the free space reluctivity

v is a single-valued function of the magnitude of B

Y%

On the assumption of a two-dimensional magnetic field, the vector potential 4 and
current density J have only one component. This component is oriented in the direction of the

shaft (z-direction). Hence

A=Ae (3.3)

J=Je (3.4)

where e; is the unit vector in the z-direction, and 4 and J are the z-components of 4 and J.

Since an induction motor is treated as a quasi-static magnetic system, the Maxwell
equations in their quasi-static form are used. In such a case, and in accordance with the
simplifying assumptions of the stator winding, rotor cage and iron core modeling, Equation

(1.7) becomes
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04

x 7'x 4 o= Bije 0 (3.5)

where the nonlinear function J" defining the relationship between H and B has already been

introduced (3.2), subscript 7 stands for the phase index that runs from 1 through the number of

phases of the stator winding m and

. ]g ci in positively oriented coil sides of the phase i
0 i
i w, o o .
B. =0+ SCI in negatively oriented coil sides of the phase i (3.6)
] i
0
0
0 elsewhere
H
with the following notation
N is the number of turns of a coil of the phase i
S; is the cross-sectional area of the i-th phase coil side
t is time
o is the conductivity (zero everywhere, except the rotor bars and shaft)
i is the i-th phase current

The current density in a coil of the i-th phase is given by

N
J =— i e 3.7
1 Sl 1 z ( )
The Coulomb gauge
M4 0 (3.8)

which is customarily used to assure the uniqueness of the solution in a general 3-D case, is

automatically satisfied in a 2-D case.



47

If B-FPT is used to handle the nonlinearities involved, the function 7' in Equation (3.5)

is split in nonlinear regions into two parts according to (1.5). Combining (1.5), Equations
(3.3) and (3.4), the Coulomb gauge (3.8), and after some mathematical manipulations,

Equation (3.5) is linearized and becomes
-m(v 4) ok Ry, B, O (3.9)

where v, is a function of position defined as

Vy =V in magnetically linear regions

(3.10)
Vo = Vep in magnetically nonlinear (single-valued and hysteretic) regions

A nonlinearity Ry, is the Fixed-Point residual, which is defined only in nonlinear regions (in

linear regions it is equal to the zero vector by definition), the subscript z indicates the z-
component of a particular cross product and a dot over a letter signifies the time derivative. In

(3.10) vp stands for the Fixed-Point coefficient (1.6). Thus, for the linearized constitutive

law in nonlinear regions holds
H=v.,B+Ry (3.11)

The solution of the basic field equation of an induction machine (3.5) and in turn of its

linearized form (3.9) is accomplished by FEM, applying a weighted-residual approach.

3.2.2 Finite element solution of field equations

Using a weighted-residual approach, Equation (3.9) is multiplied by a trial function é and

integrated over the entire solution region Q (cross-section of the machine)

I—Dn(vxp A)Ed@ [odsi@ [t Ry)&dQ [EBidR 0 (3.12)
Q Q Q Q

After using some general vector identities and integral theorems, taking into account the

boundary conditions, and after some mathematical manipulations, Equation (3.12) becomes
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v,0d0 &R (o A&d® [(RxD &), &B,id2 0 (3.13)
[ru00 68 [oina [(kaD 282 5.

In the finite element method the solution region is discretized into a number of finite
elements. Recalling the definition of regions from the material point of view (3.2), the finite
elements can be divided accordingly; that is, there are linear, nonlinear single-valued and
nonlinear hysteretic elements, depending on their placement in the finite element mesh or
more specifically on the nature of the material model describing the B-H behavior in the
particular element. The field is to be computed in nodal points. The magnetic vector potential
in the nodal points located on the outer surface of the machine (Dirichlet boundary) has a
fixed value, which often has to be equal to zero. The potential in the nodes on the periodic
boundary has the same positive or negative value as the corresponding node on the other side
of a symmetry sector. The magnetic vector potential in the Neumann boundary nodes, as well
as in all the other nodes (except the Dirichlet nodes and periodic-boundary nodes) is free to
vary and the corresponding nodes are free or active nodes. The approximate solution is found

as the following linear combination

Ny

A0S N4, (3.14)

where N; 1is a global shape function corresponding to the node i
A; 1s a value of the vector potential in the node i

N, 1is the total number of nodes in the finite element mesh

Substitution of (3.14) into (3.13) yields

Ny Ny
4; [v,,ONID &d@ ZAiJ'aNiEdQQ J'(RP>§D £). J’EB &2 0 (3.15)
Q i=1 Q Q

=

According to the Galerkin approach, a test function ¢ is chosen to be a shape function
N;, where j runs from 1 through the total number of active nodes N,. Thus, the following
system of N, ordinary differential equations of N, unknown nodal values of the vector

potential is obtained
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Ny

Nl’l
> 4 vy ,OMD N, de ZAI.IGNI.N/ dQ
i Q =1 Q

=1

+I(R><DN/-) 42 [N, B,i;dQ= 0 j= 1,.,N, (3.16)
o e o)
This can be written in a more compact form
Nn Nn . m
ZS,.].A,.+ZJ;].AZ.—PJ.+ZDJ.,.Z;. =0 j =1,..,N, (3.17)
i=1 i=1 i=1
where m denotes the number of phases of the stator winding and
S;; :J'vxyDNl;I]] N,;dQ (3.18)
Q
T; :IUN,Nj dQ (3.19)
Q
Dy = _.[BiNJ dQ (3.20)
Q
P, =~[(Rep xON,) a0 (3.21)
Q
Denoting
s={s,}. j=1,..N,; j=1,..,N, (3.22)
T={1} j=1,.,N,; j=1,..,N, (3.23)
Dz{D,.j} i=1,.,m; j=1,..,N, (3.24)
P:{Pj} j=1,..,N, (3.25)

makes it possible to write the system (3.17) in a matrix form

SA+TA-P(A)+D"i =0 (3.26)
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where superscript T signifies a transposed matrix, A is a column vector of nodal vector

potential values

A:{Aj} j=1,...N, (3.27)
and i is a column vector of phase currents
i={i]} j=1m (3.28)

Looking at (3.21) it is seen that the elements of P depend on Ry, which in turn
depends on B through (3.11). Since B is computed directly from A, it is clear that P depends

on the solution A, which is emphasized in Equation (3.26).

The integration of expressions for the entries of matrices (3.18) - (3.21) is performed
numerically by using the Gaussian quadrature. This issue is closely associated with the

relation between the finite elements and hysteresis models and it is addressed in the following.

3.2.3 Finite elements and hysteresis models

From the viewpoint of the relation between the finite elements and hysteresis models, the
matrix P (3.21) plays a crucial role. The reason is that this matrix is associated with Rpp,
which is directly related to H and B through (3.11) and the relation between H and B in
hysteretic elements is modeled through the vector hysteresis model. Depending on the order of
the finite element mesh and the variation of Ry, inside a nonlinear element, a certain
minimum number of Gaussian integration points per finite element N, is needed for accurate
enough integration of the matrix P. The two-column vectors, consisting of x and y

components, can be defined

=}
1
%
—2
[==

- {He} » Rpp = {REP} e=1.., Ny o (3.29)

where B, H® and Ry, are the flux density, field strength and Fixed-Point residual values in
a particular integration point e and N, ., is the total number of integration points in all

nonlinear elements used to numerically integrate the matrix P.
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For a first-order mesh, which is typically used when the hysteresis is taken into account
in the magnetic field computations, the variation of the magnetic vector potential inside an
element is linear and the flux density and field strength are constant, which in turn means that
R, is constant as well, because H, B and R, are coupled through (3.11). Hence, the
Gaussian quadrature requires one integration point per finite element for exact integration of

the matrix P and the total number of integration points N,

ip-tot is equal to the number of

nonlinear finite elements.

From the previous discussion it is clear that the number of vector hysteresis models in
the analysis coincides with the number of integration points in the hysteretic elements. If the
number of hysteretic elements is denoted as N,., then the total number of vector hysteresis

models included in the analysis N, will be

m

N = N Vi (3.30)

vhm

Taking into account the number of directions of each vector hysteresis model N,, the total
number of scalar models included in the analysis N is

Nshm =N.

vhm

N, (3.31)

The history for each of Ny scalar models is traced and stored in the computer memory in
the form of local and global maxima and minima in order to correctly evaluate the output from

each particular model.

3.2.4 Voltage equations of the stator winding

As already mentioned, it is assumed that the conductors of stator windings are made so thin
that the skin effect is negligible. The current density in a coil side is constant and is calculated
from Equation (3.7). The voltage equations of the stator winding are constructed in
accordance with the adopted circuit theoretical approach. For the phase voltage u; of the i-th

phase holds
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u; = Ryi;+ Ly i + W, (3.32)

1

where R, is the total phase winding resistance
Ley 1s the end-winding inductance
W, is the flux linkage of the i-th phase associated with the two-dimensionally

modeled core region

The flux linkage Y is calculated as a surface integral of the magnetic vector potential
over the coil sides of the phase i. This can be expressed as the following surface integral over

the entire solution region Q
(’Ui :NleeIBi 4dQ (333)
Q

where N; is the number of symmetry sectors into which the machine can be split

lg. 1s the equivalent core length of the machine

(S

B;  are the functions defined by Equation (3.6)
The flux linkage is obtained from the finite element solution. Thus, a substitution of the
approximate solution of the vector potential (3.14) into (3.33) yields
Ny
Y. = Ny, z IBi N;dQ 4; (3.34)

J=1Q

Now, by making use of Equations (3.34) and (3.20), Equation (3.32) can be rewritten

N, _

J=1

which, when written in a compact matrix form gives
u=Ri+L,, i-NJz DA (3.36)

where u is a column vector of phase voltages
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u={u} Jj=lem (3.37)

The matrix D is defined by (3.20) and the column vectors A and i are given by (3.27) and
(3.28), respectively.

3.2.5 Time discretization of combined field and voltage equations

The field equation (3.26) and circuit equation (3.36) are combined into one system of

equations

O T EAD P(A)0 [ pT OO
O O ‘o0 i [ (3.38)
[TN/D ZLDDDID Duw 0@ ZgpQ

where Z;p = L., I and Zy = R, 1 with I being a unity (m>< m) matrix. The system (3.38) is
a system of ordinary differential equations and represents an initial value problem. In order to
solve this problem, the initial conditions should be defined. A discussion about the initial

conditions is given later (Section 3.2.7).

The time discretization of (3.38) is performed by the Crank-Nicholson time-stepping

scheme. Hence, in the time step # the solution is found from the following equation system

%n+iT D' nD_Ersn_1+iT —DTHA,, O
At . [T At . 0O
H D GD1H ”DH D Gp, n-1 LU
®,.(A,)d ®,(A,)0 O 0 O
+0 ot g ot Gy O (3.39)
o 0 oo o O Hln’fun-lm
where
1
- AR -L
G, =—2—— 1 (3.40)



54

;AtRS—LeW
Gp=2 1 3.41
D2 Nsl ( )
c, =-B1 (3.42)
2N

and At is the time interval.

Equation (3.39) is so written that all terms on its right-hand side are known, whereas the
column vectors on its left-hand side are to be computed. It is a system of algebraic equations,
which represents a space- and time-discretized and linearized form of hysteretic parabolic
equation (3.5) combined with a time-discretized circuit equation (3.32). To find the solution,

the system (3.39) must be included in an iterative scheme.

3.2.6 Iterative solution of the resulting hysteretic system of algebraic equations

The iterative solution of (3.39) can be achieved by double iteration, i.e. the iteration in which
the nodal values of the vector potential are found from the system represented by the first row
of (3.39) using some guessed values for the currents, and after that the currents are corrected
using the system represented by the second row of (3.39). Then, the nodal values of the vector
potential are computed again and the currents are adjusted. This double iteration is repeated
until the convergence limit is reached. However, the iteration in which both the systems are
solved simultaneously is substantially more effective than the double iteration. The reason is
that the number of unknowns in the combined system is only a little larger than the number of
unknowns in the discretized field equation, since the number of voltage equations is normally
small. Hence, the computation time of the combined solution does not increase much when
compared with the solution of the finite element problem alone. Therefore, the simultaneous

iteration has been used for solving the nonlinear system of equations (3.39).

For the sake of clarity when explaining the iterative procedure, the following matrices

are introduced
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2 r O
Ef%”ET Do (3.43)
H D GpH
O 2 +0
S _ +_T _D n— |:| |])n— An— |:| |:| 0 |:|
g, =017 py ﬂ%\ ‘oo ! I)El"'Cqu 0 (3.44)
H b G,HO- 00O 0 O n 0,0

Using this notation and omitting the time-step index n Equation (3.39) becomes

@ D+ g (3.45)

where, for an unmistakable demonstration of the iterative scheme, a two-column vector Rpp
(3.29) is recalled in order to point out the dependence of the column vector P directly on the
Fixed-Point residual Ry, as done in (3.45), and not on A, as has been preferred in the
equations presented so far. All other matrices and column vectors are constant and do not

change during the iterative process.

The iteration starts with the assumption of some initial guess for Ry, , say ng, where
the superscript signifies the iteration step. It is taken to be the value of Ry, from the previous
time step. Now, the column vector P can be formed using (3.21) and inserted into (3.45). The
solution of the linear system can be carried out, yielding the values of A and i. Using newly
computed values of A, the flux density two-column vector B is computed. From the two-
column vector B, the two-column vector H is evaluated according to Equations (3.1) and
(3.2). In single-valued elements, the single-valued relationship is used. In hysteretic elements,
H is computed from B through the vector hysteresis engine ¥#". The values of B and H in
nonlinear and hysteretic elements are used for the determination of a new Fixed-Point residual
BIFP through (3.11). This two-column vector is inserted back into (3.45) and the iteration
steps are repeated until the convergence limit is satisfied. As the criterion of convergence, the
ratio of the 1, norm of the change of A in two consequent iterations and the 1; norm of A has

been used. The flowchart of the iterative procedure is depicted in Fig. 3.1, where & denotes the
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iteration step. After the iteration has converged, the hysteresis engine is updated. In practice it
means that possible global and local extrema of the magnetic field and flux density time
variation in each hysteretic element are detected and stored in the computer memory. The
iteration is repeated in each time step. The computation times and numbers of iterations are

discussed in Section 4.4.

3.2.7 Overall computational algorithm

A period of the supply voltage is divided into certain number of time steps. Starting from
some initial state, the simulation of the magnetic field behavior is carried out step-by-step.
The evaluation of average quantities (torque, powers in the power balance, losses) requires the

simulation of the steady-state operation.

If the time-stepping simulation is started from the zero field as an initial state, the
starting of the motor is actually simulated. The transient phenomena connected with the
starting can last for tens of periods of the supply voltage until the steady state is reached.
These long transients take place because there are usually large time constants associated with
the windings of electric machines. It is practically impossible to simulate such long transients.
Therefore, an initial state starting from which the steady state would be reached faster has to

be sought.

The results of the sinusoidal approximation in combination with the subsequent
magnetostatic field computation have proven to give a good enough initial state for the time-

stepping analysis (Arkkio, 1987).

First, the sinusoidal-approximation computation is carried out. The variation of the
quantities in the motor is assumed to be sinusoidal. The analysis is performed in the steady
state using phasors. The behavior of the iron core is modeled using the effective reluctivity
approach, with the definition of the effective reluctivity as suggested by Luomi et al. (1986).
The input to the sinusoidal-approximation analysis is the RMS value of the supply voltage.
The analysis gives the RMS values of quantities, among which the RMS values of the stator

currents are of principal interest.

The values of the currents in all the phases computed at a certain instant in time from

the sinusoidal approximation are fixed and the DC magnetic field caused by these currents is



57

computed. In this computation it is assumed that the iron core is demagnetized. Thus, the
magnetization of the core in hysteretic elements proceeds along the virgin curve. The
magnetic field computed in such a way is stored and used as an initial state for the time-
stepping analysis. The results of this computation are also used to set the initial state of

hysteresis models, i.e. to initialize the hysteresis models.

If the step-by-step analysis is initiated from the computed DC field and corresponding
instantaneous currents, instead of the zero field and zero currents, a reasonable steady state is
normally attained after only a couple of periods. In each time step the iterative procedure

shown in Fig 3.1 is performed.

Initial guess Rpp
k=0

k(] 1\
Eﬁ%’k = EP(BF" )D+g
o g g g

AF ik
B =[x A*
B

in single - valued elements:
HF = VSV(BkDBk

in hysteretic elements:
H* = %V(Bk)

l yes

hysteresis model
update

|

to next time step

Fig. 3.1. Flowchart of the Fixed-Point iterative process as applied for a time-step solution of
the combined highly nonlinear field and circuit equation system.
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Thus, the overall computational algorithm of determining the variation of the magnetic
field by the time-stepping method taking the ferromagnetic hysteresis into account and a
consequent estimation of the power balance and core losses in an induction motor consists of
five main blocks: sinusoidal approximation, initial DC-field computation, initialization of the
vector hysteresis engine, step-by-step simulation itself with updating vector hysteresis models

after each time step and power balance and core loss evaluation.

3.3 Core loss model

The core loss model of an induction motor that was used is based on the core loss separation
concept, as discussed in Section 1.2.1. Thus, the total core loss density is estimated as a sum

of the stator and rotor hysteresis, eddy-current and excess losses

core hys

P = pd Hp APt Hp™ (3.46)

In order to emphasize that the stator hysteresis loss is included in the field analysis and
therefore computed in a different way than the rotor hysteresis loss, the total hysteresis loss is
separated into two parts. Since the rotor hysteresis loss, and the stator and rotor eddy-current
and excess losses are not included in the field analysis, they are determined by using the

empirical formulae (Bertotti et al., 1994; Zhu et al., 1992; Zhu and Ramsden, 1998).

If not stated otherwise, the core loss formulae presented below are expressed in W/m?.
In order to get the power loss in Watts, integration over the whole core volume has to be

carried out.

3.3.1 Stator hysteresis loss

The stator hysteresis loss density is computed from

O dB, [0
pQYS:lIHGdEdt:l DdeBx +H — 0t (3.47)
TIr dt rirg * dt Y de O

where T is the time period. The power loss density in (3.47) can be alternatively expressed as

a sum of two components (Atallah and Howe, 1993)
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S‘;YS—TI|H|MC sadt +— I HXB)Zdt (3.48)

where 0 is the angle between the x-axis and vector B (angular position of B), and o is the

angle of lag between H and B. The first term in (3.48) corresponds to the loss in a purely

alternating field, because the derivative j—? in such a field is zero, which makes the second

term in (3.48) vanish. Hence
hys-alt — * | |
P Tj \H | (3.49)

d 8]

On the other hand, in the case of a purely rotating (circular) field, the derivative P is

zero and the first term in (3.48) vanishes
1.do
bystot = —  ZZ(H x B) dt 3.50
Pst TJ.T dt ( )z ( )

Thus, the total loss density is the sum of the alternating and rotational components
p;ys p;ys alt psliys-rot (3 5 1)

3.3.2 Rotor hysteresis loss

The cylindrical components of the flux density are deduced from the calculated time variation
of the flux density vector B. The Fourier analysis is applied and each of the cylindrical

components of B is expressed as a Fourier series

Ngc

B, =Y By sin(2mkfi+9,,) (3.52)
k=1

Npc

By =Y By, sin(2mthfi+ S, ) (3.53)
k=1
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where B, is the radial component of B
By is the tangential component of B
B, is the peak value of k-th harmonic component of B,
&, 1s the phase of k-th harmonic component of B,
By, 1s the peak value of k-th harmonic component of B,
D i 18 the phase of k-th harmonic component of By
f  1is the fundamental frequency
k  1s the harmonic order

Nrc i1s the total number of Fourier components included in the analysis

The hysteresis loss density in the rotor (and in the stator, if a single-valued function is
used to model the B-H relationship instead of the hysteresis model) is computed from
Ngc

P = Z Cuays k1B (3.54)

where Cyys and npys are constants depending on the material characteristics and Bjmaj 1s the

major axis of the ellipse traced by the k-th harmonic flux density vector.

3.3.3 Classical loss

The formula for the classical loss density contribution reads

D
class — class class m[ 3.55
21 TIT%GM g D d = (3:55)

where Cg, 1S the classical loss coefficient

c _ 1 od?

= 3.56
class 6 ( )

with o being the electrical conductivity and d the lamination thickness.
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3.3.4 Excess loss

The excess loss density is computed from the following integral

75

E(l).
15 gm dr (3.57)
UH

1 B
exe [
Po=Corhdia B B

where C.y 1S the excess loss coefficient.

3.3.5 Determination of the core loss coefficients

The coefficients Cpys, nnys and Cexc are determined from the core loss separation measurements
under alternating sinusoidal flux density (see for example Zhu and Ramsden (1995))
performed on a material sample (Appendix A). The measurement set-up along with the list of

devices used in the measurement is presented in Appendix C.

First, the total core loss was measured under sinusoidal flux supply. From this total loss,

the hysteresis and classical losses should be subtracted in order to get the excess loss.

Hpysteresis loss coefficients

The evaluation of the hysteresis loss was carried out by utilizing the quasi-static hysteresis
loops measurements. A measured family of quasi-static hysteresis loops was taken and the

areas of the loops were numerically computed, resulting in the hysteresis loss per cycle.

Having experimentally determined the hysteresis loss, the coefficients Ciys and nyys are
found by fitting the measured hysteresis loss versus peak flux density curve using the least
squares method. The hysteresis loss density under alternating sinusoidal flux is computed

empirically using the Steinmetz formula

P = Chyo B (3.58)

where B, is the peak flux density. The determined coefficients are used in Equation (3.54) for

computing the hysteresis loss under distorted and rotating flux.
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Analytical calculation of the classical loss

The evaluation of the classical loss density under sinusoidal flux is straightforward

sin

pClaSS = Cclassszg (359)

where C,, 1s given by (3.56).

lass

Excess loss coefficient

The excess loss coefficient Cex. used to compute the excess losses through (3.57) remains to
be determined. The excess loss density under alternating sinusoidal flux is computed from
pax =8.7634C,, /7B’ (3.60)

Here the coefficient 8.7634 appears so that a more general equation (3.57) reduces to (3.60)

for alternating sinusoidal flux.

The excess loss is obtained as the difference between the total measured core loss and
the sum of the hysteresis and classical losses. The measurement was performed for several
frequencies and peak flux densities. The coefficient that gives the best fit over a range of
frequencies and peak flux densities was determined. As a simplification, the same excess loss
coefficient is used for both the alternating and rotational losses. In general, the coefficient of
rotational excess loss is a function of the flux density and reduces to zero when the material is

saturated and the domain structure disappears (Bertotti et al., 1994; Zhu and Ramsden, 1998).

All experimentally determined core loss coefficients are given in Table 4.2 in Section

4.1, where an example of the core loss separation for the considered material is also presented.

3.4 Power balance

An important indicator of the correctness of the motor numerical analysis is the power
balance. Unlike a conventional finite element analysis of electric machines, in which the core
losses are not included in the field computation, the hysteresis losses of the stator core
contribute to the model power balance. Therefore, the power balance of a model motor at

constant rotation speed and in the steady state is written as
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where P™" is the input power of the stator winding
P°"  is the output power on the shaft
P isthe resistive losses of the stator winding

P s the resistive losses of the rotor cage

P s the hysteresis losses of the stator core

Note that the power balance expressed by (3.61) is not the power balance of a real motor
but the one of a model motor. Hence, it only comprises those components of power that are
included in the analysis of a motor. The eddy-current (classical and excess) losses and the
rotor hysteresis losses are not included in the analysis and therefore they are not included in
(3.61) either. The friction losses are also neglected in (3.61). The components in (3.61)
represent the time average values of appropriate instantaneous powers, as becomes clear from

the following.

The input power of the stator winding is computed from

m

P" = Z% [ i dt (3.62)
i=1

where the subscript 7 is the phase index and m stands for the number of phases.

The output power on the shaft is given by
P = 1 T.dt¢ (3.63)
=w, TIT A .

where w,, is the mechanical angular frequency of the rotor and 7, is the electromagnetic

torque, computed through the Maxwell stress tensor from a surface integral

O 0
T, :f rXBI—(B [4)B —LB%@S (3.64)
5 Ly 24, .
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where n 1s the unit normal vector of the integration surface S. Applying (3.64) for the torque
computation in induction machines, it is transformed to a line integral along the air gap

[

T, = ﬁj’rz B.B,d¢ (3.65)

:uO 0
with /.. being the equivalent core length of the machine. The integration path in (3.65) is a
circle of radius . As shown by Arkkio (1987), the line integral of (3.65) can be replaced by a
surface integral over the air gap

lg

T =—F7-—"-— B B,dS 3.66
e uo(rout_rin)'l’sagr r ¢ ( )

with 7,

and r;, being the outer and inner radii of the air gap and S,, represents the cross-
sectional area of the air gap. According to Arkkio (1987), the integral (3.66) has proven to

give more reliable results of the torque computation than (3.65).

The resistive loss of the stator winding is computed from

P = Z% [, R dt (3.67)

n=1

and the resistive loss of the rotor cage is given by

o 1 04 1 e Ag O
P ‘?LQV Jﬁa—th@iz_?Lazleeafsn% s (3.68)

where Oy stands for the number of rotor bars, n is a rotor bar index, 0 is the conductivity of

the rotor bar material and §, is the cross-sectional area of the n-th rotor bar.

The stator hysteresis loss P™° in (3.61) is computed from the stator hysteresis loss
y st p y

density (3.47) or (3.48) by carrying out the integration over the stator core volume.
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3.5 Hysteresis torque

Hysteresis loss in the rotor core of an induction motor produces torque much in the same way
as resistive loss in the rotor winding (Robertson, 1911). Despite the fact that the electrical
sheets of standard induction motors have small losses and therefore the hysteresis torque is
small, rotor hysteresis may cause noticeable effects in modern control drives (Wieser and
Lechner, 1996). In an ideal fundamental wave machine, the hysteresis torque is directly
proportional to the hysteresis loss of the rotor. Under such an assumption, the measurement of
the hysteresis torque (Arkkio et al., 1998) provides an opportunity to quite reliably verify the
method of field analysis with a vector hysteresis model and the computation of the hysteresis

loss.

In Section 3.1.3 on page 44 the simplifying assumption of a single-valued function and a
subsequent exclusion of the hysteresis loss from the magnetic field analysis in the rotor was
introduced. This simplifying assumption is not valid in the following text, where the
computation of the hysteresis torque is described. Therefore, for the hysteresis torque
computation purposes, the hysteresis is modeled throughout the whole core region included in

the analysis.

3.5.1 Numerical Computation

The method of analysis developed in Section 3.2 is generally applicable to any 2D machine
geometry. If windings are present, the circuit equations are considered together with the field
equation. Consider now a geometry consisting of the rotor cross-section of an induction
motor. This geometry, that is, the rotor cross-section only, has been used for the computation
of the hysteresis torque. Since no stator is present in the geometry, the circuit equations do not
have to be considered. The analysis of the hysteresis torque is based on the computation of the
core loss, which is induced in the laminated rotor of an induction motor when subjected to a
rotating magnetic field. The rotating field is created by imposing a sinusoidal flux with
constant amplitude on the outer surface of the air gap. This flux then rotates around the rotor
periphery at a constant speed. The fundamental wave of the flux is considered only. Since a
2D model is assumed, the eddy currents in the laminated core are not taken into account.
Moreover, the currents flowing in the rotor bars are disregarded and the bars are modeled as

air.
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Since only the rotor is considered and all conductivities are equal to zero, Equation (3.5)

reduces to

3P 4 o (3.69)
where the nonlinear function J" is defined as

dv,B in magnetically linear regions

7 (B) (3.70)

0
=0
%lv (B) in magnetically nonlinear hysteretic regions

with ¥ representing a vector hysteresis model. It is important to note that, in contrast to J"
as defined by (3.2) on page 45, the function J" (3.70) is defined in the linear and hysteretic
regions only. Therefore, there are no single-valued regions in the considered finite element
mesh of the rotor cross-section used for the hysteresis torque calculation purposes and the

hysteresis is modelled everywhere in the rotor core as suggested by (3.70).

In order to ensure the rotating sinusoidal flux on the periphery of the rotor, the vector

potential must satisfy the following boundary condition
A,(t,9) = 4ysin(p - w, 1) (3.71)

where A4, is the z-component of the vector potential on the boundary
t is time
¢ s the angle of the particular point on the boundary
A, 1s the peak value (amplitude) of 4,
p is the number of pole pairs of the motor

is the electrical angular frequency
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The amplitude of the vector potential on the boundary Izlb has been computed from

A

4,

s
o>

(3.72)

where B is the amplitude of the fundamental flux density component in the air gap and r is
the radius of the boundary circle. The value of B has been determined from the time-stepping
analysis of the motor, in which the hysteresis was neglected, and the iron core was modeled

using a single-valued B-H relationship.

The solution to (3.69) is obtained in the same way as the solution to (3.5), that is by
combination of FEM and B-FPT as was described in the previous sections. By discretizing
Equation (3.71) in time, a sequence of quasi-static boundary conditions is obtained. Equation
(3.69) is then solved in each discrete time step, always subject to new boundary conditions.
After completing one time step, the vector hysteresis model is updated and the procedure
moves to next time step.

Since the eddy-current and excess losses are excluded from the analysis, the loss
induced in the rotor represents the hysteresis loss. It is denoted by Pv};ﬁ and computed from

Equation (3.47) or (3.48) by carrying out the integration over the rotor core volume. In order

to distinguish this loss from the hysteresis loss of the rotor computed by a single-valued

function p* (3.54), the subscript vuy is used, indicating that the particular loss P} has
been computed by means of the vector hysteresis model.
The existing power balance in the modeled system

P =Py (3.73)

relates the hysteresis loss PT° to the input air-gap power P(;in associated with the

vhm

electromagnetic torque 7,

in _ 1
B = vy Td (3.74)
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and allows computing the hysteresis torque in two separate ways, thus testing the numerical

models. The hysteresis torque 7; is given by

Phys
T, = Plyhm (3.75)
,

€
The computational procedure described above has been applied for the hysteresis torque
estimation of a test induction motor. The results of the simulations are reported in Chapter 4,
in which a comparison to the measured hysteresis torque is also provided. The experimental

retrieval of the hysteresis torque is briefly outlined in the following.

3.5.2 Measurement

Experimental retrieval of the hysteresis torque was carried out by a procedure described by
Arkkio et al. (1998). The measuring set-up along with the list of devices used in the
measurements is presented in Appendix E. The issues related to the accuracy of the

measurements are discussed in Section 4.4.

In this measurement, a test cage induction machine is driven by a wound-rotor machine
(Fig. 3.2). The stator winding of the wound-rotor machine is supplied from the same 50 Hz
sinusoidal voltage source as the test induction machine. The rotor winding of the wound-rotor
machine is excited from a power amplifier, which, in connection with an arbitrary waveform
generator, allows a voltage supply of very small frequencies. Thus, a rotation of the test

induction machine at a series of very small exact slips is easily achieved. The rotor of the test

Synchronous Generator .
750 kVA .
Power Analyzer
U,i1,P
Arbitrary Waveform Power Amplifier
Generator
Wound - rotor machine Test induction machine

Fig. 3.2. A cage-induction motor hysteresis torque and core loss measuring set-up.



69

induction machine rotates a little slower than the stator field (positive slips) or a little faster
that the stator field (negative slips). After a certain time period (2000 seconds in the case of a
4-pole machine for the rotor voltage frequency of 1 mHz), the rotor makes one revolution less
or more than the stator rotating field. The power taken by the test induction motor is measured
by a power analyzer during that time period, which actually corresponds to one relative

revolution of the rotor with respect to the stator field.

An example of the measured power for a 37 kW induction motor (Appendix D) is
shown in Fig. 3.3 for the rated voltage of 400 V and the positive and negative slips of 0.002
percent as a function of the rotor angle, which represents the relative position of the rotor with
respect to the stator field. Owing to the magnetic anisotropy of the rotor core that causes
reluctance torque, the power taken by the induction machine fluctuates. The average power is

computed for both the slips, which is represented in Fig. 3.3 as a dashed line.

This procedure is performed for several small positive (motoring action) and negative
(generating action) slips, which enables drawing a power versus slip curve. An example of
such a measured curve is shown in Fig. 3.4, where the curve is drawn for the rated voltage.
The black dots stand for the average powers taken by the induction motor, determined for

each particular slip by the procedure described in the previous paragraph.

Power [W]

300 T —o— gip=0.002%, Paverage=786W

200 1 —o— Slip=-0.002%, Paverage=457W
100

0 60 120 180 240 300 360
Rotor angle [°]

Fig. 3.3. The input power of the cage induction motor measured as a function of the rotor
angle, which represents the relative angle of the rotor with respect to the stator field. The
power is shown at two slips of opposite signs. The dashed lines represent the average powers
for the positive and negative slips, respectively.
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In order to get the input power to the motor at zero slip (synchronous speed), the linear
extrapolation is used on both sides, which results in the powers shown as white dots in Fig.
3.4. It is apparent that there is an abrupt change in the power when passing the synchronous
speed from motor operation to generator operation or vice versa. This step change in the
power is associated with the power drop caused by the hysteresis torque, which changes its
direction when passing the zero slip. For the particular case shown in Fig. 3.4 and
corresponding to the rated voltage, the change in the measured power is 210 W, which

corresponds to the hysteresis torque of 0.67 Nm.

It is believed that the method of measurement outlined above gives quite reliable
hysteresis torque values for verifying the method of analysis. Naturally, better accuracy would
be obtained in test rigs specially designed for measuring the hysteresis losses. Nevertheless,
the method described above gives the possibility to study the phenomena associated with
hysteresis in the geometry of an induction motor together with the real, complicated time

variation of the magnetic field.

1200
'Y

1000 \.\.\
motor
800 \-\o

400 C\\( generator —

Power [W]

200 e
0
0,015 0,010 0,005 0,000 -0,005 -0,010 -0,015
Slip [%]

Fig. 3.4. The average power taken by the cage induction motor as a function of the slip. The
drop in the power at zero slip is caused by the hysteresis torque of 0.67 Nm. The cross
represents the input power of the motor after subtracting the power drop associated with the
hysteresis torque. The power characterized by the cross is the sum of the core and resistive
losses of the motor.
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Core loss measurement

The method for experimentally determining the hysteresis torque as discussed above can be
conveniently used for estimating the core loss. In fact, subtracting (adding) the power
corresponding to the hysteresis torque from (to) the power obtained by the extrapolation of the
measured powers to zero slip for motor (generator) operation, the average power loss taken by
the induction motor at synchronous speed is obtained. The value of this power for the
particular case of the rated voltage is 623 W, indicated in Fig. 3.4 by a cross. This power
represents the sum of the core and resistive losses of the test motor running at synchronous

speed.

The entire measuring process described above was repeated for different values of the
supply voltage amplitudes. In this way the total power loss versus the supply voltage curve
was constructed and it is shown in Fig. 3.5 in the form of white dots. Subtracting the resistive
stator loss from the total measured losses, the core loss is acquired, represented in Fig. 3.5 by

black triangles.

1400 — —o—total loss f

1200 | —*—core loss

0 100 200 300 400 500
Supply voltage [V]

Fig. 3.5. The measured total and core losses of the cage induction motor as functions of the
supply voltage. The total loss represents the sum of the resistive loss and the iron core loss.
The core loss is obtained by subtracting the resistive stator loss from the total losses. Thus,
the measured core losses include also the resistive rotor losses.
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4 Results

This chapter reports the results obtained by the computational models and procedures
described in Chapters 2 and 3. The structure of the chapter is organized as follows: Section
4.1 introduces the parameters of the hysteresis and core loss models used; Section 4.2
discusses the verification of the hysteresis model and presented numerical techniques; Section
4.3 reports the results of the application of the proposed techniques to three individual test
induction motors, and Section 4.4 discusses the results from the point of view of the solution

times and accuracy.

4.1 Hysteresis model and core loss model parameters

As discussed in Section 2.2, the only function needed to identify the hysteresis model is the
upper branch of the limiting hysteresis loop Hj,, . This function has been obtained by
performing a DC-field measurement (Appendix B) on a ferromagnetic wound-ring sample
(Appendix A). The measured upper branch of the limiting hysteresis loop for the considered

ferromagnetic material is shown in Fig. 4.1. The remanence is 0.56 T and the coercive force is

60 A/m.

The parameters for modeling the magnetization curve towards saturation, introduced in

Section 2.2.2, are summarized in Table 4.1.

Magnetic flux density [T]
o
Magnetic flux density [T]

|
= |
(S I
d .

5 0 5 10 15 200 500 0 5
Magnetic field [KA/m] Magnetic field [A/m]

a) b)

Fig. 4.1. The measured upper branch of the limiting hysteresis loop of the considered
ferromagnetic material (a) and an enlarged view near the zero magnetic field. These data
have been used to identify the hysteresis model according to the identification procedures
described in Chapter 2.

Ty 00 1000
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TABLE 4.1. PARAMETERS OF THE HYSTERESIS MODEL OF THE CONSIDERED FERROMAGNETIC
MATERIAL FOR MODELLING THE MAGNETIZATION CURVE CLOSE TO SATURATION.

parameter value
H, [A/m] 10 811
B, [T] 1.78
H, [A/m] 150 000
B [T] 2.2
U, [H/m] 152 u,
Hy [A/m] 13 735

Fig 4.2 shows a modeled saturated symmetric B-H loop. The loop has been obtained by
means of the hysteresis model in the hysteretic part of the B-H relationship and by using the
analytical function represented by Equation (2.15) with the parameters from Table 4.1 in the
single-valued part of the B-H relationship.

Recalling the simplifying assumptions of the no-load motor analysis from Section 3.1,
the nonlinearity of the rotor core is modeled by a single-valued function. This function is
represented here by an anhysteretic curve of the considered ferromagnetic material,
approximated as an average of the upper and lower branches of the limiting hysteresis loop. If
the hysteresis in the stator core is replaced by a single-valued function in order to compare the
core loss computation between the conventional and presented approaches, the nonlinearity of

the stator core is also modeled by the same nonlinear single-valued function.
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Magnetic field [kA/m] Magpnetic field [A/m]
a) b)

Fig. 4.2. The simulated highly saturated symmetric hysteresis loop (a) and an enlarged view
near the zero magnetic field (b).
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Fig. 4.3. The computed limiting curves of scalar models working under vector models of
different directions (a) and an enlarged view (b).

Regarding the vector model, the limiting curve of the scalar model working under the

vector model A, has been determined from the measured according to the procedure

s
lim

described in Section 2.3.2. The limiting curve H,,, has been computed for several directions

S-v

of the vector model. An example of H,,, for 3, 4,5, 6 and 9 directions is shown in Fig. 4.3

along with the original scalar limiting curve H; . In order to see the differences between the

vector limiting curves of different directions, the curves are shown for positive values of the
magnetic field only (Fig. 4.3 a) and an enlargement is also provided (Fig. 4.3 b). It is clear
from Fig. 4.3 that after the number of directions of the vector model reaches 6, the vector

limiting curve practically does not change. From this point of view, the recommended number

of directions seems to be 6.

The core loss coefficients have been determined according to the procedure described in
Section 3.3.5. The obtained coefficients, which were used for the empirical core loss

evaluation through the formulae presented in Section 3.3, are summarized in Table 4.2.

TABLE 4.2. COEFFICIENTS OF THE EMPIRICAL CORE LOSS MODEL.

Coefficient Chys Mhys Celass

Value 243 1.71 1.0

CBXC
0.86
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Fig. 4.4. Separation of the core losses on the wound-ring sample. The losses are shown as
functions of the frequency under sinusoidal flux density of 1.3 T peak value (a) and as
functions of the peak flux density for frequency of 50 Hz (b). The solid and broken lines
represent the computed losses using the empirical model with the coefficients from Table 4.2.
The single white circles represent the total measured core losses.

An example of the core loss separation performed on the test wound-ring sample is
depicted in Fig. 4.4, where the empirically computed and measured core losses are shown as
functions of the frequency and peak flux density. In both cases the correspondence between
the measured and empirically evaluated core losses is tolerable with the relative error of no

more than 13%.

The considered ferromagnetic material, whose main nonlinear and core loss features
have been presented above, is used from this point forward in all presented applications. As
regards the simulations of motors, the same material has been used to model the iron cores of
all three studied motors. However, the actual material of the studied motors is unfortunately
not exactly known, which should be kept in mind when comparing the calculated and

measured results.
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4.2 Verification of numerical models

4.2.1 Scalar hysteresis model verification

The scalar model is verified by a direct comparison of its outputs to the DC-field
measurements performed on the wound-ring sample for different symmetric and unsymmetric
hysteresis loops and branching. The computed and measured hysteresis loops are reported in

Fig. 4.5.

Fig. 4.5 a) shows a symmetric hysteresis loop with the peak flux density of 1.35 T. A
certain minor discrepancy can be observed, especially near the turning points of the loop. A
comparison between the computed and measured minor loops is presented in Fig. 4.5 b). The
B-H tracing starts from the point of zero magnetic field and remanent flux density. The
magnetic field in A/m approximately imitates the following pattern 0 > 500 > -200 > 50 > -50

> 500, whereby two minor loops are created. The error is present particularly in the modeling
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Fig. 4.5. Comparison between computed and measured hysteresis branching: a) symmetric
hysteresis loop with the peak magnetic flux density of 1.35 T, b) hysteresis branching with
minor loops, ¢) and d) first order reversal curves.
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of the first upper minor loop; otherwise the correspondence is relatively good. The computed
and measured first-order reversal curves are shown in Fig. 4.5 c) and d) respectively. Similarly
as observed in Fig. 4.5 c), regarding the small minor loops for which the turning value of the
magnetic field is larger than zero, the disagreement is generally worse than for the remaining
reversal curves. Despite the discrepancies revealed in Fig. 4.5, this simplified Preisach model
gives predictions that agree reasonably well with the experiments, and therefore it is qualified
for the FEM implementation. For even better accuracy, identifying the model by using the
first-order reversal curves should be performed. It would certainly be interesting to see the
comparison between these two approaches; however, this is beyond the scope of this work,

but may be performed and reported in the future.

4.2.2 Vector model and numerical technique verification

A natural way to verify a vector hysteresis model is undoubtedly to perform the measurements
under the rotating field, for example, by making use of a single-sheet rotational core loss tester
(Zhu and Ramsden, 1993b). Since such equipment has not been available, other ways of
verifying the vector model had to be found. First of all, a comparison between the vector
model applied along one direction and the scalar model is reported. After that, the verification
of the hysteresis model is based on the computation of the hysteresis torque and associated
losses in a simplified geometry of a 37 kW test induction motor (Appendix D) and their
comparison with measurements. The slotless and slotted rotor structures are investigated as
laminated ferromagnetic bodies subject to a rotating magnetic field. The first-order finite
element mesh used for the calculations corresponds to the rotor mesh of the 37 kW test

induction motor shown in Fig. F2 in Appendix F.

Vector model applied along one direction

A test of the prepared vector model, in which the input to the vector model has been restricted
to vary only along one direction, is shown in Fig. 4.6. A set of first-order reversal curves has
been chosen for the comparison between the output from the vector and scalar models. The
vector model consisted of three (a) and six (b) scalar models (directions). In both the reported

cases the agreement is satisfactory.
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Fig. 4.6. Comparison of minor loop computations between the scalar model and the vector
model with a) 3 directions and b) 6 directions applied along one direction.

Slotless rotor geometry

The numerical technique described in Section 3.5 has been applied to a geometry consisting of
a slotless rotor of a 37 kW induction motor. Such a simplified geometry has been chosen in
order to eliminate the torque ripple caused by slotting from the analysis. The verification of
the numerical technique comprising the vector hysteresis model is based on the power balance
(3.73) existing in the model system. The hysteresis loss (3.47) and the input air-gap power

(3.74) are computed and compared.

As an example, a simulation with 50 time-steps per electrical period is reported, with
the amplitude of the fundamental flux density component corresponding to a voltage of 400
V. Two electrical periods were computed, starting from the zero field as an initial state. The

computations were carried out for vector hysteresis models with several different directions.

It was observed that the computation with more than 50 time-steps did not significantly

influence the results.

The time variation of the torque is shown in Fig. 4.7 a) for the vector model of 2, 3, 4
and 6 directions. Since a slotless geometry is considered, with the fundamental wave of the
flux in the air gap, the time variation of the torque is expected to be smooth. It is clear from
Fig. 4.7 a) that the simulation with 2 directions is unable to correctly predict that behavior,
because ripple occurs in the torque. Naturally, the more directions the smoother the torque

becomes, as seen from the curve corresponding to the simulation with 6 directions.
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Fig. 4.7. Results of the simulation for the slotless geometry: a) The electromagnetic torque as
a function of time. (b) The hysteresis loss as a function of the number of directions in the
vector model.

After reaching the steady state, the hysteresis loss is determined from Equation (3.47)
and eventually separated into alternating and rotational components according to (3.48). The
computed hysteresis loss is reported in Fig. 4.7 b) as a function of the number of directions in
the vector model. An oscillatory convergence to a certain value is evident. This graph is
important for suggesting the optimal number of directions in the vector model, related to the
prediction of the hysteresis loss. Clearly, a vector model with 1 and 2 directions is not
recommended. A vector model with more than 6 directions seems to be unreasonable as well.
In order to be on the safer side, that is to rather predict a little higher than lower losses, an
even number of directions may be recommended. Thus, the choice has to be made between 4
and 6 directions. The smoother torque and better hysteresis loss computation accuracy suggest
6 directions. However, since the difference between the computed hysteresis loss for 4 and 6
directions is only marginal, 4 directions seems to be a fair trade-off. In any case, 6 directions
seems to be sufficient from the smooth hysteresis torque and hysteresis loss computation

accuracy points of view.

The computed power balance (3.72) for the slotless geometry simulation is reported in
Table 4.3. The percentage error is related to the input power. The numbers presented show

that the accuracy of the proposed numerical technique is satisfactory.
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TABLE 4.3. POWER BALANCE AS A FUNCTION OF THE NUMBER OF DIRECTIONS IN THE VECTOR
MODEL FOR THE SLOTLESS GEOMETRY SIMULATION.

Number of directions: 1 3 4 6 9

Input power [W] 34.41 54.27 57.03 57.02 55.71
Hysteresis loss [W] 33.34 53.88 56.66 56.62 55.33
Error [W] 1.07 0.39 0.37 0.40 0.38
Error [%] 3.11 0.72 0.65 0.70 0.68

Realistic slotted rotor geometry

Applying the numerical procedure to a realistic rotor geometry allows a comparison of the
computed hysteresis torque with the hysteresis torque obtained experimentally, as described in
Section 3.5.2. In the simulation, an electrical period was divided into 50 time-steps and the
number of directions in the vector model was set to 6. Similar to the slotless geometry, two
electrical periods were computed starting from the zero field as an initial state. As an example,
the computed electromagnetic torque for the amplitude of the fundamental flux density
component corresponding to 400 V is shown in Fig. 4.8. In contrast to the rather smooth
torque for 6 directions in the slotless case (Fig. 4.7 a), the computed torque exhibits ripple
caused by the slotting of the rotor. Although the slots in the studied geometry are closed, at
higher voltages the iron bridges above the slots saturate and the slots become magnetically

‘visible’ from the air-gap side, which causes the ripple in the torque.

Similar computations have been carried out for voltages ranging from 50 up to 500 V.

The hysteresis loss induced in the rotor and subsequently the corresponding hysteresis torque

0.75r

Torque [Nm]
o
~

0.65r-

0] 0.01 0.02 0.03 0.04
Time [s]

Fig. 4.8. The electromagnetic torque as a function of time in the simulations with the realistic
slotted rotor and the amplitude of the fundamental flux density wave corresponding to 400 V.
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Fig. 4.9. The computed and measured hysteresis torque as a function of the supply voltage for
a 37 kW induction motor. As a reference, the rated torque of the motor is 240 Nm.

have been computed and compared with the measured results. This comparison is shown in
Fig. 4.9. At small supply voltages, the method of analysis gives too small values of the
hysteresis torque. At higher voltages, the calculated torque grows a little faster with the
increasing voltage than the measured torque. According to Fig. 4.10, which shows the loss
distribution caused by the alternating (a) and rotational (b) fields, the fast growth of the
hysteresis torque at the highest voltages is associated with the alternating losses in the teeth,

and the rotational losses in the yoke.
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Fig. 4.10. The computed hysteresis loss in different parts of the studied rotor geometry as a
function of the supply voltage. The hysteresis loss is separated into a) alternating and b)
rotational components.
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4.3 Application to induction motors
4.3.1 Test motors

The main parameters of three individual induction machines used in the simulations and
measurements are given in Table D1 in Appendix D. The cross-sectional geometries of the
test machines in a plane perpendicular to the shaft are shown in Appendix F. All the test

machines had unskewed rotor bars.

The geometries of 37 and 315 kW motors consist of four symmetry sectors with
identical geometries. There are two symmetry sectors with identical geometries in the case of
the 30 kW motor. Obviously, it is enough to analyze one of the sectors, called the solution

sector, which spans one pole pitch.

Symmetry sectors and associated boundary conditions have already been discussed in
Section 3.2. In accordance with what was mentioned there, it is assumed that the flux does not
penetrate the outer surface of the motor. This corresponds to the zero boundary condition for
the magnetic vector potential on the outer surface of the solution sector. The potential on the
sides of the solution sector is controlled by the negative periodic boundary conditions, which
means that the potential on one side of a solution sector is free to vary, and on the other side it

has the same value with the opposite sign.

The finite element meshes of the solution sectors of the studied motors are depicted in
Appendix F. For time-consumption reasons, when solving the field with hysteresis included,
the finite element meshes are constructed from first-order triangular elements. The total
number of nodes, the total number of elements and the numbers of elements covering different
regions are summarized in Table 4.4. The hysteretic elements cover the stator core, the single-
valued elements cover the rotor core and shaft, and the linear elements cover the stator

windings, the rotor bars and the air gap.

The assumptions related to the iron core have been discussed in Section 3.1.3. In brief,
the currents in the laminated core of the motor are ignored, the magnetic properties of the
rotor core are approximated by a single-valued B-H curve and the magnetic properties of the

stator core are accounted for through the vector hysteresis model, with the limiting curve
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TABLE 4.4. THE NUMBER OF NODES AND ELEMENTS IN THE FINITE ELEMENT MESHES OF THE
STUDIED MOTORS.

Parameter: Motor: 30 kW 37 kW 315 kW
Number of quadrants 2 1 1
Number of nodes 1 245 863 1231
Number of elements 2198 1510 2 186
Number of hysteretic elements 540 360 576
Number of single-valued elements 702 486 622
Number of linear elements 956 664 988

shown in Fig. 4.1. The total number of vector hysteresis models corresponds to the number of
hysteretic elements. As for the 37 kW motor, if the number of directions in each vector model

is chosen as 6, the total number of scalar hysteresis models included in the analysis is 2 160.

In the single-valued part of the B-H relationship (Fig. 2.1), i.e. in a region close to
saturation, a single-valued function (2.15) is used, whose main parameters are summarized in

Table 4.1.

Since the principal means of verification of the proposed numerical techniques applied
to electric machines is the comparison between the computed and measured no-load core
losses, the magnetic field of the test motors is analyzed at no-load. The results of the no-load
simulations are presented for the 37 kW motor only. In particular, the flux density variations
and hysteresis loops in different motor regions as well as the core loss distribution and power
balance are reported. The comparison between the computed and measured losses is
summarized for all the motors. Some of the results have been presented in the following series

of papers: Saitz and Arkkio (1999), Saitz (2000), Saitz et al. (2000) and Saitz (2001).

4.3.2 No-load operation

The magnetic field analysis of the 37 kW test motor is presented below. In the time-stepping
analysis, the stator winding was powered from a symmetric, three-phase, 50 Hz sinusoidal
voltage supply and the rotor was forced to rotate at synchronous speed. The rotation of the
rotor is modeled by changing the finite element mesh in the air gap. The number of time-steps
per period of supply voltage was 400, and the number of directions in the vector models was

6.
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Fig. 4.11 shows the phase current waveforms of the studied motor at no-load supplied
by 100 V and 400 V. The figures on the left hand side have been produced from the time-
stepping computed results and the figures on the right-hand side have been prepared from the
measured data. Since the slots of the rotor are closed, the current waveforms for the lower
voltage supply are practically sinusoidal. As the voltage rises, the bridges over the rotor slots
become saturated, the permeability in those areas decreases and therefore the rotor slotting
starts to be seen from the stator side. The higher harmonics due to slotting of the rotor are
present in the current waveforms. The correspondence between the computed and measured
waveforms is good for the voltage of 100 V. The discrepancy is higher for the rated voltage,

what is attributed to the lack of exact knowledge of the iron magnetic properties in the motor

studied.
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Fig. 4.11. The computed (a) and measured (b) waveforms of the phase currents of the 37 kW

test induction motor running at synchronous speed and supplied by a voltage of 100 V and
400 V.
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The loci of the flux density vectors and B-H relationships have been recorded for
presentation at the points shown in Fig. 4.12. Since the stator core is of major interest, five
points have been chosen for presentation essentially covering tooth-tip, tooth and yoke of the

stator. One point has been selected in the rotor core of the induction motor studied.

Figure 4.13 shows the curves of the flux density vectors’ loci in the iron core of the
studied induction motor running at synchronous speed. In the stator teeth (b) as well as in the
stator tooth-tips (a), the flux density variation is almost alternating. At the end of the teeth (c)
and behind the slots of the stator (d) the flux density variation can no longer be considered as
alternating. The rotation of the flux density vectors in these parts of the iron core is obvious.
In the point near the outer surface of the stator (e), the flux density variation becomes again
alternating; however, this time it alternates along the tangential direction, whereas in the teeth
and tooth-tips the alternation is along the radial direction. Since first-order elements have been
used in the finite element mesh, and the element in which the point (e) lies contains two nodes
at the outer surface where the vector potential is fixed to zero, the variation of the flux density
in this point is in fact purely alternating. The flux density vectors in the rotor tooth-tips also
follow very complicated patterns (f), which are created by the combination of the rotating and

DC-biased fields. The flux density in other parts of the rotor core is practically constant.

Figure 4.13 clearly indicates complex patterns, which the flux density vectors trace in
the different parts of the stator and rotor iron core of an induction motor. As far as the core
loss calculation of induction motors is concerned, the curves presented in this figure represent
clear evidence that the simplified core loss computation methods, which assume the flux
density variation to be unidirectional and sinusoidal, are not appropriate and will likely lead to

inaccurate results.

Fig. 4.12. The points for which the flux density vectors loci and B-H relationships have been
recorded for presentation.
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Fig. 4.13. The loci of the flux density vectors in the iron core of the studied induction motor
running at synchronous speed and supplied by the rated voltage. The curves have been
recorded at the points from (a) through (f) according to the sketch shown in Fig. 4.12.
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The curves in Fig. 4.14 represent the B-H relationships at the points of the studied
motor’s iron core according to Fig. 4.12. As already mentioned, the magnetic field in the

tooth-tips and the teeth of the stator core is practically alternating, with the variation almost

15 2
~ 3 s P
E I E
> > L
§ § 1
g o5 g
> S 05r
3 3
e 0 e 0
] ]
5 5 05
£-05 g0
© ©
5 g I
© S
r -1k 14
_1.5,
-15 . L L -2 . . .
-400 -200 0 200 400 -4000 -2000 0 2000 4000
Radial magnetic field [A/m] Radial magnetic field [A/m]
2 15
sf 9 E ®
E S 1
> 4l k7
3 © 05
X 051 2
= o
g 0 § 0
g 2
g-05 E
€ E_O'S
@ c -1
-15 8
_% . . . 15 . . . .
-4000 -2000 0 2000 4000 -3000 -2000 -1000 0 1000 2000 3000
Radial magnetic field [A/m] Tangential magnetic field [A/m]
15 15
d) d)

[
T

o
o
T

Radial magnetic flux density [T]
)
o o

I
[N
T

-1

1200

-1000 -500 0 500 1000 1500
Radial magnetic field [A/m]

[
T

o
o
T

1
Il
331

Tangential magnetic flux density [T]
- o

-1,

100

-2000 -1000 0 1000 2000 3000
Tangential magnetic field [A/m]

Fig. 4.14. The B-H relationships of the flux density and magnetic field radial (a)-(d) and
tangential (e) components. The curves have been recorded at the points from (a) through (e)
according to the sketch shown in Fig. 4.12 during the time-stepping simulation of the studied
induction motor running at synchronous speed and supplied by the rated voltage.
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solely in the radial direction. The B-H relationship between the radial components of the flux
density and magnetic field (a-b) is clearly hysteretic. The variations in the tangential direction
are of small magnitudes and are not shown. At the end of the teeth and behind the slots of the
stator, the flux density and magnetic field vectors rotate and rotational hysteresis occurs.
Nevertheless, the B-H relationship between the radial components of the flux density and
magnetic field at the end of the teeth (c) is still a hysteresis loop of conventional shape. This
obviously cannot be said about the B-H relationship between the radial and tangential
components of the flux density and magnetic field behind the slots (d), where the rotating field
effects are pronounced. Since the variation of the field near the outer surface of the stator is
alternating in the tangential direction, the B-H relationship between the tangential components
of the flux density and magnetic field is shown (e). The B-H relationship in the rotor is a
single-valued one, modeled by the curve depicted in Fig. 4.2 b), and therefore omitted in Fig.
4.14. Instead, the time variation of the radial component of the flux density and its spectrum at

point (f) of the rotor core are shown in Fig. 4.15.

As indicated above, at the end of the teeth and behind the slots of the stator, the rotation

of the flux density and magnetic field vectors is pronounced. An example of this situation is
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Fig. 4.15. The time variation of the radial component of the magnetic flux density and its
spectrum. The time variation has been recorded at point (f) of the rotor core according to Fig.
4.12, during the time-stepping simulation of the studied induction motor running at
synchronous speed and supplied by the rated voltage. The ripple in the time variation is
caused by slotting of the stator. The most pronounced component of the spectrum appears at
the frequency of 1 200 Hz, which corresponds to the first stator slot harmonic.
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Fig. 4.16. The loci of the magnetic field strength H and flux density B vectors traced at point
(d) according to Fig. 4.12 during one period of the motor steady-state no-load operation. The
vectors rotate in the counter-clockwise direction and for the sake of clarity they are
normalized (Bmax=1.54 T, Hmax=2640 A/m) and shown only at 10 instants in time out of
400, into which a period of the supply voltage was discretized.

shown in Fig. 4.16, where the loci of the magnetic field H and flux density B vectors traced at
point (d) of the stator core is reported. The rotational hysteresis causes vector B to lag behind
vector H by a certain time-varying angle, shown related to the angular position of vector H in

Fig. 4.17.
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Fig. 4.17. The angle of lag between vectors H and B at point (d) according to Fig. 4.12
during one period of the motor’s steady-state no-load operation.
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4.3.3 Computed core losses and power balance

Core loss distribution

The core losses are computed according to the core loss model presented in Section 3.3 from
the no-load distribution of the magnetic field and flux density in time and space. The

coefficients for the empirical formulae are summarized in Table 4.1, Section 4.1.

The computed core losses in the stator of the 37 kW test motor as functions of the
supply voltage are shown in Fig. 4.18 a). Apparently, the hysteresis contribution to the total
stator core losses is a dominant one. The classical and excess losses are of about the same
magnitude. The same situation but for the rotor is depicted in Fig. 4.18 b). The eddy-current
loss (sum of the classical and excess losses) is much higher than the hysteresis loss. Owing to
higher slot harmonics present in the flux density harmonic content, especially in the tooth tips

(Fig. 4.15), the classical loss prevails over the excess loss.

The computed total (stator plus rotor) core losses separated into hysteresis, classical and
excess losses as functions of the supply voltage are presented in Fig. 4.19 a). The major

contribution to the total core loss appears to be the hysteresis loss. However, when computing
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s 160 Oclassical core loss S 60 . core loss
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a) b)

Fig. 4.18. The computed core losses of the studied 37 kW induction motor in the stator (a) and
rotor (b), separated into hysteresis, classical and excess losses as functions of the supply
voltage. Note that the hysteresis loss in the stator is computed directly from the simulated
hysteresis loops, whereas the rotor hysteresis loss is determined by using the empirical model.
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the total eddy-current loss by summing the classical and excess loss contributions, it can be
seen that the eddy-current loss is at least as important as the hysteresis loss. The difference
between the classical and excess losses comes from the rotor part, as was explained in the

previous paragraph.

The proportion of the stator and rotor core losses in per cent of the total core loss as a
function of the supply voltage is shown in Fig. 4.19 b). Clearly, the major part of the total core
loss is induced in the stator laminations. Regarding the rated voltage of 400 V, more than 70%

of the total core loss is created on the stator side.

Figure 4.20 concentrates on the hysteresis loss in the stator core. Note that the hysteresis
loss of the stator is the only loss that is included in the analysis of the magnetic field. All the
other losses are not incorporated in the analysis and they are computed using empirical
formulae. The separation between alternating and rotational hysteresis losses is presented and
the distribution of these losses in main parts of the stator core as functions of the supply
voltage is given. The major part of the alternating and rotational hysteresis losses comes from
the yoke contribution. The tooth-tip contributions are not of significant magnitude, because
closed rotor slots reduce the flux density harmonic content on the stator side. Regarding the
rotational loss, the yoke contribution is the only important contribution. Apart from the yoke,

about half of the alternating loss is induced in the teeth. Another important point arises from
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Fig. 4.19. a) The computed total core losses of the studied 37 kW induction motor separated
into hysteresis, classical and excess losses as functions of the supply voltage. b) The
proportion of the stator and rotor core losses as functions of the supply voltage.
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Fig. 4.20. The stator alternating (a) and rotational (b) hysteresis losses as functions of the

supply voltage. The alternating and rotational hysteresis losses have been computed using
Equations (2.55) and (2.57) respectively.

rotational loss is about 30% of the alternating loss. Hence, the rotational loss significantly

contributes to the total hysteresis loss, and not accounting for the rotational loss when

computing the losses can lead to serious errors.

Figure 4.21 examines the stator losses that are not included in the analysis of the

magnetic field, namely the classical and excess losses, computed by the empirical formulae. A

comparison of these losses shows, as already indicated, that these losses are of approximately

the same significance, and their distribution between yoke, teeth and tooth-tips is similar.
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Fig. 4.21. The stator classical (a) and excess (b) losses as functions of the supply voltage. The
computation of these losses has been accomplished from the computed magnetic field by
employing the empirical formulae.
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Figure 4.22 presents the distribution of the core losses in the rotor core. Since the field
in the substantial part of the rotor (yoke, teeth) is practically constant (dc field), the core
losses, unlike in the stator core, are situated primarily in the tooth-tips. The teeth contribution
is insignificant and the yoke contribution is not noticeable. The dominance of the classical

loss is obvious, as previously explained.
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Fig. 4.22. The rotor hysteresis (a), classical (b) and excess (c) losses as functions of the
supply voltage. The computation of these losses has been accomplished from the computed
magnetic field by employing the empirical formulae. The losses in the yoke are so small that
they are not visible in the graph.
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Influence of the time-step size on the power balance and core losses

The power balance of the test 37 kW motor has been evaluated from the results of the no-load
operation according to the procedure outlined in Section 3.4. The calculations were performed
vector models was set to 6 in all the calculations. The effect of the time-step size on the power
balance for the studied motor is reported in Table 4.5. The shaft power is negative owing to
higher harmonics torques associated with the losses in the rotor bars caused by higher
harmonics fluxes. The reported error has been computed by subtracting all the other power
components from the input power. The percentage error is computed with respect to the input
power. The improvement of the computed power balance accuracy with decreasing time-step

size is obvious.

TABLE 4.5. THE EFFECT OF THE TIME-STEP SIZE ON THE POWER BALANCE OF THE 37 KW MOTOR.

Time-step size [ms]: 0.2 0.1 0.05 0.025
Input power [W] 346.22 343.15 342.16 323.44
Shaft power [W] -112.90 -115.61 -121.14 -138.88
Resistive stator losses [W] 223.83 224.69 224.76 226.89
Resistive rotor losses [W] 11.68 22.83 29.90 34.01
Hysteresis stator losses [W] 190.96 193.00 193.90 194.50
Error [W] 32.65 18.24 14.74 6.92
Error [%] 9.43 5.32 431 2.14

Table 4.6 presents the influence of the time-step size on the computation of the core
losses (3.46). The most affected component is the classical loss, which increases almost 100%
from the largest to the smallest studied time-step size. The change of the stator hysteresis loss

with the time-step size is not significant.

TABLE 4.6. THE EFFECT OF THE TIME-STEP SIZE ON THE CORE LOSSES OF THE 37 KW MOTOR.

Time-step size [ms]: 0.2 0.1 0.05 0.025
Hysteresis loss (stator) [W] 190.96 193.00 193.90 194.50
Hysteresis loss (rotor) [W] 18.61 19.64 19.87 20.23
Classical loss [W] 80.59 113.67 136.52 150.1
Excess loss [W] 59.51 69.35 74.80 78.76
Total core losses [W] 349.67 395.66 425.09 443.59
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Influence of the number of directions included in vector models on the power balance and
core losses

The effect of the number of directions, that is, the number of scalar hysteresis models included
in the vector models, on the power balance and core losses computations is presented in Table
4.7 and 4.8, respectively. These results have been computed using 400 time-steps per period.
As can be seen, the number of scalar models has only a small influence on the power
balance, except for the number of directions equal to 1. This corresponds to the findings
associated with the simulations of the slotless geometry in the beginning of this chapter. As
can be seen from Table 4.7, although the error of the power balance does not practically
change, the input power and shaft power noticeably vary with the number of directions. It is
believed, however, that after 3, the number of directions does not significantly influence the
shaft and input powers. Rather, the change in the powers is associated with the fact that the
instantaneous no-load electromagnetic torque in the steady state oscillates very closely around
zero, which affects the computation accuracy of its time average. As a matter of fact, a slight
change in the time integration bounds produces a change in the computed electromagnetic
torque and thus in the shaft power. This change, however, is offset by the similar behavior of
the input power, which diminishes the final effect of the chosen integration bounds on the

computed power balance.

TABLE 4.7. THE EFFECT OF THE NUMBER OF DIRECTIONS IN VECTOR MODELS ON THE POWER
BALANCE OF THE 37 KW MOTOR.

Number of directions: 1 3 4 6 9
Input power [W] 254.14  329.09  302.58  342.16  336.93
Shaft power [W] -82.36  -103.52 -157.77 -121.14 -125.06
Resistive stator losses [W] 173.62 213.89 221.24 224.76 225.07
Resistive rotor losses [W] 27.56 31.73 29.79 29.90 29.92
Hysteresis stator losses [W] 91.45 173.40 195.96 193.90 192.85
Error [W] 43.87 13.59 13.36 14.74 14.15
Error [%] 17.26 4.13 4.42 4.31 4.20
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Regarding the core losses (Table 4.8), the stator hysteresis loss is the only component
that is noticeably affected. This is because the number of directions has a direct impact on the
vector models, which are included in the analysis and through which the stator hysteresis loss
is eventually modeled. The dependence of the stator hysteresis loss on the number of
directions confirms the results presented in Table 4.3, where the power balance in the slotless
geometry simulation has been reported. The computation with more than 6 directions is
clearly redundant, whereas computation with only three directions is not enough. Since the
difference between 6 and 4 directions is very small, computation with 4 directions is
recommended, bearing in mind that the computed total core losses are about half a per cent

overestimated.

TABLE 4.8. THE EFFECT OF THE NUMBER OF DIRECTIONS IN VECTOR MODELS ON THE CORE
LOSSES OF THE 37 KW MOTOR.

Number of directions: 1 3 4 6 9

Hysteresis loss (stator) [W] 91.45 173.40 195.96 193.90 192.85
Hysteresis loss (rotor) [W] 20.47 20.05 19.77 19.87 19.78
Classical loss [W] 152.69 137.43 136.83 136.52 136.54
Excess loss [W] 83.38 75.25 74.97 74.80 74.82
Total core losses [W] 347.99 406.13 427.53 425.09 423.99

4.3.4 Comparison of measured and computed core losses

This section compares the core loss computation results obtained by the proposed numerical
procedure and the experimentally retrieved results. In the computations, a period of the supply
voltage was discretized into 400 time-steps and 6 directions were used in the vector models
included in the analysis. In addition to the results obtained by time-stepping with hysteresis,
the results computed by replacing the hysteresis in the stator by a single-valued function are
reported. The measurements were carried out according to the technique outlined in Section

3.5.2.
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Figure 4.23 shows the comparison between the computed and measured losses for the
three test motors. The computed loss represents the sum of the core loss and the resistive rotor

loss so that a comparison to the measured loss is straightforward.
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Fig. 4.23. The comparison between the measured and computed no-load losses for the three
test induction motors. The computed and measured losses represent the sum of the core losses
and the resistive losses of the rotor.
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As can be seen from Fig. 4.23, the losses determined by time-stepping with the Preisach
model are generally smaller than the losses predicted by time-stepping with a single-valued
function and the empirical core loss model. This is related to the prediction of the hysteresis
losses in the stator core, as indicated in Fig. 4.24, where the separation of the losses and their
comparison, as predicted by the two methods for all three motors, is reported. According to
the presented results, the inclusion of hysteresis in the field analysis does not influence the

prediction of the losses that are not included in the field analysis.
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Fig. 4.24. The comparison between the no-load core loss components corresponding to rated
voltage supply computed by time-stepping with hysteresis and by time-stepping with single-
valued function. The percentage shown above the computed results indicates the error
deviation from the measured results.



99

4.4 Computation times and accuracy of the results

Concerning finite element magnetic field analysis, the computation times and accuracy of the
results are very important issues. Usually, they are related reciprocally and therefore a give-
and-take policy has to be often applied. This was also the case in this research work, where, in
order to make the analysis feasible and computation times bearable, certain simplifications
had to be introduced. The issues of accuracy and computation times are discussed in the

following, in which the accuracy of the measured results is also reported.

Computation times

The numerical computations were performed using computer programs developed in the
MATLAB environment. MATLAB is very efficient when dealing with vectorized operations.
However, certain computations (especially for-loops) do not run fast enough in MATLAB.
Therefore, in order to make the computation faster, some functions, which contain
unavoidable for-loops, were transformed into MEX-files. MEX-files are dynamically linked
subroutines that are created from C (or FORTRAN) source code. They can be automatically
loaded and executed by the MATLAB interpreter. The MEX-files were constructed using the
MATLAB Compiler, which transforms ordinary MATLAB scripts (M-files) into C and
creates MEX-files. MEX-files run substantially faster than M-files provided that the original

code written as M-file is not vectorized too much.

The developed programs were run on a COMPAQ Alpha Server GS140 with a
processor clock frequency of 525 MHz.

Typical numbers of iterations needed during one period of the field simulation of the
test 37 kW motor running at synchronous speed and supplied by the rated voltage are shown
in Fig. 4.25. Time-stepping with hysteresis (a), and time-stepping with single-valued function
(b), are compared. The similarity in number of iterations between the two methods proves that
the Fixed-Point technique works as efficiently and reliably with hysteresis as it works with
single-valued functions. In other words, when using the Fixed-Point iteration, the inclusion of
hysteresis in time-stepping finite element simulation does not essentially change the number

of iterations needed for convergence.
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Fig. 4.25. Typical numbers of iterations in each particular time-step during one period of the
no-load field computation of the test 37 kW induction motor supplied by the rated voltage: a)
time-stepping with hysteresis (6 directions), b) time-stepping with single-valued function. One
period of the supply voltage has been discretized into 400 time-steps. The convergence
criterion (page 55) stopping value was set to 5 -10°.

Table 4.9 summarizes typical values of some of the indicators related to the number of
iterations and CPU times and compares time-stepping with single-valued function (SVF) and
time-stepping with hysteresis, considering the different number of directions included in the
vector models. The claim made in the previous paragraph is confirmed by the average number

of iteration steps, which hardly changes when moving from time-stepping with single-valued

TABLE 4.9. TYPICAL CPU TIMES AND NUMBER OF ITERATIONS IN THE TIME-STEPPING NO-LOAD
SIMULATION OF THE 37 KW TEST MOTOR. THE TIMES GIVEN ARE RELATED TO ONE PERIOD OF THE
SUPPLY VOLTAGE DISCRETIZED INTO 400 TIME STEPS. THE ABBREVIATION SVF IN THE NUMBER
OF DIRECTIONS ROW STANDS FOR THE ANALYSIS WITH THE SINGLE-VALUED FUNCTION. THE
CONVERGENCE CRITERION (PAGE 55) STOPPING VALUE WAS SET TO 5 -10°.

Number of directions: SVF 3 4 6 9
total time (1 period — 400 time-steps) [min] 374 698 929 1218 1715
total number of iterations 20521 20433 20163 19900 19917
average time per time-step [s] 56 105 139 183 257
average number of iterations per time-step 51 51 50 50 50
maximum number of iterations per time-step 76 70 71 69 69
average time per iteration step [s] 1.09 2.05 2.76 3.67 5.17




101

function to time-stepping with hysteresis and even remains essentially unchanged in the
analyses with different numbers of directions. However, the most significant information that
arises from Table 4.9 is the ratio between the total times, which shows how many times the
incorporation of hysteresis slows down the time-stepping field simulation. For instance, the
computation with 4 directions takes about 2.5 times more CPU time than the computation
with a single-valued function, and the computation with 6 directions lasts about 3 times
longer. When deciding about how many directions should be employed in vector models, one
should keep in mind that the computation with 6 directions takes about 30% more CPU time

than the computation with 4 directions.

Having discussed the CPU times and numbers of iterations, concerning time-stepping
with a single-valued function, it should be noted that it is a usual practice to employ the
Newton-Raphson iteration scheme and the magnetic reluctivity as a function of square flux
density. However, for the sake of comparison, the Fixed-Point technique was used in all the
computations presented above with a single-valued function given in the form of a B-H

relationship.

Accuracy of the computed results

The accuracy of the hysteresis model used, the empirical formulae and the core loss

computation of the test motors are now discussed.

As reported earlier, a certain discrepancy was observed when comparing the measured
results and computed outputs from the scalar hysteresis model. This is most probably a result
of a trade-off associated with the simplified identification procedure of the scalar model. It is
believed that better accuracy would be obtained if some other more involved identification
procedure were employed, for instance the identification of the scalar model by using first-

order transition curves.

As far as the vector model is concerned, a direct comparison with the experiments,
requiring rather complicated procedures and experimental set-ups, has not been performed.
Instead, the accuracy of the vector model has been tested indirectly by comparing the
computed and measured hysteresis torques. It has turned out that the predictions gave too
small values of the torque for voltages smaller than 300 V. At higher voltages, the accuracy

improved, not surpassing the error of 11%, which can be considered reasonable. Nevertheless,
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the known deficiencies of a classical vector Preisach model, such as the fact that the model
overestimates the rotational hysteresis, certainly deteriorate the accuracy of the results. A
simple procedure for determining the vector distribution function probably takes its toll as
well. For more precise vector modelling, the approach presented by Bottauscio et al. (1998)
could be used. This approach, similarly to the method used in this work, allows the
identification of the vector distribution function directly from the scalar one for isotropic

materials.

One more simplification related to the hysteresis model, and one that possibly reduces
the accuracy, should be addressed. The simplification involves the employment of the first-
order finite element mesh for the magnetic field analysis. The accuracy is expected to be
improved by employing a denser first-order finite element mesh, especially in the core region.
This, however, would increase the computation time. In principle, there is no problem in using
a second-order mesh with isoparametric elements. In such a case the number of integration
points in one element required for sufficiently accurate numerical integration would be higher
than one, as discussed in Section 3.2.3. This means that it would be necessary to keep a
history track for each of these points, which would enlarge the computation time and memory

size requirement several times, as far as the hysteresis model is concerned.

The computed core losses for the 30 kW motor are too small when compared to the
measured values. This is especially the case when the time-stepping with hysteresis is
concerned. The predicted core losses for the other two test motors are tolerable, with the
relative error not exceeding 10% for the rated voltages. The error is attributed to different
simplifications that have been made in order to make the analysis computationally feasible
(two-dimensional field approximation, no skin effect in the conductors of the stator winding,
no currents in the laminated iron core, no hysteresis in the rotor core, rotor cage completely
short-circuited). Unfortunately, a fair comparison of the computed and measured results is
hindered by the fact the exact core material properties of the measured test motors have not
been available. In order to make more general and reliable conclusions about the accuracy of
the proposed calculation method, more motors should be put under scrutiny as well. On the
other hand, however, it should be remarked that real machines are not the best test rigs for

verifying core loss models and calculations.



103

In respect of the empirical formulae, the accuracy is again limited by the determination
of the coefficients only from the measurements under alternating flux. In order to improve the
computation of the losses by empirical formulae, the separation of the losses under rotating

flux should be performed (Bertotti et al., 1994; Zhu and Ramsden, 1998).

Accuracy of measurements

The core loss measurements on the test induction motor were performed in order to verify the
proposed calculation methods. Concerning these measurements, a NORMA 6100 power
analyzer was used to measure the total power taken by the motor. The induction motor
running close to the synchronous speed has a small power factor. The power factor in all the
measured cases was within the range 0.01 — 0.1. According to the specifications of the power
analyzer, the measuring error should be smaller than 1% at these power factors. This is related
to the total measured power. However, in order to get the core loss from the total measured
loss, the resistive loss of the stator winding should be subtracted. It is estimated that the error
of the resistive loss determination is less than 5%. This error is due to the uncertainty
associated with temperature and skin effect when computing the resistance of the winding.
The portion of the power associated with the core loss depends on the magnitude of the supply
voltage. For 100 V about 90% of the total loss is the core loss. For the rated voltage of 400 V
itis 75%, and for 500 V it is only 45%. The smaller the portion of the core loss, the larger the
influence of the resistive loss error on the accuracy. Thus, it can be roughly estimated that the
error in the measured core loss is less than 3% at voltages below the rated one. At the highest

voltage the error is less than 8.5%.
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5 Conclusions

The thorough literature review performed in the beginning of this research work and
constantly updated during the course of the research supports the conclusion that the problem
of field computation with hysteresis has become a major research topic. The proposed
solutions to the problem are numerous, obviously indicating that the research topic is

unsettled and that the ultimate solution has not yet been found.

The simple hysteresis model used in this work does not demand complex measurements
and its accuracy proved to be reasonable by comparison in DC fields. However, the prediction

of the hysteresis losses by the model could be a little better.

As far as the technique of identifying a vector distribution function is concerned, it can
be concluded from the presented results that the method is simple, easy to use and sufficiently

accurate.

The hysteresis torque computations and measurements confirm that this technique is a
good tool to validate a vector hysteresis model, because it allows the model to be tested in real

complicated patterns of the field behavior in rotating machines.

Numerous computations with the presented method of 2D time-stepping finite element
magnetic field analysis taking the hysteresis into account by combining a Preisach model and
the Fixed-Point iteration have shown that the technique is robust, reliable and always
convergent. The method is general and can be applied to the 2D magnetic field finite element
analysis of any electric machine. For the time being, the relatively lengthy CPU times can be
regarded as a drawback of the method. However, the possibility of employing some other,
more efficient iterative schemes has been investigated and shows promising results;
ultimately, rapidly growing computer power will enable, in the near or not too distant future,

the solution of computationally very heavy problems.

The computed results show that computation with more than 6 directions included in the
vector models is merely redundant. On the other hand, simulations with less than 4 directions

in the vector models are not recommended.
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The comparisons between the computed and measured core losses on the test induction
motors show that, in general, the results are acceptable. In any case, more motors and with
different supplies (frequency converter) and with precisely known core material properties
should be analyzed in order to make more general and reliable verdicts about the efficiency

and accuracy of the proposed calculation methods.
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Appendix A. Parameters of the measured ferromagnetic wound-ring

The test sample used for the DC-field measurements and core loss separation measurements
was prepared from ferromagnetic laminations obtained from a manufacturer of electric
machines as typical laminations used in electric machines. There was no heat treatment of the
laminations after punching. The burrs caused by punching were leveled off with a file. The

parameters of the ferromagnetic wound-ring sample are given in Table Al.

TABLE A1l. PARAMETERS OF THE MEASURED FERROMAGNETIC WOUND-RING.

Parameter:

Mass [kg] 0.1083
Number of laminations 20
Lamination thickness [mm] 0.5
Outer diameter [mm] 95
Inner diameter[mm)] 85
Mass density [kg/m’] 7690
Lamination conductivity [S/m] 24.2x10°
Number of turns of the magnetizing winding 711
Diameter of the magnetizing-winding wire [mm] 1.18
Number of turns of the measuring winding 780
Diameter of the measuring-winding wire[mm] 0.315
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Appendix B. DC-field measurement on a wound-ring sample

The upper branch of the limiting hysteresis loop as well as other symmetric and unsymmetric
quasi-static hysteresis loops of a ferromagnetic material were experimentally determined using
the measuring set-up shown in Fig. B1. The parameters of the wound-ring sample are
summarized in Appendix A. The ring was wound with magnetizing and measuring windings.
The whole measurement is controlled by a PC, which instructs an Arbitrary Waveform
Generator about the required sequence of input dc voltages. The signal is amplified in a Power
Amplifier and fed into the magnetizing winding of the test ring. The measuring winding is
connected to an Integrating Fluxmeter in order to get the flux and thus the flux density from
the induced voltage. The primary current is used to compute the magnetic field intensity. The

data are transferred to the PC and collected into files.

PC
l Magnetizing Measuring
winding winding
. — .
Arbitrary Waveform Power L Integrating | | Multimeters
Generator Amplifier Shunt Fluxmeter | | U,J
Test ring

Fig. Bl. The set-up for dc-field measurements.

List of devices:

Arbitrary Waveform Generator: AWG 2005, Sony-Tektronix

Power Amplifier: Switching Amplifier SW 5250A, Elgar Corporation
Shunt: Nebenwiderstand N 20; 15 A, 300 mV

Integrating Fluxmeter: MF-3D, Walker Scientific

Two Multimeters: Fluke 8842A



118

Appendix C. Core loss separation measurement on a wound-ring
sample

The set-up for the core loss separation measurements on a wound-ring sample is shown in Fig.
C1. The parameters of the wound-ring sample are summarized in Appendix A. The ring was
wound with magnetizing and measuring windings. The whole measurement is controlled by a
PC, which instructs an Arbitrary Waveform Generator about the frequency and magnitude of
input sinusoidal voltages. The signal is amplified in a Power Amplifier and fed into the
magnetizing winding of the test ring. The negative feedback to the Power Amplifier keeps the
voltage on the ring terminals sinusoidal. The extra resistor is connected to the primary circuit
in order to keep the dc value of the current as small as possible. The data from a Power

Analyzer are transferred to the PC and collected into files.

PC
l Magnetizing
Negative feedback  winding Measuring T
\ l winding
Arbitrary Waveform || Power - L1 Power Analyzer
Generator | Amplifier Resistor | Shunt U,1,pP

Test ring

Fig. Cl. The set-up for core loss separation measurements.

List of devices:

Arbitrary Waveform Generator: AWG 2005, Sony-Tektronix

Power Amplifier: Switching Amplifier SW 5250A, Elgar Corporation
Resistor: 20 Q,3.9 A

Power Analyzer: Wide Band Power Analyzer D 6100, Norma

Shunts: Norma LEM shunts 0.1 A - 10 A; accuracy: +0.03 % of rdg.
0.03 A -1 A;accuracy: 0.1 % of rdg.
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Appendix D. Main parameters of the test induction motors

TABLE D1. THE MAIN PARAMETERS OF THE TEST INDUCTION MOTORS.

Parameter: Motor: 30 kW 37 kW 315 kW
Number of pole pairs 1 2 2
Number of phases 3 3 3
Outer diameter of the stator core [mm] 323 310 600
Air-gap diameter [mm)] 189 199 378
Core length [mm)] 183 249 529
Number of stator slots 36 48 72
Number of rotor slots 28 40 52
Connection delta star delta
Rated voltage [V] 400 400 400
Rated frequency [Hz] 50 50 50
Rated current [A] 53 72 523
Rated power [kW] 30 37 315
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Appendix E. Experimental set-up for the hysteresis torque and core

loss measurements on the test induction motors

Synchronous Generator

750 kVA .
Power Analyzer
U,l,P
Arbitrary Waveform Power Amplifier
Generator
Wound - rotor machine Test induction machine

Fig. El. A cage-induction motor hysteresis torque and core loss measuring set-up.

List of devices:

Arbitrary Waveform Generator: AWG 2005, Sony-Tektronix

Power Amplifier: Switching Amplifier SW 5250A, Elgar Corporation

Power Analyzer: Wide Band Power Analyzer D 6100, Norma
Accuracy of the active-power meter in AC+DC mode:

power factor 1: measuring error < 0.2 %
power factor 0.1:  measuring error < 0.3 %
power factor 0.01: measuring error <1 %

Shunts: Norma LEM shunts: 0.1 A - 10 A; accuracy: = 0.03 % of rdg.

0.3 A - 50 A; accuracy: +0.03 % of rdg.
3 A-100 A; accuracy: +0.03 % of rdg.
6 A - 300 A; accuracy: 0.1 % of rdg.

Test induction motors: 30 kW, 37 kW and 315 kW (Appendix D)

Wound-rotor motors:

4-pole, 0.9 kW, 380 V (in connection with the 30 kW and 37 kW
motors)

4-pole, 18.5 kW, 380 V (in connection with the 315 kW motor)

The connection shown in the sketch in Fig. E1 is directly valid for the 37 kW and 315 kW test
motors. In the case of the 2-pole 30 kW test motor, two extra synchronous machines (4-pole
and 8-pole) were connected in between the synchronous generator and wound-rotor machine.
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Appendix F. Cross-sectional geometries and finite element meshes of
the test induction motors
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Fig. F1. The geometry, DC field and finite element mesh of the 30 kW test induction motor.
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Fig. F2. The geometry, DC field and finite element mesh of the 37 kW test induction motor.
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Fig. F3. The geometry, DC field and finite element mesh of the 315 kW test induction motor.



