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1 Introduction

In this paper we present a symbolic calculus and a characterization of the
Hörmander (1, 0)-class of pseudodi�erential operators on compact Lie groups.
The operator classes are characterized by operator norm inequalities on a
family of convolution operators parametrized by the group, and these inequal-
ities are analogous to the traditional symbol inequalities of pseudodi�erential
calculus on the Euclidean spaces. As a special case, the de�nition of peri-
odic pseudodi�erential operators (i.e. operators on the torus Tn) given by
Agranovich in 1979 follows.

The genesis of pseudodi�erential theory can perhaps be traced back to
the studies of singular integral operators by S. G. Mikhlin in the 1940s and
later by A. P. Calderón and A. Zygmund in the 1950s. There one can see the
idea of presenting an operator A by a family of convolution operators, i.e.

(Af)(x) = (sA(x) ∗ f)(x) =

∫
Rn

(sA(x))(x− y) f(y) dy.

In 1965 J. J. Kohn and L. Nirenberg [9] created the modern pseudodi�erential
theory (soon generalized by L. Hörmander [8]), where the main emphasis is
on certain weighed inverse Fourier transforms. More precisely,

(Af)(x) =

∫
Rn

σA(x, ξ) f̂(ξ) ei2πx·ξ dξ,

where the symbol function (x, ξ) 7→ σA(x, ξ) is the object of interest. These
approaches are connected formally via the Fourier transform,

σA(x, ξ) = ̂sA(x)(ξ).

Our treatise draws inspiration from the schools of both Mikhlin�Calderón�
Zygmund and Kohn�Nirenberg�Hörmander, and we considerably utilize the
work of M. E. Taylor [15]. In other words, starting from the (left) regular rep-
resentation πL : G → L(L2(G)) of a compact Lie group G we introduce the
Fourier transform f 7→ π(f) of distributions on G by π(f)g = f ∗ g; i.e. we
map distributions to corresponding convolution operators. Then we present
a pseudodi�erential operator A ∈ Ψm(G) as a family of convolution operators
π(sA(x)) = σA(x) (where sA : G→ D′(G), sA(x)(y) = KA(x, y−1x)) so that

(Af)(x) = (σA(x)f)(x) = (sA(x) ∗ f)(x)

= Tr (σA(x) π(f) πL(x)∗) .

This trace formula is important from the application point of view; however,
we shall not examine aspects of numerical analysis in this paper.

2 Non-commutative Fourier analysis

This section deals with harmonic analysis of distributions on compact Lie
groups. We introduce the concept of the operator-valued symbol of a contin-
uous linear operator acting on distributions, and given a symbol with suitable
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properties, we study Sobolev space boundedness of the corresponding oper-
ator.

Throughout this treatise, the space of continuous linear operators between
topological vector spaces X, Y is denoted by L(X, Y ), and L(X) := L(X,X).
All the manifolds are (real) C∞-smooth and without a boundary. For basic
facts about harmonic analysis on compact Lie groups we refer to [21]. Notions
C and R stand for the �elds of complex and real numbers, respectively, and
Z, N0 and N stand for integers, non-negative integers and positive integers,
respectively.

Let G be a compact Lie group and µG its normalized Haar measure,
i.e. the unique regular Borel probability measure which is left translation
invariant: ∫

G

f(x) dµG(x) =

∫
G

f(yx) dµG(x)

for every f ∈ C(G) and y ∈ G. Then also∫
G

f(x) dµG(x) =

∫
G

f(xy) dµG(x) =

∫
G

f(x−1) dµG(x).

The convolution f ∗g ∈ L2(G) of f, g ∈ L2(G) is de�ned (almost everywhere)
by

(f ∗ g)(x) =

∫
G

f(y) g(y−1x) dµG(y). (1)

Let πL : G→ L(L2(G)) be the left regular representation of G, that is

(πL(y)g)(x) = g(y−1x) (2)

for almost every x ∈ G. The right regular representation πR : G→ L(L2(G))
is de�ned by

(πR(y)g)(x) = g(xy) (3)

for almost every x ∈ G. The Fourier transform (or the �global� Fourier
transform, see [12]) of f ∈ L2(G) is by our de�nition the left convolution
operator π(f) ∈ L(L2(G)),

π(f)g = f ∗ g, (4)

denoted also by

π(f) =

∫
G

f(y) πL(y) dµG(y).

The inverse Fourier transform is then given in L2(G)-sense by

f(x) = Tr (π(f) πL(x)∗) , (5)

where Tr is the trace functional; notice that Tr(AB) = Tr(BA). By choosing
an orthonormal basis of representative functions (trigonometric polynomials)
provided by the Peter�Weyl theorem we can realize the operators πL(x) and
π(f) as block diagonal matrices with �nite-dimensional blocks, each block
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corresponding to some irreducible unitary representation of G. Each matri-
cial entry of the matrix form of πL(x) is then a C∞-smooth function on G,
whose translates span a �nite-dimensional subspace of L2(G); moreover, the
set of these matricial entries contains an orthogonal basis of L2(G).

Let D(G) be the set C∞(G) equipped with the usual Fréchet space struc-
ture, and D′(G) = L(D(G),C) its dual, i.e. the set of distributions with
D(G) as the test function space. We equip the space of distributions with the
weak∗-topology. The Fourier transform of a distribution f ∈ D′(G) is de�ned
to be the left convolution operator π(f) ∈ L(D(G)), that is π(f)φ := f ∗ φ.
The duality D(G)×D′(G)→ C is denoted by

〈φ, f〉 := f(φ), (6)

where φ ∈ D(G) and f ∈ D′(G), and an embedding D(G) ↪→ D′(G), ψ 7→
fψ = ψ is given by

〈φ, ψ〉 =

∫
G

φ(x) ψ(x) dµG(y). (7)

The transpose of A ∈ L(D(G)) is At ∈ L(D′(G)) de�ned by

〈Aφ, f〉 = 〈φ,Atf〉, (8)

and the adjoint A∗ ∈ L(D′(G)) is given by

(Aφ, f) = (φ,A∗f), (9)

where (φ, f) = 〈φ, f〉, f(x) := f(x). Notice that π(f)∗ = π(f̃) where f̃(x) =
f(x−1), and π(f)t = π(f̌) where f̌(x) = f(x−1).

In the sequel, we denote π(A)π(f) := π(Af) if A ∈ L(D(G)) and f ∈
D(G); i.e. π(A) is just �A put through the Fourier transform�. Stay alert:
in this notation, if φ ∈ D(G), f ∈ D′(G), then π(φ ∗ f) = π(φ)π(f), but
π(φf) = π(Mφ)π(f) where Mφ is the multiplication operator f 7→ φf .

Let D(G)⊗D′(G) denote the complete locally convex tensor product of
the nuclear spaces D(G) and D′(G) (see [11]). Then K ∈ D(G) ⊗ D′(G)
de�nes a linear operator A ∈ L(D(G)) by

〈Aφ, f〉 := 〈K, f ⊗ φ〉. (10)

In fact, the Schwartz kernel theorem states that L(D(G)) and D(G)⊗D′(G)
are isomorphic: for every A ∈ L(D(G)) there exists a unique KA ∈ D(G)⊗
D′(G) such that the duality (10) is satis�ed with K = KA, which is called
the Schwartz kernel of A. Duality (10) gives us also the interpretation for

(Aφ)(x) =

∫
G

KA(x, y) φ(y) dµG(y). (11)

Lemma 1. Let A ∈ L(D(G)), and let

sA(x, y) := KA(x, y−1x) (12)

in the sense of distributions. Then sA ∈ D(G)⊗D′(G).
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Proof. Notice that D(G)⊗D(G) ∼= D(G×G). Let us de�ne the multipli-
cation

m : D(G)⊗D(G)→ D(G), m(f ⊗ g)(x) := f(x)g(x),

the co-multiplication

∆ : D(G)→ D(G)⊗D(G), (∆f)(x, y) := f(xy),

and the antipode

S : D(G)→ D(G), (Sf)(x) := f(x−1).

These mappings are a part of the (nuclear Fréchet) Hopf algebra structure
of D(G), see e.g. [1] or [14]. The mappings are all continuous and linear.

The convolution of operators A,B ∈ L(D(G)) is said to be the operator

A ∗B := m(A⊗B)∆ ∈ L(D(G));

it is easy to calculate the Schwartz kernel

KA∗B(x, y) =

∫
G

KA(x, yz−1) KB(x, z) dµG(z),

or

KA∗B = (m⊗∆t)(id⊗ τ ⊗ id)(KA ⊗KB),

where τ : D′(G)⊗D(G)→ D(G)⊗D′(G), τ(f⊗φ) := φ⊗f , and ∆t : D′(G)⊗
D′(G)→ D′(G) is the transpose of the co-multiplication ∆, ∆t(f⊗g) = f ∗g
(i.e. ∆t extends the convolution of distributions). Now (A ∗S)S ∈ L(D(G)),
hence K(A∗S)S ∈ D(G)⊗D′(G) by the Schwartz kernel theorem, and

K(A∗S)S(x, y) = KA∗S(x, y−1)

=

∫
G

KA(x, y−1z−1) KS(x, z) dµG(z)

= KA(x, y−1x)

= sA(x, y)

Any distribution s ∈ D(G)⊗D′(G) can be considered as a mapping

s : G→ D′(G), x 7→ s(x),

where s(x)(y) := s(x, y). If D ∈ L(D(G)) and M ∈ L(D′(G)) then (D ⊗
M)s ∈ D(G)⊗D′(G). For instance, D could be a partial di�erential operator,
and M a multiplication; these examples will be of great relevance for us in
the sequel.
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De�nition. The symbol of A ∈ L(D(G)) is the mapping

σA : G→ L(D(G)), x 7→ π(sA(x)), (13)

where sA(x)(y) = KA(x, y−1x) as in Lemma 1.

Now

(Af)(x) =

∫
G

KA(x, y) f(y) dµG(y)

=

∫
G

sA(x)(xy−1) f(y) dµG(y)

= (σA(x)f)(x)

= Tr (σA(x) π(f) πL(x)∗) .

Hence we can consider the symbol σA as a family of convolution operators
obtained from A by �freezing� it at points x ∈ G. Moreover, if A ∈ L(D(G))
is a right-invariant operator, i.e. AπR(x) = πR(x)A for every x ∈ G, then
its symbol is the constant mapping x 7→ σA(x) ≡ A (A is a left convolution
operator).

Conversely, let us be given a function σ : G→ L(D′(G)) such that σ(x) =
π(s(x)), where s ∈ D(G)⊗D′(G). Then we can de�ne Op(σ) ∈ L(D(G)) by

(Op(σ)f)(x) = (σ(x)f)(x). (14)

Let us de�ne derivations of symbols of operators A ∈ L(D(G)) in the
following way: Let D ∈ L(D(G)) be a partial di�erential operator, and
(DσA)(x) = DσA(x) := σB(x), where

sB = (D ⊗ id)sA.

Then B = Op(DσA) ∈ L(D(G)), because D ∈ L(D(G)), id ∈ L(D′(G)).
The next theorem is an adaptation of M. E. Taylor's result (see [15]).

Theorem 2. Let G be a compact Lie group of dimension n and σ ∈
Ck(G,L(L2(G))) with k > n/2. Then Op(σ) ∈ L(L2(G)).

Proof. We clearly have

‖Op(σ)f‖2
L2(G) =

∫
G

|(σ(x)f)(x)|2 dµG(x)

≤
∫
G

sup
y∈G
|(σ(y)f)(x)|2 dµG(x),

and by an application of Sobolev embedding theorem we get

sup
y∈G
|(σ(y)f)(x)|2 ≤ Ck

∑
|α|≤k

∫
G

|((∂αy σ)(y)f)(x)|2 dµG(y).
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Therefore using Fubini theorem to change the order of integration, we obtain

‖Op(σ)f‖2
L2(G) ≤ Ck

∑
|α|≤k

∫
G

∫
G

|((∂αy σ)(y)f)(x)|2 dµG(x) dµG(y)

≤ Ck
∑
|α|≤k

sup
y∈G

∫
G

|((∂ασ)(y)f)(x)|2 dµG(x)

= Ck
∑
|α|≤k

sup
y∈G
‖(∂ασ)(y)f‖2

L2(G)

≤ Ck
∑
|α|≤k

sup
y∈G
‖(∂ασ)(y)‖2

L(L2(G))‖f‖2
L2(G).

The proof is complete, because G is compact and σ ∈ Ck(G,L(L2(G)))

Let ∆ be the bi-invariant (right- and left-invariant) Laplacian of G, i.e.
the Laplace operator corresponding to the bi-invariant Riemannian metric
of G (see [17]). The Laplacian is symmetric, I − ∆ is positive; let Ξ ≡
σ(I−∆)1/2(x) = (I −∆)1/2. Then Ξ is bi-invariant, so that it commutes with
every convolution operator. Moreover, Ξs ∈ L(D(G)) and Ξs ∈ L(D′(G)) for
every s ∈ R. Let us de�ne

(f, g)Hs(G) = (Ξ−sf,Ξ−sg)L2(G) (f, g ∈ D(G)).

The completion of D(G) with respect to the norm f 7→ ‖f‖Hs(G) = (f, f)
1/2
Hs(G)

is called the Sobolev space Hs(G) of order s ∈ R. Thereby H0(G) = L2(G).
This de�nition of Hs(G) coincides with the de�nition obtained using any
smooth partition of unity on the compact manifold G.

Notice that σAΞr(x) = ΞrσA(x) = σA(x)Ξr (A ∈ D(G)), and that Ξr is a
Sobolev space isomorphism Hs(G)→ Hs−r(G) for every r, s ∈ R. Therefore
Theorem 2 yields a simple consequence:

Corollary 3. If G is a compact Lie group, A ∈ L(D(G)) and Ξ−mσA ∈
C∞(G,L(L2(G))) (or equivalently σA ∈ C∞(G,L(Hm(G), H0(G)))) then
A ∈ L(Hm(G), H0(G)).

Convention: Let D be a right-invariant vector �eld on G. Then σD(x) =
D for every x ∈ G, so that the reader must be cautious! In the sequel DσA(x)
refers to the derivative (DσA)(x) of the operator-valued function σA, whereas
σDσA(x) means the composition of two convolution operators, namely σD
and σA(x). More precisely, DσA(x) = σB(x) with sB = (D ⊗ id)sA, and
σDσA(x) = σC(x) where sC(x) = sD(x) ∗ sA(x).

Let D = ∂xj be a �rst order right-invariant partial di�erential operator
with constant symbol σD(x) ≡ D. Then for A ∈ L(D(G)) we have DA ∈
L(D(G)), and it is clear that x 7→ σDσA(x) is a symbol of an operator
belonging to L(D(G)). Then

σDA(x) = (∂xjσA)(x) + σDσA(x).

8



Lie algebra: Traditionally the Lie algebra g of a Lie group G is the set of
the left-invariant vector �elds on G. In this work, however, we de�ne the Lie
algebra g of a Lie group G to be the set of the right-invariant vector �elds on
G. This non-conventional practice simpli�es our notations; recall that right-
invariant operators are left convolution operators. Hence our Lie algebra
g can be identi�ed with �rst order scalar right-invariant partial di�erential
operators on G. Of course, g ∼= Te(G) ∼= R

n, where Te(G) is the tangent
space of G at e ∈ G, n = dim(G). In the sequel, {∂j = ∂xj | 1 ≤ j ≤ n}
denotes a vector space basis of g.

3 Pseudodi�erential operators on compact

manifolds

In this paper all the pseudodi�erential operators are of the Hörmander type
(ρ, δ) = (1, 0). Recall the appearance of the pseudodi�erential operators on
the Euclidean spaces,

(Af)(x) =

∫
Rn

σA(x, ξ) f̂(ξ) ei2πx·ξ dξ, (15)

where f belongs to the Schwartz space S(Rn), and the Fourier transform
f̂ ∈ S(Rn) is de�ned by

f̂(ξ) =

∫
Rn

f(x) e−i2πx·ξ dx;

the symbol σA ∈ C∞(Rn×Rn) is said to belong to Sm(Rn), the set of pseudo-
di�erential symbols of order m ∈ R, if∣∣∂αξ ∂βxσA(x, ξ)

∣∣ ≤ CAαβm(1 + |ξ|)m−|α|, (16)

uniformly in x ∈ Rn for every α, β ∈ Nn, and then A is called a pseudo-
di�erential operator of order m, denoted by A ∈ OpSm(Rn). Imitating
the analysis on compact groups (see the previous section), we can denote
by σA(x0) (x0 ∈ Rn) the convolution operator with the symbol (x, ξ) 7→
σA(x0, ξ), and then (Af)(x) = (σA(x)f)(x). Now A ∈ L(S(Rn)), A ∈
L(S ′(Rn)), and σA(x, ξ) = eξ(x)−1(Aeξ)(x), where eξ(x) = ei2πx·ξ.

On a closed manifold M the set Ψm(M) of (1, 0)-type pseudodi�erential
operators of order m ∈ R is usually de�ned using locally the de�nition for
the Euclidean case, see [8], [16] or [17], and one de�nes the Sobolev spaces
Hm(M) using any smooth partition of unity on M . On the torus M =
T
n = R

n/Zn, however, we can apply the Fourier series, as �rst suggested by
Agranovich [3]. More precisely, for A ∈ L(D(Tn)) we can write

(Af)(x) =
∑
ξ∈Zn

σA(x, ξ) f̂(ξ) ei2πx·ξ, (17)
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where the Fourier transform f̂ of f ∈ D(Tn) is de�ned by

f̂(ξ) =

∫
Tn

f(x) e−i2πx·ξ dx;

the symbol σA ∈ C∞(Tn×Zn) is said to belong to Sm(Tn), the set of pseudo-
di�erential symbols of order m ∈ R, if∣∣4α

ξ ∂
β
xσA(x, ξ)

∣∣ ≤ CAαβm(1 + |ξ|)m−|α|, (18)

uniformly in x ∈ Tn for every α, β ∈ Nn, and then A is called a periodic
pseudodi�erential operator of order m, A ∈ OpSm(Tn). Here 4α

ξ is a di�er-
ence operator,

4α
ξ σ(ξ) =

∑
γ≤α

(
α

γ

)
(−1)|α−γ|σ(ξ + γ).

Again, σA(x, ξ) = eξ(x)−1(Aeξ)(x). The fact OpSm(Tn) = Ψm(Tn) was
proven by Agranovich [2], and the result was generalized by McLean [10] for
more general (ρ, δ)-classes on the tori.

Beals discovered in [4] that pseudodi�erential operators on the Euclidean
spaces can be characterized by studying Sobolev space boundedness of iter-
ated commutators by di�erential operators. Related studies (also on closed
manifolds) were pursued by Dunau [7], Coifman and Meyer [5] and Cordes
[6]. In [18] another variant of commutator characterization was given on
closed manifolds (i.e. compact manifolds without boundary), equivalent to
the following de�nition:

De�nition. Let M be a closed smooth orientable manifold. An operator
A ∈ L(D(M)) is a pseudodi�erential operator of (1, 0)-type and of order
m ∈ R, denoted by A ∈ Ψm(M), if and only if Ak ∈ L(Hm+dC,k(M), H0(M))
for every k ∈ N0 and for every sequence C = (Dk)

∞
k=1 ⊂ L(D(M)) of smooth

vector �elds, where A0 = A and Ak+1 = [Dk+1, Ak], dC,0 = 0 and dC,k+1 =∑k+1
j=1(1− deg(Dj)).

Here deg(Dj) is the order of the partial di�erential operator Dj, i.e.
deg(Mφ) = 0 for a multiplication operator Mφ, and deg(∂β) = |β|. A vari-
ant of this de�nition was applied in proving that periodic pseudodi�erential
operators are traditional pseudodi�erential operators [18].

Let us give another equivalent criterion for pseudodi�erential operators,
simpler in formulation:

Theorem 4. Let M be a closed smooth orientable manifold. An operator
A ∈ L(D(M)) belongs to Ψm(M) if and only if (Ak)

∞
k=0 ⊂ L(Hm(M), H0(M))

for every sequence (Dk)
∞
k=1 ⊂ L(D(M)) of smooth vector �elds (i.e. contin-

uous derivations of the function algebra D(M)), where A0 = A and Ak+1 =
[Dk+1, Ak].
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Proof. Let Opm denote the set of operators satisfying the the property
expressed by the iterated commutators in the claim. In fact, Ψm(M) ⊂
L(Hs(M), Hs−m(M)) for every s,m ∈ R, and there is the nice commutator
property [Ψm1(M),Ψm2(M)] ⊂ Ψm1+m2−1(M), and hence it is clear that
Ψm(M) ⊂ Opm.

Now suppose that A ∈ Opm. First, Opr ⊂ L(Hr(M), H0(M)) for every
r ∈ R. Hence in order to prove the theorem it su�ces to verify that [Mφ, A] ∈
Opm−1 for every φ ∈ D(M). Let g be some Riemannian metric for M , and let
∆g be the corresponding Laplacian (see [17]). Then I−∆g is a Sobolev space
isomorphism Hs(M) → Hs−m(M) for every s,m ∈ R. We write the second
order partial di�erential operator I − ∆g in the form

∑
i,j EiFj + F + Mψ,

where F,Ei, Fj ∈ L(D(M)) are some smooth vector �elds and ψ ∈ D(M).
Now

[Mφ, A] = [Mφ, A](I −∆g)(I −∆g)
−1

=

(∑
i,j

([MφEi, A]−Mφ[Ei, A])Fj + [Mφ, A](F +Mψ)

)
(I −∆g)

−1.

Here Mφ ∈ L(Hs(M)) for every s ∈ R, and A ∈ L(Hm(M), H0(M)), so that
[Mφ, A] ∈ L(Hm(M), H0(M)), and moreover

(I −∆g)
−1 ∈ L(Hm−1(M), Hm+1(M)),

Fj, F +Mψ ∈ L(Hm+1(M), Hm(M)),

([MφEi, A]−Mφ[Ei, A]) ∈ L(Hm(M), H0(M)).

This yields [Mφ, A] ∈ L(Hm−1(M), H0(M)). For a smooth vector �eld D we
clearly have

[D, [Mφ, A]] = [Mφ, [D,A]] + [[D,Mφ], A],

so that also [D, [Mφ, A]] ∈ L(Hm−1(M), H0(M)); notice that [D,A] ∈ Opm.
Then assume that we know

[Dk, [Dk−1, · · · [D1, [Mφ, A]] · · ·]] =
∑
γ∈Jk

[Mφγ , Aγ],

where Jk is some �nite index set, φγ ∈ D(M), Aγ ∈ Opm, Dj (1 ≤ j ≤ k)
smooth vector �elds. Then

[Dk+1, [Dk, [Dk−1, · · · [D1, [Mφ, A]] · · ·]]]
=
∑
γ∈Jk

(
[Mφγ , [Dk+1, Aγ]] + [[Dk+1,Mφγ ], Aγ]

)
=
∑

γ∈Jk+1

[Mφγ , Aγ]

for a �nite index set Jk+1, φγ ∈ D(M), Aγ ∈ Opm when γ ∈ Jk+1. Hence
[Mφ, A] ∈ Opm−1(M), so that Opm ⊂ Ψm(M)

11



Let M be a closed smooth manifold. As it is well-known, for any given
sequence of pseudodi�erential operators Aα ∈ Ψmα(M) (α ∈ Nn0 ) with mα →
−∞ as |α| → ∞, there exists a pseudodi�erential operator A ∈ Ψmax{mα}(M)
satisfying the following: for every r ∈ R there exists Nr ∈ N such that
A−

∑
|α|<N Aα ∈ Ψr(M) whenever N > Nr. Then the formal sum

∑
αAα is

called an asymptotic expansion of A, denoted by

A ∼
∑
α≥0

Aα;

if M = G is a compact Lie group, we also write

σA(x) ∼
∑
α≥0

σAα(x).

Notice that this asymptotic expansion de�nes the operator only modulo

Ψ−∞(M) := ∩r∈RΨr(M) = {B ∈ L(D(M)) | B(D′(M)) ⊂ D(M)};

then the asymptotic expansions endow the set Ψ∞(M) = ∪r∈RΨr(M) with
a non-Hausdor� topology, but for Ψ∞(M)/Ψ−∞(M) we obtain a complete
metrizable topology, where addition and composition of equivalence classes
of operators are continuous, i.e. we have a complete metrizable topological
ring. This division into classes modulo in�nitely smoothing operators is
reasonable, if we are only interested in information related to the singularities
of distributions.

4 Operator norm symbol inequalities

for pseudodi�erential operators

In this section we provide operator norm inequalities for symbols characteriz-
ing the classes Ψm(G) for compact Lie groups G; the main result is Theorem
9, in the end of the section. In the sequel, n = dim(G).

Taylor expansion: By identifying the Lie algebra g of G with Rn, a func-
tion f ∈ C∞(g) can be presented as a Taylor�Maclaurin expansion,

f(x) =
∑
|α|<N

1

α!
xα(∂αf)(0) +RN(x) (19)

where the remainder term RN is of the form

RN(x) =
∑
|α|=N

1

α!
xα(∂αf)(θxx) (20)

with some θx ∈ (0, 1). Let V,W ⊂ g be open balls centered at 0 ∈ g, V =
B(0, rV ) ⊂ W = B(0, rW ), such that the exponential mapping exp : g → G
is injective on W . Thereby there exist functions qα ∈ C∞(G) satisfying

qα(exp(x)) =
1

α!
xα

12



when x ∈ B(0, rV + ε) ⊂ g with some ε > 0; the smooth functions qα
have �zeros of order |α| at the point e ∈ G�. It is enough to construct
functions qα ∈ C∞(G) for |α| = 1, and then de�ne �higher order polynomials�
recursively by qα+β := qαqβ for every α, β ∈ Nn0 . Furthermore, for every
x ∈ G \ {e} we must have qα(x) 6= 0 for some α = αx ∈ Nn0 with |α| = 1;
this condition will be explained right after the de�nition of the symbol class
Sm0 (G). It is easy to see that this condition can be ful�lled: For instance,
let |α| = 1, and let ψ : [0, rW ]→ [0, 1] be an increasing C∞-smooth function
such that ψ|[0,rV +ε] = 0 and ψ|[rW−ε,rW ] = 1 where 0 < ε < (rW − rV )/2, and
set

qα(exp(x)) := iψ(‖x‖) + (1− ψ(‖x‖)) 1

α!
xα

when x ∈ W , and set qα(y) := i when y ∈ G \ exp(W ).
Consequently a function φ ∈ C∞(G) can be presented by

φ(x) =
∑
|α|<N

qα(x) (∂αφ)(e) +RN(x), (21)

when x ∈ exp(V ), with the remainder

RN(x) =
∑
|α|=N

qα(x) (∂αφ)(ψ(x)), (22)

where ψ(x) ∈ exp(V ), and x 7→ (∂αφ)(ψ(x)) is C∞-smooth; in the sequel we
abbreviate this by

φ(x) ∼
∑
α

qα(x) (∂αφ)(e).

Then let us de�ne a �quasi-di�erence� Qα = π(Mq̌α), that is,

QασA(x) = π(y 7→ q̌α(y)sA(x)(y)). (23)

The idea of this de�nition stems from the Euclidean Fourier transform F ,
which obeys (F(x 7→ xαf̂(x)))(ξ) = (∂αF(f))(ξ); a multiplication by a poly-
nomial turns to a di�erentiation when put through the Fourier transform.

Let V = B(0, rV ),W = B(0, rW ) be as above, and let U = B(0, rU) ⊂ g

with 0 < rU < rV . Using a partition of unity we may present an opera-
tor A ∈ L(D(G)) in a form A = A0 + A1 where A0, A1 ∈ L(D(G)), such
that KA0(x, y) = sA0(x)(xy−1) = 0 when xy−1 6∈ exp(V ), and KA0(x, y) =
sA1(x)(xy−1) = 0 when xy−1 ∈ exp(U). Suppose A is a pseudodi�erential
operator; we know that the Schwartz kernel of a pseudodi�erential operator
is C∞-smooth outside the diagonal of G × G, and consequently A0 is the
interesting part of A. Let {xj}Nj=1 ⊂ G such that {Uj := xj exp(U)}Nj=1 is an
open cover for G, and let {(φj, Uj)}Nj=1 be a partition of unity subordinate to
this cover. Let

σA0,j
(x) := φj(xjx)σA0(xjx); (24)

then σA0(x) =
∑N

j=1 σA0,j
(x−1

j x), and supp(sA0,j
(x)) ⊂ exp(V ) ∼= V for each

x ∈ exp(U) ∼= U and j ∈ {1, . . . , N}. Notice that σA0,j
(x) = 0 when x 6∈

13



exp(U). Hence we can interpret sA0,j
to be a distribution supported in a

small neighbourhood of the origin of the Euclidean space Rn × Rn. Let

(Bjf)(x) =

∫
Rn

sA0,j
(x)(x− y) f(y) dy, (25)

i.e. σBj(x, ξ) = ̂sA0,j
(x)(ξ) (x, ξ ∈ Rn).

Notice that

∂αξ ∂
β
xσBj(x, ξ) = ̂sBjαβ(x)(ξ) (x, ξ ∈ Rn), (26)

where σBjαβ(x) = Qα∂βxσA0,j
(x) (x ∈ G).

Taylor ([15], Propositions 1.1 and 1.4) states essentially the following:

Proposition 5 (Taylor's characterization of Ψm(G)). Let A ∈ L(D(G))
be as above. Then A ∈ Ψm(G) if and only if KA1 ∈ C∞(G × G) and
{σBj}Nj=1 ⊂ Sm(Rn).

It is noteworthy that Taylor deals with not only compact Lie groups, but
locally compact ones; in Proposition 5 we presented just a special statement
suitable for our purposes. In the course of proving a generalization of Propo-
sition 5, Taylor obtains also the following useful results (see [15], Propositions
1.1�1.4):

Lemma 6. Let A ∈ ΨmA(G) and B ∈ ΨmB(G). Then Op(σAσB) ∈
ΨmA+mB(G) and Op(σ∗A) ∈ ΨmA(G), where (σAσB)(x) = σA(x)σB(x) and
σ∗A(x) = σA(x)∗. Moreover, Op(Qα∂βxσA) ∈ ΨmA−|α|(G) for every α, β ∈ Nn0
and σA ∈ C∞(G,L(HmA(G), H0(G)))

Relation (26) motivates the de�nition of Sm0 (G):

De�nition. σA ∈ Sm0 (G), if

‖Ξ|α|−mQα∂βxσA(x)‖L(L2(G)) ≤ CAαβm (27)

uniformly in x ∈ G, for every α, β ∈ Nn0 .

Remark: The L(L2(G))-norm of a convolution operator σA(x) is just the
supremum of the `2 -operator norms of the �nite-dimensional blocks of the
canonical matrix representation of σA(x) (see [15], p. 33).

By Corollary 3, OpSm0 (G) ⊂ L(Hm(G), H0(G)). Now we are going to
recursively de�ne symbol classes Smk (G) such that Smk+1(G) ⊂ Smk (G), and we
shall prove that Ψm(G) = OpSm(G) with Sm(G) = ∩∞k=0S

m
k (G).

14



Remark: Recall that the functions qα, |α| = 1, vanish simultaneously only
at the neutral element e ∈ G, and that qα+β = qαqβ for every α, β ∈ Nn0 . This
implies that if σA ∈ Sm0 (G), then (x, y) 7→ sA(x)(y) is C∞-smooth function
on G × (G \ {e}), i.e. (x, y) 7→ KA(x, y) may have singularities only at the
(x = y)-diagonal. Moreover, notice that

f ∈ H−m(G) ⇒ π(f) ∈ L(Hs(G), Hs−m(G)), (28)

π(g) ∈ L(Hm(G), H0(G)) ⇒ ∀r > n/2 : g ∈ H−(m+r)(G). (29)

On a non-commutative group G the multiplication of operator-valued
symbols is not usually commutative, and this causes some complications in
symbolic calculus. Recall Theorem 4; we now �nd additional requirements
for the symbols by studying the commutator characterization of pseudo-
di�erential operators.

Let A ∈ Ψm(G), and let D = Mφ∂j be a derivation on D(G). By Taylor
[15]

σ[D,A](x) = φ(x) [σ∂j , σA(x)]

+
∑

0<|γ|<N

(
φ(x)

(
Qγσ∂j

)
∂γxσA(x)− (∂γxφ(x)) (QγσA(x)) σ∂j

)
+
∑
|γ|=N

Rγ(x)

∼ φ(x) [σ∂j , σA(x)]

+
∑
|γ|>0

(
φ(x)

(
Qγσ∂j

)
∂γxσA(x)− (∂γxφ(x)) (QγσA(x)) σ∂j

)
is an asymptotic expansion of the symbol of [D,A], where Rγ ∈ Ψm−N(G).
This expansion inspires new demands on symbols:

De�nition. σA ∈ Smk+1(G), if

σA ∈ Smk (G),

[σ∂j , σA] ∈ Smk (G),

(Qγσ∂j)σA ∈ S
m+1−|γ|
k (G)

and
(QγσA)σ∂j ∈ S

m+1−|γ|
k (G)

for every j ∈ {1, . . . , n} and γ ∈ Nn0 with |γ| > 0.

De�nition.
Sm(G) = ∩∞k=0S

m
k (G).

Lemma 7. Let A,Aj ∈ L(D(G)) such that σAj ∈ Sm(G) and KA−Aj ∈
Cj(G × G) for every j ∈ N. Then σA ∈ Sm(G). Moreover, ψσA ∈ Sm(G)
for every ψ ∈ C∞(G).
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Proof. For any multi-indices α, β ∈ Nn0 we can evidently choose jαβ ∈ N
so large that

‖Ξ|α|−mQα∂βxσA−Ajαβ (x)‖L(L2(G)) ≤ C(A−Ajαβ )m,

and hence σA ∈ Sm0 (G); the �rst step of induction is established. Next,
suppose we have proven σB ∈ Srk(G) whenever there exists (σBj)

∞
j=1 ∈ Sr(G)

such that KB−Bj ∈ Cj(G×G) (for every r ∈ R). Now

[σ∂i , σA] = [σ∂i , σAj ] + [σ∂i , σA−Aj ];

we know that [σ∂i , σAj ] ∈ Sm(G) for every j ∈ N, and that the Schwartz
kernel corresponding to [σ∂i , σA−Aj ] gets arbitrarily smooth when j tends to
in�nity. Thereby

[σ∂i , σA] ∈ Smk (G);

similarly one proves that

(Qγσ∂i)σA ∈ S
m+1−|γ|
k (G)

and
(QγσA)σ∂i ∈ S

m+1−|γ|
k (G).

Thus σA ∈ Smk+1(G). Consequently we have proven that σA ∈ Sm(G), the
�rst claim of Lemma 7.

By induction we will get the result C∞(G)Smk (G) ⊂ Smk (G). Indeed, for
k = 0 this is trivial. Assuming

C∞(G)Smk (G) ⊂ Smk (G) for every m ∈ R,

let ψ ∈ C∞(G) and σB ∈ Smk+1(G). Then ψσB ∈ Smk (G),

[σ∂j , ψσB] = [σ∂j , ψ]σB + ψ[σ∂j , σB] ∈ Smk (G),

(Qγσ∂j)(ψσB) = ψ(Qγσ∂j)σB ∈ S
m+1−|γ|
k (G)

and
(Qγ(ψσB))σ∂j = ψ(QγσB)σ∂j ∈ S

m+1−|γ|
k (G).

Thereby C∞(G)Smk+1(G) ⊂ Smk+1(G), so that C∞(G)Sm(G) ⊂ Sm(G)

Lemma 8. Let σA ∈ SmA(G), σB ∈ SmB(G). Then

σAB(x) =
∑
|α|<N

(QασA(x)) ∂αxσB(x)

+
∑
|α|=N

σRN,α(x),

where for every j ∈ N there exists Nj ∈ N such that KRN,α ∈ Cj(G × G)
when |α| = N ≥ Nj.
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Proof. Observe that

(ABf)(x) = (sA(x) ∗ (Bf))(x)

=

∫
G

sA(x)(xz−1) (σB(z)f)(z) dµG(y)

=

∫
G

sA(x)(xz−1)

∫
G

sB(z)(zy−1) f(y) dµG(y) dµG(z)

=

∫
G

∫
G

sA(x)(xz−1) sB(z)(zy−1) dµG(z) f(y) dµG(y)

=
∑
|α|<N

∫
G

∫
G

sA(x)(xz−1) q̌α(xz−1) ∂αx sB(x)(zy−1) dµG(z)

f(y) dµG(y)

+
∑
|α|=N

∫
G

∫
G

(sA(x))(xz−1) q̌α(xz−1) rB,N,α(x, z)(zy−1) dµG(z)

f(y) dµG(y),

where

sB(z)(y) =
∑
|α|<N

q̌α(xz−1) ∂αx sB(x)(y)

+
∑
|α|=N

q̌α(xz−1) rB,N,α(x, z)(y),

with the remainder terms (x, z) 7→ rB,N,α(x, z) in C∞(G × G,H−mB−r(G))
for every r > n/2. Hence

σAB(x) =
∑
|α|<N

(QασA(x)) ∂αxσB(x)

+
∑
|α|=N

σRN,α(x),

where

KRN,α(x, y) =

∫
G

sA(x)(xz−1) q̌α(xz−1) rB,N,α(x, z)(zy−1) dµG(z).

Notice that (x, y) 7→ šA(x)(y)q̌α(y) gets arbitrarily smooth as N = |α| grows
(cf. the behaviour of x 7→ QασA(x)), so that the kernel KRN,α gets indeed
smoother with growing N

Theorem 9.
Ψm(G) = OpSm(G).
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Proof. Let A ∈ Ψm(G). By Lemma 6 we have

σA ∈ C∞(G,L(Hm(G), H0(G))),

and
Op(Qα∂βxσA) ∈ Ψm−|α|(G).

Thus
Ψm(G) ⊂ OpSm0 (G).

We shall proceed by induction: Assume that Ψm(G) ⊂ OpSmk (G) for every
m ∈ R. By Lemma 6, we have

Op((Qγσ∂j)σA), Op((QγσA)σ∂j) ∈ Ψm+1−|γ|(G).

Moreover,
Op([σ∂j , σA]) ∈ Ψm(G),

because [σ∂j , σA(x)] = σ[∂j ,A](x) − (∂jσA)(x). Hence Ψm(G) ⊂ OpSmk+1(G),
so that we have proven

Ψm(G) ⊂ OpSm(G).

Now we are going to prove that [D,OpSm(G)] ⊂ OpSm(G) for a partial
di�erential operator D = Mφ∂j ∈ Ψ1(G); by Theorem 4 this would mean
OpSm(G) ⊂ Ψm(G), because OpSm(G) ⊂ L(Hm(G), H0(G)) due to Corol-
lary 3. Let σA ∈ Sm(G). Lemma 8 yields

σ[D,A](x) = φ(x)[σ∂j , σA(x)]

+
∑

0<|γ|<N

(
φ(x)

(
Qγσ∂j

)
∂γxσA(x)− (∂γxφ(x)) (QγσA(x)) σ∂j

)
+
∑
|γ|=N

RN,γ(x),

where the remainder terms RN,γ behave nicely enough: the corresponding
Schwartz kernels KRN,γ become arbitrarily smooth as N grows (see Lemma
8). Thereby due to Lemma 7 we get σ[D,A] ∈ Sm(G); combining this with
OpSm(G) ⊂ L(Hm(G), H0(G)) we have proven that

OpSm(G) ⊂ Ψm(G)

5 Symbolic calculus

In this section we present some elementary symbol calculus on compact Lie
groups, and the results resemble closely the Euclidean case (see e.g. [8], [16]
or [17]) and the torus case (see [19]). Strichartz constructed a calculus for
left-invariant pseudodi�erential operators on Lie groups in [13], and Taylor
for the class Ψm(G) in [15]. We review some of Taylor's results. We also get
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some new results: we de�ne and study a class of amplitudes in analogy to the
Euclidean case, and present an asymptotic expansion for transposed opera-
tors. The culmination is the �nal Proposition 14 yielding another asymptotic
expansion for a parametrix of an elliptic operator.

So far we have studied a pseudodi�erential operator A as a family x 7→
σA(x) = π(sA(x)) of convolution operators, where

(Af)(x) = (σA(x)f)(x) =

∫
G

sA(x)(xy−1) f(y) dµG(y).

Suppose we are given a two-argument family (x, y) 7→ a(x, y) = π(ta(x, y))
of convolution operators, and formally de�ne an operator Op(a) by

(Op(a)f)(x) =

∫
G

ta(x, y)(xy−1) f(y) dµG(y). (30)

More rigorously:

De�nition. A convolution operator-valued function a : G×G→ L(D(G))
is called an amplitude of order m ∈ R, denoted by a ∈ Am(G), if the mapping
(x, y) 7→ Ξ−ma(x, y) belongs to C∞(G×G,L(L2(G))) and the mapping x 7→
∂βx∂

γ
ya(x, y)|y=x belongs to Sm(G) for every β, γ ∈ Nn0 .

Example. Clearly Sm(G) ⊂ Am(G), and if σ ∈ Sm(G) then also (x, y) 7→
σ(y) belongs to Am(G).

Proposition 10 reveals us that Op(a) belongs to OpSm(G) whenever a ∈
Am(G):

Proposition 10. If a ∈ Am(G) then Op(a) = A ∈ OpSm(G) and the
symbol has an asymptotic expansion

σA(x) ∼
∑
α≥0

Qα∂αz a(x, z)|z=x.

Proof. Examining (30), �rst we develop ta(x, y) into Taylor series in vari-
able y at x:

ta(x, y)(xy−1) =
∑
|α|<N

q̌α(zy−1) ∂αz ta(x, z)(xy−1)|z=x

+
∑
|α|=N

q̌α(zy−1) ra,N,α(x, z, xy−1)|z=x,

where (x, z, y) 7→ q̌α(y)ra,N,α(x, z, y) gets arbitrarily smooth on G × G × G
as N grows (|α| = N). Lemma 7 then yields the conclusion
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Example. One may encounter operators A ∈ L(D(G)) having amplitudes
of the form a(x, y) = ψ(x, y) π(κ), where κ ∈ D′(G) and ψ ∈ C∞(G ×
G); classical pseudodi�erential operators on torus arising from mathematical
physics may have this form (see [20]). By Proposition 10, such an operator
has an asymptotic expansion

σA(x) ∼
∑
α≥0

∂αy ψ(x, y)|y=x Q
απ(κ).

Let us therefore take a look at the pseudodi�erential operator algebra spanned
by multiplications and left convolution pseudodi�erential operators, com-
pleted by asymptotic expansions: Let

σA(x) ∼
∑
α≥0

φα(x) π(κα)

and
σB(x) ∼

∑
β≥0

ψβ(x) π(λβ),

where φα, ψβ ∈ D(G), κα, λβ ∈ D′(G). Then AB has an asymptotic expan-
sion

σAB(x) ∼
∑

α,β,γ≥0

φα(x) (∂γxψβ)(x) (Qγπ(κα)) π(λβ)

=
∑

α,β,γ≥0

φα(x) (∂γxψβ)(x) π((Mq̌γκα) ∗ λβ),

i.e. this expansion is of the same form as those for σA and σB.

Remark. Recall that A∗ ∈ Ψm(G) if A ∈ Ψm(G). An amplitude of the
adjoint A∗ is then given by (x, y) 7→ σA(y)∗, because

sA∗(x)(xy−1) = KA∗(x, y)

= KA(y, x)

= sA(y)(y−1x)

= šA(y)(xy−1).

Operator AB has an amplitude (x, y) 7→ σA(x)σB∗(y)∗, since

(ABf)(x) = (AB∗∗f)(x)

=

∫
G

∫
G

sA(x)(xz−1) šB∗(z)(zy−1) f(y) dµG(y) dµG(z)

=

∫
G

tc(x, y)(xy−1) f(y) dµG(y),

where tc(x, y) = sA(x) ∗ šB∗(y), hence c(x, y) = σA(x)σB∗(y)∗. Thereby
Proposition 10 combined with Theorem 9 and Lemma 6 would provide asymp-
totic expansions for the symbols of the adjoint operator and the composition
of operators. However, we shall give short explicit constructions of asymp-
totic expansions in Propositions 11 and 12.
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Proposition 11. If σA ∈ SmA(G) and σB ∈ SmB(G) then σAB ∈ SmA+mB(G),

σAB(x) ∼
∑
α≥0

(QασA(x)) (∂αxσB)(x).

Proof. The expansion arising from Lemma 8 yields the result, once we
notice that x 7→ σA(x)σB(x) belongs to SmA+mB(G) because of Theorem 9
and Lemma 6

Proposition 12. Let σA ∈ Sm(G). Then the adjoint A∗ ∈ OpSm(G) has
an asymptotic expansion

σA∗(x) ∼
∑
α≥0

Qα∂αx (σA(x)∗) .

Proof. Formally∫
G

f(y)(A∗g)(y) dµG(y) =

∫
G

(Af)(x) g(x) dµG(x)

=

∫
G

∫
G

(sA(x))(xy−1) f(y) dµG(y) g(x) dµG(x)

=

∫
G

f(y)

∫
G

(˜sA(x))(yx−1) g(x) dµG(x) dµG(y)

∼
∑
α≥0

∫
G

f(y)

∫
G

q̌α(yx−1) ˜(∂αy sA)(y)(yx−1) g(x)

dµG(x) dµG(y)

=
∑
α≥0

∫
G

f(y) Qα((∂αy σA)(y)∗g)(y) dµG(y),

because π(φ)∗ = π(φ̃). Due to Lemma 6, x 7→ σA(x)∗ belongs to Sm(G), and
the behaviour of the remainder terms in expansion is studied as in the proof
of Theorem 9. Hence the asymptotic expansion for σA∗ follows

An asymptotic expansion for the transpose At ∈ Ψm(G) of A ∈ Ψm(G)
can be derived in analogy to the proof of Proposition 12, recalling that
π(φ)t = π(φ̌):

σAt(x) ∼
∑
α≥0

Qα∂αxσA(x)t. (31)

De�nition. We say that an operator A ∈ Ψ∞(G) is elliptic, if there exists
B ∈ Ψ∞(G) such that AB ∼ I ∼ BA. B is said to be a parametrix for A.
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Proposition 13. If σA ∈ Sm(G) with x 7→ σA(x)−1 belonging to S−m+ε(G)
for some ε ∈ [0, 1) then A is elliptic with a parametrix B ∈ OpS−m+ε(G),

σB(x) ∼ σA(x)−1

∞∑
j=0

σRj(x),

where R ∈ OpS−1+ε(G),

σR(x) ∼
∑
|α|>0

(QασA(x)) ∂αx (σA(x)−1).

The proof of this proposition follows traditional lines, applying the asymp-
totic expansion for composition of operators, see analogous treatment in [15].
Notice that since we do analysis only modulo in�nitely smoothing operators,
it is enough to require that x 7→ σA+P (x)−1 belongs to S−m+ε(G) for some
P ∈ Ψ−∞(G); indeed it is not necessary to assume that σA(x) be invertible.

Let us �nally present another expansion for a parametrix:

Proposition 14. Let σA ∈ Sm(G) with an asymptotic expansion σA ∼∑∞
j=0 σAj , where σAj ∈ Sm−j(G) when j ≥ 1 and x 7→ σA0(x)−1 =: σB0(x)

belongs to S−m+ε(G) for some ε ∈ [0, 1). Then there exists a parametrix
B ∈ OpS−m+ε(G) for A, having an asymptotic expansion B ∼

∑∞
k=0 Bk,

where BN ∈ OpS−m−(1−ε)N(G),

σBN (x) = −σB0(x)
N−1∑
k=0

N−k∑
j=0

∑
γ:j+k+|γ|=N

(QγσAj(x)) ∂γxσBk(x).

Proof. Due to Proposition 11,

σAB(x) ∼
∑
γ≥0

(QγσA(x)) ∂γxσB(x)

∼
∞∑
N=0

N∑
k=0

N−k∑
j=0

∑
γ:j+k+|γ|=N

(QγσAj(x)) ∂γxσBk(x)

= I,

i.e. AB ∼ I. On the other hand, there exists B′ ∈ OpS−m+ε(G) such that
B′ ∼

∑∞
k=0 B

′
k, where B

′
0 = B0 and

σB′N (x) = −σB′0(x)
N−1∑
k=0

N−k∑
j=0

∑
γ:j+k+|γ|=N

(QγσB′k(x)) ∂γxσAj(x);

Then B′A ∼ I, so that B′ = B′I ∼ B′(AB) = (B′A)B ∼ IB = B, or
B′ ∼ B. Thus B and B′ are both parametrices for A
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Remark. Let A ∼
∑∞

j=0 Aj as in Proposition 14 above. We may form
a parametrix under a weaker hypothesis: Namely, assume that there exist
operators C,C ′ ∈ Ψ−m+ε(G) for some ε ∈ [0, 1) such that σA(x)σC(x) =
I − σR(x) and σC′(x)σA(x) = I − σR′(x), where σR, σR′ ∈ S−δ(G) for some
δ > 0. Then de�ne B0, B

′
0 by

σB0(x) ∼ σC(x)

(
∞∑
j=0

σR(x)j

)
, σB′0(x) ∼

(
∞∑
j=0

σR′(x)j

)
σC′(x)

Now σA(x) does not have to be invertible, but still σA(x)σB0(x) ∼ I ∼
σB′0(x)σA(x), and we may calculate expansions B ∼

∑∞
k=0 Bk ∼

∑∞
k=0 B

′
k ∼

B′ as in the proof of Proposition 14.
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