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1 Introduction

In this article we treat pseudodi�erential analysis on orientable homogeneous
spaces G/K, where G is a compact Lie group with a closed subgroup K.
This research continues the work in [11], where such analysis on compact
Lie groups was studied. Apart from pure theoretical interests, there are
applications which call for the present treatise: e.g. Dirichlet boundary value
problems in a domain di�eomorphic to the unit ball of R3 may be considered
within the framework of harmonic analysis on the two-sphere S2 ⊂ R3. Taylor
(see [7]) has characterized pseudodi�erential operators on the spheres Sn by
studying the smoothness of certain operator-valued functions on a large group
of symmetries, but this result cannot be used for our purposes here.

We explain how a pseudodi�erential operator on a compact Lie group
G can be �projected� to a pseudodi�erential operator on orientable compact
homogeneous spaces G/K in a way respecting the algebraic structures. The
other way round, given a pseudodi�erential operator on G/K when K is a
torus we construct an �extended� pseudodi�erential operator on G; the �pro-
jection� of this �extension� in turn returns the original operator. �Extended�
operators can be used to calculate asymptotic expansions for operators on
G/K using operator-valued symbolic calculus on G (see [8], [11]).

Vector space notation

The space of the continuous linear operators between topological vector
spaces X and Y is denoted by L(X, Y ), and we write L(X) := L(X,X);
the dual space of X is X ′ := L(X,C). If X is a nuclear Fréchet space,
X ⊗X ′ stands for the complete locally convex tensor product.

2 Pseudodi�erential operators on Rp × Tq

For general treatments of pseudodi�erential calculus on the Euclidean spaces
or manifolds, see e.g. [3] or [9]. Periodic pseudodi�erential operators, i.e.
pseudodi�erential operators on tori expressed utilizing Fourier series, were
introduced in [1], and their complete symbolic calculus is presented in [12].

Let Tq = Rq/Zq be the q-dimensional torus group. In the sequel we shall
identify R0 and Z0 with the set {0}, and Rp × T0 is identi�ed with Rp. Let
S(Rp × Tq) = {f ∈ C∞(Rp × Tq) | ∀y ∈ Tq : (x 7→ f(x, y)) ∈ S(Rp)} be
endowed with the natural Fréchet space structure of the test functions. In
this space, we de�ne the Fourier transform f 7→ f̂ by

f̂(ξ) =

∫
Rp×Tq

f(x) e−i2πx·ξ dx1 · · · dxp+q,

where ξ ∈ Rp × Zq. Let eξ(x) = ei2πx·ξ, and let A ∈ L(S′(Rp × Tq)); then
eξ ∈ S ′(Rp×Tq), and we can de�ne the symbol σA : (Rp×Tq)×(Rp×Zq)→ C

of A:
σA(x, ξ) := eξ(x)−1(Aeξ)(x), (1)
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and it is clear that σA is C∞-smooth with respect to the variable x ∈ Rp.
Then A can be retrieved from its symbol σA by

(Af)(x) =

∫
Rp

∑
ξp+1,...,ξp+q∈Z

σA(x, ξ) f̂(ξ) ei2πx·ξ dξ1 · · · dξp. (2)

The symbol class Sm(Rp × Tq) consists of those C∞-smooth functions
σA : (Rp × Tq)× (Rp × Zq)→ C for which

sup
x∈Rp×Tq

|∂α′ξ 4α′′

ξ ∂
β
xσA(x, ξ)| ≤ CAαβm 〈ξ〉m−|α| (3)

for every multi-index α = α′ + α′′, β ∈ N
p+q
0 ; here α = α′ + α′′, α′ =

(α1, . . . , αp, 0, . . . , 0), and 〈ξ〉 = (1+
∑p+q

j=1 ξ
2
j )

1/2. Here 4α
ξ is the αth forward

di�erence operator de�ned by

(4α
ξ σ)(ξ) :=

∑
0≤γ≤α

(
α

γ

)
(−1)|α−γ| σ(ξ + γ), (4)

|α| = 1 implies (4α
ξ σ)(ξ) := σ(ξ + α) − σ(ξ). Operator A ∈ L(S(Rp × Tq))

is called a pseudodi�erential operator of order m ∈ R, A ∈ Ψm(Rp × Tq) =
OpSm(Rp × Tq), if σA ∈ Sm(Rp × Tq).

3 Analysis on closed manifolds

LetM be a C∞-smooth, closed (i.e. compact, without a boundary) orientable
manifold. The test function space D(M) is the space of C∞(M) endowed with
the usual Fréchet space topology. Its dual D′(M) = L(D(M),C) is the space
of distributions, endowed with the weak- ∗-topology. The duality is expressed
by the brackets 〈φ, f〉 = f(φ) (φ ∈ D(M), f ∈ D′(M)). Embedding D(M) ↪→
D′(M) is interpreted by

〈φ, ψ〉 :=

∫
M

φ(x) ψ(x) dx.

The Schwartz kernel theorem states that L(D(M)) is isomorphic to D(M)⊗
D′(M); the isomorphism is given by

〈Aφ, f〉 = 〈KA, f ⊗ φ〉, (5)

where A ∈ L(D(M)), φ ∈ D(M), f ∈ D′(M), and distribution KA ∈ D(M)⊗
D′(M) is called the Schwartz kernel of A. Then A can uniquely be extended
(by duality) to A ∈ L(D′(M)), and it is customary to write informally

(Af)(x) =

∫
M

KA(x, y) f(y) dy

instead of φ 7→ 〈φ,Af〉 (φ ∈ D(M)). Recall that L2(M) = H0(M), D′(M) =
∪s∈RHs(M) andD(M) = ∩s∈RHs(M), whereHs(M) is the (L2-type) Sobolev
space of order s ∈ R.
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An operator A ∈ L(D(M)) is a pseudodi�erential operator of order m ∈ R
on M , A ∈ Ψm(M), if (MφAMψ)κ ∈ Ψm(Rdim(M)) for every chart (U, κ) of
M and for every φ, ψ ∈ C∞0 (U), where Mφ is the multiplication operator
f 7→ φf , and

(MφAMψ)κf := (MφAMψ(f ◦ κ)) ◦ κ−1 (f ∈ C∞(κU)).

We sometimes write MφAMψ ∈ Ψm(Rdim(M)), thus omitting the subscript
κ and leaving the chart mapping implicit. Equivalently, pseudodi�erential
operators can be characterized by commutators (see [11]): A ∈ L(D(M))
belongs to Ψm(M) if and only if (Ak)

∞
k=0 ⊂ L(Hm(M), H0(M)) for every

sequence of smooth vector �elds (Dk)
∞
k=1 on M , where A0 = A and Ak+1 =

[Dk+1, Ak].
A smooth left transformation group is

(G,M,m),

where G is a Lie group, M is a C∞-manifold and m : G × M → M is a
C∞-mapping called a left action, satisfying m(e, p) = p and m(x,m(y, p)) =
m(xy, p) for every x, y ∈ G and p ∈ M , where e ∈ G is the neutral element
of the group. The action is free, if m(x, p) = p implies x = e. It is evident
how one de�nes a right transformation group (G,M,m) with a right action
m : M ×G→M .

A smooth �ber bundle is

(E,B, F, pE→B),

where E,B, F are C∞-manifolds and pE→B ∈ C∞(E,B) is a surjective map-
ping such that there exists an open cover U = {Uj | j ∈ J} of B and
di�eomorphisms φj : p−1(Uj)→ Uj × F satisfying φj(x) = (pE→B(x), ψj(x))
for every x ∈ p−1

E→B(Uj). The spaces E,B, F are called the total space, the
base space, and the �ber of the bundle, respectively. The cover U is called
a locally trivializing cover of the bundle. Sometimes the mapping pE→B is
called the �ber bundle.

A principal �ber bundle is

(E,B, F, pE→B,m),

where (E,B, F, pE→B) is a smooth �ber bundle with cover U and mappings
φj, ψj as above and (F,E,m) is a smooth right transformation group with
a free action satisfying pE→B(m(x, y)) = pE→B(x) for every (x, y) ∈ E × F
and ψj(m(x, y)) = ψj(x)y for every (x, y) ∈ p−1

E→B(Uj)× F .

4 Harmonic analysis on compact Lie groups

Let G be a compact Lie group. Let µG be the normalized Haar measure of G.
The starting point of harmonic analysis on G is the left regular representation
of G, which is the homomorphism πL : G→ L(L2(G)) de�ned by

(πL(y)f)(x) = f(y−1x) (6)
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for almost every x ∈ G; equivalently we could begin with the right regular
representation πR : G→ L(L2(G)) de�ned by

(πR(y)f)(x) = f(xy) (7)

for almost every x ∈ G.
The Fourier transform of a distribution f ∈ D′(G) is said to be the

operator π(f) ∈ L(D(G)) de�ned by

π(f)g = f ∗ g, (8)

i.e. the left convolution by f . Let A ∈ L(D(G)) with the Schwartz kernel
KA. The symbol of A is the mapping σA : G→ L(D(G)) de�ned by σA(x) =
π(sA(x)), where KA(x, y) = (sA(x))(xy−1) in the sense of distributions. Then
we denote A = Op(σA), and we have

(Af)(x) = (σA(x)f)(x)

= Tr (σA(x) π(f) πL(x)∗) (f ∈ D(G), x ∈ G).

In the sequel ∆ is the bi-invariant Laplacian of G (i.e. the left and right
translation invariant Laplacian, or the Laplacian corresponding to the bi-
invariant Riemannian metric of G), and we de�ne Ξ := (I − ∆)1/2; then
Ξm is a Sobolev space isomorphism Hs(G) → Hs−m(G), and it is also bi-
invariant.

In the notation of [11], let us de�ne

Qαπ(s) = π(y 7→ q̌α(y) s(y)),

where if s ∈ D′(G), and qα ∈ C∞(G) (α ∈ Ndim(G)
0 ) satis�es

qα(exp(x)) =
1

α!
xα

when x belongs to a small neighbourhood of 0 ∈ g, the origin of the Lie
algebra g of G; technical details can be found in [11], where we presented the
following characterization of pseudodi�erential operators:

De�nition. An operator A ∈ L(D(G)) belongs to Ψm(G) if and only if
σA ∈ Sm(G) = ∩∞k=0S

m
k (G); here σB ∈ Sm0 (G) if and only if

‖Ξ|α|−mQα∂βxσB(x)‖L(L2(G)) ≤ CBαβm (9)

uniformly in x ∈ G for every α, β ∈ Ndim(G)
0 ; σB ∈ Smk+1(G), if

σB ∈ Smk (G), (10)

[σ∂j , σB] ∈ Smk (G), (11)

(Qγσ∂j)σA ∈ S
m+1−|γ|
k (G) (12)

and
(QγσA)σ∂j ∈ S

m+1−|γ|
k (G) (13)

for every j ∈ {1, . . . , dim(G)} and γ ∈ Ndim(G)
0 with |γ| > 0, where {∂j | 1 ≤

j ≤ dim(G)} is a basis for the vector space of the right-invariant vector �elds
on G.
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5 Harmonic analysis on compact homogeneous

spaces

Let (G,E,m) be a smooth left transformation group. The manifold M is
called a homogeneous space if the action m : G ×M → M is transitive, i.e.
for every p, q ∈M there exists x ∈ G such that m(x, p) = q.

Let us give another, equivalent de�nition for a homogeneous space: Let
G be a Lie group with a closed subgroup K. The homogeneous space G/K
is the set of classes xK = {xk | k ∈ K} (x ∈ G) endowed with the topology
co-induced by x 7→ xK and equipped with the unique C∞-manifold structure
such that the mapping (x, yK) 7→ xyK belongs to C∞(G × (G/K), G/K)
and such that there is a neighbourhood U ⊂ G/K of eK ∈ G/K and a
mapping ψ ∈ C∞(U,G) satisfying ψ(xK)K = xK. The group G acts
smoothly from the left on the manifold G/K by (x, yK) 7→ x−1yK. Ac-
tually a smooth homogeneous space M is di�eomorphic to G/Gp, where
Gp = {x ∈ G | m(x, p) = p}.

Notice also that (G,G/K,K, x 7→ xK, (x, k) 7→ xk) has a structure of a
principal �ber bundle (see [2]).

From now on we assume the Lie group G to be compact. We can regard
functions (or distributions) constant on the cosets xK (x ∈ G) as functions
(or distributions) on G/K; it is obvious how one embeds the spaces D(G/K)
and D′(G/K) into the spaces D(G) and D′(G), respectively. Let us de�ne
PG/K ∈ L(D(G)) by

(PG/Kf)(x) =

∫
K

f(xk) dµK(k). (14)

Hence PG/Kf ∈ C∞(G/K), and PG/K extends uniquely to the orthogonal
projection of L2(G) onto the subspace L2(G/K). Let us consider operators
A ∈ L(D(G)) with the symbol satisfying

σA(xk) = σA(x) (x ∈ G, k ∈ K); (15)

this condition is equivalent to

sA(xk)(y) = sA(x)(y)

in the sense of distributions, or

KA(xk, yk) = KA(x, y).

Then A maps the space D(G/K) into itself. Of course, for a general A ∈
L(D(G)) this is not true, but then we can de�ne an operator AG/K ∈
L(D(G)) by

sAG/K = (PG/K ⊗ id)sA. (16)

Recall that σA ∈ C∞(G,L(Hm(G), H0(G))) when A ∈ Ψm(G), so that then

σAG/K (x) =

∫
K

σA(xk) dµK(k) (17)
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exists as a weak integral (Pettis integral), see [4].
Suppose we are given symbols of pseudodi�erential operators A1, A2 on

G satisfying the K-invariance (15). If we look at the asymptotic expansion
formulae for σA1A2 , σA∗1 and σAt1 in [11], we see that all the terms there are
K-invariant in the same sense. Moreover, for an elliptic K-invariant symbol
the terms in the asymptotic expansion for a parametrix are also K-invariant.

Theorem 1 and its corollary show how to 'project' pseudodi�erential op-
erators on G to pseudodi�erential operators on G/K:

Theorem 1. Let G be a compact Lie group with a closed Lie subgroup K.
If A ∈ Ψm(G), then AG/K ∈ Ψm(G).

Proof. First, notice that PG/K is left-invariant, and hence

(∂βx ⊗Mq̌α)(PG/K ⊗ id)sA = (PG/K ⊗ id)(∂βx ⊗Mq̌α)sA

for a right-invariant partial di�erential operator ∂βx and a multiplication Mq̌α

for every α, β ∈ Ndim(G)
0 . Therefore

Op(Qα∂βxσAG/K ) =
(
Op(Qα∂βxσA)

)
G/K

.

Since A ∈ Ψm(G), we have

‖Qα∂βxσA(x)‖L(Hm−|α|(G),H0(G)) ≤ CAαβm,

and so the mapping k 7→ Qα∂βxσA(xk) belongs to C∞(K,L(Hm−|α|(G), H0(G)))
for every x ∈ G. Then

‖Qα∂βxσAG/K (x)‖L(Hm−|α|,H0) =

∥∥∥∥∫
K

Qα∂βxσA(xk) dµK(k)

∥∥∥∥
L(Hm−|α|,H0)

≤
∫
K

‖Qα∂βxσA(xk)‖L(Hm−|α|,H0) dµK(k)

≤ sup
k∈K
‖Qα∂βxσA(xk)‖L(Hm−|α|,H0)

≤ sup
y∈G
‖Qα∂βσA(y)‖L(Hm−|α|,H0)

≤ CAαβm.

This proves that σAG/K ∈ OpSm0 (G). Let B ∈ L(D(G)) be any right-invariant
(left convolution) pseudodi�erential operator. Then σB(x) = B for each
x ∈ G and x 7→ sB(x) is a constant mapping G→ D′(G), B = BG/K , and

(Op(σAσB))G/K = Op(σAG/KσB)

and

(Op(σBσA))G/K = Op(σBσAG/K ).
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Assume that we have proven σCG/K ∈ Srk(G) for every C ∈ Ψr(G), for every
r ∈ R. Using Lemma 6, Theorem 9 and Proposition 11 in [11], we hence get

Op([σ∂j , σAG/K ]) = Op([σ∂j , σA])G/K ∈ OpSmk (G),

Op((Qγσ∂j)σAG/K ) = Op((Qγσ∂j)σA)G/K ∈ OpS
m+1−|γ|
k (G)

and

Op((QγσAG/K )σ∂j) = Op((QγσA)σ∂j)G/K ∈ OpS
m+1−|γ|
k (G);

this means that σAG/K ∈ Smk+1(G), and then by induction we get σAG/K ∈
Sm(G) = ∩∞k=0S

m
k (G)

Corollary 2. Let G/K be orientable. Then AG/K |D(G/K) ∈ Ψm(G/K) for
every A ∈ Ψm(G).

Proof. Let

Ψm(G)G/K = {AG/K | A ∈ Ψm(G)}

and

Ψm(G)G/K |D(G/K) = {AG/K |D(G/K) : A ∈ Ψm(G)}.

By Theorem 1 we know that Ψm(G)G/K ⊂ Ψm(G). Let D be a smooth
vector �eld on G/K. Since (G,G/K,K, x 7→ xK, (x, k) 7→ xk) is a principal
�ber bundle, there exists a smooth vector �eld X = XG/K on G such that
X|D(G/K) = D (see [5]). Then

[D,Ψm(G)G/K |D(G/K)] = [X,Ψm(G)G/K ]|D(G/K) ⊂ Ψm(G)G/K |D(G/K),

and this combined with Ψm(G)G/K |D(G/K) ⊂ L(Hm(G/K), H0(G/K)) yields
the conclusion due to the commutator characterization of pseudodi�erential
operators on closed manifolds

Hence at least sometimes a pseudodi�erential operator on G/K has a non-
unique extension to a pseudodi�erential operator on G. If Bj ∈ Ψmj(G/K)
has an extension Cj = (Cj)G/K ∈ Ψmj(G) (i.e. Cj|D(G/K) = Bj), then
C∗j ∈ Ψmj(G) is an extension of the adjoint operator B∗j ∈ Ψmj(G/K),
and B1B2 ∈ Ψm1+m2(G/K) has an extension C1C2 ∈ Ψm1+m2(G); and if
C1 is elliptic with a parametrix D ∈ Ψ−m1(G), then D = DG/K and B1 ∈
Ψm1(G/K) is elliptic with a parametrix D|D(G/K) ∈ Ψ−m1(G/K).

6 Harmonic analysis on G/K, K a torus

In the sequel we always assume that the subgroup K of G is a torus, K ∼= T
q.
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Example of special interest: Let Bn be the unit ball of the Euclidean
space Rn, and Sn−1 its boundary, the (n − 1)-sphere. The two-sphere S2

can be considered as the base space of the Hopf �bration S3 → S
2, where the

�bers are di�eomorphic to the unit circle S1 ⊂ R2. In the context of harmonic
analysis, S3 is di�eomorphic to the compact non-commutative Lie group G =
SU(2), having a maximal torus K ∼= S

1 ∼= T
1. Then the homogeneous space

G/K is di�eomorphic to S2, so that the canonical projection pG→G/K : x 7→
xK is interpreted as the Hopf �ber bundle G→ G/K; in the sequel we treat
the two-sphere S2 always as the homogeneous space G/K. Notice that also
S

2 ∼= SO(3)/T1.
In [6] a subalgebra of Ψm(S2) was described in terms of so called spherical

symbols. Functions f ∈ D(S2) can be expanded in series

f(φ, θ) =
∞∑
l=0

l∑
m=−l

f̂(l)m Y m
l (φ, θ), (18)

where (φ, θ) ∈ [0, 2π]× [0, π] are the spherical coordinates, the functions Y m
l

the spherical harmonics with Fourier coe�cients

f̂(l)m :=

∫ π

0

∫ 2π

0

f(φ, θ) Y m
l (φ, θ) sin(θ) dφ dθ. (19)

Let us de�ne

(Af)(φ, θ) =
∞∑
l=0

l∑
m=−l

a(l) f̂(l)m Y m
l (φ, θ), (20)

where a : N0 → C is a rational function; in [6], Svensson states that A ∈
Ψm(S2) if and only if

|a(l)| ≤ CA,m(l + 1)m. (21)

Let us present another proof for a special case of Theorem 1 and Corollary
2.

Theorem 3. Let G be a compact Lie group with a torus subgroup K. If A ∈
Ψm(G), then AG/K ∈ Ψm(G) and the restriction AG/K |D(G/K) ∈ Ψm(G/K).

Proof. Let dim(G) = p + q, K ∼= T
q. Let V = {Vi | i ∈ I} be a locally

trivializing open cover of G/K for the principal �ber bundle (G,G/K,K, x 7→
xK, (x, k) 7→ xk); Let U = {Uj | 1 ≤ j ≤ N} be an open cover of G/K such
that for every j1, j2 ∈ {1, . . . , N} there exists Vi ∈ V containing Uj1 ∪ Uj2
whenever Uj1 ∩ Uj2 6= ∅. Notice that we can always re�ne any open cover
on a �nite-dimensional manifold to get a new cover satisfying this additional
requirement (proving this is easy, see an analogous treatment for partitions
of unity in [10]). Then each Ui ∪ Uj (1 ≤ i, j ≤ N) is a chart neighbourhood
on G/K, and furthermore there exist di�eomorphisms φij : (Ui ∪Uj)×K →
p−1
G→G/K(Ui ∪ Uj) such that pG→G/K(φij(x, k)) = x for every x ∈ Ui ∪ Uj and
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k ∈ K. To simplify notation, we treat the neighbourhood Ui ∪Uj ⊂ G/K as
a set Ui∪Uj ⊂ Rp, and p−1

G→G/K(Ui∪Uj) ⊂ G as a set (Ui∪Uj)×Tq ⊂ Rp×Tq.
Let {(Uj, ψj) | 1 ≤ j ≤ N} be a partition of unity subordinate to U ,

and let Aij = MψiAMψj ∈ Ψm(G). With the localized notation we consider
Aij ∈ Ψm(Rp × Tq), so that it has the symbol σAij ∈ Sm(Rp × Tq). Then

σ(AG/K)ij(x, ξ) = σ(Aij)G/K (x, ξ)

=

∫
Tq

σAij(x1, . . . , xp, xp+1 + z1, . . . , xp+q + zq; ξ) dz1 · · · dzq,

and it is now easy to check that σ(AG/K)ij ∈ Sm(Rp × Tq). This yields
(AG/K)ij ∈ Ψm(G), thus

AG/K =
∑
i,j

(AG/K)ij ∈ Ψm(G)

Theorem 4. Let G be a compact Lie group with a torus subgroup K. Let
B ∈ Ψm(G/K). Then there exists an operator A = AG/K ∈ Ψm(G) such that
A|D(G/K) = B.

Proof. Let K ∼= T
q, dim(G) = p + q, and let {(Uj, ψj) | 1 ≤ j ≤ N}

be the same partition of unity as in the proof of Theorem 3. Let Bij =
MψiBMψj ∈ Ψm(G/K). With the localized notation we consider Bij ∈
Ψm(Rp), so that it has the symbol σBij : Rp × Rp → C, and the mapping
(x, ξ) 7→ σBij(x, ξ) is zero when x ∈ Rp \ (Ui ∪ Uj). We use Lemma 5 in
Appendix to construct a pseudodi�erential operator Aij ∈ Ψm(Rp×Tq) such
that σAij : (Rp × Tq)× (Rp × Zq)→ C,

σAij(x;Pξ, 0, . . . , 0) = σBij(Px;Pξ),

where Py = (y1, . . . , yp) (y ∈ Rp+q). Hence A = AG/K =
∑

i,j Aij ∈ Ψm(G)
and A|D(G/K) ∈ Ψm(G/K). Let f =

∑
k fk ∈ C∞(G/K) ⊂ C∞(G), fk =

fψk; then

(Af)(x) =
∑
i,j,k

(Aijfk)(x)

=
∑
i,j,k

∫
Rp

∑
ξp+1,...,ξp+q∈Z

σAij(x, ξ) f̂k(ξ) e
i2πx·ξ dξ1 · · · dξp

=
∑
i,j,k

∫
Rp

σAij(x;Pξ, 0, . . . , 0) f̂k(Pξ, 0, . . . , 0) ei2π(Px)·(Pξ) dξ1 · · · dξp

=
∑
i,j,k

∫
Rp

σBij(Px;Pξ) f̂k(Pξ, 0, . . . , 0) ei2π(Px)·(Pξ) dξ1 · · · dξp

=
∑
i,j,k

(Bijfk)(Px)

= (Bf)(xK)

11



7 Discussion

Theorem 4 combined with Lemma 5 provides just one way of extending
operators, unfortunately destroying ellipticity: this is due to the apparent
non-ellipticity of the symbol χ in Lemma 5. Let us discuss this problem and
provide other extensions.

Let us extend the identity operator I ∈ Ψ0(Rp) using the process sug-
gested by Lemma 5. Of course, it would be desirable if I ∈ Ψ0(Rp) could be
extended to the identity in Ψ0(Rp+q), but now σI(x, ξ) ≡ 1, and thereby its
extension A ∈ Ψ0(Rp+q) has the non-elliptic homogeneous symbol σA = χ ∈
S0(Rp+q).

Given an elliptic symbol σB ∈ Sm(Rp) we can occasionally modify the
construction in Lemma 5 to get an extended elliptic symbol in Sm(Rp+q).
Sometimes the following trick helps: Let σA1 ∈ Sm(Rp+q) be an extension of
σB1 as in Lemma 5,

σA1(x, ξ) = χ1(ξ) σB1(x1, . . . , xp; ξ1, . . . , ξp),

where χ1 ∈ S0(Rp+q) is a homogeneous symbol satisfying χ1|(U×Rq)\B(0,1) ≡ 0,
χ1|Rp×V ≡ 1, where U ⊂ Rp and V ⊂ Rq are neighborhoods of zeros. Take
any elliptic symbol σB2 ∈ Sm(Rq), and modify Lemma 5 to construct an
extension σA2 ∈ Sm(Rp+q) such that

σA2(x, ξ) = χ2(ξ) σB2(xp, . . . , xp+q; ξp, . . . , ξp+q)

for a homogeneous symbol χ2 ∈ S0(Rp+q) satisfying χ2|(U×Rq)\B(0,1) ≡ 1,
χ2|(Rp×V )\B(0,1) ≡ 0. Then σA1 + σA2 ∈ Sm(Rp+q) is an extension for σB1

(modulo in�nitely smoothing operators). For instance, if B1 = I ∈ Ψ0(Rp),
let B2 = I ∈ Ψ0(Rq) and χ2(ξ) = 1−χ1(ξ) (for |ξ| > 1), then A1 +A2 = I ∈
Ψ0(Rp+q) (modulo in�nitely smoothing operators).

It may happen that any extension process for an elliptic symbol σB ∈
Sm(Rp) constructs a non-elliptic symbol in Sm(Rp+q). Consider, for instance,
a case where B ∈ Ψm(R2) is an elliptic convolution operator and ξ 7→ f(ξ) ≡
σB(x, ξ) is homogeneous outside the unit ball B(0, 1) ⊂ R2. If the mapping
f |S1 : S1 → C \ {0} is not homotopic to a constant mapping (i.e. f |S1 has
a non-zero winding number) then no extension σA ∈ Sm(R3) of σB can be
elliptic.

Multiplications on G/K have already been extended to multiplications G
via x 7→ xK, and A = AG/K for any left convolution operator (multiplier)
A ∈ L(D(G)) (in fact, then σA(x) = A for every x ∈ G). Sometimes on
G/K we have operators that resemble convolution operators. Suppose we
are given a left convolution operator A ∈ Ψm(SU(2)). Then the restriction
B = A|D(S2) ∈ Ψm(S2) is of the form

(Bf)(φ, θ) =
∞∑
l=0

l∑
m=−l

(
l∑

n=−l

a(l)mn f̂(l)n

)
Y m
l (φ, θ), (22)

12



where the coe�cients a(l)mn ∈ C can be calculated from the data

{BY m
l | l ∈ N0, m ∈ {−l,−l + 1, . . . , l − 1, l}}.

It is even true that the original operator A can be retrieved from the coe�-
cients a(l)mn. In fact, any operator B ∈ L(D(S2)) of the form (22) can be ex-
tended to a unique left convolution operator belonging to L(D(SU(2))). Now
a natural question arises: given a pseudodi�erential operator B ∈ Ψm(S2) of
the form (22), does its extension to the left convolution operator belong to
Ψm(SU(2))? This is an open problem. An interesting special case is

(Bf)(x) =

∫
S2

κ(x · y) f(y) dy, (23)

where κ ∈ D′(S2), (x, y) 7→ x·y is the scalar product of R3, and the integration
is with respect to the angular part of the Lebesgue measure of R3. Then

(Bf)(φ, θ) =
∞∑
l=0

l∑
m=−l

cl κ̂(l)0 f̂(l)m Y m
l (φ, θ)

for some normalizing constants cl depending only on l ∈ N0.

8 Appendix

Lemma 5. Let χ ∈ C∞(Rp+q) be homogeneous of order 0 in Rp+q \B(0, 1),
i.e. χ(ξ) = χ(ξ/‖ξ‖) when ‖ξ‖ ≥ 1. Furthermore, assume that χ satis�es
χ|(U×Rq)\B(0,1) ≡ 0, χ|Rp×V ≡ 1, where U ⊂ Rp and V ⊂ Rq are neighborhoods
of zeros. Let σB ∈ Sm(Rp) and

σA(x, ξ) := χ(ξ) σB(Px, Pξ),

where P (x1, . . . , xp+q) = (x1, . . . , xp). Then σA ∈ Sm(Rp+q). Moreover,
σA|(Rp×Rq)×(Rp×Zq) ∈ Sm(Rp × Tq).

Proof. We shall �rst prove that

|(∂γξ χ)(ξ)| ≤ Cγr 〈Pξ〉−r 〈ξ〉r−|γ| (24)

for every r ∈ R and for every γ ∈ Np+q0 . It is trivial that (x, ξ) 7→ χ(ξ)
belongs to S0(Rp+q). If r ≥ 0 then obviously (24) is true. Since we are not
interested in the behaviour of the symbols when ‖ξ‖ is small, we assume that
‖ξ‖ > 1 from here on. There exists r0 ∈ (0, 1) such that χ(ξ) = 0 when
‖Pξ‖ < r0. Let r < 0 and ξ ∈ supp(χ). Then ‖Pξ‖ ≥ r0‖ξ‖, and thus

|(∂γξ χ)(ξ)| ≤ Cγ 〈ξ〉−|γ|

= Cγ 〈Pξ〉−r 〈Pξ〉r 〈ξ〉−|γ|

≤ Cγ 〈Pξ〉−r 〈r0ξ〉r 〈ξ〉−|γ|

≤ Cγ r
r
0 〈Pξ〉−r 〈ξ〉r−|γ|.

13



Hence the inequality (24) is proven. Now

|∂αξ ∂βxσA(x, ξ)| ≤
∑
γ≤α

(
α

γ

)
|(∂γξ χ)(ξ)| |(∂α−γξ ∂βxσB)(Px, Pξ)|

≤
∑
γ≤α

(
α

γ

)
Cγrγ 〈Pξ〉−rγ 〈ξ〉rγ−|γ| CB(α−γ)βm 〈Pξ〉m−|α−γ|

≤ CBαβmχ 〈ξ〉m−|α|,

if we choose rγ = m − |α − γ|. Thereby σA ∈ Sm(Rp+q). Clearly we can
regard this symbol as a function σA : (Rp × Tq) × (Rp × Rq) → C and
study its restriction σA|(Rp×Tq)×(Rp×Zq) we claim that this restriction belongs
to Sm(Rp × Tq). Indeed, Taylor expansion of a function σ ∈ C∞(Rq) yields

4γ
ξσ(ξ) =

∑
δ≤γ

(
γ

δ

)
(−1)|γ−δ| σ(ξ + δ)

=
∑
δ≤γ

(
γ

δ

)
(−1)|γ−δ|

×

∑
|ρ|<|γ|

1

ρ!
δρ (∂ρξσ)(ξ) +

∑
|ρ|=|γ|

1

ρ!
δρ (∂ρξσ)(ξ + θδδ)


=

∑
|ρ|<|γ|

1

ρ!
(∂ρξσ)(ξ)

∑
δ≤γ

(
γ

δ

)
(−1)|γ−δ|δρ

+
∑
δ≤γ

∑
|ρ|=|γ|

1

ρ!
δρ (∂ρξσ)(ξ + θδδ)

=
∑
δ≤γ

∑
|ρ|=|γ|

1

ρ!
δρ (∂ρξσ)(ξ + θδδ),

because ∑
δ≤γ

(
γ

δ

)
(−1)|γ−δ|δρ = 4γ

ξ ξ
ρ|ξ=0 = 0

whenever |ρ| < |γ|. Therefore

|4γ
ξσ(ξ)| ≤

∑
δ≤γ

∑
|ρ|=|γ|

1

ρ!
δρ |(∂ρξσ)(ξ + θδδ)|

≤ cγ sup
η∈Sγ ,|ρ|=|γ|

|(∂ρξσ)(ξ + η)|,

where Sγ is the hyper-rectangle
∏q

j=1[0, γj]. Let α′ = (Pα, 0, . . . , 0), α′′ =
α− α′; then

|∂α′ξ 4α′′

ξ ∂
β
xσA(x, ξ)| ≤ Cα sup

η∈Sα′′ ,|ρ|=|α′′|
|∂α

′+ρ
ξ ∂βxσA(x, ξ + η)|

≤ Cα CAαβm sup
η∈Sα
〈ξ + η〉m−|α|
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≤ Cα CAαβm 2|m−|α|| sup
η∈Sα
〈η〉|m−|α|| 〈ξ〉m−|α|

≤ Cα CAαβm 2|m−|α|| 〈α〉|m−|α|| 〈ξ〉m−|α|

= C ′Aαβm 〈ξ〉m−|α|;

notice the application of the Peetre inequality

〈ξ + η〉s ≤ 2|s| 〈ξ〉s 〈η〉|s|.

Hence σA|(Rp×Tq)×(Rp×Zq) ∈ Sm(Rp × Tq)
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