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1 Introduction

Pseudodi�erential operators are a generalization of linear partial di�eren-
tial operators, arising from studies of elliptic partial di�erential equations.
Pseudodi�erential calculus provides essentially constructive means for solv-
ing elliptic problems. The roots of this discipline stem from the theory of
singular integral operators, notably from the work of A. P. Calderón and A.
Zygmund. In 1965 J. J. Kohn and L. Nirenberg de�ned the �rst modern
pseudodi�erential operator classes and studied their basic properties, and
soon this work was carried on especially by L. Hörmander.

The fundamental idea in pseudodi�erential calculus is to replace alge-
bras of operators by function algebras via a process resembling the freezing-
coe�cients technique familiar from solving variable coe�cient partial di�er-
ential equations. One establishes a bijective correspondence between opera-
tors and certain functions called symbols, and restricts the operator classes
by setting demands on the symbol functions in order to distill some essential
features of partial di�erential operators. Although the operator-to-symbol
mapping is not an algebra homomorphism, it still approximatively preserves
the elementary properties of the original operator algebra, and it is de�nitely
easier to treat symbol functions than the corresponding operators. One starts
by de�ning pseudodi�erential operators on the Euclidean spaces, and since
many of the operator classes are di�eomorphism invariant, the calculus can
be transfered to smooth manifolds by using partitions of unity.

Symmetries of a manifold sometimes permit powerful tools for pseudo-
di�erential calculus: Consider, for instance, a Dirichlet problem of an elliptic
partial di�erential equation in a domain di�eomorphic to the unit disk of the
plane R2, with a smooth boundary. The resulting boundary integral equa-
tion can be e�ciently treated using Fourier series and fast Fourier transform
(FFT). Related pseudodi�erential calculus for Fourier series was studied by
M. S. Agranovich ([4], [3], [2]) and others, and fast algorithms for solving
equations were presented by, e.g., G. Vainikko ([34]).

Naturally, it would be desirable to construct e�cient methods for solving
boundary integral equations on other manifolds as well. For example, the
surface S2 of the unit ball B3 ⊂ R3 would be an interesting case. In general,
pseudodi�erential calculus on a torus resembles very much the Euclidean the-
ory, and this is due to that Tn = Rn/Zn is an Abelian group; unfortunately,
the sphere S2 lacks such an algebraic structure. However, the special orthog-
onal group SO(3) acts transitively on S2, and much of the analysis on the
sphere can be derived from harmonic analysis on the symmetry group. E.g.,
spherical harmonic functions on S

2 are a byproduct of the representation
theory of SO(3). Actually, S2 is just an example of homogeneous spaces.

R. Strichartz treated the calculus of convolution type pseudodi�erential
operators on Lie groups in [26], and in 1984 M. E. Taylor (see [30]) presented a
pseudodi�erential calculus for Lie groups, studying operators as convolution
operator -valued functions on the groups, and constructing a symbolic calcu-
lus there; however, operator classes on a group were de�ned using Euclidean
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symbol inequalities in the exponential coordinates in a neighbourhood of the
neutral element; no symbol inequalities on the group were given.

In this thesis we study pseudodi�erential calculus on compact homoge-
neous spaces, mostly on compact Lie groups, and special attention is paid to
the case of the tori Tn. We present a characterization of pseudodi�erential
operators on closed smooth orientable manifolds by studying Sobolev space
boundedness of certain iterated commutators. We combine this commutator
approach with M. E. Taylor's pseudodi�erential calculus [30] to character-
ize symbols of pseudodi�erential operators on compact Lie groups. We also
de�ne amplitudes (or generalized symbols), and we study symbol calculus.
In particular, we construct asymptotic expansions for a parametrix of an
elliptic pseudodi�erential operator. Finally, we show how pseudodi�erential
calculus on compact Lie groups can be exploited to create some calculus on
compact smooth orientable homogeneous spaces, especially on spaces of the
form G/K with K a torus subgroup of G, like S2 ∼= SO(3)/T1 ∼= SU(2)/T1.

2 Results and connections to earlier research

Fourier transform is the main tool in pseudodi�erential calculus, other impor-
tant machinery including the theory of distributions (especially the Schwartz
kernel theorem) and the classical Taylor expansion of smooth functions.

2.1 Commutative background

Already S. G. Mikhlin in the 1940s and A. P. Calderón and A. Zygmund in
the 1950s represented a singular integral operator as a family of convolution
operators: we start with the Schwartz kernel KA ∈ S(Rn)⊗S ′(Rn) of a linear
operator A ∈ L(S(Rn)), de�ned by the duality

〈KA, f ⊗ φ〉 = 〈Aφ, f〉,

where the tensor product ⊗ is the completed tensor product of the nuclear
locally convex spaces S(Rn) and S ′(Rn). Formally we can de�ne sA(x) ∈
S ′(Rn) by sA(x)(y) := KA(x, x− y), and then

(Aφ)(x) =

∫
Rn

KA(x, y) φ(y) dy

=

∫
Rn

sA(x)(x− y) φ(y) dy.

Hence (Aφ)(x) = (sA(x) ∗ φ)(x); in a sense the convolution by sA(x) is the
frozen version of A at point x ∈ Rn. In [15] J. J. Kohn and L. Nirenberg went
on to de�ne the symbol function σA : Rn×Rn → C as the Fourier transform
of sA, more precisely

σA(x, ξ) = ̂sA(x)(ξ).
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Let us assume that σA ∈ C∞(Rn × Rn) satis�es

|∂αξ ∂βxσA(x, ξ)| ≤ CAαβm 〈ξ〉m−|α|, (1)

for every x ∈ Rn and α, β ∈ Nn0 , where ξ 7→ 〈ξ〉 = (1+|ξ|2)1/2, and CAαβm is a
constant depending only on A, α, β and m. These symbol inequalities de�ne
the symbol class Sm(Rn) and the corresponding class Ψm(Rn) = OpSm(Rn)
of pseudodi�erential operators of degree m ∈ R. It should be noted that the
index m in the coe�cients CAαβm is essential: Consider, for instance, the
case where σA(x, ξ) = log |ξ| for large |ξ| for every x ∈ R. Then A is of any
degree m > 0, but not of degree 0, and limm→0+ CA00m = ∞. An operator
A ∈ Ψm(Rn) belongs to L(S(Rn)), L(S ′(Rn)) and L(Hs(Rn), Hs−m(Rn)),
where Hs(Rn) is the L2-type Sobolev space of order s ∈ R. We may write

(Aφ)(x) =

∫
Rn

σA(x, ξ) φ̂(ξ) ei2πx·ξ dξ : (2)

the symbol σA can be regarded as a weight for the inverse Fourier transform.
Various other symbol inequalities, that is conditions resembling estimates
(1), have been introduced to restrict symbol classes for suitable occasions.

The symbol σA contains all the information about an operator A, and
while operator algebras may be di�cult to handle, the symbol function al-
gebras enable practical calculations, and the operations in these algebras
are closely related to each other: For example, approximatively σAB(x, ξ) ≈
σA(x, ξ)σB(x, ξ) and σA∗(x, ξ) ≈ σA(x, ξ), whereas actual calculations for the
composition AB and the adjoint A∗ might be tremendous tasks. For in-
stance, if σA ∈ SmA(Rn) and σB ∈ SmB(Rn), we have σAB −

∑
|α|<N σCα ∈

SmA+mB−N(Rn), where

σCα(x, ξ) = (∂αξ σA)(x, ξ) (∂αxσB)(x, ξ).

In such a case one writes σAB ∼
∑

α≥0 σCα or AB ∼
∑

α≥0 Cα, which are
called asymptotic expansions for the composition of pseudodi�erential opera-
tors. The constructions of such formulae mainly rely on using the traditional
Taylor expansion of smooth functions, familiar from undergraduate calcu-
lus. Similarly one can construct asymptotic expansions for the adjoints and
transposes of pseudodi�erential operators (see [14], [31], [32]).

Since asymptotic expansions obviously reveal information only modulo

S−∞(Rn) = ∩m∈R Sm(Rn),

these symbols of arbitrarily low degree may be regarded as inessential. A
pseudodi�erential operator A is called elliptic if it is invertible modulo class
OpS−∞(Rn), i.e. there exists a pseudodi�erential operator B such that σAB−I
and σBA−I belong to S−∞(Rn). Such a formal inverse B is called a parametrix,
for which one may calculate an asymptotic expansion using the expansion for
the composition of operators. Moreover, while di�erential operators are local
in the sense that they do not increase the support of a distribution, other
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pseudodi�erential operators are only pseudolocal : if a distribution f ∈ S ′(Rn)
is C∞-smooth on an open set U ⊂ Rn, so is Af for A ∈ Ψm(Rn).

We assume that the de�nition of a manifold contains the second countabil-
ity axiom: this means that the topology has a countable base. For compact
Hausdor� spaces, second countability axiom is equivalent to the metrizability
of the space. On a smooth manifold M one de�nes pseudodi�erential opera-
tors by localizing with partitions of unity; the class Ψm(Rn) is di�eomorphism
invariant, and hence the corresponding class Ψm(M) is well-de�ned.

Let Tn := Rn/Zn be the n-dimensional torus. M. S. Agranovich was �rst
to prove ([2]) that an operator A ∈ Ψm(Tn) can be presented in the form

(Af)(x) =
∑
ξ∈Zn

σA(x, ξ) f̂(ξ) ei2πx·ξ (3)

such that σA ∈ Sm(Tn), the class Sm(Tn) de�ned by the symbol inequalities

|4α
ξ ∂

β
xσA(x, ξ)| ≤ CAαβm 〈ξ〉m−|α|, (4)

for every α, β ∈ Nn0 and x ∈ Tn, where CAαβm is a constant depending only
on A, α, β and m. Here 4α

ξ is the forward di�erence operator,

4α
ξ σ(ξ) =

∑
γ≤α

(
α

γ

)
(−1)|α−γ| σ(ξ + γ).

Pseudodi�erential operators on the torus Tn are sometimes called periodic
pseudodi�erential operators . In [17] W. McLean de�ned the naturally gen-
eralized symbol classes Smρ,δ(Tn) (where Sm(Tn) = Sm1,0(Tn)) and proved that
the operator class OpSmρ,δ(T

n) for 1 − ρ ≤ δ < ρ ≤ 1 coincides with the
traditional one obtained locally from OpSmρ,δ(R

n).
In article [I] we present the elementary symbolic calculus of periodic

pseudodi�erential operators, providing asymptotic expansions for the com-
positions, adjoints and transposes of operators and for amplitude operators,
and thus we generalize the results of Elschner and Amosov ([12] and [5]), who
have considered the case of classical pseudodi�erential operators. The form
of the asymptotic expansions was proposed by G. Vainikko, and the validity
of the expansions was proven by the author of this thesis. Curiously, in ar-
ticle [I] an asymptotic expansion for a parametrix B of an elliptic periodic
pseudodi�erential operator A ∼

∑∞
j=0 Aj on T

n is missing, so let us �ll this
gap here: the construction follows the lines of the corresponding treatment
in paper [III], and we get σB ∼

∑∞
k=0 σBk ,

σB0(x, ξ) = 1/σA(x, ξ) (5)

for large |ξ|, and

σBN (x, ξ) = −σB0(x, ξ)
N−1∑
k=0

N−k∑
j=0

∑
γ:j+k+|γ|=N

(4γ
ξσAj(x, ξ)) ∂

(γ)
x σBk(x, ξ). (6)
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Here

∂(γ)
x =

n∏
p=1

γp−1∏
q=0

(∂xp − qI),

where ∂xp = (i2π)−1(∂/∂xp) and ∂
(0)
x := I.

2.2 Commutators

A striking feature calls for our attention: pseudodi�erential operators A ∈
ΨmA(Rn) and B ∈ ΨmB(Rn) almost commute in the sense that [A,B] =
AB −BA ∈ ΨmA+mB−1(Rn) although both AB and BA belong usually only
to ΨmA+mB(Rn). This property is a not-so-distant-relative to the degree drop
in the commutator of two partial di�erential operators, due to the Leibniz
formula for derivations,

D(f g) = (Df) g + f (Dg).

Special cases of the almost-commutation property are

σ[∂xj ,A](x, ξ) = ∂xjσA(x, ξ) (7)

and
σ[A,Mx7→xk ](x, ξ) = ∂ξkσA(x, ξ), (8)

where Mf is the multiplication operator (Mfg)(x) = f(x) g(x). Beals ([6])
used this discovery to characterize pseudodi�erential operators in terms of
Sobolev space boundedness of iterated commutators of the type (7) and (8).
This gave a spark for several other investigations, e.g. [8] and [9]. In article
[II] one form of this commutator characterization is given on the Euclidean
spaces.

Commutator characterizations for pseudodi�erential operators on com-
pact manifolds have been given by R. R. Coifman and Y. Meyer in [8] and
J. Dunau in [11], and we present other commutator characterizations in pa-
pers [II] and [III]. In article [II] this is applied to prove that the de�nition of
the periodic pseudodi�erential operator class OpSm(Tn) coincides with the
class Ψm(Tn). Let M be a compact smooth manifold without a boundary.
R. R. Coifman and Y. Meyer have proven that A ∈ Ψ0(M) if and only if
[Dk+1, [Dk, · · · [D1, A] · · ·]] ∈ L(L2(M)) for every sequence of smooth vector
�elds Dk on M . We generalize this to get the following:

A ∈ Ψm(M) if and only if [Dk+1, [Dk, · · · [D1, A] · · ·]] ∈ L(Hm(M), H0(M))
for every sequence of smooth vector �elds Dk on M ,

where Hs(M) is the Sobolev space of order s ∈ R on M . This result is used
in paper [III] to characterize operator-valued symbols of pseudodi�erential
operators on compact Lie groups.
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2.3 Harmonic analysis on Lie groups

On our way to pseudodi�erential calculus on homogeneous spaces, the next
step is to establish analysis on Lie groups.

Let G be a compact Lie group; the group structure is now encoded in
of the test function algebra D(G) in a subtle way. Let (x, y) 7→ xy denote
the group operation G × G → G, e ∈ G the neutral element, and x−1 ∈ G
the inverse element of x ∈ G. Let D(G)⊗D(G) denote the complete tensor
product of the Schwartz spaces, isomorphic to D(G × G) (see [33] or [19]).
Let us de�ne the co-product

∆ : D(G)→ D(G)⊗D(G), (∆f)(x, y) := f(xy),

the co-unit
ε : D(G)→ C, ε(f) := f(e),

and the antipode

S : D(G)→ D(G), (Sf)(x) := f(x−1).

The multiplication of the function algebra can be extended linearly to

m : D(G)⊗D(G)→ D(G), m(f ⊗ g)(x) := f(x) g(x),

and there is the natural embedding

η : C→ D(G), η(z)(x) := z.

The structure (D(G),m, η,∆, ε, S) is called a Hopf algebra (see [1], [28]), and
from it one can retrieve the group structure of G. The convolution product
is the transpose ∆t : D′(G)⊗D′(G)→ D′(G) of ∆ with respect to the dual
pairing

((φ, f) 7→ 〈φ, f〉) : D(G)×D′(G)→ C;

notice that ∆t(f ⊗ g) = f ∗ g, the usual convolution product of distributions,
formally

(f ∗ g)(x) =

∫
G

f(xy−1) g(y) dµG(y). (9)

Here µG is the Haar measure of the compact Lie group G, i.e. the unique
translation-invariant regular Borel probability measure on G. The �global�
Fourier transform (in the words of Stinespring, [25], see also [22]) of a distri-
bution f ∈ D′(G) is de�ned to be the convolution operator π(f),

π(f)g = f ∗ g, (10)

and π(f) ∈ L(D(G)). In the weak sense,

π(f) =

∫
G

f(x) πL(x) dµG(x),
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where and πL : G→ L(L2(G)) is the left regular representation ,

(πL(x)g)(y) = g(x−1y) (11)

for almost every y ∈ G.
Due to the Schwartz kernel theorem, operator A ∈ L(D(G)) can be rep-

resented by its Schwartz kernel KA ∈ D(G)⊗D′(G) by

〈KA, f ⊗ φ〉 = 〈Aφ, f〉,

where the duality is evaluated by help of the Haar measure. On the other
hand,

kA(x)f := (Af)(x) (12)

allows us to think KA as a function kA : G → D′(G), kA(x)(y) = KA(x, y),
and in a sense kA ∈ C∞(G,D′(G)). Now let us de�ne

sA(x)(y) := kA(x)(y−1x) (13)

in the sense of distributions; then sA ∈ D(G)⊗D′(G), or sA ∈ C∞(G,D′(G)).
The symbol of an operator A ∈ L(D(G)) is the mapping σA : G→ L(D(G))
de�ned by the Fourier transform,

σA(x) := π(sA(x)). (14)

In [30] M. E. Taylor examined a more restricted class of symbols. To our
knowledge, the de�nition of the symbol σA of A ∈ L(D(G)) is a new concept,
presented �rst time in paper [III].

Let f ∈ D(G). Then

Tr(π(f)) =

∫
G

Kπ(f)(x, y)|y=x dµG(x)

=

∫
G

f(xy−1)|y=x dµG(x)

= f(e);

Let δx ∈ D′(G) be the Dirac delta distribution at x ∈ G. Thereby

(Af)(x) = (σA(x)f)(x)

= (sA(x) ∗ f)(x)

= (sA(x) ∗ f ∗ δx−1)(e)

= Tr (π(sA(x) ∗ f ∗ δx−1))

= Tr
(
σA(x) π(f) πL(x−1)

)
.

When A = I, this yields the inverse Fourier transform

f(x) = Tr
(
π(f) πL(x−1)

)
.
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These formulae are important in numerical calculations, but we do not con-
sider those questions in the thesis. One should yet notice the resemblance
of

(Af)(x) = Tr
(
σA(x) π(f) πL(x−1)

)
(15)

and formulas (2) and (3).
In paper [III], we characterize Ψm(G) by operator norm inequalities for

symbols; we de�ne classes Sm(G) of symbols such that for the corresponding
operator classes

OpSm(G) = Ψm(G). (16)

Let us be more precise: Let Ξ = I−∆, where ∆ is the bi-invariant Laplacian
of G, and let QασA(x) = π(y 7→ q̌α(y) sA(x)(y)) with q̌α ∈ C∞(G) satisfying
q̌α(exp(z)) = zα for z in a small neighbourhood of the origin on the Lie alge-
bra g of G. The underlying idea for operators Qα comes from the observation
how the Euclidean Fourier transform converts multiplications by polynomi-
als to di�erential operators: M̂f(ξ) = (∂αξ f̂)(ξ) for (Mf)(x) = xαf(x). The
symbol σA of an operator A ∈ L(D(G)) is said to belong to Sm0 (G), if

‖Ξ|α|−mQα∂βxσA(x)‖L(L2(G)) ≤ CAαβm (17)

uniformly in x ∈ G, for every multi-index α, β ∈ Ndim(G)
0 , where the constants

CAαβm depend only on A, α, β and m; notice similarities to (1) and (4). Then
we recursively de�ne Smk+1(G) ⊂ Smk (G) with the idea that σ[D,A] ∈ Smk (G) for
every smooth vector �eld D if σA ∈ Smk+1(G) (for a more accurate de�nition,
see paper [III]). Then Sm(G) = ∩∞k=0S

m
k (G).

In [30] M. E. Taylor characterized pseudodi�erential operators on G by
studying the distributions (x, y) 7→ sA(x)(y) in the exponential coordinates
when supp(sA) is contained in a small neighbourhood of (e, e) ∈ G×G; his re-
sults are essential in the characterization of Ψm(G) in paper [III]. Taylor also
presented asymptotic expansions for compositions, adjoints and parametrices
of pseudodi�erential operators on G. We review these results in paper [III],
but we also construct an asymptotic expansion for the transpose, and we give
a more readily applicable expansion for a parametrix: Those pseudodi�eren-
tial operators that are invertible modulo in�nitely smoothing operators are
called elliptic, and an inverse of such an operator modulo in�nitely smoothing
operators is called a parametrix. This de�nition for ellipticity is more general
than the standard one, and this condition may be often di�cult to check,
but our de�nition has some aesthetic appeal. Let A be a pseudodi�erential
operator with expansion A ∼

∑∞
j=0 Aj, Aj ∈ Ψm−j(G), and assume that

x 7→ σA0(x)−1 is a symbol of a pseudodi�erential operator B0 ∈ Ψ−m+1−ε(G)
(for some ε > 0). Then A is elliptic with a parametrix B, σB ∼

∑∞
k=0 σBk ,

where
σB0(x) = σA(x)−1, (18)

σBN (x) = −σB0(x)
N−1∑
k=0

N−k∑
j=0

∑
γ:j+k+|γ|=N

(QγσAj(x)) ∂γxσBk(x); (19)
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compare this to (5) and (6). Moreover, we introduce the concept of ampli-
tudes on G, in analogy to the Euclidean pseudodi�erential calculus.

2.4 Harmonic analysis on homogeneous spaces

A homogeneous space is a quotient of a group by a subgroup, and thus
harmonic analysis on Lie groups provides the crucial step-stone for analysis
on homogeneous spaces.

A left transformation group is a triple

(G,M,m),

where G is a group, M is a set and m : G×M →M a mapping called a left
action of G on M , satisfying m(e, p) = p and m(x,m(y, p)) = m(xy, p) for
every x, y ∈ G and p ∈M . The action is free if m(x, p) = p for every p ∈M
implies x = e. The action is transitive if for every p, q ∈M there exists x ∈ G
such that m(x, p) = q, and in such case M is called a homogeneous space .
One de�nes right transformation groups with right actions in the obvious
manner.

Let K be a subgroup of a group G. Let G/K be the set {xK | x ∈ G} of
the classes xK = {xk | k ∈ K}, and let us de�ne an action m : G×G/K →
G/K by (x, yK) 7→ x−1yK. Evidently, G/K is a homogeneous space.

We assume everything to be smooth: hence above G is a Lie group, M
is a C∞-manifold, and m a C∞-mapping. Let K be a closed subgroup of
G. The set G/K is endowed with the co-induced topology via mapping
(x 7→ xK) : G → G/K, and there is a unique C∞-structure such that the
action (x, yK) 7→ x−1yK is C∞-smooth and such that there exists a mapping
ψ ∈ C∞(U,G) in a neighbourhood U ⊂ G/K of eK satisfying ψ(xK)K = xK
for every xK ∈ U . Homogeneous space G/K is in fact typical: if (G,M,m)
is a smooth transformation group with a transitive left action and p ∈ M ,
then M is di�eomorphic to G/Gp, where Gp = {x ∈ G | m(x, p) = p} is the
isotropy group of p ∈ M , i.e. that subgroup of G which �xes the point p.
For more information on homogeneous spaces we refer to [36] and [7].

A smooth �ber bundle is

(E,B, F, pE→B),

where E,B, F are C∞-manifolds and pE→B ∈ C∞(E,B) is a surjective map-
ping, and B has an open cover U = {Uj | j ∈ J} and di�eomorphisms
φj : p−1

E→B(Uj) → Uj × F such that φj(x) = (pE→B(x), ψj(x)). Spaces E, B
and F are called the total space, the base space and the �ber, respectively;
pE→B is the projection of the bundle. A principal �ber bundle is

(E,B, F, pE→B,m),

where (E,B, F, pE→B) is a smooth �ber bundle and (F,E,m) is a smooth
transformation group with a free right action satisfying pE→B(m(x, y)) =
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pE→B(x) and such that the mappings ψj : E → F above satisfy ψj(m(x, y)) =
ψj(x)y for every (x, y) ∈ E × F .

Homogeneous spaces can be thought as base spaces for principal �ber
bundles: (G,G/K,K, x 7→ xK, (k, x) 7→ xk) is a principal �ber bundle for a
Lie group G with a closed subgroup K (see [7]). In the sequel, we assume
that G is compact and G/K is orientable.

Those functions (or distributions) on G that are constant on each class
xK can be thought of being functions (or distributions) on G/K. The Haar
measure on K provides us with a procedure to �project� functions (or distri-
butions) via mapping PG/K : C∞(G)→ C∞(G/K),

(PG/Kf)(xK) =

∫
K

f(xk) dµK(k). (20)

In fact, PG/K is surjective, and we consider C∞(G/K) to be embedded into
C∞(G). Since (G,G/K,K, x 7→ xK, (k, x) 7→ xk) is a principal �ber bundle,
every smooth vector �eld on on G/K is a �projection� of a smooth vector
�eld on G (see [23]). Let A ∈ L(D(G)) with (Af)(x) = (σA(x)f)(x) =
(sA(x) ∗ f)(x) as above. In paper [IV] we introduce the �averaged� operator
AG/K ∈ L(D(G)) de�ned by

sAG/K = (PG/K ⊗ id)sA. (21)

We prove that AG/K maps D(G/K) into D(G/K), and if A belongs to Ψm(G),
so does AG/K , and even AG/K |D(G/K) ∈ Ψm(G/K). The characterization of
pseudodi�erential operators on G in paper [III] is exploited in obtaining these
results for G/K. The history of averaging processes for pseudodi�erential
operators can be traced at least back to the work of M. F. Atiyah and I.
M. Singer in the 1960s, and H. Stetkær studied related topics for classical
pseudodi�erential operators in [24].

Should an elliptic pseudodi�erential operator B on G/K be extendable
to an elliptic pseudodi�erential operator A = AG/K on G, we could use
the symbol-operator calculus on G (see paper [III] and [30]) to calculate a
parametrix C = CG/K for A, and then C|D(G/K) would be a parametrix for
B = A|D(G/K).

Paper [IV] continues with assumption that K is a torus subgroup of G,
i.e. K is isomorphic to the torus group Tq for some q ∈ N. Although this
follows from the previous results, we prove in another way that AG/K |D(G/K) ∈
Ψm(G/K) whenever A ∈ Ψm(G). Then, given B ∈ Ψm(G/K), we present a
method to construct an operator A = AG/K ∈ Ψm(G) such that A|D(G/K) =
B. The method involves extending a symbol σB′ ∈ Sm(Rp) to a symbol
σA′ ∈ Sm(Rp+q) so that

σA′(x; ξ1, . . . , ξp, 0, . . . , 0) = σB′(x1, . . . , xp; ξ1, . . . , ξp). (22)

It may also happen that B above is elliptic on G/K, but its extension A is
not elliptic on G; this is discussed especially in the case G/K ∼= S

2, and we
make other remarks on the subject.
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Hence paper [IV] provides some methods for solving pseudodi�erential
equations on compact homogeneous spaces G/K, especially for a torus sub-
group K.

In [27] Svensson dealt with pseudodi�erential operators on the sphere S2:
Let f ∈ D(S2) and B ∈ L(D(G)) such that

(Bf)(φ, θ) =
∞∑
l=0

l∑
m=−l

b(l) f̂(l)m Y m
l (φ, θ) (23)

where {Y m
l | l,m} is the L2(S2)-orthogonal basis of the spherical harmonic

functions and f̂(l)m is a spherical Fourier coe�cient (see paper [IV]). Assume
that l 7→ b(l) is a rational function. In this case Svensson proved that B ∈
Ψr(S2) if and only if b(l) = O(lr); the class of such operators contains many
interesting operators originating from geophysics ([27]), but the class is quite
restricted as it is not di�eomorphism-invariant. Our results in paper [IV]
imply that actually every B ∈ Ψm(S2) can be presented in the form

(Bf)(x) =
∞∑
l=0

l∑
m=−l

(
l∑

n=−l

b(x, l)mn f̂(l)n

)
Y m
l (x) (x ∈ S2), (24)

where x 7→ b(x, l)mn belongs to C∞(S2) such that there exists A ∈ Ψm(SU(2))
with the symbol σA : SU(2)→ L(D(SU(2))) having a matrix presentation

σA(x) ∼
∞⊕
l=0

cl (b(x, l)mn)lm,n=−l (x ∈ SU(2)) (25)

for some constants cl depending only on l ∈ N0.

2.5 Applications to boundary integral equations

Aspects of numerical analysis and computation are not treated in papers
[I-IV], but let us have a word on potential applications. Pseudodi�erential
calculus plays an important role in solving boundary integral equations sug-
gested by many problems in physics, arising from, e.g., electro-magnetics and
mechanics (as in the case of geophysics in [27]).

Integral equations on closed curves (di�eomorphic to T
1) and on open

arcs have been studied profoundly (see [21] and [20]). Sometimes equations
on Rn can be treated as periodic, i.e. equations on T

n, as for instance in
[34]. Usually the integral equations from applications are of classical type
([35]), but also general pseudodi�erential equations can be studied easily.
E�ciency in numerical computations on T

n is essentially due to the fast
Fourier transform (FFT).

So far, little is known of computationally e�cient numerical solving of
pseudodi�erential equations on compact spaces other than the tori. In re-
cent years, FFT methods for compact Lie groups and homogeneous spaces
have been introduced ([16]). E�cient Fourier transforms have been studied
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especially in the case of the sphere S2 (see [10], [13]). From the application
point of view, it will be an important task to provide computational algo-
rithms for solving pseudodi�erential equations particularly on S

2, but this is
outside the scope of the thesis.

2.6 Related research on operator-valued mappings

In Beals�Cordes -type characterizations of pseudodi�erential operators on
homogeneous spaces one examines an operator-valued mapping obtained by
conjugating an operator with a unitary representation of a symmetry group
([6], [9]).

Let M = G/K be a compact smooth homogeneous space and let π : G→
L(L2(M)) be the regular representation of G on L2(M),

(π(g)f)(x) = f(g−1x)

for almost every x ∈ M . Given A ∈ L(L2(M)), one studies the operator-
valued mapping g 7→ Ag = π(g)Aπ(g)−1, G → L(L2(G)). The smoothness
of this mapping is not enough to guarantee that A ∈ Ψ0(M) ([18]), and A
with smooth g 7→ Ag might even be non-pseudolocal. Enlarging the group
of symmetries may help: In that way pseudodi�erential operators on R were
characterized by H. O. Cordes in [9]. In [29] M. E. Taylor described Ψ0(Sn)
by the smoothness of the mapping g 7→ A(g) = U(g)AU(g)−1, where U :
SOe(n + 1, 1) → L(L2(Sn)) is the representation (U(g)f)(x) = f(g−1x) of
the conformal group.

Nevertheless, we have not treated operator-valued functions of Beals�
Cordes -type in the thesis, as they do not help us in constructing a symbolic
calculus for pseudodi�erential operators. It should also be noted that the
structure of the operators Ag and A(g) is essentially as complicated as the
structure of A ∈ L(D(G)), whereas for the symbol σA : G → L(D(G)) the
evaluation σA(x) is a left convolution operator for every x ∈ G.

3 Summary

In this thesis we study Hörmander (1, 0)-type pseudodi�erential calculus on
an orientable homogeneous space G/K, where G is a compact Lie group and
K its closed subgroup. In a joint paper [I] with G. Vainikko we start with
the case G = G/K = T

n, and develop symbolic calculus there. The rest
of the papers are written solely by the author of the thesis. In article [II]
we present a commutator characterization of pseudodi�erential operators on
compact smooth orientable manifolds without boundary; a derivation of the
symbol inequalities on a torus from commutators is a special example. In
paper [III] this commutator characterization is modi�ed to construct sym-
bol inequalities for pseudodi�erential operators on compact Lie groups, and
we present symbolic calculus there building on earlier results [30] by M. E.
Taylor. Finally, in paper [IV] the pseudodi�erential operators are studied
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on a compact smooth orientable homogeneous space G/K. We calculate the
average of a pseudodi�erential operator A on G along classes xK (x ∈ G)
to obtain a pseudodi�erential operator AG/K on G such that the restriction
AG/K |D(G/K) is a pseudodi�erential operator on G/K. If K is a torus sub-
group, we show that every pseudodi�erential operator on G/K is obtained
by this averaging process, as we extend or lift operators from G/K to G.
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Analysis of a bilinear �nite element for shallow shells I: Approximation of Inex-
tensional Deformations, May 2000

A428 Jarmo Malinen
Discrete Time H∞ Algebraic Riccati Equations, Mar 2000

A427 Marko Huhtanen
A Hermitian Lanczos method for normal matrices, Jan 2000

A426 Timo Eirola
A Re�ned Polar Decomposition: A = UPD, Jan 2000

A425 Hermann Brunner, Arvet Pedas and Gennadi Vainikko
Piecewise polynomial collocation methods for linear Volterra integro-differential
equations with weakly singular kernels, Dec 1999

A424 Olavi Nevanlinna
Resolvent conditions and powers of operators, Dec 1999

A423 Jukka Liukkonen
Generalized Electromagnetic Scattering in a Complex Geometry, Nov 1999

A422 Marko Huhtanen
A matrix nearness problem related to iterative methods, Oct 1999



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS
RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are
available at http://www.math.hut.�/reports/ .

A440 Ville Turunen
Pseudodifferential calculus on compact Lie groups and homogeneous spaces,
Sep 2001

A439 Jyrki Piila and Juhani Pitk äranta
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