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Summary. We consider the bilinear finite element approximation of smooth
solutions to a simple parameter dependent elliptic model problem, the prob-
lem of highly anisotropic heat conduction. We show that under favorable
circumstances that depend on both the finite element mesh and on the type of
boundary conditions, the effect of parametric locking of the standard FEM
can be reduced by a simple variational crime. In our analysis we split the
error in two orthogonal components, the approximation error and the con-
sistency error, and obtain different bounds for these separate components.
Also some numerical results are shown.
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1 Introduction

Locking, or parametric error amplification is a well-known phenomenon
that may arise when solving parametric elliptic problems with the finite ele-
ment method. A rather challenging problem of this type is the shell problem
of linear elasticity [6,4,7] where the thickness of the shell serves as the
main parameter. Locking usually effectively prohibits the convergence of
low-order finite element schemes when the parameter associated with the
problem approaches an asymptotic value such as zero. There have been nu-
merous attempts to reduce the effects of locking in order to obtain improved,
or even optimal, convergence rates in various problems of linear elasticity.
In fact, in this home field of FEM even one of the earliest finite elements,
the Turner rectangle [9], may be viewed as such a formulation, see [5].
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Perhaps the most popular way to circumvent the problem of locking is to
produce a variational crime of some kind, i.e. the bilinear fotta, v) as-
sociated with the problem is substituted by another, usually mesh dependent
form Ay (u, v). The aim of the modification is to generate a weaker norm in
the underlying energy spatéso as to “unlock” the problem. However, the
choice of the modification is a delicate matter since introducing a variational
crime entails a consistency error component that must also be treated.

In this paper we consider a simple parametric elliptic model problem,
the problem of highly anisotropic heat conduction, previously studied in
[1]. This problem resembles the shell problem in that, depending on the
boundary conditions and on the load, the solution may fall in two different
asymptotic states. In the context of heat conduction these states could be
named as theool stateand thehot state respectively. In the cool state,
the main heat conduction occurs in the direction of high conductivity (as
expected normally), whereas in the hot state, the conduction in the direction
of low conductivity dominates. In beam theory [5] and in shell theory [7], the
cool state corresponds to a deformation state where stretching dominates,
while the hot state corresponds to a bending-dominated deformation.

In parametric elliptic problems like the ones mentioned, the numeri-
cal locking problem appears in the “hot” or bending-dominated asymptotic
states. In problems where this is the only relevant state, like in the plate-
bending problem [8], various “tricks” or variational crimes have usually
been formulated so as to avoid the locking effect. The real challenge begins,
however, when two (or perhaps more) asymptotic states are possible. One
should then try to find a formulation that not only avoids the locking in the
“hot” state but also maintains the good performance in the “cool” state. The
main problem is that the more the crime helps to avoid the locking effect,
the larger consistency error typically appears in the “cool” state where no
locking occurs.

In general, it is far from obvious that a “dream scheme” good for all
asymptotic states exists in the context of the simple low order FEM. How-
ever, the few successful examples, like the bilinear Turner rectangle for
beams [5], seem to indicate that the problem at least is not hopeless. Here
we consider a simple model problem which aims to model our ultimate
target, the shell problem.

The plan of the paper is as follows. In Sect.2 we present our model
problem containing positive but arbitrarily small parametéie show that
ase — 0, two different asymptotic solution modes are induced by different
boundary conditions. In Sect. 3 we introduce the modified bilinear formula-
tion for the model problem where the main crime is to elementwise average
the heat flux in the direction of high conductivity. The error analysis of this
reduced-flux scheme is carried out in Sects. 4-6. In Sect. 4 we split the error
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into two components, the approximation error which is treated in Sect. 5,
and the consistency error treated in Sect. 6. The results of some numerical
experiments are shown in Sect. 7.

We denote théth Sobolev norm by} - ||, the corresponding seminorm
by | - |z and the norm over the boundary of a dom&drby || - || 502- The
L?-inner product is written a§, -) and the induced norm ds ||;2. V and
V0 stand for the energy space and its subspace with proper homogeneous
boundary conditionsy;, andV} are the finite dimensional counterparts of
these two space§.represents an arbitrary but finite constant, not necessarily
always the same, but independent of any parameter unless noted otherwise.
Finally, @ denotes a constant that depends on the exact solutiut not
on the parametet.

2 The model problem

As a model problem for our analysis of locking in this paper we take the
problem considered already in [1]: The anisotropic heat equation in the unit
squaref?2 = (0,1) x (0, 1) with principal axes that are not aligned with the
coordinate axis, that is

0*u 0%

with
§ =ax+ Py
n =-—pr+ay

wherea? 4+ 32 = 1 anda, 3 #+ 0. From this setting we generate three
different problems where the behavior of the solution is largely dictated by
the boundary conditions:

A. u=wonof?
B. J,u = gwhenx =1 ory = 1 andu = w elsewhere 01d{?
C. O,u=gonof2

Here f, w andg are given functions, chosen so that the exact solution of the
problem is sufficiently smooth, arig) stands for the normal component of
the heat flux at the boundary, i.e.,
ou ou
Oyu = (any + wby)a—5 + 2 (—png + any)a—n,
where(n,, n, ) is the outward unit normal @s2. The variational formulation
of these problems is: Find € V such that

(2.1) Au,v) = ¢(v) Yo eV
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where the bilinear form (energy product) is written as

L fou o\ o o
At = (G 5 )+ (5o

and the linear functional as

o) = {f.0)+ [ guar.
I'n
whereI'y = () for Problem AT’y = {(z,y) € 02|z = lory = 1}
for Problem B, and’y = 912 for Problem C. In (2.1)) = H;({?) and
VW = {v € Hi(2)|v=00n02\ I'y}. In Problem C we assume that
¢(1) = 0 and impose the constraifit;, 1) = 0 on )V so as to make the
solution unique.

Due to the assumed constraint w whenx = 0 ory = 0 in Problems
A,B, we may assume that heat conduction ingfdirection becomes dom-
inant in these cases as— 0. This corresponds to the “cool” state where,
neglecting any boundary layer effects, we may assume that

u~u’ase— 0

where the limiting solution” satisfies
o0& 7 ¢
In Problem C the physical situation is rather different. In this case, due

to the forced heat flux alon@s?, the solution develops in general a “hot”

componentthatscales like~ ¢~2 and represents heat flux in thalirection
only. Again neglecting boundary layer effects, we may then assume that

(2.2) > =o(v) Yoe )

u~ e 2u’ase — 0
whereu" (the scaled limiting solution) satisfies

0
(2.3) 6812 =0.
The above discussion is to motivate the following hypothesis on the
solution.
Hypothesis 1 In problems A and B assume the solution has the form
(2.4) u=u’ + ul,
whereu? satisfies (2.2) with the bounds

(2.5) [ulle < @QIllull| for k <5
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and
(2.6) lullio0 < Qlllull| for k = 1,2.
wherel|| - ||| is the energy norm

ulll = v/ A(u, u).
In problem C assume the solution has the form
(2.7) u=e2u’ +u!
u” satisfying (2.3) and.’ # 0. Assume here further that
(2.8) |u?||lx < Qel||ul|| for k < 3 and fori = 0, 1.

Remark 1We note that as as rule? in (2.4) or in (2.7) is not continuously
differentiable across the lines =const. that pass through a cornerf@f

atx = 0,y = 0oratz = 1, y = 1, so in this sense the regularity
assumptions (2.5), (2.6) and (2.8) are quite unrealistic. However, we choose
not to discuss problems associated with the regularity of the exact solution
here, but simply assume these bounds for our analysis. We could formally
justify these assumptions by thinking 6f as a fictitious subdomain of a
larger domain where the physical boundary conditions are set sothet
smooth.

Remark 2In order to haveu # 0 in the hot state we must assume that
our boundary data and load functiory are such that there is at least some
v € W for which ¢(v) # 0 whereW = {u € V| 4% = 0}. The scaled

limiting solution«" in (2.7) then satisfies (2.1) with replacing).

Remark 3In [1] the concepts of “locking” or “robustness” were given a
precise mathematical meaning in the context of a model problem of type C.
Here our focus is somewhat different. We look at different solution states
simultaneously, basically looking for a simple FE scheme that is “robust”
with respect to the variation of bottand the solution state from hot to cool.

3 Standard FE scheme vs. reduced formulation

Our main concern throughout this paper is the isoparametric bilinear ele-
ment: Letr denote the subdivision @ into convex disjoint quadrilaterals

K that satisfy the usual shape regularity assumptions (cf. [2]). Then we set
our local finite element space to be

MK:{U:'DO}-_I, ve Mg}
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where M . is the reference finite element space associated to the reference
elementk = (—1,1) x (—1,1) andFx : K — K is a bilinear map. For
the reference space we take

My = {0(,9) = ago + ar0d + an i + andy, a;; € R}

and for the degrees of freedom the nodal values as usual. We further denote
by hx the largest side of the elemeht, let h = maxg hx be our mesh
parameter, and denote by the piecewise bilinear FE space (a subspace of
V) associated to a given mesh.

In the above notation, the standard bilinear FE approximatjpg V,
to the solution of our model problem satisfies

(3.1) A(up,v) = ¢p(v) Yo e VP

together with the interpolated constraint = « at those nodal points of

the boundary where the corresponding constraint is imposed in the exact
formulation (Problems A,B). For this scheme, the standard FE error analysis
together with the assumed regularity assumptions (2.5) (Problems A,B) and
(2.7), (2.8) (Problem C) gives us the following error bound in the energy
norm:

Theorem 1 For the standard bilinear FE scheme (3.1) we have the error
bounds

[l —wnlll _ ) Qh in Problems A,B
llulll  ~ |min{l,Qe'h} inProblemC

Proof. In Problems A,B (cool state) the asserted bound follows from stan-
dard FE approximation theory based on assumption (2.5) kvith 2, cf.

[2]. In Problem C (hot state) we have no constraints on the boundary so the
projection principle gives||u — uy||| < |||u|||. To prove the second bound

we expandy, in analogy with (2.7) as

up = e_2u2 + u}L

The asserted bound then follows again by standard reasoning based on
bounds (2.8) withk = 2. Here we also see that the dominant error con-
tribution comes from

e 2 —uDll [ 99, 0 owz 10 oy L

Since%—“g0 = 0, e-uniform convergence is possible only under constraint
0
%%h = 0. This, however, implies that% = c1 + con for some constants,
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co, Unless the mesh is carefully aligned with taxis. Thus we conclude
that the asserted bound is (essentially) not improvable on a general mesh.
This is also confirmed by numerical experiments, see Sect. 7. O

In order to circumvent the parametric error amplification in the hot state,
we now commit a variational crime choosing our new mesh dependent for-
mulation to be: Find.;, € V), such that

(3.2) Ap(up,v) = p(v) VYo € V)

where
B ou ov 5 /Ou Ov
Ap(u,v) = <Rha€7Rha£> +e <5777 57]>

ou Ov

2

I—Ry)—,— ).

# (0 R0 5

Here Ry, is a numerical flux reduction operator which we choose to be the
orthogonalL?-projection onto elementwise constant functions, i.e.

1
= — dxd
Binp ared K) /Ksp wey

for every elemenk.

The basic idea in the formulation (3.2)-(3.3) is the hope that weakening
the locking constraintfrorﬁg‘%J = OtoRh%—“0 = (Oretains the approximation
properties of the finite element subspace at the lémit 0 in the hot state.
However, one must also keep in mind the cool state where the standard
element did not suffer from locking. Thus there is an additional requirement
that in the cool state the performance of the scheme should not deteriorate
due to the flux reduction. The last term in (3.3) is introduced to keep the
formulation at least-stable, orH;-stable at = O(1). We finally note that
the reduction operatadk;, could be different, but the chosen one appears a
rather natural “first choice”.

In non-standard FE formulations, the regularity of the mesh may have a
strong impact on the actual performance of the algorithm, cf. [5]. To study
such possible effects in the present context we will distinguish between four
different mesh types as follows:

(3.3)

1. General quadrilateral mesh.

2. Rectangular mesh.

3. Piecewise uniform rectangular meshis divided intoN subrectangles
£2;, and each?; is subdivided by a uniform rectangular mesh.

4. Uniform rectangular mesh: case 3 with= 1.

The four mesh types are shown in Fig. 1. Note that on each of these meshes,
the standard FE scheme suffers from locking at0 in Problem C.
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Fig. 1. Different mesh types. From leftto right: General quadrilateral, rectangular, piecewise
uniform and uniform mesh

4 Error analysis principles

In our error analysis of the reduced-flux scheme (3.2)-(3.3) we follow the
ideas of [5] choosing our error indicator to be

= unllln
Tl

whereu anduy, are the exact and finite element solution, respectively, and
[l - |||» is the (semi) norm generated by the bilinear fastp(u,v) on V.

Our aim is to divide the total relative erreinto two parts and discuss them
separately. To this end, we note that by (2.1), (3.2)

An(up,v) = Alu,v) Yo € V).

Let us then splity;, asuy, = @y + z, Wherew,, satisfies the same boundary
conditions asu;,, and is defined as the best approximatioVinto « with
respect to the norfj| - |||, so that

Ap (i, v) = Ap(u,v) Yo € V),
Sincez;, € V}, this implies in particular that
Ap(u — iy, 2) =0,

and therefore the orthogonal splitting of the error as

1w —unlll = [llu— @[z + |llznlll%
or

e’ = 6124 + e% ,

wheree 4, the approximation error, is

Il = anllln

(1) Tl

andec, the consistency error, is




An analysis of finite element locking 699

We also note that since
An(zn,v) = (A — Ap)(u,v) Yo eV,
the consistency error can be written as
(4.2) ec = sup —(A — Ah)(u,v)‘
vevdwzo [l 1v]l|n

In order to bound the consistency error we need some stability results for
the reduced-flux scheme (3.2)-(3.3). The following lemma gives us bounds
that will play a crucial role in the analysis of Sect. 6. We denote here by
I't the “outflow” boundary of the primary heat-flow in tifedirection in
Problems A, B.

Lemma 1 In Problems A,B,C
(4.3) )y < Ce H|[vl|ln Vv e V.

In addition, if the mesh is piecewise uniform, one has

1/2
@8 (Il + 0l2r) < CMIlellln Vo€ VR
in Problems A, B.

Proof. Estimate (4.3) is a direct consequence of the definitiod gfu, v).
To prove (4.4), assume first a uniform mesh. Then
0 1

Rng? = oo

(Ul,j _ Ul—l,j + Ul,_]—l _ ,Ul—l,]—l)’

whereh, is the mesh spacing in the-direction and the/*!’s denote the
nodal values of. Upon expanding%hg—z similarly we seethaRh% actually
defines a well-known difference approximation, the box-scheme, for solving
the linear hyperbolic equatio%éi = f. Assuming thatf is elementwise

constant, the.2-stability of the box-scheme [3] implies (4.4):
Ov
[ollZ2 + [l Z2rsy < ClIfIZ2 = CIIRha?H%Q < CIlJollf3-

The piecewise uniform case follows applying the result separately to each
subdomain’?;. In this case” = C'(N). 0

Remark 4When (4.4) holds, we have
[ols < C(N)RH|[ollln Yo € Vy

by usual inverse inequalities on shape regular meshes.
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5 The approximation error

The approximation error of the reduced-flux scheme (3.2)-(3.3) was defined
by (4.1). The following theorem gives bounds for this error in case of the
three test problems A,B,C and the four mesh types.

Theorem 2 In Problems A and B (the cool state) the approximation error
obeys the bound

ea < Qh

on every mesh type. In Problem C (the hot state) the approximation error
obeys the bound

Qe 'h  onageneral mesh
ea < { Qe 'h?  on arectangular mesh
Q(N)h  on a piecewise uniform mesh

Proof. The bounds on a general mesh are direct consequences of the in-
equalities (2.5), (2.8) (wittk = 2) and standard approximation theory. To
obtain the bound on a rectangular mesh (Problem C) we consider the stan-
dard interpolanti, € V;, of u. We have

N 0 . 0 .
[Ilw — Il =||Rh8*§(u —an)||72 + 62!\877@ — )72

0 .
+ E([(I — Rp) = (u— ) |72,

so by (4.1) and (2.8) the main problem is the first term on the right side.
Here‘g—g =af’+ 5%, so that

0 ) 0 R 0 .
”Rha?(u —p) |2 < ||Rh%(u — p)| g2 + “Rh@(u — Up)|| 2.

Thus we must find a bound for terms of type

0 R 0 .
||Rh%(u —Up)|| 2 = HRh%U — Rh%“h”L? .

However, since
0 .
Rh%(u —p) g =0

whenever is a quadratic polynomial oft, it follows by standard reasoning
that HRh%(u — )2y < Ch?|ul3 k. Thus the asserted first bound
follows using (2.7), (2.8) (wittk = 3).
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In order to prove the error bound on a piecewise uniform mesh we first
consider the cas& = 1. Here we make use of the decomposition (2.7),
choosing our approximatiof, to v as

ap, = €A + a5,
whered) satisfies the constraint

(5.1) Ry, =) =0,

andd; is the standard interpolantof. Again, (5.1) defines the box-scheme,
now for solving%—f = (. The box-scheme is second order accurate, so

selecting inflow boundary-conditions such ttﬁéltinterpolateSu0 on o2
we have the bound [3]

lu® = apllpe < CR?[u]l5 .

From this we obtain by standard inverse inequalities the bounds

0
I 5

Using these bounds together Wb@gu =R, 2 ag“h 0 and standard inter-
polation error bounds far! — u}, we can now bouned4 as

(u” = ap)llz2 < Chlu’lls, II*(U — )|l 2 < Chllu’|ls .

(€ 2l Rn g (u® — ap)ll e + Il 5 (u — i)l 2)°

= EE

gyt = ) + I Bu) Gy )

TR
el — ), + e G — ) + & — b3,
= mqu
2l 2w — i) + L(ut — b2,
TEE
C(R2 3 + e 2h2 [0 |3 + 2h2|u! 3 + e 2h2 |03 + 2h2[ul 3)

- [[l]?
§Q2h2
where we needed estimates (2.8) witk: 2, 3. The bound for the piecewise

uniform mesh (V > 1) is finally obtained by iterating the finite difference
error bound (cf. [3])

lu® = dpl| o + [lu® = Gyl 2, < CORP a5, + [|u® — @yl )
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over every subdomait?; C (2. Here I, andI;" are the “inflow” and
“outflow” boundaries off2;. O

Remark 5Whetherthe bound, < Qe~'hisimprovable ornotonageneral
mesh remains an open question. Our experiments indicate that the reduced-
flux scheme behaves at least adequately on a general mesh.

6 The consistency error

The following theorem establishes bounds for the consistency error compo-
nent (4.2).

Theorem 3 In case of a general quadrilateral mesh the consistency error
obeys the bounds

o < Qe 'h  in Problems A and B
©= Qh in problem C

In case of a rectangular mesh, we have the improved bounds

Qe th? in Problem A
ec < Qe 'h32  in Problem B
Qh? in problem C

Finally, in case of a piecewise uniform mesh, the bounds are stillimprovable
for Problems A and B as

- Qh? + Q(N)h3/? in Problem A
“ =) Q(N)min {1'/2,e"183/2}  in Problem B

with Q(1) = 0 in Problem A.

Proof. To have the bound- < §, we need to bound the consistency error
functional

—1-) (e - r) %)
as
(A= Ao )] < ol ol v € VR

The asserted bounds in case of a general mesh then follow immediately
from simple approximation theory, estimates (2.5), (2.8) wkitk 2, and
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the stability estimate (4.3). Note that in Problem C, the leading term in (2.7)
does not contribute to the consistency error.
Next, assume a rectangular mesh. In this case, since
ov v +ﬁ8v
AN a
o€ Oz oy
we need only to treat expressions of ty<)§;‘—1, (I — Rh)(%;> where z;

denotes eithex or y. Without loss of generality, let us consider the case
z1 = y andze = z. Noting that% depends only oy on a rectangular

mesh, we can write
ov ov
(I — Rh)—am = - Ay)—am

where /A, is the orthogonal projection onto piecewise constant functions
with respect to the-coordinate, i.e.
Aywy,e = 1/% w(z,y') dy’
Yi = Yi-1 Jy,_4
for every elemenf<. Then we obtain integrating by parts

(6.1)

_/01 /01 [(I—Ay)g;j(x,y)] %(x,y)dxdy

:/O [(1 - Ay)((zz’(l,y)] v(L,y) dy

_ /01 [([ - Ay)gZ(O,y)] v(0,y) dy
B 01/01 [(I—Ay)ﬁl] vdzxdy,

where we used also the fact théj anda% commute.
In Problem A we haver = 0 on 0{2, so the boundary terms in (6.1)
vanish and we get

ou ov Lol 0%u
<(‘9y’(I_Rh)8x> = —/0 /o (I—Ay)a?ay(f—/ly)”dufdy

§Ch2]u\4]1)|1
<Ce ' h?[ulal|v]||n
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applying lemma 1. Together with (2.5 & 4) this proves the assertion for
Problem A.
Still considering Problem A, let us now assume a uniform mesh so that
writing
0%u 0u

(I =4, )6$6y o (y)&rayg

- C(xay)

wherew(y) is the piecewise linear “sawtooth” function jumping frep /2
to —1/2 aty; we obtain

<(1 A);Qg > <([ 4)8‘925 (I—Ay)v>
P 01}>

(6.2) (cten oy )

Noting thatw?(y) = 162(y) + 15 whereds(y) is the monic piecewise
Legendre polynomial of order two we get

0% 1 u v
-4, < |{ h2=0,
‘<( )ﬁxé’y > ’< W )0w8y2’0y>‘

R L
2 8m8y2’8y
(ot )
_I_
Jy
3
2 } )2 0°u 732}
4 0xdy?’ dy

2
12

<(‘3(z40y3’ >‘
+ ‘<C(x,y),hw(y)gz>‘

wherel, is the orthogonal projection to elementwise linear functions in
they-direction. Here for the last term we can apply lemma 2 ahead, writing
this term as a sum ovét and denoting) = g)%gy, Y= %Z' Together with
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the Cauchy-Schwartz inequality and the stability estimate (4.4) this lemma
gives

6.3) '<cuay»hwungz>]s;chﬂu5|wum.

By standard approximation theory and by (6.3), (4.4) we have then also

0%u 4
[CEFPra >‘<MHaa4hﬁ oo

4
2 3
+ 5ol g gl + CHudsloll
<CR(Juls + lulo) [l

Using finally the estimate (2.5) (with = 4, 5), it follows that the asserted
improved bound for Problem A holds in case of a uniform mesh.

At this point it is tempting to ask if the procedure above could be contin-
ued to produce even higher order terms:irHowever, this is not possible

as can be verified from the express@@( (I —A )%dy% ay> by taking

023;,2 = y? and choosing such that‘g—z = m whenh < 2z < 1 — h and

0<y<1l—hwithv=00n09{2.

The above reasoning anyhow extends to a piecewise uniform mesh as fol-
lows. Suppose tha? is divided into two subdomain®@,; and{2, with mesh
parameters:; andhs, respectively, by a horizontal line (N=2). Denoting
this line by " and integrating by parts in

1h<)2 Pu ov\ /1 Fu v
dxdy?’ By 3 1ozdy?’ dy o

(L e v
3 20z0y2 Dy 2

1., &u Ov 1., Pu Ov
RO (G V) =
3 0x0y* 0y / g, 3 “0x0y* 9y / g,
— th O'u @ — th O'u @

3 1 9z0y3’ dy o 3 29x0y3’ dy 2,

1 u
+<(h2—h2)7’l}> )
3V T 90y

we obtain



706 V. Havu, J. Pitiranta

where now the additional line integral term is bounded as

1,4 9 B 9
Fg(’h —h2)w vdz| < Ch ”8 ay 2HL2 ||UHL2(F)

The asserted bound then follows from the inverse estirfjalg: ) <

Ch=12||v|| 2 and and stability estimate (4.4). The extension of this argu-
ment to an arbitrary piecewise uniform mesh is obvious.

Let us now consider Problem B. In case of a rectangular or a piecewise
uniform mesh the non-vanishing boundary term in (6.1) is bounded as

1 ou
[ =15 0.0v00) dy\

1 u
= /0(J_Ay)gy(o,y)(l—Ay)v(O,y)dy’

0%u ov
< Ch2”87y2(0’ ')HLQ(O,I)H%(Ou M r20,1)

< Clula.goll[vlllne"h*/?

on a rectangular mesh and as

1 ou
/0 (1= 4,5 0.9)0(0.9) dy

< C(N)[ul2.a0ll[vlllp min {p'/2, e~ h%/2}

on a piecewise uniform mesh, by an inverse estimate and by the stability
estimates (4.3), (4.4). The asserted bounds follow using estimate (2.6) with
k= 2.

The case of Problem C is finally easily covered with the help of the
decomposition (2.7). Sinc%é—o = 0 we have that

(A ) = - ) (- R 5. 50

1= (G- r%).

23 29
and the same analysis as above can be carried outiwtiplacingu, except
that a factok is introduced canceling the error growtheas 0. O

Remark 6Again, experiments show that the reduced formulation behaves
fairly well on a general quadrilateral mesh, although this was not proved.
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Lemma?2 Let K;; = {(z,y)|zj-1 < = < zj, yi-1 < y < y;} Where
hi =yi—yi-1 < h,andlety;_;/, = 3 (yi—1+y;). Further lety = ¢ (z, y)
be a given smooth function dtj;; and lety € L?(x;_1,z;) be such thap
is independent af. Then

I,

i hl Yi—1

Yi a
[w L / Y(x,y)dy' — (y — yi_l/z)aﬂ (y — Yi_1/2)p dady

03
< Ch4”TngLQ(KU)H@HL%Ku)'

Proof. For the proof, see appendix A.

7 Numerical experiments

In order to test our reduced formulation we have conducted numerical ex-
periments comparing the performance of this formulation to the classical
one. In all cases we have assumed homogeneous boundary conditions, i.e.
w = g = 0. For the load functiorf we have choserf = sin (27z) =

sin (27 (o€ — fn)). Note thatf satisfies the conditiorf, fdz = 0 as re-

quired. We have also set= 3 = 1/+/2 for simplicity.

7.1 The cool state

In the cool state we consider only Problem A where the asymptotic solution
u? satisfiesaggg0 = f. It is then easy to compute the exact asymptotic
solution for0 < n < 1/v/2 as

W =g (sin(ﬂms _ g - Eoin2r(v2n - 1)

72 V2 —2n

V2 —2n

On the second half of? «° is obtained via a reflection through the center

of {2 as shown in Fig. 2. Experimenting with a few small values of epsilon
and a few different mesh parameters we see that our reduced formulation
performs very well as compared to the classical one on a uniform mesh, as
expected by the error analysis. A typical behavior is shown in Fig. 3. Also
the evaluation of the relative error in bath and the modified energy norm
shows that the reduced formulation produces a fairly good solution. These
graphs are shown in Figs. 4 and 5. On a more general mesh the results were
found less encouraging.

+nsin (2r(1 — \/Qﬁ))) ‘
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exact asymptotic solution for dirichletl-boundary conditions

75555
A7 rsrs
// 0, 205%

temperature

—-0.02

-0.04

-0.06

-0.08
60

0 o

y-axis x—axis

Fig. 2. The exact asymptotic solution in the cool state with the load fungtiensin (27x)

£=0.01,h=0.0625,reducedscheme,regulargrid,dirichletlboundary

0.08

temperature

0 o

y-axis x-axis

Fig. 3. The finite element solution obtained by the reduced-flux formulation in the cool state
with e = 1077, h = = and the load functiorf = sin (27z)

7.2 The hot state

In the hot state we have the boundary conditiopg = 0 on 92 and the
asymptotic solution” satisfies the conditioég—O = 0. Using the variational
formulation (2.1) with test functions now W, integrating with respect to
¢, and integrating by parts we obtain that the asymptotic soluti@atisfies
the equations
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Feaitiva armars in H, narm for the cool stake
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Fig. 4. The relative error iff; norm for the cool state (uniform mesh)
. Felative armars in modified energy nom for the cool stale
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Fig. 5. The relative error in modified energy norm for the cool state (uniform mesh)

2,,0

250+ (20— VD) 5 = —Zsin® (Vam), 0<n < 1/V2

2%—7;70 + (2n+ ﬁ)?;;go = gsin2 (v2mn), —1/v/2<n<0

¥

Furthermorey? is continuously differentiable of? and satisfies the sym-

metry condition‘%,in0 ln=0 = 0. From these properties the asymptotic solution
is found to be
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€=0.01,h=0.0625,normalscheme,regulargrid,neumannboundary

2000
1500
1000

500

temperature

-500

-1000

-1500

-2000
1

0 o

y-axis x-axis

Fig. 6. The finite element solution obtained by the classical formulation in the hot state with
e =107, h =  and the load functiorf = sin (27z)

1 f27r sint gy 1y 1 2“(‘/5”71)%&,

82 Jo t 2v2x 8n2 Jo
WO 0<n<1/V2,
T ) 1 27 sint 1 1 27(vV2n+1) sint
sz o SErdt+ 2v2x !~ 8x2 Jo =t
~1/V/2<n<0

where the normalization is chosen such WP@,;ZO = 0. Again, experiments

with a few small values of epsilon and a few mesh parameters indicate severe
locking in the classical formulation whereas the reduced-flux formulation
performs very well on a uniform mesh as predicted. Examples can be seen
in Figs. 6 and 7. Note that the standard FE solutioa &t 0 is actually

the projection ofu® onto the one-dimensional function spadg = {v =

v(&€,m) = cn,c € R} in accordance with Theorem 1. The relative errors
with respect tai{; and modified energy norms also show that the reduced-
flux formulation is superior to the classical one in the hot state. These graphs
are plotted in Figs. 9 and 10.

On a more general mesh the results with the reduced-flux formulation
are still encouraging, giving a much better solution than with the classical
formulation as can be seen in Fig. 8. In view of the above error analysis this
indicates that the generalized box-scheme (5.1) may work even in the case
of a general mesh, although there is no error analysis for difference schemes
on general meshes. In this case we have only the error bound of Remark 5
for the reduced-flux formulation.
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€=0.01,h=0.0625,red ne,regulargrid,net y

temperature

- 0 o
y-axis —axis

Fig. 7. The finite element solution obtained by the reduced-flux formulation in the hot state
with e = 107, h = & and the load functiorf = sin (27z)

£=0.01,h=0.0625,reducedscheme,perturbedgrid,neumannboundary
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-1000

-1500 -

0.4

- 0 o
y-axis —axis

Fig. 8. The finite element solution obtained by the reduced-flux formulation in the hot
state with general quadrilateral mesh and with= 1072, h = % and the load function

f =sin(27x)

A Proof of Lemma 2

We present here the postponed proof of lemma 2. Using Taylor’s theorem
we can write

0
V(x,y) =, yi1/2) + (913//}(3:’ Yi1/2)(Y — Yi—1/2)

10%)
+ 587;2(1;’ Yi—1/2)(y — %71/2)2

1 /y 0% 9
+ = —(x,t)(y — t)“dt
2 Yi-1/2 ay?,
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Relative errors in H, norm for the hot state
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. 9. The relative error ini{; norm for the hot state (uniform mesh)
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Fig. 10. The relative error in modified energy norm for the hot state (uniform mesh)

and

o oY %Y
a_y(xay) Za—y(% Yi—1/2) + a_yg(xvyi—l/Z)(y — Yi—1/2)

Yy 33¢
+ / a—yg(:c,t)(y — t)dt.
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Then

1 (v 5
/Kij lw - hi/ Uz, y)dy' — (y — y¢—1/2)82f] (Y — Yi—1/2) @ dady

Yi—1

- /x / / (:E O = yi—172) (Y — ) (Yi—12 — t) didydz
Ti-1 y1/2

[ [ el [ 12
< ® —(z,t
Tj—1 Jyi—1 Yie1 dy?

(v — yi—1/2)I(y — t)|\(?/i—1/2 —t)| dtdydx

- (// 135 1)

|(y — yifl/Q)H(y - t)H(yifl/Q — )| dtdl’) dy

Yi
Sl ([ [ 1o
/ 83 Kij) 1 .
1/2
\(y—yi_m)\?r(y—t>12|<yi_1/2—t)Pdtd:r) y
1/2
637,/) T
<155 @ Ollue ></ |¢|2das>
Tj—1

1/2
Yi
/ (/ (y— yi71/2)‘2|(y_t)’2|(yi71/2 —t)’2dt> dy
Yi—1 Yi—

and since

1/2
Yi
/ (/ (y — yi—1/2)|2|(y_t)2|(yi—1/2_t)’2dt> dy
Yi—1 i—
/2 3/2h9/2
15 t

the claim follows. O
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