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Summary. Weconsider thebilinear finiteelementapproximationof smooth
solutions to a simple parameter dependent elliptic model problem, the prob-
lem of highly anisotropic heat conduction. We show that under favorable
circumstances that depend on both the finite elementmesh and on the type of
boundary conditions, the effect of parametric locking of the standard FEM
can be reduced by a simple variational crime. In our analysis we split the
error in two orthogonal components, the approximation error and the con-
sistency error, and obtain different bounds for these separate components.
Also some numerical results are shown.
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1 Introduction

Locking, or parametric error amplification is a well-known phenomenon
that may arise when solving parametric elliptic problems with the finite ele-
ment method. A rather challenging problem of this type is the shell problem
of linear elasticity [6,4,7] where the thickness of the shell serves as the
main parameter. Locking usually effectively prohibits the convergence of
low-order finite element schemes when the parameter associated with the
problem approaches an asymptotic value such as zero. There have been nu-
merous attempts to reduce the effects of locking in order to obtain improved,
or even optimal, convergence rates in various problems of linear elasticity.
In fact, in this home field of FEM even one of the earliest finite elements,
the Turner rectangle [9], may be viewed as such a formulation, see [5].
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Perhaps themost popular way to circumvent the problem of locking is to
produce a variational crime of some kind, i.e. the bilinear formA(u, v) as-
sociated with the problem is substituted by another, usually mesh dependent
formAh(u, v). The aim of the modification is to generate a weaker norm in
the underlying energy spaceV so as to “unlock” the problem. However, the
choice of themodification is a delicatematter since introducing a variational
crime entails a consistency error component that must also be treated.

In this paper we consider a simple parametric elliptic model problem,
the problem of highly anisotropic heat conduction, previously studied in
[1]. This problem resembles the shell problem in that, depending on the
boundary conditions and on the load, the solution may fall in two different
asymptotic states. In the context of heat conduction these states could be
named as thecool stateand thehot state, respectively. In the cool state,
the main heat conduction occurs in the direction of high conductivity (as
expected normally), whereas in the hot state, the conduction in the direction
of low conductivity dominates. In beam theory [5] and in shell theory [7], the
cool state corresponds to a deformation state where stretching dominates,
while the hot state corresponds to a bending-dominated deformation.

In parametric elliptic problems like the ones mentioned, the numeri-
cal locking problem appears in the “hot” or bending-dominated asymptotic
states. In problems where this is the only relevant state, like in the plate-
bending problem [8], various “tricks” or variational crimes have usually
been formulated so as to avoid the locking effect. The real challenge begins,
however, when two (or perhaps more) asymptotic states are possible. One
should then try to find a formulation that not only avoids the locking in the
“hot” state but also maintains the good performance in the “cool” state. The
main problem is that the more the crime helps to avoid the locking effect,
the larger consistency error typically appears in the “cool” state where no
locking occurs.

In general, it is far from obvious that a “dream scheme” good for all
asymptotic states exists in the context of the simple low order FEM. How-
ever, the few successful examples, like the bilinear Turner rectangle for
beams [5], seem to indicate that the problem at least is not hopeless. Here
we consider a simple model problem which aims to model our ultimate
target, the shell problem.

The plan of the paper is as follows. In Sect. 2 we present our model
problem containing positive but arbitrarily small parameterε. We show that
asε → 0, two different asymptotic solution modes are induced by different
boundary conditions. In Sect. 3 we introduce the modified bilinear formula-
tion for the model problem where the main crime is to elementwise average
the heat flux in the direction of high conductivity. The error analysis of this
reduced-flux scheme is carried out in Sects. 4-6. In Sect. 4 we split the error
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into two components, the approximation error which is treated in Sect. 5,
and the consistency error treated in Sect. 6. The results of some numerical
experiments are shown in Sect. 7.

We denote thekth Sobolev norm by‖ · ‖k, the corresponding seminorm
by | · |k and the norm over the boundary of a domainΩ by ‖ · ‖k,∂Ω. The
L2-inner product is written as〈·, ·〉 and the induced norm as‖ · ‖L2 . V and
V0 stand for the energy space and its subspace with proper homogeneous
boundary conditions.Vh andV0

h are the finite dimensional counterparts of
these twospaces.C representsanarbitrarybut finite constant, not necessarily
always the same, but independent of any parameter unless noted otherwise.
Finally,Q denotes a constant that depends on the exact solutionu but not
on the parameterε.

2 The model problem

As a model problem for our analysis of locking in this paper we take the
problem considered already in [1]: The anisotropic heat equation in the unit
squareΩ = (0, 1) × (0, 1) with principal axes that are not aligned with the
coordinate axis, that is

−∂2u

∂ξ2 − ε2
∂2u

∂η2 = f in Ω

with {
ξ = αx + βy

η = −βx + αy

whereα2 + β2 = 1 andα, β /= 0. From this setting we generate three
different problems where the behavior of the solution is largely dictated by
the boundary conditions:

A. u = w on∂Ω
B. ∂νu = g whenx = 1 or y = 1 andu = w elsewhere on∂Ω
C. ∂νu = g on∂Ω

Heref, w andg are given functions, chosen so that the exact solution of the
problem is sufficiently smooth, and∂ν stands for the normal component of
the heat flux at the boundary, i.e.,

∂νu = (αnx + βny)
∂u

∂ξ
+ ε2(−βnx + αny)

∂u

∂η
,

where(nx, ny) is theoutwardunit normal to∂Ω. Thevariational formulation
of these problems is: Findu ∈ V such that

A(u, v) = φ(v) ∀v ∈ V0(2.1)
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where the bilinear form (energy product) is written as

A(u, v) =
〈
∂u

∂ξ
,
∂v

∂ξ

〉
+ ε2

〈
∂u

∂η
,
∂v

∂η

〉
,

and the linear functional as

φ(v) = 〈f, v〉 +
∫

ΓN

gvdΓ,

whereΓN = ∅ for Problem A,ΓN = {(x, y) ∈ ∂Ω |x = 1 or y = 1}
for Problem B, andΓN = ∂Ω for Problem C. In (2.1),V = H1(Ω) and
V0 = {v ∈ H1(Ω) | v = 0 on∂Ω \ ΓN}. In Problem C we assume that
φ(1) = 0 and impose the constraint〈u, 1〉 = 0 on V so as to make the
solution unique.

Due to the assumed constraintu = w whenx = 0 or y = 0 in Problems
A,B, we may assume that heat conduction in theξ-direction becomes dom-
inant in these cases asε → 0. This corresponds to the “cool” state where,
neglecting any boundary layer effects, we may assume that

u ∼ u0 asε → 0

where the limiting solutionu0 satisfies〈
∂u0

∂ξ
,
∂v

∂ξ

〉
= φ(v) ∀v ∈ V0.(2.2)

In Problem C the physical situation is rather different. In this case, due
to the forced heat flux along∂Ω, the solution develops in general a “hot”
component that scales likeu ∼ ε−2 and representsheat flux in theη-direction
only. Again neglecting boundary layer effects, we may then assume that

u ∼ ε−2u0 asε → 0

whereu0 (the scaled limiting solution) satisfies

∂u0

∂ξ
= 0.(2.3)

The above discussion is to motivate the following hypothesis on the
solution.

Hypothesis 1 In problems A and B assume the solution has the form

u = u0 + ε2u1,(2.4)

whereu0 satisfies (2.2) with the bounds

‖u‖k ≤ Q|||u||| for k ≤ 5(2.5)
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and

‖u‖k,∂Ω ≤ Q|||u||| for k = 1, 2.(2.6)

where||| · ||| is the energy norm
|||u||| =

√
A(u, u).

In problem C assume the solution has the form

u = ε−2u0 + u1(2.7)

u0 satisfying (2.3) andu0 /= 0. Assume here further that

‖ui‖k ≤ Qε|||u||| for k ≤ 3 and fori = 0, 1.(2.8)

Remark 1We note that as as rule,u0 in (2.4) or in (2.7) is not continuously
differentiable across the linesη =const. that pass through a corner ofΩ
at x = 0, y = 0 or at x = 1, y = 1, so in this sense the regularity
assumptions (2.5), (2.6) and (2.8) are quite unrealistic. However, we choose
not to discuss problems associated with the regularity of the exact solution
here, but simply assume these bounds for our analysis. We could formally
justify these assumptions by thinking ofΩ as a fictitious subdomain of a
larger domain where the physical boundary conditions are set so thatu|Ω is
smooth.

Remark 2In order to haveu0 /= 0 in the hot state we must assume that
our boundary datag and load functionf are such that there is at least some
v ∈ W for which φ(v) /= 0 whereW = {u ∈ V | ∂u

∂ξ = 0}. The scaled

limiting solutionu0 in (2.7) then satisfies (2.1) withW replacingV.
Remark 3In [1] the concepts of “locking” or “robustness” were given a
precise mathematical meaning in the context of a model problem of type C.
Here our focus is somewhat different. We look at different solution states
simultaneously, basically looking for a simple FE scheme that is “robust”
with respect to the variation of bothε and the solution state from hot to cool.

3 Standard FE scheme vs. reduced formulation

Our main concern throughout this paper is the isoparametric bilinear ele-
ment: Letτ denote the subdivision ofΩ into convex disjoint quadrilaterals
K that satisfy the usual shape regularity assumptions (cf. [2]). Then we set
our local finite element space to be

MK = {v = v̂ ◦ F−1
K , v ∈ MK̂}
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whereMK̂ is the reference finite element space associated to the reference
elementK̂ = (−1, 1) × (−1, 1) andFK : K̂ → K is a bilinear map. For
the reference space we take

MK̂ = {v̂(x̂, ŷ) = a00 + a10x̂ + a01ŷ + a11x̂ŷ, aij ∈ R}
and for the degrees of freedom the nodal values as usual. We further denote
by hK the largest side of the elementK, let h = maxK hK be our mesh
parameter, and denote byVh the piecewise bilinear FE space (a subspace of
V) associated to a given mesh.

In the above notation, the standard bilinear FE approximationuh ∈ Vh

to the solution of our model problem satisfies

A(uh, v) = φ(v) ∀v ∈ V0
h(3.1)

together with the interpolated constraintuh = u at those nodal points of
the boundary where the corresponding constraint is imposed in the exact
formulation (ProblemsA,B). For this scheme, the standard FE error analysis
together with the assumed regularity assumptions (2.5) (Problems A,B) and
(2.7), (2.8) (Problem C) gives us the following error bound in the energy
norm:

Theorem 1 For the standard bilinear FE scheme (3.1) we have the error
bounds

|||u − uh|||
|||u||| ≤

{
Qh in Problems A,B

min {1, Qε−1h} in Problem C

Proof. In Problems A,B (cool state) the asserted bound follows from stan-
dard FE approximation theory based on assumption (2.5) withk = 2, cf.
[2]. In Problem C (hot state) we have no constraints on the boundary so the
projection principle gives|||u − uh||| ≤ |||u|||. To prove the second bound
we expanduh in analogy with (2.7) as

uh = ε−2u0
h + u1

h.

The asserted bound then follows again by standard reasoning based on
bounds (2.8) withk = 2. Here we also see that the dominant error con-
tribution comes from

|||ε−2(u0 − u0
h)|||

|||u||| ∼
{
ε−2‖ ∂

∂ξ
(u0 − u0

h)‖2
L2 + ‖ ∂

∂η
(u0 − u0

h)‖2
L2

}1/2

.

Since ∂u0

∂ξ = 0, ε-uniform convergence is possible only under constraint
∂u0

h
∂ξ = 0. This, however, implies thatu0

h = c1 + c2η for some constantsc1,
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c2, unless the mesh is carefully aligned with theξ-axis. Thus we conclude
that the asserted bound is (essentially) not improvable on a general mesh.
This is also confirmed by numerical experiments, see Sect. 7. ��

In order to circumvent the parametric error amplification in the hot state,
we now commit a variational crime choosing our new mesh dependent for-
mulation to be: Finduh ∈ Vh such that

Ah(uh, v) = φ(v) ∀v ∈ V0
h(3.2)

where

Ah(u, v) =
〈
Rh

∂u

∂ξ
,Rh

∂v

∂ξ

〉
+ ε2

〈
∂u

∂η
,
∂v

∂η

〉

+ ε2
〈

(I − Rh)
∂u

∂ξ
,
∂v

∂ξ

〉
.

(3.3)

HereRh is a numerical flux reduction operator which we choose to be the
orthogonalL2-projection onto elementwise constant functions, i.e.

Rhϕ|K =
1

area(K)

∫
K

ϕdxdy

for every elementK.
The basic idea in the formulation (3.2)-(3.3) is the hope that weakening

the lockingconstraint from∂u0

∂ξ = 0 toRh
∂u0

∂ξ = 0 retains theapproximation
properties of the finite element subspace at the limitε → 0 in the hot state.
However, one must also keep in mind the cool state where the standard
element did not suffer from locking. Thus there is an additional requirement
that in the cool state the performance of the scheme should not deteriorate
due to the flux reduction. The last term in (3.3) is introduced to keep the
formulation at leastε-stable, orH1-stable atε = O(1). We finally note that
the reduction operatorRh could be different, but the chosen one appears a
rather natural “first choice”.

In non-standard FE formulations, the regularity of the mesh may have a
strong impact on the actual performance of the algorithm, cf. [5]. To study
such possible effects in the present context we will distinguish between four
different mesh types as follows:

1. General quadrilateral mesh.
2. Rectangular mesh.
3. Piecewise uniform rectangular mesh:Ω is divided intoN subrectangles

Ωi, and eachΩi is subdivided by a uniform rectangular mesh.
4. Uniform rectangular mesh: case 3 withN = 1.

The four mesh types are shown in Fig. 1. Note that on each of these meshes,
the standard FE scheme suffers from locking atε ∼ 0 in Problem C.
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Fig. 1. Differentmesh types. From left to right:General quadrilateral, rectangular, piecewise
uniform and uniform mesh

4 Error analysis principles

In our error analysis of the reduced-flux scheme (3.2)-(3.3) we follow the
ideas of [5] choosing our error indicator to be

e =
|||u − uh|||h

|||u|||
whereu anduh are the exact and finite element solution, respectively, and
||| · |||h is the (semi) norm generated by the bilinear formAh(u, v) on V.
Our aim is to divide the total relative errore into two parts and discuss them
separately. To this end, we note that by (2.1), (3.2)

Ah(uh, v) = A(u, v) ∀v ∈ V0
h.

Let us then splituh asuh = ũh + zh whereũh satisfies the same boundary
conditions asuh, and is defined as the best approximation inVh to u with
respect to the norm||| · |||h, so that

Ah(ũh, v) = Ah(u, v) ∀v ∈ V0
h ,

Sincezh ∈ V0
h, this implies in particular that

Ah(u − ũh, zh) = 0 ,

and therefore the orthogonal splitting of the error as

|||u − uh|||2h = |||u − ũh|||2h + |||zh|||2h ,

or

e2 = e2
A + e2

C ,

whereeA, the approximation error, is

eA =
|||u − ũh|||h

|||u||| ,(4.1)

andeC , the consistency error, is

eC =
|||zh|||h
|||u||| .
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We also note that since

Ah(zh, v) = (A − Ah)(u, v) ∀v ∈ V0
h ,

the consistency error can be written as

eC = sup
v∈V0

h,v /=0

(A − Ah)(u, v)
|||u||| |||v|||h .(4.2)

In order to bound the consistency error we need some stability results for
the reduced-flux scheme (3.2)-(3.3). The following lemma gives us bounds
that will play a crucial role in the analysis of Sect. 6. We denote here by
Γ+ the “outflow” boundary of the primary heat-flow in theξ-direction in
Problems A, B.

Lemma 1 In Problems A,B,C

|v|1 ≤ Cε−1|||v|||h ∀v ∈ V.(4.3)

In addition, if the mesh is piecewise uniform, one has(
‖v‖2

L2 + ‖v‖2
L2(Γ+)

)1/2 ≤ C(N)|||v|||h ∀v ∈ V0
h(4.4)

in Problems A, B.

Proof. Estimate (4.3) is a direct consequence of the definition ofAh(u, v).
To prove (4.4), assume first a uniform mesh. Then

Rh
∂

∂x
v =

1
2hx

(vi,j − vi−1,j + vi,j−1 − vi−1,j−1),

wherehx is the mesh spacing in thex-direction and thevk,l’s denote the
nodal valuesofv. UponexpandingRh

∂v
∂y similarlywesee thatRh

∂v
∂ξ actually

defines awell-knowndifference approximation, the box-scheme, for solving
the linear hyperbolic equation∂v

∂ξ = f . Assuming thatf is elementwise

constant, theL2-stability of the box-scheme [3] implies (4.4):

‖v‖2
L2 + ‖v‖2

L2(Γ+) ≤ C‖f‖2
L2 = C‖Rh

∂v

∂ξ
‖2

L2 ≤ C|||v|||2h.

The piecewise uniform case follows applying the result separately to each
subdomainΩi. In this caseC = C(N). ��
Remark 4When (4.4) holds, we have

|v|1 ≤ C(N)h−1|||v|||h ∀v ∈ V0
h

by usual inverse inequalities on shape regular meshes.
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5 The approximation error

The approximation error of the reduced-flux scheme (3.2)-(3.3) was defined
by (4.1). The following theorem gives bounds for this error in case of the
three test problems A,B,C and the four mesh types.

Theorem 2 In Problems A and B (the cool state) the approximation error
obeys the bound

eA ≤ Qh

on every mesh type. In Problem C (the hot state) the approximation error
obeys the bound

eA ≤




Qε−1h on a general mesh

Qε−1h2 on a rectangular mesh

Q(N)h on a piecewise uniform mesh

Proof. The bounds on a general mesh are direct consequences of the in-
equalities (2.5), (2.8) (withk = 2) and standard approximation theory. To
obtain the bound on a rectangular mesh (Problem C) we consider the stan-
dard interpolant̂uh ∈ Vh of u. We have

|||u − ûh|||2h =‖Rh
∂

∂ξ
(u − ûh)‖2

L2 + ε2‖ ∂

∂η
(u − ûh)‖2

L2

+ ε2‖(I − Rh)
∂

∂ξ
(u − ûh)‖2

L2 ,

so by (4.1) and (2.8) the main problem is the first term on the right side.
Here ∂v

∂ξ = α ∂v
∂x + β ∂v

∂y , so that

‖Rh
∂

∂ξ
(u − ûh)‖L2 ≤ ‖Rh

∂

∂x
(u − ûh)‖L2 + ‖Rh

∂

∂y
(u − ûh)‖L2 .

Thus we must find a bound for terms of type

‖Rh
∂

∂x
(u − ûh)‖L2 = ‖Rh

∂

∂x
u − Rh

∂

∂x
ûh‖L2 .

However, since

Rh
∂

∂x
(u − ûh)|K = 0

wheneveru is a quadratic polynomial onK, it follows by standard reasoning
that ‖Rh

∂
∂x(u − ûh)‖L2(K) ≤ Ch2|u|3,K . Thus the asserted first bound

follows using (2.7), (2.8) (withk = 3).
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In order to prove the error bound on a piecewise uniform mesh we first
consider the caseN = 1. Here we make use of the decomposition (2.7),
choosing our approximation̂uh to u as

ûh = ε−2û0
h + û1

h,

whereû0
h satisfies the constraint

Rh
∂

∂ξ
û0

h = 0,(5.1)

andû1
h is the standard interpolant ofu

1. Again, (5.1) defines thebox-scheme,

now for solving ∂u0

∂ξ = 0. The box-scheme is second order accurate, so

selecting inflow boundary-conditions such thatû0
h interpolatesu0 on ∂Ω

we have the bound [3]

‖u0 − û0
h‖L2 ≤ Ch2‖u0‖3 .

From this we obtain by standard inverse inequalities the bounds

‖ ∂

∂ξ
(u0 − û0

h)‖L2 ≤ Ch‖u0‖3, ‖ ∂

∂η
(u0 − û0

h)‖L2 ≤ Ch‖u0‖3 .

Using these bounds together with∂∂ξu
0 = Rh

∂
∂ξ û

0
h = 0 and standard inter-

polation error bounds foru1 − u1
h, we can now boundeA as

e2
A ≤

(ε−2‖Rh
∂
∂ξ (u0 − û0

h)‖L2 + ‖ ∂
∂ξ (u1 − û1

h)‖L2)2

|||u|||2

+
ε2‖ ∂

∂η (u − ûh)‖2
L2 + ε2‖(I − Rh) ∂

∂ξ (u − ûh)‖2
L2

|||u|||2

≤
‖ ∂

∂ξ (u1 − û1
h)‖2

L2 + ε2‖ε−2 ∂
∂η (u0 − û0

h) + ∂
∂η (u1 − û1

h)‖2
L2

|||u|||2

+
ε2‖ε−2 ∂

∂ξ (u0 − û0
h) + ∂

∂ξ (u1 − û1
h)‖2

L2

|||u|||2

≤C(h2|u1|22 + ε−2h2‖u0‖2
3 + ε2h2|u1|22 + ε−2h2‖u0‖2

3 + ε2h2|u1|22)
|||u|||2

≤Q2h2

where we needed estimates (2.8) withk = 2, 3. The bound for the piecewise
uniform mesh (N > 1) is finally obtained by iterating the finite difference
error bound (cf. [3])

‖u0 − û0
h‖Γ+

i
+ ‖u0 − û0

h‖Ωi ≤ C(h2‖u0‖3,Ωi + ‖u0 − û0
h‖Γ −

i
)
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over every subdomainΩi ⊂ Ω. HereΓ−
i andΓ+

i are the “inflow” and
“outflow” boundaries ofΩi. ��
Remark 5Whether theboundeA ≤ Qε−1h is improvableornotonageneral
mesh remains an open question. Our experiments indicate that the reduced-
flux scheme behaves at least adequately on a general mesh.

6 The consistency error

The following theorem establishes bounds for the consistency error compo-
nent (4.2).

Theorem 3 In case of a general quadrilateral mesh the consistency error
obeys the bounds

eC ≤
{
Qε−1h in Problems A and B

Qh in problem C.

In case of a rectangular mesh, we have the improved bounds

eC ≤




Qε−1h2 in Problem A

Qε−1h3/2 in Problem B

Qh2 in problem C.

Finally, in case of a piecewise uniformmesh, the bounds are still improvable
for Problems A and B as

eC ≤
{
Qh2 + Q(N)h3/2 in Problem A

Q(N) min {h1/2, ε−1h3/2} in Problem B

withQ(1) = 0 in Problem A.

Proof. To have the boundeC ≤ δ, we need to bound the consistency error
functional

(A − Ah)(u, v) =(1 − ε2)
〈

(I − Rh)
∂u

∂ξ
,
∂v

∂ξ

〉

=(1 − ε2)
〈
∂u

∂ξ
, (I − Rh)

∂v

∂ξ

〉
as

|(A − Ah)(u, v)| ≤ δ|||u||| |||v|||h ∀v ∈ V0
h.

The asserted bounds in case of a general mesh then follow immediately
from simple approximation theory, estimates (2.5), (2.8) withk = 2, and
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the stability estimate (4.3). Note that in Problem C, the leading term in (2.7)
does not contribute to the consistency error.

Next, assume a rectangular mesh. In this case, since

∂v

∂ξ
= α

∂v

∂x
+ β

∂v

∂y

we need only to treat expressions of type
〈

∂u
∂z1

, (I − Rh) ∂v
∂z2

〉
wherezi

denotes eitherx or y. Without loss of generality, let us consider the case
z1 = y andz2 = x. Noting that ∂v

∂x depends only ony on a rectangular
mesh, we can write

(I − Rh)
∂v

∂x
= (I − Λy)

∂v

∂x

whereΛy is the orthogonal projection onto piecewise constant functions
with respect to they-coordinate, i.e.

Λyw|K =
1

yi − yi−1

∫ yi

yi−1

w(x, y′) dy′

for every elementK. Then we obtain integrating by parts

〈
∂u

∂y
, (I − Rh)

∂v

∂x

〉
=
〈
∂u

∂y
, (I − Λh)

∂v

∂x

〉
=
〈

(I − Λy)
∂u

∂y
,
∂v

∂x

〉

=
∫ 1

0

∫ 1

0

[
(I − Λy)

∂u

∂y
(x, y)

]
∂v

∂x
(x, y) dxdy

=
∫ 1

0

[
(I − Λy)

∂u

∂y
(1, y)

]
v(1, y) dy

−
∫ 1

0

[
(I − Λy)

∂u

∂y
(0, y)

]
v(0, y) dy

−
∫ 1

0

∫ 1

0

[
(I − Λy)

∂2u

∂x∂y

]
v dxdy,

(6.1)

where we used also the fact thatΛy and ∂
∂x commute.

In Problem A we havev = 0 on ∂Ω, so the boundary terms in (6.1)
vanish and we get〈

∂u

∂y
, (I − Rh)

∂v

∂x

〉
= −

∫ 1

0

∫ 1

0
(I − Λy)

∂2u

∂x∂y
(I − Λy)v dxdy

≤Ch2|u|4|v|1
≤Cε−1h2|u|4|||v|||h
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applying lemma 1. Together with (2.5) (k = 4) this proves the assertion for
Problem A.

Still considering Problem A, let us now assume a uniform mesh so that
writing

(I − Λy)
∂2u

∂x∂y
= hω(y)

∂3u

∂x∂y2 − ζ(x, y)

whereω(y) is the piecewise linear “sawtooth” function jumping from+1/2
to−1/2 atyi we obtain

−
〈

(I − Λy)
∂2u

∂x∂y
, v

〉
= −

〈
(I − Λy)

∂2u

∂x∂y
, (I − Λy)v

〉

= −
〈
hω(y)

∂3u

∂x∂y2 , hω(y)
∂v

∂y

〉
+〈

ζ(x, y), hω(y)
∂v

∂y

〉

= −
〈
h2ω2(y)

∂3u

∂x∂y2 ,
∂v

∂y

〉
+〈

ζ(x, y), hω(y)
∂v

∂y

〉
.

(6.2)

Noting thatω2(y) = 1
4θ2(y) + 1

12 whereθ2(y) is the monic piecewise
Legendre polynomial of order two we get∣∣∣∣

〈
(I − Λy)

∂2u

∂x∂y
, v

〉∣∣∣∣ ≤
∣∣∣∣
〈
h2 1

4
θ2(y)

∂3u

∂x∂y2 ,
∂v

∂y

〉∣∣∣∣
+
∣∣∣∣
〈

1
12

h2 ∂3u

∂x∂y2 ,
∂v

∂y

〉∣∣∣∣
+
∣∣∣∣
〈
ζ(x, y), hω(y)

∂v

∂y

〉∣∣∣∣
= h2

∣∣∣∣
〈

1
4
θ2(y)(I − Πy)

∂3u

∂x∂y2 ,
∂v

∂y

〉∣∣∣∣
+

1
12

h2
∣∣∣∣
〈

∂4u

∂x∂y3 , v

〉∣∣∣∣
+
∣∣∣∣
〈
ζ(x, y), hω(y)

∂v

∂y

〉∣∣∣∣
whereΠy is the orthogonal projection to elementwise linear functions in
they-direction. Here for the last term we can apply lemma 2 ahead, writing
this term as a sum overK and denotingψ = ∂2u

∂x∂y , ϕ = ∂v
∂y . Together with
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the Cauchy-Schwartz inequality and the stability estimate (4.4) this lemma
gives ∣∣∣∣

〈
ζ(x, y), hω(y)

∂v

∂y

〉∣∣∣∣ ≤ Ch3|u|5|||v|||h .(6.3)

By standard approximation theory and by (6.3), (4.4) we have then also

∣∣∣∣
〈

(I − Λy)
∂2u

∂x∂y
, v

〉∣∣∣∣ ≤Ch4‖ ∂5u

∂x∂y4 ‖L2‖∂v
∂y

‖L2

+
1
3
h2‖v‖L2‖ ∂4u

∂x∂y3 ‖L2 + Ch3|u|5|||v|||h
≤Ch2(|u|5 + |u|4)|||v|||h,

Using finally the estimate (2.5) (withk = 4, 5), it follows that the asserted
improved bound for Problem A holds in case of a uniform mesh.

At this point it is tempting to ask if the procedure above could be contin-
ued to produce even higher order terms inh. However, this is not possible

as can be verified from the expression
〈
θ2(y)(I − Λy) ∂3u

∂x∂y2 ,
∂v
∂y

〉
by taking

∂3u
∂x∂y2 = y2 and choosingv such that∂v

∂y = 1
1−h whenh < x < 1 − h and

0 < y < 1 − h with v = 0 on∂Ω.
Theabove reasoning anyhowextends to a piecewise uniformmeshas fol-

lows. Suppose thatΩ is divided into two subdomainsΩ1 andΩ2 with mesh
parametersh1 andh2, respectively, by a horizontal line (N=2). Denoting
this line byΓ and integrating by parts in

〈
1
3
hi(y)2

∂3u

∂x∂y2 ,
∂v

∂y

〉
=
〈

1
3
h2

1
∂3u

∂x∂y2 ,
∂v

∂y

〉
Ω1

+
〈

1
3
h2

2
∂3u

∂x∂y2 ,
∂v

∂y

〉
Ω2

we obtain 〈
1
3
h2

1
∂3u

∂x∂y2 ,
∂v

∂y

〉
Ω1

+
〈

1
3
h2

2
∂3u

∂x∂y2 ,
∂v

∂y

〉
Ω2

=

−
〈

1
3
h2

1
∂4u

∂x∂y3 ,
∂v

∂y

〉
Ω1

−
〈

1
3
h2

2
∂4u

∂x∂y3 ,
∂v

∂y

〉
Ω2

+
〈

1
3
(h2

1 − h2
2)

∂3u

∂x∂y2 , v

〉
Γ

,
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where now the additional line integral term is bounded as∣∣∣∣
∫

Γ

1
3
(h2

1 − h2
2)

∂3u

∂x∂y2 vdx

∣∣∣∣ ≤ Ch2‖ ∂3u

∂x∂y2 ‖L2(Γ )‖v‖L2(Γ ).

The asserted bound then follows from the inverse estimate‖v‖L2(Γ ) ≤
Ch−1/2‖v‖L2 and and stability estimate (4.4). The extension of this argu-
ment to an arbitrary piecewise uniform mesh is obvious.

Let us now consider Problem B. In case of a rectangular or a piecewise
uniform mesh the non-vanishing boundary term in (6.1) is bounded as∣∣∣∣

∫ 1

0
(I − Λy)

∂u

∂y
(0, y)v(0, y) dy

∣∣∣∣
=
∣∣∣∣
∫ 1

0
(I − Λy)

∂u

∂y
(0, y)(I − Λy)v(0, y) dy

∣∣∣∣
≤ Ch2‖∂

2u

∂y2 (0, ·)‖L2(0,1)‖
∂v

∂y
(0, ·)‖L2(0,1)

≤ C|u|2,∂Ω|||v|||hε−1h3/2

on a rectangular mesh and as∣∣∣∣
∫ 1

0
(I − Λy)

∂u

∂y
(0, y)v(0, y) dy

∣∣∣∣
≤ C(N)|u|2,∂Ω|||v|||h min {h1/2, ε−1h3/2}

on a piecewise uniform mesh, by an inverse estimate and by the stability
estimates (4.3), (4.4). The asserted bounds follow using estimate (2.6) with
k = 2.

The case of Problem C is finally easily covered with the help of the
decomposition (2.7). Since∂u0

∂ξ = 0 we have that

(A − Ah)(u, v) =(1 − ε2)
〈

(I − Rh)
∂u1

∂ξ
,
∂v

∂ξ

〉

=(1 − ε2)
〈
∂u1

∂ξ
, (I − Rh)

∂v

∂ξ

〉
.

and the sameanalysis as above can be carried out withu1 replacingu, except
that a factorε is introduced canceling the error growth asε → 0. ��
Remark 6Again, experiments show that the reduced formulation behaves
fairly well on a general quadrilateral mesh, although this was not proved.
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Lemma 2 LetKij = {(x, y) |xj−1 < x < xj , yi−1 < y < yi} where
hi = yi −yi−1 ≤ h, and letyi−1/2 = 1

2(yi−1+yi). Further letψ = ψ(x, y)
be a given smooth function onKij and letϕ ∈ L2(xj−1, xj) be such thatϕ
is independent ofy. Then∣∣∣∣∣
∫

Kij

[
ψ − 1

hi

∫ yi

yi−1

ψ(x, y′)dy′ − (y − yi−1/2)
∂ψ

∂y

]
(y − yi−1/2)ϕdxdy

∣∣∣∣∣
≤ Ch4‖∂

3ψ

∂y3 ‖L2(Kij)‖ϕ‖L2(Kij).

Proof. For the proof, see appendix A.

7 Numerical experiments

In order to test our reduced formulation we have conducted numerical ex-
periments comparing the performance of this formulation to the classical
one. In all cases we have assumed homogeneous boundary conditions, i.e.
w = g = 0. For the load functionf we have chosenf = sin (2πx) =
sin (2π(αξ − βη)). Note thatf satisfies the condition

∫
Ω fdx = 0 as re-

quired. We have also setα = β = 1/
√

2 for simplicity.

7.1 The cool state

In the cool state we consider only Problem A where the asymptotic solution
u0 satisfies∂2u0

∂ξ2 = f . It is then easy to compute the exact asymptotic

solution for0 ≤ η ≤ 1/
√

2 as

u0 =
1

2π2

(
sin (

√
2π(ξ − η)) − ξ sin (2π(

√
2η − 1))√

2 − 2η

+
η sin (2π(1 − √

2η))√
2 − 2η

)
.

On the second half ofΩ u0 is obtained via a reflection through the center
of Ω as shown in Fig. 2. Experimenting with a few small values of epsilon
and a few different mesh parameters we see that our reduced formulation
performs very well as compared to the classical one on a uniform mesh, as
expected by the error analysis. A typical behavior is shown in Fig. 3. Also
the evaluation of the relative error in bothH1 and the modified energy norm
shows that the reduced formulation produces a fairly good solution. These
graphs are shown in Figs. 4 and 5. On a more general mesh the results were
found less encouraging.
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Fig. 2. The exact asymptotic solution in the cool state with the load functionf = sin (2πx)
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Fig. 3. The finite element solution obtained by the reduced-flux formulation in the cool state
with ε = 10−2, h = 1

16 and the load functionf = sin (2πx)

7.2 The hot state

In the hot state we have the boundary conditions∂νu = 0 on ∂Ω and the
asymptotic solutionu0 satisfies the condition∂u0

∂ξ = 0. Using the variational
formulation (2.1) with test functions now inW, integrating with respect to
ξ, and integrating by parts we obtain that the asymptotic solutionu0 satisfies
the equations
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Fig. 4. The relative error inH1 norm for the cool state (uniform mesh)

Fig. 5. The relative error in modified energy norm for the cool state (uniform mesh)

{
2∂u0

∂η + (2η − √
2)∂2u0

∂η2 = −
√

2
π sin2 (

√
2πη), 0 < η < 1/

√
2

2∂u0

∂η + (2η +
√

2)∂2u0

∂η2 =
√

2
π sin2 (

√
2πη), −1/

√
2 < η < 0

Furthermore,u0 is continuously differentiable onΩ and satisfies the sym-
metry condition∂u0

∂η |η=0 = 0. From these properties the asymptotic solution
is found to be
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Fig. 6. The finite element solution obtained by the classical formulation in the hot state with
ε = 10−2, h = 1

16 and the load functionf = sin (2πx)

u0 =




1
8π2

∫ 2π
0

sin t
t dt − 1

2
√

2π
η + 1

8π2

∫ 2π(
√

2η−1)
0

sin t
t dt,

0 < η < 1/
√

2,
1

8π2

∫ 2π
0

sin t
t dt + 1

2
√

2π
η − 1

8π2

∫ 2π(
√

2η+1)
0

sin t
t dt,

−1/
√

2 < η < 0

where the normalization is chosen such thatu0|η=0 = 0. Again, experiments
with a few small values of epsilon and a fewmesh parameters indicate severe
locking in the classical formulation whereas the reduced-flux formulation
performs very well on a uniform mesh as predicted. Examples can be seen
in Figs. 6 and 7. Note that the standard FE solution atε = 0 is actually
the projection ofu0 onto the one-dimensional function spaceWh = {v =
v(ξ, η) = cη, c ∈ R} in accordance with Theorem 1. The relative errors
with respect toH1 and modified energy norms also show that the reduced-
flux formulation is superior to the classical one in the hot state. These graphs
are plotted in Figs. 9 and 10.

On a more general mesh the results with the reduced-flux formulation
are still encouraging, giving a much better solution than with the classical
formulation as can be seen in Fig. 8. In view of the above error analysis this
indicates that the generalized box-scheme (5.1) may work even in the case
of a general mesh, although there is no error analysis for difference schemes
on general meshes. In this case we have only the error bound of Remark 5
for the reduced-flux formulation.
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Fig. 7. The finite element solution obtained by the reduced-flux formulation in the hot state
with ε = 10−2, h = 1

16 and the load functionf = sin (2πx)
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Fig. 8. The finite element solution obtained by the reduced-flux formulation in the hot
state with general quadrilateral mesh and withε = 10−2, h = 1

16 and the load function
f = sin (2πx)

A Proof of Lemma 2

We present here the postponed proof of lemma 2. Using Taylor’s theorem
we can write

ψ(x, y) =ψ(x, yi−1/2) +
∂ψ

∂y
(x, yi−1/2)(y − yi−1/2)

+
1
2
∂2ψ

∂y2 (x, yi−1/2)(y − yi−1/2)
2

+
1
2

∫ y

yi−1/2

∂3ψ

∂y3 (x, t)(y − t)2dt
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Fig. 9. The relative error inH1 norm for the hot state (uniform mesh)

Fig. 10. The relative error in modified energy norm for the hot state (uniform mesh)

and

∂ψ

∂y
(x, y) =

∂ψ

∂y
(x, yi−1/2) +

∂2ψ

∂y2 (x, yi−1/2)(y − yi−1/2)

+
∫ y

yi−1/2

∂3ψ

∂y3 (x, t)(y − t)dt.
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Then∣∣∣∣∣
∫

Kij

[
ψ − 1

hi

∫ yi

yi−1

ψ(x, y′)dy′ − (y − yi−1/2)
∂ψ

∂y

]
(y − yi−1/2)ϕdxdy

∣∣∣∣∣
=

∣∣∣∣∣
∫ xj

xj−1

∫ yi

yi−1

ϕ

∫ y

y1/2

∂3ψ

∂y3 (x, t)(y − yi−1/2)(y − t)(yi−1/2 − t) dtdydx

∣∣∣∣∣
≤
∫ xj

xj−1

∫ yi

yi−1

|ϕ|
∫ yi

yi−1

|∂
3ψ

∂y3 (x, t)|

|(y − yi−1/2)||(y − t)||(yi−1/2 − t)| dtdydx

=
∫ yi

yi−1

(∫ xj

xj−1

∫ yi

yi−1

|ϕ| |∂
3ψ

∂y3 (x, t)|

|(y − yi−1/2)||(y − t)||(yi−1/2 − t)| dtdx
)
dy

≤
∫ yi

yi−1

‖∂
3ψ

∂y3 (x, t)‖L2(Kij)

(∫ xj

xj−1

∫ yi

yi−1

|ϕ|2

|(y − yi−1/2)|2|(y − t)|2|(yi−1/2 − t)|2 dtdx
)1/2

dy

≤ ‖∂
3ψ

∂y3 (x, t)‖L2(Kij)

(∫ xj

xj−1

|ϕ|2 dx
)1/2

∫ yi

yi−1

(∫ yi

yi−1

|(y − yi−1/2)|2|(y − t)|2|(yi−1/2 − t)|2 dt
)1/2

dy

and since

∫ yi

yi−1

(∫ yi

yi−1

|(y − yi−1/2)|2|(y − t)|2|(yi−1/2 − t)|2 dt
)1/2

dy

=
(

2
15

)3/2

h
9/2
i

the claim follows. ��



714 V. Havu, J. Pitk̈aranta

References
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