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1 Introduction

In this paper, which is the �rst one in a series, we begin the convergence
study of a special bilinear �nite element for shells. This element has strong
engineering roots, and apparently is among the best bilinear �nite element
formulations known for shells. The element is aimed to be a general 'shell
element' in the sense that it should handle all characteristic shell deformation
types, such as bending-dominated or membrane-dominated deformations or
boundary layers, without further problem speci�c tuneups. To what extent
this (rather ambitious) goal is truly achievable, is our goal to �nd out.

By now it is well-known that reliable numerical modelling of shells by
traditional low-order �nite element formulations is not an easy task. The
most dramatic failure occurs when approximating nearly inextensional (or
bending-dominated) deformations by standard low-order elements. In this
case an asymptotic approximation failure, known as shear-membrane lock-
ing, occurs at the limit of zero shell thickness. Due to the asymptotic locking
e�ect, standard lowest-order elements cannot work in practice unless the
mesh spacing is made much smaller than the shell thickness � a rather heavy
requirement. Similar numerical di�culties are expected in general when ap-
proximating a deformation state with a signi�cant component of bending
energy. In particular, the characteristic shell boundary layers belong to such
a locking-sensitive category of deformations. For more information on shell
deformation states and on the associated �nite element locking problems, the
reader is referred to [11, 9, 2] and the further references therein.

To avoid the locking in parameter dependent problems, the tradition in �-
nite element engineering has been to search for 'simple and e�cient' low(est)
order elements that are based on some non-standard variational formulation
of the problem. For example, one may use mixed or hybrid formulations, or
assume purely numerical modi�cations such as reduced strains, or selective
reduced integration & stabilization, within the usual energy formulation. In
shell problems, one of the most popular approaches is the so called facet
model based on bilinear elements and crude approximation of shell geom-
etry. In this model, the shell midsurface is approximated elementwise by
isoparametric bilinear maps, so that the shell is e�ectively represented by
an assembly of �at membrane elements in the numerical model [5]. Among
the (apparently many) possible technical variations within this approach,
we choose to consider in our work a formulation by Bathe et al. [1] named
MITC4. It seems likely that certain other well-known formulations, like the
QUAD4 of MacNeal [5], hide similar ideas.

Our error analysis of MITC4 is based on the recent result [7] showing
that a nearly equivalent bilinear element formulation is achievable from a
classical shell model of Reissner-Naghdi type. This alternative approach
may be characterized as a reduced-strain formulation where the expressions
of both membrane and transverse shear strains are numerically modi�ed,
while no approximation of shell geometry is made. This approach, which
is more transparent mathematically than the original MITC4 formulation,
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was in fact already taken in [10] in the context of cylindrical shell geometry.
The analysis in [7] assumes cylindrical shell geometry as well, but we may
easily extrapolate the strain reduction ideas to more general geometries. It
appears that the scheme obtained in this way actually extracts the key ideas
of the MITC4 elements (and perhaps other facet elements) that relate to
the treatment of locking e�ects. Numerical experiments also support this
conjecture [7]. In what follows, we take the simpli�ed scheme as the target
of our error analysis.

Regarding both the shell geometry and the �nite element mesh, we make
very strong assumptions in this paper and also in the later parts. First, we
assume that the shell is shallow, so that a simpli�ed shell model with constant
curvature parameters is applicable, see [9] for the justi�cation of models of
this kind. Secondly, we assume that the shell midsurface (or the approximate
midsurface, see [9]) occupies a rectangular domain in the chosen coordinates,
and that the �nite element mesh on this domain is rectangular. Finally,
we assume that the boundary conditions are periodic in one of the coordi-
nate directions, and that the �nite element mesh in this direction is actually
uniform. Under these hypotheses, we focus on the most fundamental ques-
tion concerning bilinear shell elements: Does there exist a formulation that
is able to e�ectively capture all characteristic features of shell deformations
simultaneously?

From the practical point of view, the most important question left open in
our work is, to what extent the results obtained under the stated extremely
favorable conditions possibly extend to more general domains and meshes.
Preliminary numerical experiments seem to indicate mesh dependence [6, 7],
but more work in this direction is needed. From our error analysis it ap-
pears anyhow that the problem on general quadrilateral meshes is similar
to that met in [4] in the context of a simpler parametric model problem.
There it was shown that the convergence of a simple bilinear reduced-strain
scheme depends on the performance of an underlying �nite di�erence scheme
that approximates a constraint arising asymptotically at a parametric limit.
On a rectangular mesh the di�erence scheme was found well behaving � in
fact well-known [4] � but on more general meshes the performance remained
unresolved. Here we �nd similarly that the assumed reduced-strain formula-
tion hides a special �nite di�erence scheme for approximating the asymptotic
constraints that arise in an inextensional deformation state. This di�erence
scheme we can so far analyze only under the stated speci�c assumptions.

The assumptions we make are simply to allow sharp error analysis based
on Fourier transform. The same analysis technique would apply to non-
shallow shells of revolution satisfying the assumed periodicity condition in
the angular (principal curvature coordinate) direction. We conjecture that
our error analysis could be extended to cover, e. g., the pinched cylinder and
the pinched hemisphere problems often used as benchmark tests for shell
elements [5]. We note that in such benchmark tests the mesh is typically
chosen uniform in the angular direction, just as we are assuming.

In the present Part I, we begin with by studying the mentioned con-

4



strained approximation problem that arises in an inextensional deformation
state. This case is the �rst and most severe test for any �nite element for-
mulation meant to be locking-free. However, passing the test still does not
guarantee equally good performance in other (in fact, more common) defor-
mation states, like in membrane-dominated states or when approximating
boundary layers. Therefore in the later parts of the work we consider such
deformation types as well, so as to obtain a complete picture.

Throughout the work we adopt the error analysis philosophy of [4, 8] (see
also the further references there) where the �nite element error, evaluated
in the energy (semi)norm with numerically modi�ed strains, is split in two
components called the approximation error and the consistency error. In
the present Part I we consider only the approximation error term which is
dominant in case of nearly inextensional deformations. The consistency error
will be analyzed in the next parts in the context of more general deformation
states where this error term can become dominant as well.

The plan of the present paper is as follows. In section 2 we introduce the
shell model and set up the problem to be studied. The nature of inextensional
deformations in this problem setup is analyzed. In section 3 we introduce
the reduced-strain bilinear �nite element scheme to be studied throughout
the work. We state the main result of the present paper concerning the ap-
proximation of inextensional deformations (Theorem 3.1), and an extension
of this result to cover more general smooth deformations (Theorem 3.2). In
the inextensional case the approximation error bound is found to be of opti-
mal order independently of the thickness of the shell. In case of elliptic shell
geometry the bound is optimal even with respect to the regularity required
for the displacement �eld, whereas in case of parabolic and hyperbolic shell
geometries, slightly enhanced regularity is needed as a rule to achieve the
optimal rate. For more general than inextensional deformation, the approx-
imation error bound is non-uniform in t, being in general the better, the
higher the regularity of the �eld to be approximated. Section 4 is �nally
devoted to the proof of Theorems 3.1 and 3.2.

Below we denote as usual by C a constant that may take a di�erent value
in di�erent usage. The constants may depend on the curvature parameters to
be introduced in section 2 but are otherwise independent of the parameters,
unless indicated explicitly. By k�kk and j�jk we denote the Sobolev norm and
seminorm (for scalar or vector valued functions) on the assumed rectangular
plane domain. Other domains will be indicated by an additional subscript.
Further, jj � jjL2 = jj � jj0 and jj � jj1 denotes the L1-norm.

2 The shell problem

We consider a dimensionally reduced shell model for a shell of thickness t
arising from linear shell theory with homogeneous and isotropic material.
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For our model the deformation energy of the shell is given by

F(u; v; w; �;  ) = Et3

12(1� �2)

Z



f�(�11 + �22)
2 + (1� �)

2X
i;j=1

�2ijgdxdy

+

Et

2(1 + �)

Z



f�21 + �22gdxdy

+
Et

(1� �2)

Z



f�(�11 + �22)
2 + (1� �)

2X
i;j=1

�2ijgdxdy:

Here E and � are the Young modulus and the Poisson ratio of the material,

 is the shear (correction) factor and �ij, �i and �ij are the membrane, trans-
verse shear and bending strains that depend on the displacements (u; v; w)
and on the rotations (�;  ) as follows:

�11 =
@u

@x
+ aw �11 =

@�

@x

�22 =
@v

@y
+ bw �22 =

@ 

@y

�12 =
1

2
(
@u

@y
+
@v

@x
) + cw = �21 �12 =

1

2
(
@�

@y
+
@ 

@x
) = �21

and

�1 = � � @w

@x
�2 =  � @w

@y

where we are assuming the shell to be shallow so that the parameters a, b and
c de�ning the shell geometry can be taken constants. This is a simpli�cation
of the classical shell model due to Reissner-Novozhilov-Naghdi, see [9]. If
ab � c2 > 0 we call the shell elliptic, if ab � c2 = 0 the shell is parabolic
and if ab � c2 < 0 it is hyperbolic. We assume here that a2 + b2 + c2 > 0,
so that the case of a �at plate/membrane (a = b = c = 0) is excluded. We
will assume that the computational domain 
 (the shell midsurface) is of
rectangular shape in the assumed coordinate system, so that


 = f(x; y) j 0 < x < L; 0 < y < Hg

with C�1 � L
H
� C for some �xed constant C.

For our purposes it is convenient to de�ne the vector �eld u = (u; v; w; �;  ),
to scale the energy by a factor K = Et3

6(1��2)
, and to express the scaled total

energy as

F(u) = 1

2
A(u; u)�Q(u)

where Q is the load potential and the bilinear form A is further split as

A(u; v) = Ab(u; v) +
1

t2
Am(u; v) (2.1)
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where

Ab(u; v) =

Z



f�(�11 + �22)(u)(�11 + �22)(v) + (1� �)
2X

i;j=1

�ij(u)�ij(v)gdxdy

and

Am(u; v) = 6
(1� �)

Z



f�1(u)�1(v) + �2(u)�2(v)gdxdy

+12

Z



f�(�11 + �22)(u)(�11 + �22)(v)

+ (1� �)
2X

i;j=1

�ij(u)�ij(v)gdxdy:

We will assume that the boundary conditions at y = 0; H are periodic
and that no kinematic constraints are imposed at x = 0; L. The energy space
is then

U = fu 2 [H1(
)]5 j u(�; 0) = u(�; H)g
and the shell problem can be formulated as: Find u 2 U such that

A(u; v) = Q(v) 8v 2 U : (2.2)

The problem is solvable if Q is a bounded linear functional on U , and if
Q(u) = 0 for all zero energy modes satisfying A(u; u) = 0. Below we do not
need to refer to any stability properties of the problem, so we simply assume
that a solution to (2.2) (with some regularity properties to be postulated)
exists. We then consider the �nite element approximation of such a solution
u.

In the present paper we are mainly interested in the approximation of
inextensional displacement �elds satisfying Am(u; u) = 0, i.e.

�11(u) = �12(u) = �22(u) = 0;

�1(u) = �2(u) = 0:
(2.3)

The subspace of inextensional displacements will be denoted by U0. We note
that, unless Q(u) = 0 8u 2 U0, the solution to (2.2) becomes inextensional
at the limit when t! 0 and Q is �xed, see [10, 11]. Here we may resolve the
possible inextensional modes by the Fourier expansion

u =
X
�2�

'�(y)��(x); '�(y) = ei�y; � = f� =
2��

H
; � 2 Zg (2.4)

where, in view of (2.3), �
�
= (u�; v�; w�; ��;  �) satis�es8>>>>>><

>>>>>>:

u0� + aw� = 0

i�v� + bw� = 0

i�u� + v0� + 2cw� = 0

�� � w0
� = 0

 � � i�w� = 0

(2.5)
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Let us characterize the general solution to this system in di�erent geometries.
First, in the elliptic case where ab � c2 > 0, or in the non-degenerate

hyperbolic case where ab � c2 < 0 and b 6= 0, the general solution to (2.5)
takes the form

�
�
(x) = A���;1(x) +B���;2(x) (2.6)

where A�, B� are arbitrary complex coe�cients and �
�;k

are de�ned by

(
�
�;1
(x) = (2c+ i��1�1b; b;�i�;�i��1; �2)e�1x

�
�;2
(x) = (2c+ i��1�2b; b;�i�;�i��2; �2)e�2(x�L)

when � 6= 0;

or
�
�;1

= (1; 0; 0; 0; 0); �
�;2

= (0; 1; 0; 0; 0); when � = 0; (2.7)

where further �k are de�ned by(
�1 = (ic�pab� c2)b�1�; �2 = (ic +

p
ab� c2)b�1�; when b�1� � 0

�1 = (ic+
p
ab� c2)b�1�; �2 = (ic�pab� c2)b�1�; when b�1� < 0:

Here we have chosen �1, �2 so that Re�1 < 0 and Re�2 > 0 in the elliptic
case when � 6= 0. In the hyperbolic case we obviously have Re�k = 0. Note
also that when � = 0, (2.6) & (2.7) actually de�ne a zero energy mode.

Consider next the (hyperbolic) case where b = 0 and c 6= 0. Then if a 6= 0
and � 6= 0, the general solution to (2.5) is

�
�
(x) = A���(x)

with A� 2 C and

�
�
(x) = (2c; 0;�i�;�i��; �2)e�x; � = a(2c)�1i�;

so the solution space is one-dimensional in this case. When � = 0 one gets

�
0
(x) = (a� + A; 2c�;��0;��00; 0)

where A 2 C and � = �(x) 2 H3(0; L) are arbitrary, so in this case the
solution space is in�nite-dimensional. Finally, if a = 0 one gets

�
�
=

(
A�(2c; 0;�i�; 0; �2) when � 6= 0;

(A0; 2c�;��0;��00; 0) when � = 0;

with A� 2 C and � 2 H3(0; L) arbitrary.
It remains to consider the parabolic case ab � c2 = 0. Here we �nd that

when a; b 6= 0 the general solution is again given by (2.6) where now �
�;1
, �

�;2

are given by(
�
�;1
(x) = (c; b;�i�;�i��; �2)e�x

�
�;2
(x) = �(c; b;�i�;�i��; �2)xe�x + (�c; 0; 0;�i��; 0)e�x
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with � = cb�1i�. For the case when a = c = 0 and we have that

�
�
(x) = A�(1;�i�bx;��2x;��2;�i�3x) +B�(0; b;�i�; 0; �2)

with A�; B� 2 C . Finally in the case when b = c = 0 the only non-zero mode
is obtained when � = 0, this being

�
0
(x) = (a�; A;��0;��00; 0)

with A 2 C and � 2 H3(0; L) arbitrary.
Below we refer to as degenerate cases the parabolic and hyperbolic ge-

ometries when the characteristic lines (along which the curvature vanishes)
are parallel with the coordinate lines. These are the cases a = c = 0 or
b = c = 0 (parabolic) and a = b = 0 (hyperbolic), i.e., the cases where two
of the three curvature parameters vanish.

3 The reduced-strain FE scheme

Given a family of �nite element spaces Uh � U , 0 < h < h0, the usual �nite
element formulation of problem (2.2) is: Find uh 2 Uh such that

A(uh; v) = Q(v) 8v 2 Uh: (3.1)

This de�nes uh as the best approximation of u in the energy norm

v 7! jjjvjjj =
p
A(v; v); v 2 U :

Due to the parametric dependence of this norm, the best error bound in case
of lowest degree elements and bending-dominated deformation is [10]

jjju� uhjjj � minf1; h
t
juj2g:

To prevent the error ampli�cation at small t, we therefore need to consider
some modi�cation of (3.1). A natural approach is to modify the membrane
and transverse stresses �ij and �i substituting these with ~�ij = Rij

h �ij and
~�i = Ri

h�i where the R
ij
h 's and R

i
h's are suitably chosen reduction (projection)

operators. If we then de�ne the bilinear form

Ah
m(u; v) = 6
(1� �)

Z



f~�1(u)~�1(v) + ~�2(u)~�2(v)gdxdy

+12

Z



f�( ~�11 + ~�22)(u)( ~�11 + ~�22)(v) (3.2)

+ (1� �)
2X

i;j=1

~�ij(u) ~�ij(v)gdxdy

our modi�ed FE formulation assumes the form: Find uh 2 Uh such that

Ah(uh; v) + Ab(uh; v) +
1

t2
Ah
m(uh; v) = Q(v) 8v 2 Uh: (3.3)
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Since ~�ij; ~�i are related to �ij; �i via projection operators, it follows that
Ah
m(u; u) = 0 for all u 2 U0. Therefore if the exact solution to (2.2) happens

to be inextensional, one has

Q(v) = A(u; v) = Ab(u; v) = Ah(u; v); v 2 U ;
so in that case (3.3) is equivalent to

Ah(u� uh; v) = 0 8v 2 Uh:
This de�nes uh as the best approximation to u in the modi�ed energy semi-
norm v 7! jjjvjjjh =

pAh(v; v); so that we are led to the problem of �nding
the best approximation error

ea(u) = min
v2Uh

jjju� vjjjh: (3.4)

We note that, to obtain a bound for ea that is uniform in t, we need to seek
for approximations in the subspace U0;h = fv 2 Uh j Ah

m(v; v) = 0g. Note as
well that if no strain reductions were made, we would have U0;h = U0 \ Uh,
which typically is a trivial space [10]. Hence the idea of the strain reduction
is simply to make U0;h large enough so that inextensional deformations can
be approximated well in U0;h.

The modi�cation A ,! Ah causes in general a secondary error term, the
consistency error de�ned by [4]

ec(u) = sup
v2Uh;jjjvjjjh 6=0

(A�Ah)(u; v)

jjjvjjjh :

This vanishes when u 2 U0, but in other deformation states the consistency
error term can be signi�cant or even dominant. We will analyze this error in
Part II of the paper where more general deformation states will be considered.
Here we focus on bounding the best approximation error (3.4).

In the �nite element scheme to be studied, we assume that 
 is subdivided
by a rectangular mesh with maximal side length = h. We denote the nodal
points of the mesh by (xk; yn), k = 0 : : :Nx, n = 0 : : : Ny, and assume that
the mesh is uniform in the y-direction so that yn+1 � yn = H=Ny = hy for
all n (Fig. 1). Note that at this point we make no assumption on the ratios
(xk+1 � xk)=hy = hkx=hy. We write further hx = maxk h

k
x. On this mesh

we assume continuous piecewise bilinear representation of each component
of the displacement �eld, so that Uh = V5

h where Vh is the scalar bilinear FE
space with periodic boundary conditions at y = 0; H.

In the assumed numerical setup, we de�ne the reduced membrane and
shear strains in (3.2) as

~�11 =�
x
h�11;

~�22 =�
y
h�22; (3.5)

~�12 =�
xy
h �12 =

~�21
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ny

xk
x

y

H

L

Figure 1: A typical mesh considered; the mesh spacing is constant in the
y-direction but may vary in the x-direction.

and
~�1 =�

x
h�1;

~�2 =�
y
h�2

(3.6)

where �x
hx, �

y
h and �xy

h are projection operators de�ned elementwise as pro-
jectors onto the (global) spaces Wx

h , Wy
h and Wxy

h , respectively, where Wx
h

consists of functions that are constant in x and linear with respect to y on
each element, so that @u=@x 2 Wx

h when u 2 Vh, Wy
h is de�ned analogously

so that @v=@y 2 Wy
h when v 2 Vh, and Wxy

h consists of functions that are
constant on each element. We consider these as subspaces of L2(
), so we
impose a priori no continuity conditions along the interelement boundaries.
Operator �xy

h in (3.5) is de�ned simply as the L2 projection, i.e., �xy
h is the

elementwise averaging operator. When de�ning �x
h, �

y
h we consider two op-

tions which lead to the same �nite element scheme but di�er slightly in the
error analysis based on (3.4).

(O1) �x
h : L

2(
)!Wx
h , �

y
h : L

2(
)!Wy
h are de�ned as L2-projections.

(O2) �x
h, �

y
h are de�ned for su�ciently regular � so that for each horizontal

side Sx and for each vertical side Sy of the rectangular meshZ
Sx

�x
h�(x; y)dx =

Z
Sx

�(x; y)dx;Z
Sy

�y
h�(x; y)dy =

Z
Sy

�(x; y)dy:
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Remark 3.1. Since the strain reductions by �x
h, �

y
h do not a�ect the derivative

terms of �ii and �i in (3.5) � (3.6) when u; v; w 2 Vh, we could obviously write
~�11 = @u=@x +�x

haw, etc., in the �nite element model. In the FE model we
could further interpret the reductions equivalently as interpolation operators
such that �x

h interpolates at the midpoints (xk+1=2; yn) of the horizontal sides,
�y
h interpolates at the midpoints (xk; yn+1=2) of the vertical sides, and �xy

h

interpolates at the centers (xk+1=2; yn+1=2) of the rectangles Kkn. Although
such interpretations do not a�ect the FE algorithm, they do have an e�ect on
the error indicator (3.4) if assumed beyond Uh. Also the two options (O1),
(O2) are di�erent in this sense. Option (O1) is natural in the sense that
the modi�ed strains are then de�ned in the entire energy space, and one has
jjjvjjjh � Cjjjvjjj; v 2 U (with C = (1� �2)�1=2 as the best constant). The
advantage of (O2) is that this de�nition enforces the continuity of ~�11 and
~�1 with respect to y and the continuity of ~�22 and ~�2 with respect to x. We
need this property in Theorem 3.2 below.

Remark 3.2. The connection of the chosen reduced-strain algorithm and the
facet FEM models is discussed in [7], in the context of cylindrical shell ge-
ometry. In (3.5) � (3.6) we have made an extrapolation from this study (cf.
also [10]). We note that the facet formulation actually implies a slightly dif-
ferent de�nition of ~�12, but this reduces essentially to the chosen one when
approximating an inextensional deformation [7].

When approximating an inextensional �eld u 2 U0 we can bound the best
approximation error (3.4) uniformly in t from

ea(u) � ~ea(u) = min
v2U0;h

jjju� vjjjh = min
v2U0;h

p
Ab(u� v; u� v): (3.7)

Obviously this also gives the best bound that is uniform in t. When u 2
Uh, the reduced constraints ~�ij(u) = ~�i(u) = 0, i; j = 1; 2 are imposed
equivalently by setting �1 = �11 = 0 at the midpoint of each horizontal
side of the mesh, �2 = �22 = 0 at the midpoint of each vertical side, and
�12 = 0 at each element center (see Remark 3.1), so the reduced constraints
are e�ectively �nite di�erence approximations of the original ones (Fig. 2).

Our �rst main result states an estimate for ~ea in (3.7) when u 2 U0.
Theorem 3.1. Let U0;h = fu 2 Uh j Ah

m(u; u) = 0g where Uh is the bilinear
�nite element space and Ah

m is de�ned by (3.2) and (3.5) � (3.6) where �xy
h

is the elementwise averaging operator and �x
h, �

y
h are de�ned according to

either option (O1) or (O2). Then if u 2 U0, the constrained approximation
error (3.7) is bounded as

~ea(u) � C1hjuj2 + C2h
2

3
(s�1)jujs; 2 � s � 3;

where C2 = 0 in the elliptic case and also in the degenerate parabolic or
hyperbolic cases.

We note that when bounding ea according to (3.7), the result of Theorem
3.1 is easily extended to cover bending-dominated (or nearly inextensional)

12



Figure 2: Finite di�erence approximation of the shear and membrane con-
straints in the reduced-strain FE formulation: �1 = �11 = 0 at (
),
�2 = �22 = 0 at (�) and �12 = 0 at (�).

�elds of the form
u = u0 + tu1 (3.8)

where u0 2 U0 and u1 2 U is such that ju1j2 is bounded uniformly in t. Indeed,
the factor t in front of u1 in (3.8) cancels the parametric error ampli�cation,
so that the standard interpolant t~u 2 Uh approximates this term su�ciently
accurately.

For membrane-dominated deformations, or for deformations containing
strong layers, the expansion (3.8) is not realistic unless ju1j2 is allowed to
grow as t ! 0. For such more general deformations we can anyhow extend
the result of Theorem 3.1 to a non-uniform bound with respect to t, provided
u is extremely smooth. Since we need also to strengthen our assumptions on
the mesh here, let us de�ne the following weak uniformity conditions:

(A) h=hkx � C 8k,
(B)

PNx�1
k=1 jhkx � hk�1x j � Ch.

Theorem 3.2. Let u 2 [Hs(
)]5; s � 6, assume that the mesh satis�es
conditions (A), (B), and assume that Ah

m in (3.3) is de�ned as in Theo-
rem 3.1, with �x

h, �
y
h now de�ned according to option (O2). Then the best

approximation error (3.4) is bounded for each t > 0 as

ea(u) � Cjjujj6h+ Cjjujjst�1hs�2:

Remark 3.3. In the case of a smooth membrane-dominated deformation such
that the second term in (2.1) is dominating, it would be more natural to scale
(2.1) by factor t2 and thus the energy norm by factor t. In such a weaker norm
one would obtain by standard interpolation error analysis the quasioptimal
bound ea(u) � Cjuj2h (cf. also [4], [8]). The result of Theorem 3.2, which
states an error bound in a rather strong norm, is based on non-standard
interpolation.

13



4 Proof of Theorems 3.1 � 3.2

The main idea of the proof is to use the Fourier representation (2.4) (for
u 2 U0 or u 2 U) and approximate then u by

~u =
X

�2�:j�j��0

~'�(y)~��(x);

where �0 = �0(h) is a truncation frequency to be chosen, ~'� is the piecewise
linear interpolant of '�, and ~�

�
is a special approximation of �

�
to be found.

Lemma 4.1. For every #�;j = '�(y)��;j(x), j = 1; 2, such that j�jh � c, c

small enough, there exists ~#�;j = ~'�(y)~��;j(x) 2 U0;h such that

jjj#�;j � ~#�;jjjjh � (C1h+ C2�
2h2)j#�;jj2

with C2 = 0 in the elliptic and in the degenerate hyperbolic and parabolic
cases.

Proof. Consider �rst the non-degenerate cases where b 6= 0 and either a 6= 0
or c 6= 0. Without loss of generality we restrict to the case j = 1 and write
�
�;1

= �
�
= (u�; v�; w�; ��;  �) and similarly ~�

�;1
= ~�

�
= (~u�; ~v�; ~w�; ~��; ~ �).

Since ~#� 2 U0;h, one must have ~�ij(~#�) = ~�i(~#�) = 0. This is equivalent to

requiring the nodal values ~#�(x
k; yn) = ~#

n

k = (unk ; v
n
k ; w

n
k ; �

n
k ;  

n
k ) to satisfy8>>>>>>>>><

>>>>>>>>>:

unk+1 � unk +
a
2
hkx(w

n
k + wnk+1) = 0

vn+1k � vnk +
b
2
hy(w

n
k + wn+1k ) = 0

1
2hy

(un+1k+1 � unk+1 + un+1k � unk) + 1
2hkx

(vn+1k+1 � vn+1k + vnk+1 � vnk )+
c
2
(wn+1k+1 + wn+1k + wnk+1 + wnk ) = 0
hkx
2
(�nk + �nk+1)� (wnk+1 � wnk ) = 0

hy
2
( nk +  n+1k ) + (wn+1k � wkn) = 0

(4.1)

Inspired by the form of #� we seek a solution to these equations in the
form ~#

n

k = ei�nhy(Uk; V k;W k;�k;	k). Substituting these expressions and
simplifying we get from the second and from the last two equations in (4.1)
that 8><

>:
W k = �2i

bhy
tan (1

2
�hy)V

k

	k = 2
hy
tan (1

2
�hy)W

k

�k+1 +�k = 2
hkx
(W k+1 �W k)

(4.2)

and from the �rst three equations in (4.1) that�
V
U

�
k+1

�
�
V
U

�
k

=
1

2
�kM

��
V
U

�
k+1

+

�
V
U

�
k

�
(4.3)

where �k = 2h
k
x

hy
tan (1

2
�hy) and

M = i

�
2c
b

�1
a
b

0

�
:
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Since u� and v� satisfy by (2.5) a system�
v�
u�

�0
= �M

�
v�
u�

�
; (4.4)

we see that (4.3) is a �nite di�erence approximation to (4.4) that closely
resembles the Trapezoidal rule. The �rst step is now to perform the error
analysis of (4.3).

We consider the approximation of a solution to (4.4) of the form (u�; v�) �
e��x where � = (�1 + i�2)� = �� with �1� > 0 in the elliptic case when
� 6= 0 and �1 = 0 in the parabolic and hyperbolic case. Without loss of
generality we may assume that j�jhy � j�jh � c < �. (This sets an upper
bound of order O(h�1) for the truncation frequency �0.) Then

1� 1
2
��k

1 + 1
2
��k

=e��h
k
x +O

�
j�j3(hkx)3 + j�j3hkx(hy)2

�
;

����1� 1
2
��k

1 + 1
2
��k

���� �e��j�jhkx;
where �1 > � > 0 in the elliptic case and � = 0 in the hyperbolic case. Fol-
lowing the standard error analysis techniques for A-stable di�erence schemes
(cf. [3]) we then see that with the initial conditions ~u�(0) = u�(0), ~v�(0) =
v�(0),

jv�(xk)� ~v�(x
k)j �C

Z xk

0

e��j�j(x
k�t)j�j3(h2x + h2y)e

��1j�jtdt

�Ch2j�j3�me��j�jxk ;
(4.5)

where

m =

(
1 in the elliptic case,

0 in the parabolic and hyperbolic case.

Comparing (4.3), (4.4) and using (4.5) we also see that

jv0�(xk+1=2)� ~v0�(x
k+1=2)j � Ch2j�j4�me��j�jxk: (4.6)

Furthermore, from the �rst two equalities in (4.2) and from their continuous
counterparts we conclude easily that (4.5) � (4.6) imply

jw�(xk)� ~w�(x
k)j � Ch2j�j4�me��j�jxk ;

j �(xk)� ~ �(x
k)j � Ch2j�j5�me��j�jxk ; (4.7)

j 0�(xk+1=2)� ~ 0�(x
k+1=2)j � Ch2j�j6�me��j�jxk :

Upon combining the last two bounds in (4.7) with standard interpolation

error bounds and using �nally j�j4� 1

2
m � Cj'�(y) �(x)j2 we obtain the fol-

lowing L2-bounds:

jj � � ~ �jjL2(0;L) � Ch2j�j1�mj'� �j2;
jj 0� � ~ 0�jjL2(0;L) � (Ch+ Ch2j�j2�m)j'� �j2:

(4.8)
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Using (4.8) together with jj'� � ~'�jjL2(0;H) � Ch2�2, jj'0� � ~'0�jjL2(0;H) �
Ch�2, �2jj �jjL2(0;L) � Cj'� �j2, j�jjj 0�jjL2(0;L) � Cj'� �j2, and recalling
also that j�jh � c, we can bound the second term on the right hand side of

jjj#� � ~#�jjjh =Ab(#� � ~#�; #� � ~#�)
1=2

�Cj'��� � ~'�~��j1 + Cj'� � � ~'� ~ �j1

from

j'�(y) �(x)� ~'�(y) ~ �(x)j1 �j('�(y)� ~'�(y)) �(x)j1
+ j ~'�(y)( �(x)� ~ �(x))j1

as

j'� � � ~'� ~ �j1 � (C1h+ C2h
2�2)j'� �j2; (4.9)

where C2 = 0 in the elliptic case.
For the second rotational component '��� the estimation can be done

similarly up to the point where a bound for Æ�k� = ��(x
k)� ~��(x

k) is needed.
Since by (4.2) we have that

1

2
(~��(x

k+1) + ~��(x
k)) = ~w0

�(x
k+1=2)

and clearly

1

2
(��(x

k+1) + ��(x
k)) =

1

2
(w0

�(x
k+1) + w0

�(x
k));

it follows that

1

2
(Æ�k+1� + Æ�k�) =

1

2
(w0

�(x
k+1) + w0

�(x
k))� ~w0

�(x
k+1=2) = !k;

hence

Æ�k� = (�1)kÆ�0� + 2
kX
j=1

(�1)j+1!k�j: (4.10)

In order to bound the right hand side of (4.10), recall �rst that by (4.3)

�
~v�
~u�

�0
(xk+1=2) =

1

hy
tan (

1

2
�hy)M

��
~v�
~u�

�
(xk) +

�
~v�
~u�

�
(xk+1)

�
:

Since also

~w0
�(x

k+1=2) = � 2i

bhy
tan (

1

2
�hy)~v

0
�(x

k+1=2)

and

w0
�(x

k) = � i�
b
v0�(x

k);
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we see that

!k =
2

b

�
(
�2

4
� (

1

hy
tan (

1

2
�hy))

2)(
2c

b
(v�(x

k+1) + v�(x
k))� (u�(x

k+1) + u�(x
k)))

+ (
1

hy
tan (

1

2
�hy))

2)(
2c

b
(Ævk+1� + Ævk�)� (Æuk+1� + Æuk�))

�
(4.11)

=�k+1 +�k;

where Ævk� = v�(x
k)�~v�(xk), Æuk� = u�(x

k)�~u�(x
k). By (4.11) the telescoping

sum (4.10) reduces to Æ�k� = �k + (�1)k+1(2�0 � Æ�0�), so with the initial
condition Æ�0� = 2�0 we get

j��(xk)� ~��(x
k)j = 2j�kj � Ch2j�j5�me��j�jxk:

Furthermore, upon bounding (hkx)
�1jÆ�k+1� �Æ�k�j = 2(hkx)

�1j�k+1��kj using
(4.11), (4.3), and (4.5) � (4.6) together with similar estimates for u� � ~u�,
we conclude that

j�0�(xk+1=2)� ~�0�(x
k+1=2)j � Ch2j�j6�me��j�jxk :

Proceeding as above we get a bound similar to (4.9), so the proof in the
non-degenerate cases is complete.

For the hyperbolic case with b = 0, a 6= 0, c 6= 0 and � 6= 0 we note that
(4.1) reduces to

Uk+1 � Uk = i
a

4c
�k(U

k+1 + Uk)

thus providing an approximation as accurate as in the hyperbolic case with
b 6= 0.

The more special modes arising when b = 0 and � = 0 (see section
2) can be treated by choosing �rst a suitable interpolant for �� and then
integrating the other components from this, paralleling the construction in
[10] and leading to an optimal error bound. In the remaining cases �

�
is a

polynomial of �rst order, so the approximation error vanishes. We conclude
in particular that in the degenerate cases where two of the three curvature
parameters vanish, we get an optimal error bound with C2 = 0, as in the
elliptic case.

In order to compute our �nal approximation we need some orthogonality
results.

Lemma 4.2. For � 2 � let #� = '�(y)��(x),
~#� = ~'�(y)~��(x) be as in

Lemma 4.1. Then if �; � 2 �, � 6= �, one has

Ab(#�; #�) = Am(#�; #�) = 0:

If in addition j�jhy < �, j�jhy < � then

Ab(#�; ~#�) =Ab(~#�; ~#�) = 0

Am(#�;
~#�) =Am(~#�;

~#�) = 0

Ah
m(#�; #�) =Ah

m(#�;
~#�) = Ah

m(
~#�; ~#�) = 0
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Proof. The �rst assertion follows from '0� = i�'� and from the orthogonality

('�; '�) +
R H
0
'� �'�dy = 0, �; � 2 �, � 6= �. To prove the orthogonality for

the remaining seven bilinear expressions, we expand #� as

#�(x; y) =
X
`

�
`
(x)

Ny�1X
n=0

ei�nhyP`

�
2

hy
(y � yn+1=2)

�
; yn < y < yn+1;

where P` is the `:th Legendre polynomial on [�1; 1]. Upon expanding ~#� in
a similar fashion, we conclude that each of the seven expressions reduces to
a �nite linear combination of periodic sums of the form

Ny�1X
n=0

ei(���)nhy = 0:

Proof of Theorem 3.1. It su�ces to show that for each u = uj 2 U0 of the
form uj =

P
�2�A�'�(y)��;j(x), j = 1; 2, there exists ~uj 2 U0;h such that

jjjuj � ~ujjjjh � C1hjujj2 + C2h
2

3
(s+1)jujj2+s;

where C2 = 0 in the elliptic and in the degenerate parabolic and hyperbolic
cases. To this end, drop again the index, write #� = '�(y)��(x), and set

~u =
P

j�j��0
A�~#� where ~#� is as in Lemma 4.1. Then Lemma 4.2 gives

jjju� ~ujjj2h =jjj
X
j�j��0

A�(#� � ~#�)�
X
j�j>�0

A�#�jjj2h

�2
X
j�j��0

jA�j2jjj#� � ~#�jjj2h + 2
X
j�j>�0

jjjA�#�jjj2h:

In the elliptic case and in the degenerate hyperbolic and parabolic cases we
can set �0 =

c
h
, c su�ciently small, to obtain

jjju� ~ujjj2h � Ch2
X
j�j� c

h

jA�j2j#�j22 + Ch2
X
j�j> c

h

j�j2jA�j2j#�j21 � Ch2juj22;

where we used Lemma 4.1, the bound jjj#�jjj2h � Cj#�j21, and the fact thatX
�2�

j�j2sjA�j2j#�j2` � Cjuj2`+s; s � 0:

In the non-degenerate hyperbolic and parabolic cases we get �rst by a similar
argument that

jjju� ~ujjj2h �Ch2juj22 + Ch4
X
j�j��0

jA��sj2j�j4�2sj#�j22 + 2
X
j�j>�0

��2rjjj�rA�#�jjj2h

�C
�
h2juj22 + h4�

2(2�s)
0 juj22+s + ��2r0 juj21+r

�
:
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Balancing the last two error terms here, choosing r = 1 + s, �0 � h�
2

3 , we
get

jjju� ~ujjj2h � Ch2juj22 + C(h4�
2(2�s)
0 + �

�2(1+s)
0 )juj22+s

� Ch2juj22 + Ch
4

3
(s+1)juj22+s:

This proves the theorem.

Remark 4.1. Choosing u = #�0 in the non-degenerate hyperbolic or parabolic
case we conclude from the proof of Lemma 4.1 that

jjju� ~ujjj2h � h
4

3
(s+1)juj22+s; 0 � s � 1:

Since obviously ~u is essentially the best approximation of u, we conclude that
the error bound of Theorem 3.1 is not improvable.

Remark 4.2. In the degenerate parabolic and hyperbolic shell geometries the
Fourier transform technique is actually not needed for proving Theorem 3.1.
This is because in those cases the general inextensional displacement �eld
takes the simple form

u(x; y) =

8><
>:
x�1(y) + �2(y) when a = c = 0;

y�1(x) + �2(x) when b = c = 0;

�1(x) + �2(y) when a = b = 0;

(4.12)

which allows the 1D construction technique of [10] (cf. also [8]) when ap-
proximating u. In this way one can show that Theorem 3.1 holds on a
general rectangular mesh in the degenerate geometries. Also more general
than semiperiodic boundary conditions can be handled in these cases, cf. [10]

Proof of Theorem 3.2. To proceed with the case when u is not inextensional
we use again the Fourier decomposition and look for interpolants ~#�(x) such
that ~�ij(~#�) = ~�ij(#�) and ~�i(~#�) = ~�i(#�) for j�jh � c, c > 0 su�ciently
small, so that Ah

m(#�� ~#�; #�� ~#�) = 0 for such �. In this case (4.1) becomes
a system on inhomogeneous di�erence equations. In the same way as in the
inextensional case we �nd that when b 6= 0 the reduced system corresponding
to (4.3) is�

V
U

�
k+1

�
�
V
U

�
k

=
1

2
�kM

��
V
U

�
k+1

+

�
V
U

�
k

�
+ hkx ~F

k (4.13)

where ~F k is a second-order accurate approximation to F (xk+1=2) in the sys-
tem �

v�
u�

�0
= �M

�
v�
u�

�
+ F = �M

�
v�
u�

�
+

�
F1

F2

�
;

as satis�ed by v� and u� with

F1 = 2f12 � 2cb�1f22; F2 = f11 � ab�1f22;
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where fjl = e�i�y�jl(#�). For the error ÆF
k
j = Fj(x

k+1=2) � ~F k
j one gets the

bounds

jÆF k
j j �C(h2xjjF 00

j jj1 + �2h2yjjFjjj1);
jÆF k+1

j � ÆF k
j j �Cjhk+1x � hkxjhxjjF 00

j jj1
+ C(hk+1x + hkx)(h

2
xjjF 000

j jj1 + �2h2yjjF 0
jjj1);

(4.14)

where jj � jj1 = jj � jjL1(0;L). Assuming j�jh � c we can again evaluate the
error of (4.13) thus obtaining (we omit the details) a bound

jÆvk�j+ jÆuk�j � Gsh
s; s = 1; 2;

where

Gs � Cj�js+2(jjv�jj1 + jju�jj1) + C
sX

m=0

j�js�m
X
j;l

jjf (m)
jl jj1:

We note that again in this case

jjj#� � ~#�jjj2h = Ab(#� � ~#�; #� � ~#�):

Using the (now inhomogeneous) di�erence equations to provide an approxi-
mation to  � and its derivate we are led to the bound

j'� � � ~'� ~ �j1 � G ;�h; (4.15)

where G ;� is a constant bounded by

G ;� �C�4(jjv�jj1 + jju�jj1) + C
3X

m=0

j�j3�m
X
j;l

jjf (m)
jl jj1

+ C
2X

m=0

j�j2�m(jjg(m)
2 jj1 + jj (m)jj1)

where g2(x) = e�i�y�2(#�).
Bounding j'��� � ~'�~��j21 is again a little trickier. We have similarly to

the homogeneous case that�
~v�
~u�

�0
(xk+1=2) =

1

hy
tan (

1

2
�hy)M

��
~v�
~u�

�
(xk) +

�
~v�
~u�

�
(xk+1)

�
+ ~F k:

The error Æ�k� satis�es again a similar equation to (4.10), where now !k
contains additional terms due to inhomogeneity. To bound the contribu-
tion from these terms to the telescoping sum (4.10) we need the second
estimate in (4.14) and a similar bound for Ægk1 = g1(x

k+1=2) � ~gk1 where
g1(x) = e�i�y�1(#�). Invoking the mesh hypothesis (B) we obtain

jÆ�k�j � ~G�;�h
2;
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where ~G�;� is bounded by

~G�;� �Cj�j5(jjv�jj1 + jju�jj1) + C
4X

m=0

j�j4�m
X
j;l

jjf (m)
jl jj1

+ C
3X

m=0

j�j2�mjjg(m)
1 jj1:

This provides a bound for j��(xk) � ~��(x
k)j. To bound also j�0�(xk+1=2) �

~�0�(x
k+1=2)j we use the mesh hypothesis (A) and apply an inverse inequality,

so as to obtain the desired bound

j'��� � ~'�~��j1 � G�;�h (4.16)

with

G�;� � C( ~G�;� +
2X

m=0

j�j2�mjj�(m)jj1)

Combining �nally (4.15), (4.16) we have

jjj#� � ~#�jjj2h � C(G2
 ;� +G2

�;�)h
2:

To �nalize the analysis we assume that u =
P

�2�A�#� and let our

approximation be ~u =
P

j�j��0
A� ~#�. Then we have again that

jjju� ~ujjj2h �2
X
j�j��0

jA�j2jjj#� � ~#�jjj2h + 2
X
j�j>�0

jA�j2jjj#�jjj2h

�C1(u)h
2 + ��2s0

X
j�j>�0

jjj�sA�#�jjj2h

�C1(u)h
2 + C2(u)�

�2s
0 t�2

whereby setting �0h = c gives

jjju� ~ujjj2h � C1(u)h
2 + C2(u)t

�2h2s: (4.17)

Here we may bound C1(u) from

C1(u) � C
X
�2�

jA�j2(G2
 ;� +G2

�;�);

using X
�2�

j�j2sjjf�jj2L1(0;L) �C
X
�2�

j�j2sjjf�jj2H1(0;L)

�Cjjf jj2s+1; f =
X
�2�

'�(y)f�(x);

as
C1(u) � C(jjujj26 + jjvjj26 + jjwjj25 + jj�jj23 + jj jj23) � Cjjujj26:
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Constant C2(u) may be bounded, using the fact that the reduction operators
�x
h, �

y
h are bounded as maps from H1(
) to L2(
), as

C2(s; u) �
X
�2�

j�j2s(jju�jj22 + jjv�jj22 + jjw�jj22 + jj��jj21 + jj jj21) � Cjjujj22+s:

This completes the proof for the case b 6= 0. When b = 0, the analysis is
similar and the �nal result takes the same form. We omit the details.

Remark 4.3. That the additional mesh hypothesis (B) in the proof of the
Theorem 3.2 is necessary, is seen by considering a single mode where u =
'���, where � = 0, w�(x) = x3, �� = w0

�, and a mesh where hkx = hx for

k odd and hkx = hx=2 for k even. Then the above construction enforces
~w�(x

k) = w�(x
k) (when b 6= 0), so (4.10) holds with !k = 1

2
(hkx)

2, and we
conclude that

j�0�(xk+1=2)� ~�0�(x
k+1=2)j = ckj2Æ�0�=hx +

3

4
khxj+O(hx);

where ck = 1 for k odd and ck = 2 for k even. Then jjju�~ujjjh 6! 0 as h! 0.

Remark 4.4. The smoothness requirements in the proof of Theorem 3.2 are
su�cient for all geometries. A slight improvement in terms of � is obtainable
in the case of an elliptic or degenerate parabolic and or hyperbolic shells.
Moreover, in the bounds for Gs, G , G� above, somewhat less regularity is
actually needed for some of the fjl:s.

Remark 4.5. Option (O1) for de�ning �x
h, �

y
h fails in Theorem 3.2 because in

that case we could not enforce the constraints Ah
m(#� � ~#�; #� � ~#�) = 0 for

j�jh � c. Indeed, �y
h(�22(u) � �22(~u)) = 0 would require that �22(u) varies

linearly in x, otherwise �y
h�22(u) could be discontinuous at points xk, unlike

�y
h�22(~u). This shows that when considering more general than (nearly)

inextensional deformations, the error indicator (3.4) becomes very sensitive
not only to the smoothness of u but also to the way the modi�ed energy
norm jjj � jjjh is extended beyond Uh.
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