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1 Introduction

In several parameter-dependent problems we encounter a constrained prob-
lem when the associated parameter � approaches a limit value �0. In the limit
case the variational problem is posed in a subspace V0 of the energy space V
so as to take into account the constraints imposed by the special parameter
value. Well-know examples include the problems of bending a thin plate or
shell [4, 5] and the case of an anisotropic heat conduction [1, 3].

Usually the intersection of the constrained solution space V0 with the
�nite-element space Vh is very small and sometimes even V0 \ Vh = f0g.
This leads to a drastic loss in the approximation properties of low-order
�nite-element schemes for parameter values near the limit value. In order to
avoid this undesirable phenomenon known as locking, and to retain the ap-
proximation properties of the �nite-element scheme, a modi�ed mesh depen-
dent variational formulation is often introduced. The approximate solution
is then sought in a somewhat di�erent space V0;h � Vh which is aimed to be
larger than V0 \Vh. However, it is then necessary that V0;h 6� V0 and so this
modi�cation gives rise to a consistency error which depends on the structure
of V0;h. It is often easily justi�ed that the consistency error component �
called the asymptotic consistency error � is negligible. This is especially true
when the solution u0 is smooth. On the other hand, for non-smooth solutions
this error component can have signi�cant importance when one is trying to
resolve the problem with a parameter value near to the limit value �0.

In this paper we brie�y examine the asymptotic consistency error in view
of a model problem already discussed in [3]. We show that when the asymp-
totic solution u0 is smooth the asymptotic consistency error is O(h) when
using bilinear elements. In case of a nonsmooth u0 we show by an example
that the error can be O(h1=2) or even O(h1=3) depending on the mesh.

The plan of the paper is as follows. In Section 2 we present our model
problem, and the modi�ed variational formulation is introduced in Section
3. Section 4 is concerned with the asymptotic consistency error for smooth
solutions and the nonsmooth case is treated in Section 5.

The kth Sobolev norm over the assumed domain (unit square) is denoted
by jj � jjk and the corresponding seminorm by j � jk. Other domains will
be denoted by an additional subscript. The L2-inner product is written as
< �; � >. Finally, C denotes a constant, not necessarily always the same, but
independent of any parameters unless explicitly stated otherwise.

2 The model problem

As our model problem we take the problem of anisotropic heat conduction
in the unit square 
 = (0; 1)� (0; 1) as in [1, 3]:

�
@2u

@�2
� �2

@2u

@�2
= f in 
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where (
� = �x+ �y

� = ��x + �y

with �2 + �2 = 1, �; � 6= 0. To this equation we associate three di�erent
boundary conditions:

A. u = w on @


B. @�u = g when x = 1 or y = 1 and u = w elsewhere on @


C. @�u = g on @


Here f; w and g are given functions or suitably chosen distributions and @�
stands for the normal component of the heat �ux at the boundary, i.e.,

@�u = (�nx + �ny)
@u

@�
+ �2(��nx + �ny)

@u

@�
;

where (nx; ny) is the outward unit normal to @
. The variational formulation
of these problems is: Find u 2 V such that

A(u; v) = �(v) 8v 2 V0 (2.1)

where the bilinear form is given by

A(u; v) =<
@u

@�
;
@v

@�
> +�2 <

@u

@�
;
@v

@�
>;

and the linear functional as

�(v) =< f; v > +

Z
�N

gvd�;

where �N = ; for Problem A, �N = f(x; y) 2 @
 j x = 1 or y = 1g for
Problem B, and �N = @
 for Problem C. In (2.1), V = H1(
) and V0 =
fv 2 H1(
) j v = 0 on @
n�Ng. In Problem C we assume that �(1) = 0 and
impose the constraint < u; 1 >= 0 on V so as to make the solution unique.

Depending on the Problem, the solution can fall into two di�erent asymp-
totical states when �! 0. In Problems A and B we may assume that

u � u0 as �! 0

where the limiting solution u0 satis�es

<
@u0

@�
;
@v

@�
>= �(v) 8v 2 V0: (2.2)

so that this corresponds to the �cool� state [3].
In Problem C the solution can have a �hot� component so that

u � ��2u0 as �! 0:

Here u0 (the scaled limiting solution) is given by: Find u0 2 V0 such that

A(u0; v) =<
@u0

@�
;
@v

@�
>= �(v) 8v 2 V0 (2.3)

where V0 = fv 2 V j @v
@�

= 0g.
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3 The reduced-�ux formulation

In the �nite element scheme to be studied we assume that 
 is subdivided
into convex disjoint quadrilaterals K satisfying the usual shape regularity
assumptions (cf. [2]). We denote by hK the largest side of an element K and
write h = maxK hK. On this mesh we denote the piecewise bilinear �nite el-
ement space by Vh. It was shown in [3] that the conventional approach based
on (2.1) su�ers from severe locking in Problem C. In order to improve the ap-
proximation properties in the �hot� state a new mesh-dependent formulation
can be introduced: Find uh 2 Vh such that

Ah(uh; v) = �(v) 8v 2 V0
h (3.1)

where

Ah(u; v) = < Rh
@u

@�
; Rh

@v

@�
> +�2 <

@u

@�
;
@v

@�
>

+ �2 < (I � Rh)
@u

@�
;
@v

@�
>

(3.2)

and V0
h stands for the subspace of Vh with the same constraints as in the

exact formulation. Further, Rh is a numerical �ux-reduction operator already
discussed in [3] chosen to be the orthogonal L2-projection onto elementwise
constant functions, i.e.

(Rh')(x; y) =
1

area(K)

Z
K

'(x0; y0) dx0dy0; (x; y) 2 K

for every element K inducing the space V0;h � Vh de�ned by

V0;h = fv 2 Vh j Rhv = 0g:

The modi�ed formulation (3.2) was analyzed in [3] and it was shown that
for su�ciently smooth solutions and regular meshes both the approximation
and the consistency error have optimal bounds in the modi�ed energy norm
jjj � jjjh =

p
Ah(�; �) when � > 0.

On the other hand, in Problem C when � = 0 we have that

<
@u0
@�

;
@v

@�
>= �(v) 8v 2 V0

and

<
@uh
@�

;
@v

@�
> + <

@uh
@�

;
@v

@�
>= �(v) 8v 2 V0;h (3.3)

for the corresponding (scaled) �nite-element solution uh. Let ~uh be the best
�nite-element approximation to u0 in V0;h, i.e.

<
@~uh
@�

;
@v

@�
> + <

@~uh
@�

;
@v

@�
>=<

@u0
@�

;
@v

@�
> 8v 2 V0;h (3.4)
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so that by (3.3), (3.4), and denoting zh = uh � ~uh

<
@zh
@�

;
@v

@�
> + <

@zh
@�

;
@v

@�
>

= �(v)� <
@u0
@�

;
@v

@�
> 8v 2 V0;h: (3.5)

Thus, the asymptotic consistency error is given by

e0C = jjjzhjjj0;h = sup
v2V0;h;v 6=0

�(v)� < @u0
@�
; @v
@�

>

jjjvjjj0;h
(3.6)

where jjj � jjj0;h = j � j1 is the modi�ed energy norm in V0;h at � = 0. We note
that zh 2 V0;h can actually be solved from the variational formulation (3.5).

Our aim is to consider the asymptotic consistency error e0C in two di�erent
cases with respect to the smoothness of u0:

(I) The smooth case, when u0 2 H3(
) and �(v) =
R


fvd�d� for some

f 2 H1(
).

(II) The non-smooth case when �(v) = v(3
4
; 1
4
) � v(1

4
; 3
4
) so that u0 2

H3=2��(
) for � > 0.

In case (I) we show analytically that the asymptotic consistency error is negli-
gible as con�rmed by a numerical experiment whereas in case (II) we conduct
a similar numerical experiment showing a completely di�erent behavior. In
these experiments we assume that � = � = 1p

2
and consider two di�erent

meshes:

(S) A mesh consisting of squares with side length hx = hy = hS.

(R) A mesh consisting of rectangles with side lengths hy = 2hx = hR.

where hx and hy are the mesh spacings in x- and y-directions, respectively.
We note that VhS � VhR when hS = hR.

4 The asymptotic consistency error for smooth

u0

Theorem 4.1. Assume that u0 2 H3(
) and �(v) =
R


fvd�d�, f 2 H1(
).

Then the asymptotic consistency error de�ned in (3.6) satis�es

e0C � Ch(jju0jj3 + jjf jj1):
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Proof. Since < @u0
@�
; @v
@�

>= �(v) 8v 2 V0 we can write for ~v 2 V0;h

<
@u0
@�

;
@~v

@�
> ��(~v) = <

@u0
@�

;
@~v

@�
�
@v

@�
> ��(~v � v)

=� <
@2u0
@�2

; ~v � v > +� <
@u0
@�

; ~v � v >�1

+ � <
@u0
@�

; ~v � v >�2 +� <
@u0
@�

; ~v � v >�3

+ � <
@u0
@�

; ~v � v >�4 ��(~v � v)

by integration by parts. Here8>>><
>>>:
�1 = f(x; y) 2 @
 j y = 0g

�2 = f(x; y) 2 @
 j x = 0g

�3 = f(x; y) 2 @
 j y = 1g

�4 = f(x; y) 2 @
 j x = 1g:

Let us then choose v 2 V0 such that v = ~v on �1 [�2. The constraint @v
@�

= 0
implies

(~v � v)(�; �) =

Z �

�0(�)

@~v

@�
(�; �)d�

=

Z �

�0(�)

@~v

@�
(�; �)�R

(�;�)
h

�@~v
@�

(�; �)
�
d�

=

Z �

�0(�)

�
I � R

(�;�)
h

�@~v
@�

(�; �)d�

(4.1)

by the fact that Rh
@~v
@�

= 0. Here (�0(�); �) 2 �1[�2 is the projection of (�; �)

onto �1 [ �2 along the �-direction. Thus, (4.1) implies that

<
@2u0
@�2

; ~v � v >=

Z



Z �

�0(�)

@2u0
@�2

(�; �)
�
I �R

(�;�)
h

�@~v
@�

(�; �)d�d�d�

=

Z



Z �

�0(�)

�
I � R

(�;�)
h

�@2u0
@�2

(�; �)
@~v

@�
(�; �)d�d�d� (4.2)

� Chjju0jj3j~vj1 � Chjju0jj3jjj~vjjj0;h:

As for the boundary terms we have that < @u0
@�
; ~v�v >�1=<

@u0
@�
; ~v�v >�2= 0

and that

<
@u0
@�

; ~v � v >�3[�4=
Z �1

�0

Z �1(�)

�0(�)

@u0
@�

(�1(�); �)
�
I �R

(�;�)
h

�@~v
@�

(�; �)d�d�

=

Z �1

�0

Z �1(�)

�0(�)

�
I �R

(�;�)
h

�@u0
@�

(�1(�); �)
@~v

@�
(�; �)d�d� (4.3)

� Chjju0jj2;�3[�4 j~vj1 � Chjju0jj3jjj~vjjj0;h
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The asymptotic consistency error in the smooth case
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Figure 1: Asymptotic consistency errors e0C in the case of a smooth solution
u0 for meshes (S) and (R) with � = � = 1p

2
.

where (�1(�); �) 2 �3 [ �4 denotes the projection of (�; �) onto �3 [ �4 along
the �-direction and �0, �1 are chosen so that the integration is taken over
�3 [ �4. For the load we have

�(v � ~v) =

Z



f(v � ~v)d�d� � Chjjf jj1jjj~vjjj0;h (4.4)

again by (4.1) and by the arguments above. The claim follows from (4.2) �
(4.4).

To illustrate the behavior of the asymptotic consistency error in the
smooth case we have solved the problem for �(v) =

R


sin (2�x)vdxdy (see

also [3]) so that

@u0
@�

=

8<
:

�2p2��+sin (2
p
2��)+2�

4(
p
2�2�)�2 when � � 0

2
p
2���sin (2p2��)+2�

4(
p
2+2�)�2

when � < 0:

The results obtained solving for zh in (3.5) for the two di�erent meshes (S)
and (R) are shown in Figure 1. We note that the error vanishes rapidly and
becomes negligible as can be anticipated from Theorem 4.1.
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Figure 2: Asymptotic consistency errors e0C in the case of a nonsmooth solu-
tion u0 for meshes (S) and (R) with � = � = 1p

2
.

5 The asymptotic consistency error for nons-

mooth u0

To show the behavior of e0C when u0 is not smooth we consider the case (II).
In this case we have

@u0
@�

=

(
1p

2�2j�j when j�j � 1p
8

0 when 1p
8
< j�j � 1p

2
:

Again, we solve for zh in (3.5) and obtain the results shown in Figure 2 for
both meshes, (S) and (R). It appears that in both cases jjjzhjjj0;h ! 0 as
h ! 0 but in the case of the non-square mesh the convergence is markedly
slower. In fact, for the square mesh we have jjjzhjjj0;h � O(h1=2) whereas for
non-square meshes we have more like jjjzhjjj0;h � O(h1=3) or slightly better.

To shed some light on this phenomenon we make some remarks on the
structure of V0;h in both cases.

Remark 5.1. In the case of the mesh (S) the condition Rh
@~v
@�

= 0 is equivalent

to requiring ~vi�1;j�1 = ~vi;j in terms of the nodal values of ~v 2 V0;h so that the
values at the nodes are preserved on the diagonals � = const. Comparing this
to the structure of V0 we see that we can at least �nd an interpolant v 2 V0
for every ~v 2 V0;h. Also, @~v

@�
2 H1=2��(
), � > 0, so that the convergence

rate for the mesh (S) is as expected. On the other hand, in the case of the
mesh (R) the condition Rh

@~v
@�

= 0 reads

3 (~vi;j � ~vi�1;j�1) = ~vi�1;j � ~vi;j�1
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Figure 3: The relative error in the H1-seminorm for � = 0; 01 for meshes (S)
and (R) with � = � = 1p

2
.

so that the �-direction is not preferred in the same way as in the case of the
mesh (S).

Remark 5.2. The structure of the local polynomial spaces gives another way
of looking at the di�erence between the cases (S) and (R). In case of the
mesh (S) the elementwise expression is given by

~vjK = c1 + c2� + c3� + c4�
2 + c5�

2 (5.1)

so that locally ~v lacks the crossterm ��. It follows that @~v
@� jK is a function of

� only. In the case (R) the expression (5.1) has the additional term c6�� so
that @~v

@� jK depends also on � whereas for every v 2 V0
@v
@�

is globally a function

of � only.

In Figure 3 we present the results obtained with a small, but positive
value of � and with the same load as in case (II). Here we have calculated
the relative error juh� u0j1=ju0j1 in the H1-seminorm at � = 0; 01. It should
be noted that the convergence of the relative error is again of the order
O(h1=2) for the mesh (S) and of the order O(h1=3) for the mesh (R). Since the
approximation error is only O(h1=2) in both cases, the large error component
in the case (R) must be due to consistency problems. This is also re�ected
by the fact that the approximation properties of VhR are better than those of
VhS for hS = hR, and yet the total error is greater in this case for the mesh
(R).
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Nonnegative operators and the method of sums, Jun 2001

A436 Ville Turunen

Pseudodifferential calculus on compact homogeneous spaces, Jun 2001

ISBN 951-22-5376-3

ISSN 0784-3143

Espoo 2001


