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Summary

We consider a bilinear reduced-strain finite element formulation for a shallow shell model of Reissner-
Naghdi type. We estimate the error of this scheme when approximating an inextensional displacement field
making strong assumptions on the domain and on the finite element mesh.

Introduction

By now it is well known that reliable numerical modeling of shells by traditional low-order finite
element formulations is not an easy task. The most dramatic failure occurs when approximating nearly in-
extensional (or bending-dominated) deformations by standard low-order elements. In this case an asymptotic
approximation failure, known as shear-membrane locking, occurs at the limit of zero shell thickness.

To avoid the locking in parameter dependent problems, it is customary to search for ’simple and ef-
ficient’ low(est) order elements that are based on some non-standard variational formulation of the problem.
Among the (apparently many) possible technical variations within this approach, we choose to consider in our
work the well known formulation by Bathe et al. [1] named MITC4.

The shell problem

We consider a dimensionally reduced shell model for a shell of thickness t arising from linear shell
theory with homogeneous and isotropic material. We assume that the membrane, transverse shear and bending
strains βi j, ρi and κi j depend on the displacements (u;v;w) and on the rotations (θ;ψ) as follows:

β11 =
∂u
∂x

+aw; β22 =
∂v
∂y

+bw; β12 =
1
2
(
∂u
∂y

+
∂v
∂x

)+ cw = β21; (1)

κ11 =
∂θ
∂x

; κ22 =
∂ψ
∂y

; κ12 =
1
2
(
∂θ
∂y

+
∂ψ
∂x

) = κ21; (2)

and

ρ1 = θ�
∂w
∂x

ρ2 = ψ�
∂w
∂y

; (3)

where we are assuming the shell to be shallow so that the parameters a, b and c defining the shell geometry
can be taken constants. We consider only the case ab�c2 > 0 s.t. the shell is elliptic. We will assume that the
computational domain Ω (the shell midsurface) is of rectangular shape in the assumed coordinate system, so
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that Ω = f(x;y)j0< x < L;0 < y < Hg with c�1 � L
H � c for some fixed constant c and with periodic boundary

conditions at y = 0;H.

It is convenient to define the vector field u = (u;v;w;θ;ψ) and the bilinear form A

A(u;v) = a(u;v)+
1
t2 b(u;v) (4)

where

a(u;v) =
Z

Ω
νf(κ11+κ22)(u)(κ11 +κ22)(v)+(1�ν)

2

∑
i; j=1

κi j(u)κi j(v)gdxdy (5)

and

b(u;v) =6(1�ν)
Z

Ω
fρ1(u)ρ1(v)+ρ2(u)ρ2(v)gdxdy

+12
Z

Ω
fν(β11 +β22)(u)(β11+β22)(v)+(1�ν)

2

∑
i; j=1

βi j(u)βi j(v)gdxdy: (6)

Here ν is the Poisson ratio of the material. Then the shell problem can be formulated as: Find u 2 U such that

A(u;v) = Q(v) 8v 2 U (7)

where U is the energy space and Q(v) is the load potential.

We are interested in the finite element approximation of inextensional displacement fields satisfying
b(u;u) = 0, i.e.

β11(u) = β12(u) = β22(u) = 0; ρ1(u) = ρ2(u) = 0 (8)

and denote the space of these fields by U0. We aim to expand the inextensional modes by the Fourier expansion

u = ∑
λ2Λ

ϕλ(y)φλ(x); ϕλ(y) = eiλy; Λ = fλ =
2πν
H

; ν 2 Zg (9)

where, in view of (8), φλ = (uλ;vλ;wλ;θλ;ψλ) satisfies
8>>>>>><
>>>>>>:

u0λ +awλ = 0

iλvλ +bwλ = 0

iλuλ + v0λ +2cwλ = 0

θλ�w0
λ = 0

ψλ � iλwλ = 0

(10)

The reduced-strain FE scheme

It is well-known that due to the parametric dependence of the energy norm, the best error bound in case
of lowest degree elements and bending-dominated deformation is [5]

jjju�uhjjj � minf1;
h
t
juj2g; (11)



where jjj �jjj=
p

A(�; �). To prevent the error amplification at small t, we therefore need to consider some mod-
ification of the standard formulation. A natural approach is to modify the membrane and transverse stresses β i j

and ρi substituting these with β̃i j = Ri j
h βi j and ρ̃i = Ri

hρi where the Ri j
h ’s and Ri

h’s are suitably chosen reduction
operators.

In the finite element scheme to be studied, we assume that Ω is subdivided by a rectangular mesh with
maximal side length= h. We assume that the mesh is uniform in the y-direction. We write h j

x = x j+1 � x j and
hx = maxh j

x. Note that we make no assumption on the ratios h j
x=hy. On this mesh we consider a continuous

piecewise bilinear representation of each component of the displacement field. In this setup, we define the
reduced membrane and shear strains as

β̃11 = Πx
hβ11; β̃22 = Πy

hβ22; β̃12 = Πxy
h β12 = β̃21 (12)

and
ρ̃1 = Πx

hρ1 ρ̃2 = Πy
hρ2; (13)

where Πx
h, Πy

h and Πxy
h are L2-projection operators defined elementwise as projectors onto the global spaces

W x
h , W y

h and W xy
h , where W x

h consists of functions that are constant in x and piecewise linear with respect to
y on each element, W y

h is defined analogously and W xy
h consists of functions that are elementwise constants.

The connection between our choice and the engineering tradition is given in [4]. We let further

bh(u;v) =6(1�ν)
Z

Ω
fρ̃1(u)ρ̃1(v)+ ρ̃2(u)ρ̃2(v)gdxdy

+12
Z

Ω
fν(β̃11+ β̃22)(u)(β̃11 + β̃22)(v)+(1�ν)

2

∑
i; j=1

β̃i j(u)β̃i j(v)gdxdy: (14)

and look for a FE solution uh 2 Uh such that

Ah(uh;v) = a(uh;v)+
1
t2 bh(uh;v) = Q(v) 8v 2 Uh: (15)

Remark 1. Our reduced formulation is such that in the FE space the derivate terms in β ii’s and ρi’s are
unaffected.

Theorem 1. Let U0;h = fu 2 Uhjbh(u;u) = 0g where Uh is the bilinear finite element space and bh is defined
by (14) where the reduced strains are further defined by (12) – (13). Then if u 2 U0, there exists a ũ 2 U0;h
such that

jjju� ũjjjh �Chjuj2: (16)

where jjj � jjjh =
p

Ah(�; �) denotes the modified energy norm.

Remark 2. The main idea of the proof is to use the Fourier representation (9) and approximate then u by

ũ = ∑
λ2Λ:jλj�λ0

ϕ̃λ(y)φ̃λ(x); (17)

where λ0 = λ0(h) is a truncation frequency to be chosen, ϕ̃λ is the piecewise linear interpolant of ϕλ, and φ̃λ
is a special approximation of φλ to be found.



Proof of Theorem 1. Consider first a single Fourier mode. Since ϕ̃λφ̃λ 2 U0;h it must satisfy the constraints

β̃i j(ϕ̃λφ̃λ) = ρi(ϕ̃λφ̃λ) = 0. This is equivalent to requiring the nodal values of the components to satisfy
8>>>>>>><
>>>>>>>:

un
k+1�un

k +
a
2hk

x(w
n
k +wn

k+1) = 0

vn+1
k � vn

k +
b
2hy(wn

k +wn+1
k ) = 0

1
2hy

(un+1
k+1 �un

k+1 +un+1
k �un

k)+
1

2hk
x
(vn+1

k+1 � vn+1
k + vn

k+1� vn
k)+

c
2(w

n+1
k+1 +wn+1

k +wn
k+1 +wn

k) = 0
hk

x
2 (θ

n
k +θn

k+1)� (wn
k+1�wn

k) = 0
hy
2 (ψ

n
k +ψn+1

k )+(wn+1
k �wk

n) = 0

(18)

Inspired by the form of ϕλφλ we seek a solution to these equations in the form un
k = eiλnhyUk, vn

k = eiλnhyV k,

wn
k = eiλnhyW k, θn

k = eiλnhyΘk and ψn
k = eiλnhyΨk. Substituting these expressions and simplifying we get
8>><
>>:

W k = �2i
bhy

tan(1
2λhy)V k

Ψk = 2
hy

tan(1
2λhy)W k

Θk+1 +Θk = 2
hk

x
(W k+1�W k)

(19)

and that Uk and V k satisfy �
V
U

�
k+1

�

�
V
U

�
k
= δkM

��
V
U

�
k+1

+

�
V
U

�
k

�
(20)

where δk =
hk

x
hy

tan(1
2λhy) and

M = i

�
2c
b �1
a
b 0

�
(21)

Since uλ and vλ satisfy by (10) a system
�

vλ
uλ

�0

= iλ
�

2c
b �1
a
b 0

��
vλ
uλ

�
(22)

we see that (20) is a finite difference approximation to (22) with a truncation error γk �C(jλj3(hk
x)

3+ jλj3h2
yhk

x).
If we denote by ṽλ the piecewise linear function satisfying ṽλ(x

k)=V k and other components of φλ analogously
then by the standard techniques for A-stable difference schemes (cf. [2]) we see that

jvλ(x
k)� ṽλ(x

k)j �C
Z xk

0
e�βjλj(xk�t)λ3(h2

x +h2
y)e

�αjλjtdt �Ch2λ2e�βjλjxk
(23)

for some α > β > 0. By (20), (22) we have

jv0λ(x
k+1=2)� ṽ0λ(x

k+1=2)j �Ch2jλj3e�βjλjxk
(24)

where xk+1=2 = 1
2(x

k+1 + xk). Hence, (23), (24) lead to the bounds

jψλ(x
k)� ψ̃λ(x

k)j �Ch2λ4e�βjλjxk
j

jψ0
λ(x

k+1=2)� ψ̃0
λ(x

k+1=2)j �Ch2jλj5e�βjλjxk (25)



by (19).

We note that in this case

jjjϕλζλ� ϕ̃λζ̃λjjj
2
h = a(ϕλζλ� ϕ̃λζ̃λ;ϕλζλ� ϕ̃λζ̃λ)�C(jϕλθλ� ϕ̃λθ̃λj

2
1 + jϕλψλ � ϕ̃λψ̃λj

2
1): (26)

where from by a direct evaluation of the norms

jϕλψλ � ϕ̃λψ̃λj
2
1 �Ch2jϕλψλj

2
2: (27)

The other term, jϕλθλ � ϕ̃λθ̃λj
2
1 can be handled similarly, only in this case we have that the error

ek = θ̃λ(x
k)�θλ(x

k) satisfies a recursion

1
2
(ek+1 + ek) = ωk (28)

with

ωk =
2
b
[((

1
hy

tan(
1
2

λhy))
2�

λ2

4
)(

2c
b
(vλ(x

k+1)+ vλ(x
k))� (uλ(x

k+1)+uλ(x
k)))

+(
1
hy

tan(
1
2

λhy))
2)(

2c
b
(δvk+1

λ +δvk
λ)� (δuk+1

λ +δuk
λ))] (29)

where δv j
λ = ṽλ(x

j)� vλ(x
j) and δu j

λ similarly. This leads to

jθλ(x
k)� θ̃λ(x

k)j �Ch2λ4 (30)

Since the functions ϕλφλ and ϕ̃λφ̃λ are orthogonal with respect to the inner product generated by the bi-
linear form a(�; �) on U we can write u as its Fourier-expansion u= ∑λ2Λ ϕλ(y)φλ(x) and let our approximation

be ũ = ∑jλj�λ0
Aλϕ̃λ(y)φ̃λ(x) where φ̃λ(x) is defined as above. A direct calculation gives

jjjũ�ujjj2h = jjj ∑
jλj�λ0

ϕ̃λφ̃λ� ∑
λ2Z

ϕλφλjjj
2
h � ∑

jλj�λ0

jjjϕ̃λφ̃λ�ϕλφλjjj
2
h + ∑

jλj>λ0

jjjϕλφλjjj
2
h (31)

We can then set λ0 =
C
h to obtain

jjjũ�ujjj2h �Ch2 ∑
jλj�C

h

jϕλφλj
2
2 +Ch2 ∑

jλj>C
h

jjjλϕλφλjjj
2
h �Ch2juj22+Ch2juj22 (32)

Numerical example

As a numerical example on the performance of our reduced-strain formulation (15) we take the Morley
hemispherical shell as in [3]. We parameterize the problem by the angles ϑ and φ and use a uniform rectangular
mesh with respect to these parameters and let R = 10, t = 0:04, ν = 1=3 to define the geometry and material.
We measure the quality of the results by the magnitude of transverse deflection at the northern edge on the
meridian of the load. The results are shown in Table 1 where the reference value is obtained using a p-
version of FEM with p = 6. In this outset, which is favorable to the reduced-strain formulation, the classical
formulation suffers from severe locking and produces essentially a zero solution. We note that the reduced-
strain formulation is in this case comparable even to the p-version of FEM.



DOFs deflection absolute relative error
225 0.443469 0.3458

1425 0.653925 0.0331
3625 0.680617 0.0063
6825 0.689944 0.0201

Table 1: Deflection of the radial component for the Morley shell with the reduced-strain formulation. The
reference value obtained with a p-version of FEM having roughly 112000 DOFs and p = 6 is 0.676345. All
results were computed on a uniform mesh.
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