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Summary

We consider a bilinear reduced-strain finite element formulation for ashallow shell model of Reissner-
Naghdi type. We estimate the error of this scheme when approximating an inextensiona displacement field
making strong assumptions on the domain and on the finite el ement mesh.

I ntroduction

By now it is well known that reliable numerical modeling of shells by traditional low-order finite
element formulations is not an easy task. The most dramatic failure occurs when approximating nearly in-
extensional (or bending-dominated) deformations by standard low-order el ements. In this case an asymptotic
approximation failure, known as shear-membrane locking, occurs at the limit of zero shell thickness.

To avoid the locking in parameter dependent problems, it is customary to search for 'simple and ef-
ficient’ low(est) order elements that are based on some non-standard variational formulation of the problem.
Among the (apparently many) possible technical variations within this approach, we choose to consider in our
work the well known formulation by Bathe et al. [1] hamed MITCA.

The shell problem

We consider a dimensionally reduced shell model for a shell of thicknesst arising from linear shell
theory with homogeneous and isotropic material. We assume that the membrane, transverse shear and bending
strains Bij, pi and x;j depend on the displacements (u, v,w) and on the rotations (6, y) as follows:
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where we are assuming the shell to be shallow so that the parameters a, b and ¢ defining the shell geometry
can be taken constants. We consider only the case ab — c? > 0 sit. the shell is elliptic. We will assume that the
computational domain Q (the shell midsurface) is of rectangular shape in the assumed coordinate system, so
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that Q = {(x,y)|0< x<L,0<y < H}withc™ < 5 < c for somefixed constant ¢ and with periodic boundary
conditionsaty = O,H.

It is convenient to define the vector field u = (u,v,w, 6, y) and the bilinear form A
1
AU.Y) = a(u,v) + 5b(u.v) (4)

where

a(u,v) = /Q V(K11 + K22) (U) (K11 + K22) (V) + (1~ V) leu )xij(v) pdxdy 5
i,

and

b(u,v) =6(1—v) / {p1(u)p1(v) + p2(u)p2(v) }dxdy

+12/ {v(B11+B22) (U) (Br1+P22) (V) + (1 —V) z Bij(u)Bij(v) pdxdy. (6)

i,j=1
Here v isthe Poisson ratio of the material. Then the shell problem can be formulated as: Find u € U such that
A(u,v)=Q(v) WeU (7)

where U isthe energy space and Q(v) isthe load potential.

We are interested in the finite element approximation of inextensional displacement fields satisfying
b(u,u)=0,i.e

B11(u) = P12(u) = B22(u) =0, p1(u) =p2(u) =0 (8)
and denote the space of thesefieldsby Ug. We aim to expand the inextensional modes by the Fourier expansion
_ _ iy _ 2my
u= 2 (Pk(y)ﬁ;b(x)a (Pk(y) =e™, A= {7\’ H » VE Z} (9)
AEA

where, inview of (8), ¢, = (Up,Va, Wy, 02, ¥3,) satisfies

(U +aw, =0

iAvy +bwy =0

q 1Ay, + V) +2cw, =0 (10)
G;L—WSL =0

\\|I;L— i)\,W;L =0

Thereduced-strain FE scheme

It iswell-known that due to the parametric dependence of the energy norm, the best error bound in case
of lowest degree elements and bending-dominated deformation is[5]

: h
11y =up|l} ~ min{1, =ul2}, (11)



where|||-||| = v/A(:,-). To prevent the error amplification at small t, we therefore need to consider some mod-
ification of the standard formulation. A natural approach isto modify the membrane and transverse stresses 3
and p; substituting these with [3., = Rh Bij and pi = Rl pi where the R’sand R!,’s are suitably chosen reduction
operators.

In the finite element scheme to be studied, we assume that Q is subdivided by a rectangular mesh with
maximal side length= h. We assume that the mesh is uniform in the y-direction. We write h{ = xi*1 —xJ and
hy = maxhy. Note that we make no assumption on the ratios h; /hy. On this mesh we consider a continuous
piecewise bilinear representation of each component of the displacement field. In this setup, we define the
reduced membrane and shear strains as

B =TI, Boo=TP22, Prz=IB12= P (12)
and
pr=IIip1  p2=TTpo, (13)

Where I}, 1‘[y and H are L2-projection operators defined e ementwise as projectors onto the global spaces

Wy and ery, Where W, consists of functions that are constant in x and piecewise linear with respect to
y on each element, W, Yis deflned analogously and W/ Y consists of functions that are elementwise constants.
The connection between our choice and the engineeri ng traditionis givenin [4]. We let further

(u.y) =6(1-V) [ (Fa(WPa(v) +Pa(upalv) axdy

+12 /Q{vdsmﬁzz)( )(Br1+P2)(v) + (1—v) ZB., )Bij (v) ydxdy. (14)

i,j=1

and look for a FE solution u;, € Uy, such that

An(Un,V) = a(up, V) + Zpt (Un,v) =Q(v) Vv e Up. (15)

Remark 1. Our reduced formulation is such that in the FE space the derivate terms in B;i’s and p;’s are
unaffected.

Theorem 1. Let Ugp = {u € Up|b"(u,u) = 0} where Uy, is the bilinear finite element space and b" is defined
by (14) where the reduced strains are further defined by (12) — (13). Then if u € Uy, there exists a i € Ugp,
such that

|[lu—all[n < Chlu2. (16)

where ||| - |||n = v/An(,-) denotes the modified energy norm.

Remark 2. The main idea of the proof is to use the Fourier representation (9) and approximate then u by

= 2 (78 (y) @)L (X) ) (17)
AEA|A|<Ao

|

where Ao = Ao(h) is a truncation frequency to be chosen, @, is the piecewise linear interpolant of ¢, and @L
is a special approximation of ¢, to be found.



Proof of Theorem 1. Consider first a single Fourier mode. Since ‘qu’x € Ugp it must satisfy the constraints
[3, j (q”»q’x) Pi ((p@x) 0. Thisis equivalent to requiring the nodal values of the components to satisfy
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Inspl red by the form of ¢;0, we seek a solution to these equations in the form up = e*"U¥k, vi = ek,
= ek, o = e*yek and ] = ek, Substituting these expressions and simplifying we get

Wk = g2 tan(3rhy)V*
wk = h—zytan(%khy)wk (19)
®k+l+®k — H25(\/\/k+l_vvk)

(0) (), =8m(0), .+ (), @

M= (ZE —01> (21)

and that UK and V¥ satisfy
where §, = h—I§tan(l7uh ) and
K= hy 2Mly

Since uy, and v, satisfy by (10) a system

@) -oF D

we see that (20) is afinite difference approximation to (22) with atruncation error v < C(JA|3(h¥)3+ |1 [3h2n).
If we denote by ¥, the piecewiselinear function satisfying ¥ (x€) = V* and other components of o, analogously
then by the standard techniques for A-stable difference schemes (cf. [2]) we see that

Xk
v, () — 0, (XK < C /0 e P U23(h2 4 p2)e Mgt < ch2p2e B (23)
for somea > > 0. By (20), (22) we have
~ _ k
V5, (XTH2) — 7 (X< TY/2)| < Ch?|n[3ePIMX (24)
where x¥t1/2 = 2(xk+1 4 xk). Hence, (23), (24) lead to the bounds

~ - k
[ () = ()| < Ch2ateBIX|
[, (HY/2) — 7 (x/2)| < ch? e P (25)



by (19).

We note that in this case
119028, — B2&, |1lr = a(@aG, — BL,, 98, — BaE,) < C1020 — ®buli + [wn — G10lD).  (26)
where from by a direct evaluation of the norms

oW, — G003 < Ch? a3, (27)

_ The other term, |@;0; — (T);ﬁ;ﬁ can be handled similarly, only in this case we have that the error
ex = 0, (xX) — 8, (x¥) satisfies arecursion

et = o (28)
with
2
=Bl (230,12~ 2000088 0, 49) — @84 4004
(G ten(Any)) R0+ 80— (3 -8 )| @9

where 8v) = ¥ (xJ) — v; (xJ) and 8u. similarly. Thisleadsto
0.(x) — B,,(x)| < Ch** (30)

Since the functions 010, and (”p;@X are orthogonal with respect to the inner product generated by the bi-
linear formay-, -) on U we can write u asits Fourier-expansion U = 3¢, 92 (y)9, () and let our approximation
be i = Yy <r, Arda(¥)9, (X) where ¢, (x) is defined as above. A direct calculation gives

Na—ulllg=1 ¥ @x@k—z‘,@xﬁk|||ﬁ§ > |||(T>x§k—®x9k|||ﬁ+ > |||(Px9k|||ﬁ (31)
A <ho reZ [A|<ho [A[>ho
We can then set Ao = & to obtain
IG—ulllf <Ch? Y |20, 5+Ch* Y, [[[A@n0, ][I < Ch*u[3+Ch?|ul3 (32)
M<F >
[l

Numerical example

Asanumerical example on the performance of our reduced-strain formulation (15) we take the Morley
hemispherical shell asin[3]. We parameterize the problem by the angles 8 and ¢ and use auniform rectangular
mesh with respect to these parameters and let R = 10, t = 0.04, v = 1/3 to define the geometry and material.
We measure the quality of the results by the magnitude of transverse deflection at the northern edge on the
meridian of the load. The results are shown in Table 1 where the reference value is obtained using a p-
version of FEM with p = 6. In this outset, which is favorable to the reduced-strain formulation, the classical
formulation suffers from severe locking and produces essentialy a zero solution. We note that the reduced-
strain formulation isin this case comparable even to the p-version of FEM.



DOFs | deflection | absolute relative error
225 | 0.443469 0.3458

1425 | 0.653925 0.0331

3625 | 0.680617 0.0063

6825 | 0.689944 0.0201

Table 1: Deflection of the radial component for the Morley shell with the reduced-strain formulation. The
reference value obtained with a p-version of FEM having roughly 112000 DOFs and p = 6 is 0.676345. All
results were computed on a uniform mesh.
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