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ABSTRACT

A winding simulation model predicting the internal stress state of a wound roll would provide an
indispensable tool for the optimal selection of the winding parameters and, above all, a fast way to
design new winding concepts – such as winding drum covers and winding geometry. Hence, the
nip-induced stresses and nip-induced tension are of the outmost interest to the manufacturer of the
winding apparatus. In this thesis, a rigorous contact mechanical model for the winding nip is
presented. Under the assumptions of the linear elastic web and paper roll material and compliant
winding drum, the indentation, stick and slip equations are derived. The wound-on-condition, a
mathematical statement for the initially free sheet becoming finally a part of the roll, is presented. A
variant of the Panagiotopoulos Process is introduced as a solution procedure and numerical results
are presented. An invariant condition is derived and, hence, the number of independent winding
parameters is reduced from three to two. In the numerical part of the thesis, the basic mechanism of
the nip-induced tension is presented and the following items are studied: the influence of the
winding force, the layer-to-layer friction coefficient, the wound roll and winding drum radius, drum
cover compliancy and the elastic constants of paper on the nip-induced tension. The calculated
results obtained are shown to comply well with the experiments and literature.

  All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of
the author.
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NOMENCLATURE

A, B, C coefficients in the integral presentation of the displacements in the elastic half-space 

theory

A B Blm, ,  ± influence coefficients of v vl l
+ −−

C D Dlm lm
± ±,  ,  influence coefficients of ε l

±

Arr radial direction elastic constant in the elastic cylinder theory

Arθ radial-tangential direction cross elastic constant in the elastic cylinder theory

Aθθ tangential direction elastic constant in the elastic cylinder theory

Axx tangential direction elastic constant in the elastic half-space theory

Axy tangential-normal direction cross elastic constant in the elastic half-space theory

Ayy normal direction elastic constant in the elastic half-space theory

Alm,i, Blm,i influence coefficients of vl,i

Clm,i, Dlm,i influence coefficients of εl,i

lm
±

� influence coefficients of lε ±

a semi-contact width

anm constant coefficient of the mth characteristic solution in the expansion of the Fourier 

coefficients u vn
s

n
c and 

bnm constant coefficient of the mth characteristic solution in the expansion of the Fourier 

coefficients u vn
c

n
s and 

c11 tangential direction elastic compliance in the elastic thin sheet theory

c12 normal-tangential direction cross elastic compliance in the elastic thin sheet theory

c22 normal direction elastic compliance in the elastic thin sheet theory

c66 shear elastic compliance in the elastic thin sheet theory

c0 0th coefficient in the Fourier series presentation of p(.)

cn nth coefficient of cosn��in the Fourier series presentation of p(.)

dn nth coefficient of sinn��in the Fourier series presentation of p(.)

G shear modulus in the elastic half-space theory

Grθ shear modulus in the elastic cylinder theory

e0 0th coefficient in the Fourier series presentation of q(.)

en nth coefficient of cosn��in the Fourier series presentation of q(.)

F winding force = Q−
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Fr radial direction body force

Fθ tangential direction body force

fn nth coefficient of sinn��in the Fourier series presentation of q(.)

h half of the web thickness

i imaginary unit −1

M number of the evenly spaced grid points in the contact

M1 wound roll torque

M2 winding drum torque

NIT nip-induced tension

P radial compressive load between the paper roll and winding drum

p(.) distributed normal traction (pressure) in the contact or general normal traction in the 

elastic half-space or cylinder problems

pm contact pressure at xm

Q+ total tangential traction in the contact between the wound roll and the sheet

Q− total tangential traction in the contact between the winding drum and the sheet

wQ+ total tangential traction in the contact between the topmost paper layer and wound 

roll behind the nip

q(.) distributed tangential traction in the elastic half-space or cylinder problems

q+(.) distributed tangential traction in the wound roll-sheet contact

q−(.) distributed tangential traction in the winding drum-sheet contact

q qm m
+ −,  tractions of the top (+) and bottom (-) of the sheet at xm

R wound roll radius

R0 radius of the rigid core in the elastic cylinder theory

R1 wound roll radius

R2 winding drum radius

r radial coordinate in the polar coordinates

s lengthwise coordinate of the web

sd dual slip ratio

sr1 leading edge roll slip ratio

sr2 trailing edge roll slip ratio

T(s) web tension at s

Tin web tension of the first paper layer prior to the nip

Tout web tension of the first paper layer just after the nip
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u0 0th coefficient function in the Fourier series presentation of ur

un
c nth coefficient of cosn��in the Fourier series presentation of ur

un
s nth coefficient of sinn��in the Fourier series presentation of ur

u ur ,  θ radial and tangential displacements of the elastic cylinder

u ur r1 2,  radial displacements of the roll and drum

u uθ θ1 2,  tangential displacements of the roll and drum

u u1 2,  tangential displacements of the roll and drum

u ul l, ,1 2,  tangential displacements of the roll and drum at xl

u ur ,  θ radial and tangential surface displacements of the elastic cylinder

U Ux y,  Fourier transforms of u ux y,  , respectively

u ux y,  x- and y-direction displacements in the elastic half-space or thin sheet theory

u ux y,  x- and y-direction surface displacements in the elastic half-space or thin sheet theory

Vθ1 absolute tangential surface speed of the paper roll

Vθ2 absolute tangential surface speed of the winding drum

V+ absolute tangential speed of the top surface of the sheet

V− absolute tangential speed of the bottom surface of the sheet

v0 0th coefficient function in Fourier series presentation of uθ

vn
c nth coefficient of cosn��in the Fourier series presentation of uθ

vn
s nth coefficient of sinn��in the Fourier series presentation of uθ

v v1 2,  radial (normal) displacements of the roll and drum

v vl l, ,1 2,  radial displacements of the roll and drum at xl

v+, v− normal displacements of the top (+) and bottom (-) of the sheet

v vl l
+ −,  normal displacements of the top (+) and bottom (-) of the sheet at xl

WOT wound-on-tension

xm mth nip discretization point

∆x nip discretization step

α0m,1, α0m,2 0th coefficient in the Fourier series presentation of ψm(x)

 αnm,1, αnm,2 nth coefficient of cosn��in the Fourier series presentation of ψm(x)

βnm,1, βnm,2 nth coefficient of sinn��in the Fourier series presentation of ψm(x)

ε1, ε2, ε3 principal strains

εz axial strain in the cylindrical coordinates
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ε +, ε − tangential strains at the top (+) and bottom (-) of the sheet

ε εl l
+ −,  tangential strains at the top (+) and bottom (-) of the sheet at xl

εθ1, εθ2 tangential surface strain of the paper roll and winding drum

ε ε1 2,  tangential surface strain of the paper roll and winding drum

ε εl l, ,,1 2 tangential surface strain of the paper roll and winding drum at xl

γ0 characteristic sequence of the 0th Fourier coefficient of ur

γn,1, γn,2 1st and 2nd characteristic sequences of the nth Fourier coefficients of ur

γnt shear angle between the tangential and normal directions

δ mutual approach of the paper roll and the winding drum centers

δ+, δ− mutual approach of the sheet and wound roll and sheet and winding drum centers, 

respectively

1, x xδ δ+ x-component of the rigid translation of the sheet and upper cylinder, respectively

1, y yδ δ+ y-component of the rigid translation of the sheet and upper cylinder, respectively

ηnm ratio of the characteristic solutions ϕnm(.) and φnm(.)

θ polar angle in the polar coordinates

κ elasticity parameter in the elastic half-space theory

λi characteristic roots of the elastic half-space or cylinder problems

λnm mth root of the nth Fourier coefficient function characteristic equation in the 

elastic cylinder problem

µ elasticity parameter in the elastic half-space theory

µk kinetic coefficient of friction between the paper layers

µ+ layer-to-layer friction coefficient

µ− winding drum-sheet friction coefficient

ξ+ creep ratio of the paper roll-sheet contact

ξ− creep ratio of the winding drum-sheet contact

ρ density of the paper roll

ρ0 reference density prior to the deformation

ρ+ radius of curvature of the wound roll

σr radial stress of the cylinder

σx tangential stress in the elastic half-space or thin sheet theory

σy normal stress in the elastic half-space or thin sheet theory

σθ tangential stress of the cylinder
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τxy shear stress in the elastic half-space theory

υ υ+ −,  relative speed differences at the top (+) and bottom (-) of the sheet

φnm(.) mth characteristic solution of the base functions spanning the nth Fourier coefficient 

of ur

ϕnm(.) mth characteristic solution of the base functions spanning the nth Fourier coefficient 

of uθ

χ0 characteristic sequence of the 0th Fourier coefficient of uθ

χn,1, χn,2 1st and 2nd characteristic sequences of the nth Fourier coefficients of uθ

ψm(.) piecewise linear base function at xm

ω independent variable in the Fourier transform F(ω) of the function f(x)

mϑ mth coefficient of mψ  in the expression of 2
1 1 12 /r ru u R′′ −

∆ tangential distance between the center of the contact and the line initially 

connecting the centers of the paper roll and winding drum

∆+, ∆− tangential shift of the upper and lower contact centers, respectively

ˆ, nm nΓ Γ± coefficients of mq±  and Tin in the expression of cn,1

ˆ, nm nΛ Λ± coefficients of mq±  and Tin in the expression of dn,1
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1 INTRODUCTION

The paper sheet is wound and unwound several times during the paper manufacturing

process. The winding or reeling should be done in a manner that minimizes the amount of reject.

Hence, the winders and reelers should strain the paper as little as possible during the winding

process and produce rolls or reels that are not susceptible to defects during transportation or any

other further processing. Due to the tendency of increasing the reel diameters and roll widths, these

demands are not always easy to fulfill. In addition, development in the paper making process and

paper grades can be unfavorable to winding and wound roll quality.

Accordingly, the tendency among the winder and reeler suppliers during the last decade has

been to reduce the stress on the paper during winding and to improve the cross-machine direction

uniformity of the reel or rolls [38]. This has been achieved by reducing the nip-induced stresses on

the wound rolls with soft winding drum covers and belt-supports, and partial elimination of the non-

uniform nip loads due to reel or roll deflection. However, presently there is no solid contact

mechanical theory of the winding nip and, hence, it is not possible to reliably evaluate the strain on

the paper or wound roll in the vicinity of the nip. Also, the mechanism of the nip-induced tension

(NIT), due to the (micro) slip of the incoming paper layer, is not fully understood. This impedes the

optimization of the winding device based on the predicted stress distribution of the winding nip and

wound roll. Accordingly, currently the design of the winding equipment is based on empirical

knowledge, trial and error tests and more or less incoherent engineering science. Of course winding

with the nip has been studied experimentally and theoretically for many years, but surprisingly

rigorous contact mechanical theory has not yet been developed. The goal of this thesis is to partially

fill this gap. The scope of this thesis on this complex matter will by no means be comprehensive,

rather foundational. With this beginning, several simplifications will be made, and the problem is

focused to include mainly the contact mechanics of the winding nip. Hence, the main outcome of

the model should be regarded phenomenological and methodological with only limited applicability

to yield quantitatively accurate results. However, it is hoped that the model will be able to capture

some essential features of the winding nip behavior – like the mechanism for nip-induced tension.

As the initial phase on a larger project on winding mechanics, this thesis will serve as a basis for a

stepwise refinement process leading towards a winding nip theory of required accuracy.
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M1

Tout
Tin

M2

P

P R1

R2

Figure 1.  Winding configuration.

The winding configuration to be studied in this work is shown in Figure 1. The wound roll is

depicted as the upper circle and the winding drum as the lower circle. The paper web is fed into the

winding nip, formed by the wound roll and winding drum, from the left and it enters the roll after

the nip. The wound roll and winding drum are pressed against each other with uniform line load P

[N/m] and driven by torques M1 and M2 [Nm/m], respectively. The tension of the web, prior to

entering the nip, is Tin [N/m]. The problem statement is to find the surface stresses of the sheet,

wound roll and winding drum in the nip and the web tension Tout just after the nip. The last

mentioned quantity is important when extending the current center wound winding models [1,19] to

also include winding with a nip.

In the past few years, winding with a nip has been studied intensively at the Web Handling

Research Center (WHRC) of Oklahoma State University. They have recently reached good

agreement between their theoretical model and the experimental data on center (M2 = 0) and surface

winding (M1 = 0) [15]. This model, developed by Dr. Good, consists of a simplified contact

mechanical model of the winding nip with several non-rigorous assumptions based predominantly

on intuition. In this thesis, the goal is to develop a simple but rigorous contact mechanical model of

the winding nip, which is based on the first principles. Since winding with the nip has not been

previously modeled as a 2-dimensional contact mechanical problem, the degree of difficulty is kept

to a minimum by:

a) Applying a linear, orthotropic and elastic material model for the wound roll and

intervening sheet

b) Neglecting the wrap of the sheet around the winding drum before it enters the nip

c) Neglecting the air entrapment into the nip and the wound roll
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Finally, it is hoped that the numerical results calculated with the model will enhance the

development and offer improved insight to the more intuitive theories.

1.1 Wound-on-tension

M1

Q+ Tout

ToutTin

Q+

Q−

M2

Q−

Figure 2.  Tangential total contact loads and torques of the system.

With respect to extending winding models to include winding with a nip, the most important

output is the web tension of the incoming paper web after the nip Tout. Closely related term, Wound-

On-Tension or acronym WOT, is defined as the web tension of the topmost paper layer further

behind the nip when the nip induced deformations have become negligible. Due to the rolling

contact in the winding nip, a normal and tangential traction arises between wound roll-web and

winding drum-web contacts. Let us consider the torque balance of the wound roll and winding drum

and horizontal force balance of the paper web in the nip (Figure 2). If the radius of the wound roll is

R1 and the radius of the winding drum is R2, the static balance equations are (the contact width is

assumed to be negligible with respect to the radius of the contacting bodies and, hence, all the loads

are approximately horizontal.)

M T R Q R

T Q Q T

M Q R

out

out in

1 1 1

2 2

= −

= + +

= −

+

+ −

−

 ,

 ,

 ,

(1)

where Q+ and Q− are the total tangential loads [N/m] between the wound roll and the web and

winding drum and the web, respectively. Elimination of Q+ and Q− from Eqs. (1) yields the global

balance of the winding configuration of Figure 1:



14

M

R

M

R
Tin

1

1

2

2

+ =  (2)

Hence, only two of the three external longitudinal control parameters M1, M2 and Tin are

independent.

For reasons which come apparent later, the most convenient choice of the three independent

winding parameters is the compressive load P, incoming web tension Tin and the Winding Force F,

which is defined by

F Q
M

R
= = −− 2

2

 . (3)

In terms of these winding parameters, the wound-on tension from (1) becomes

T Q F Tout in= + ++  . (4)

It should be noted that in this expression only Q+ is a function of P.

The two last terms in Eq. (4) are controllable winding parameters, but Q+ is unknown and, hence,

Tout cannot be solved without any additional assumptions on the kinematical or kinetic conditions

within the nip. This is the basic dilemma of the winding models, which include a nip.

For center and surface winding equation (4) reads

 , ( 0),

 , ( ),

out in

out in

T T Q F

T Q F T

+

+

= + =

= = −
(5)

Hence, in the case of pure surface winding the incoming tension Tin does not directly affect the

Wound-On-Tension. It is also seen from Eqs. (4) and (5) that the difference Tout − Q+ can readily be

solved from the static equilibrium equations, but to determine Tout the total or net tangential load Q+

has to be known. Hence, in order to completely solve the wound-on tension it is obvious that the

contact stress distributions have to be determined.

D. J. Pfeiffer [41] was perhaps the first who proposed that NIT was due to interlayer

slippage inside the nip zone. Traditional and applied J-line measurement [32,17] studies show that it

is indeed the slippage of the incoming paper layer which evidently contributes the most on NIT. If it

is assumed that NIT is due to slippage between the incoming paper sheet and the wound roll, then at

least for very light nip loads P, one could approximate the total tangential load to be
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Q Pk
+ = µ  ,  light nip load , (6)

where µk is the kinetic coefficient of friction between paper layers. When this equation is

substituted to Eq. (5), a result equivalent to the earliest WOT-theories proposed by Dr. Good [14] is

obtained. Experiments done by Dr. Good and his crew confirm that these results are accurate as

long as the product µkP is sufficiently small. The graphs of the WOT measurements done on

WHRC's WIT-WOT winder as a function of the nip load are shown in Figure 3. The tests were run

for newsprint with µk = 0.19. The bold straight lines correspond to the theory as follows (from the

bottom to the top): Surface winding, Center winding with Tin = 175 N/m, Center winding with Tin =

263 N/m and Center winding with Tin = 350 N/m. We see that for nip loads below 1 kN/m relatively

good agreement is obtained, while for higher nip loads the theory gives values too high for WOT.

Wound-On-Tension

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7

Nip load [kN/m]

W
O

T
 [

kN
/m

]

Sw 175 N/m

Sw 263 N/m

Sw 350 N/m

Cw 175 N/m

Cw 263 N/m

Cw 350 N/m

Figure 3.  The measured WOT values for Center wound (Cw) and Surface wound (Sw) rolls for Tin=175, 263 and 350
N/m.

As seen from Eq. (4) the Nip-Induced Tension is due to the total tangential surface load Q+

and winding force F. The winding force is directly controllable via the winding drum torque but Q+

is an unknown function of the winding parameters P, F and Tin (actually, as will be shown in

Chapter 4, Q+ depends only on P and F). Hence, the global picture of the nip mechanism can be

condensed to the determination of Q+ as a function of the winding parameters. On the other hand,

although F is a given load, the distribution of the corresponding tangential traction between the
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wound roll and winding drum will be determined by the contact mechanical considerations. When

Eq. (4) is applied within the contact then Tout is to be replaced by the web tension within the contact,

T(x). Then another interpretation of the NIT mechanism is that nip-induced tension is developed in

areas where the tangential tractions of the top and bottom of the sheet do not cancel each other out.

1.2 Elastic rolling contact

The elastic deformation on the rolling contact between the wound roll and winding drum

induces local speed differences (local slip) in the contact. This phenomenon is easily understood by

considering the tangential traction in the free rolling contact between rigid and deformable

cylinders. In the steady state conditions, the peripheral speed of the rigid cylinder must be constant

across the periphery, whereas the apparently non-uniform tangential strain on the deformable

cylinder in the contact causes non-uniformity in the local speed. Hence, if the cylinders are not

sliding, then some points of the contact must slip and some stick. A similar kind of argument also

applies to the case of rolling contact between deformable cylinders. If, owing to elastic deformation

under normal load, the tangential strain in the cylinder is tensile, the surface of the cylinder is

stretched where it is in sticking contact. The cylinder then behaves as though it had an enlarged

circumference and, in one revolution, moves forward a distance greater than its undeformed

perimeter by a fraction known as the creep ratio. In the other cylinder, the strain is then compressive

and the effect is reversed. If there is net tangential traction transmitted through the contact, then the

situation gets more complicated and the tangential strain can be tensile in some parts of the contact

and compressive on other parts.

In the areas of adhesion, the basic contact mechanical equations are naturally kinematical

and geometrical relations between the deformed and undeformed states of the contacting bodies. In

the slip areas, a definite relationship between the local pressure and shear stress is usually assumed.

Linear dependence, described by Amonton's friction law, is most commonly used mainly due its

simplicity.

In the normal direction of the contact surface, a relationship describing the mutual approach

of the contacting bodies relative to the undeformed original state is written. This relation is called

the indentation equation. This equation can be illustrated by considering two linear springs in

series, loaded by a force F at the ends (Figure 4). Initially the springs are undeformed and in the

deformed state the mutual approach of the ends is δ = δ1 + δ2 and the compression of the upper and

lower springs is x1 and x2, respectively. The indentation equation is now
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Figure 4.  Loaded system
of two springs

x x1 2+ = δ (7)

and the relation between the loads and displacements

F k x F k x= =1 1 2 2 ,   , (8)

where k1 and k2 are the spring constants of the upper and lower

springs, respectively. In the distributed contact problems the right

hand side of the indentation equation (7) is a function of the

tangential coordinate of the contact curve and the load

displacement relationship  is replaced by the elastic solution

describing relationship between the local displacements and

stresses at the contact surface. The net loads are usually known in

the distributed contact problems but the distributions of the

induced contact stresses are unknown. Indentation equation (7)

expressed in terms of the surface tractions (with aid of the

analogous relationship to (8)) then yields a functional relation for

the stresses as a function of the tangential contact coordinate.

In the rolling contact problems, the stick condition is

expressed by the equality of the local surface speeds of the

contacting bodies. Utilizing the conservation of mass in the

steady flow, the stick condition can be written in terms of the tangential strains. With the aid of the

elastic solutions of the contacting bodies, this equation is written in terms of the contact stresses, so

that a second functional relation for stresses as a function of the tangential coordinate is obtained.

However, this relation applies only in the stick regions, which are not known in advance. Hence, an

iteration scheme is usually applied for the determination of the location of the stick and slip areas.

One of the flaws in many winding nip studies [53,26] is that the contact is considered static

instead of rolling. In static contact, the stick condition is expressed in terms of the tangential

displacements and, hence, will result in significantly different equations and location of the stick

and slip regions. As an example, consider the static and rolling contacts of two similar isotropic

cylinders. The solutions were first presented by Cattaneo 1936 [7] (static) and Carter 1926 [6]

(rolling). The diameter of the cylinders in this example is 0.5 m, the friction coefficient 0.5, Young's

modulus 2 06 1011. ⋅  N/m2 and Poisson's ratio 0.3 (steel). In both cases the other cylinder is driven by

a torque of 21000 Nm/m and a compressive line load of 89000 N/m. The tangential tractions

�1

�2

k1

k2

�1−x1

�2−x2

δ1

δ2

F F

F

F
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resulting from the both cases are shown in Figure 5 as a function of the nip widthwise coordinate x.

The dashed curve corresponds to the static contact, the solid line to the rolling contact. The material

flow in the rolling contact is from left to right. Significant differences in the location of the slip

areas and functional form of the curves is seen. The static tangential traction is symmetric with slip

areas located at the leading and trailing edges. The mid area between the two maxima is in a state of

stick. In the rolling contact there is a wide stick range starting from the leading edge and ending in

the maximum of the tangential traction. In this example, the tangential tractions coincide in the

short area along the trailing edge. As this simple example shows, the tangential tractions and hence,

the stress state in the static and rolling contact are strikingly different.

-0.0004 -0.0002 0 0.0002 0.0004
x [m]

1· 107

2· 107

3· 107

4· 107

5· 107

q[N/m2 ]

Figure 5.  Tangential tractions in the rolling (solid line) and static (dashed line) contact of two similar cylinders.

In general, the normal and tangential tractions in the rolling contact are interacting [24].

However, the influence of tangential tractions upon the normal pressure and the contact area is

generally small. The reverse is not true because the normal traction considerably affects the relative

size and location of the stick zones. Hence, the normal pressure given by Hertz theory [20] for the

frictionless contact does not differ significantly from the results obtained from the more general

rolling contact theory (unless the winding drum cover is very thin). Hertz theory is based on three

simplifying assumptions:

•  The contact area is in general elliptical. In the case of contact of two cylinders with parallel

axes, one of the semi-axes is infinite.

•  Each contacting body can be regarded as an elastic half-space loaded over a small elliptical

region on its plane surface

•  The surfaces are assumed frictionless so that only normal pressure is transmitted.
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Under these assumptions, an analytic expression can be derived for the contact pressure

between contacting isotropic bodies. In Chapter 3, a generalization of the Hertz result for

orthotropic contacting bodies will be derived. This result proves to be useful in the general winding

contact problem because it gives an estimate of the contact width as a function of the compressive

line load. Hence, it will be possible to eliminate or enhance the iteration of the contact area of the

general solution procedure.

Despite the vast amount of literature that exists on the rolling contact of two parallel

cylinders, a rigorous theory applicable to the winding nip is still lacking. Roughly speaking, the

articles of interest fall into two non-overlapping categories:

a) two-dimensional rolling contact problem of calendering or two parallel cylinders

b) winding nip studies and models without proper contact mechanical treatment

In the following the most important publications from the both categories are briefly presented.

 Bentall & Johnson [3,4] have studied the rolling contact of two cylinders with and without

an elastic strip going through the nip. They restricted their treatment to isotropic materials, identical

cylinders and essentially free rolling conditions. In addition, a half-space approximation for the

cylinders was used and, hence, the theory is not suitable for a drum with a thin elastic cover.

Tervonen [49] has extended the treatment to linear, viscoelastic cylinders and tractive rolling. His

model includes covered cylinders and a sheet in the nip but is also restricted to isotropic materials.

Soong & Li [45,46] have considered the rolling contact of two cylinders with linear, elastic and

isotropic layers bonded to a hard core and driving an elastic thin sheet with extensional stiffness.

The rolling contact articles referred above provide the closest analysis of the present problem. The

only missing feature is that the paper web does not enter one of the cylinders.

J. D. Pfeiffer [41] reported in 1968 on extensive winding simulation tests done by rolling a

drum on a flat horizontal bed with several paper layers clamped rigidly from the other end. This

simulates the surface winding of an infinite radius wound roll. He observed that the sheets nearest

the nip would displace in the direction of the moving nip while sheets further off the nip would

travel in the opposite direction. He concluded that somewhere under the contact interface there must

be an instant center of rotation. The tension increase was explained to be due to the velocity

gradient between a point in the high-pressure area and another point in the direction of the outgoing

nip having zero velocity. A corollary is that WOT is due to the interlayer slippage.

Jalkanen presented in 1968 [23] a theoretical model for calculating the Nip-Induced Tension

in his M. Sc. thesis. His derivation was based on the assumption that the speed of the incoming

sheet is equal to the speed of the winding drum from the leading edge to the center of the contact
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and equal to the speed of the wound roll thereafter. He arrived at the following expression for nip-

induced tension:

NIT  ,tE t
R

δ= (9)

where Et is the tangential modulus of the sheet, t the thickness of the sheet, δ the indentation depth

in the middle of the nip and R the radius of the wound roll. Despite Pfeiffer's and Jalkanen's credit

as forerunners in this field, their trains of thoughts were mainly kinematical and thus they could not

give a comprehensive or general explanation for the NIT mechanism.

In 1993, J. K. Good and Z. Wu wrote an article entitled "The Mechanism of Nip-Induced

Tension in Wound Rolls" [16] where they proposed a new explanation for the nip-induced tension.

Their theory was based on similar phenomena as seen when rolling dough with a rolling pin: dough

is extruding away from the nip under the rolling pin. The nip-induced tension was concluded to be

caused by Poisson's effect, i.e., elongation of the sheet due to the compressive radial stress.

Although Good & Wu seem to be the first to account for the stress state of the sheet, the

shortcomings of their model include fairly strong initial assumptions on the internal nip mechanics

and the lack of proper force equilibrium considerations.

Perhaps the first paper, where an attempt to apply the well-developed machinery of contact

mechanics to the winding problem was made, is due to E. G. Welp and B. Guldenburg in 1997 [54].

The force equilibrium equations were correctly formed but their model did not properly describe the

conditions of the sheet entering the wound roll after the nip, which is a distinctive feature of

winding compared to calendering. Their model was also restricted to an isotropic material model of

the paper web, which is actually known to be strongly anisotropic. Although their approach was a

contact mechanical one, the solution methods used were not correct, since the stick and slip

behavior was assumed and the iterative schemes for calculating the contact tractions were not

carried out in full. The main deficiency in all previously mentioned studies is the lack of proper

Wound-On-Condition (WOC) for the web wound onto the roll. WOC would provide an additional

equation to the contact formulation describing mathematically the fact that the paper sheet fed into

the winding nip will later become part of the wound roll.

Typically, the most elaborate part of the solution process of the rolling contact problem is

the derivation of the elastic solutions of the contacting bodies, even if linear constitutive equations

are used. An analytic, elastic solution for the isotropic half-space was originally derived by Flamant

[11] and is concisely summarized by Johnson [24]. The Fourier series solution for the isotropic
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covered cylinder is presented in the paper of Soong & Li [45,46]. Chapter 2 will be devoted to the

derivation of the solutions for the two-dimensional traction boundary value problems of the

orthotropic and elastic half-space, cylinder and thin sheet. The cylinder (or half-space) geometry is

used for the wound roll, although it resembles rather the Archimedean spiral wrapped around the

core. Actually, in addition to the contact pressure and tangential traction of the sheet, web tension

on the first paper layer is loading the wound roll. In a solid cylinder model, this last mentioned load

cannot properly be introduced. In this work, this defect is compensated for by the Wound-On-

Condition.

It is well know that the relation between pressure and strain is nonlinear in the compression

tests of paper stacks and thus the elastic moduli become state dependent [39]. Paper stacks display

hysteresis when loaded and unloaded repeatedly [40]. Accounting for the nonlinear material

behavior and hysteresis is beyond the scope of this work. As the goal here is to obtain a

phenomenological description of the winding nip behavior, suitable "average" constant elastic

moduli will be used.
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2 ELASTIC SOLUTIONS OF THE CONTACTING BODIES

Procedures for determining the elastic solutions of the bodies in contact are needed in the

solution process of the contact problem. This is because some of the basic contact equations are

written in terms of the kinematical quantities within the contact and some in terms of the tractions.

For a numerical solution of contact problems, it is often more convenient to work in terms of

unknown tractions rather than displacements. Hence, the elastic solutions presented in this chapter

provide the surface displacements in terms of the prescribed boundary tractions.

Non-conforming elastic bodies in contact whose deformation is sufficiently small for the

linear small strain theory of elasticity to be applicable, inevitably make contact over an area whose

dimensions are small compared with the radii of curvature (radius of the wound roll and winding

drum) of the undeformed surfaces. The contact stresses are highly concentrated close to the contact

region and decrease rapidly in intensity with distance from the point of contact, so that the region of

practical interest lies close to the contact interface. Thus, provided the dimensions of the bodies

themselves are large compared with the dimensions of the contact area the stresses in the region are

not critically dependent upon the shape of the bodies at a distance from the contact area, nor upon

the precise way in which they are supported (Saint Venant's principle). The stresses may be

approximated accurately by considering the body as a semi-infinite elastic solid bounded by a plane

surface, i.e., an elastic half-space.

The elastic solution for the loaded anisotropic half-space was first outlined by Lekhnitskii

[27]. Lekhnitskii’s results were compiled for the orthotropic half-space in the papers of Tomlin et

al. [51] and Mantic
�

 et al. [31]. Distinct methods, namely the so-called Stroh formalism, were

utilized in the papers of Ting [50] and Nakamura et al. [33] to obtain the fundamental solution of

anisotropic elasticity. Function theoretic methods for second order elliptic systems have been

applied by Gilbert et al. [13] and Hua et al. [22] to present the general solution for the boundary

value problems of orthotropic half-space and unit disks. In this thesis, the derivation of the solution

for the elastic, orthotropic half-space follows the outline of Bjarnehed [5], although he formulated

the problem in terms of the stress function, whereas here the elastic equations are written for the

displacements. The solution generalizes the corresponding result for the elastic, isotropic half-space

presented by Johnson [24]. As described above the half-space solution can be utilized for the wound

roll when the radius of the roll and the thickness of the paper wound around the core are large

compared to the width of the contact. Similarly, the half-space solution can be applied to the

winding drum of uniform shell thickness.
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When the assumptions for utilizing the half-space solution are not valid, the elastic solution

for the orthotropic cylinder must be used. This is the case when the winding drum is covered with a

layer of some soft material or the thickness of the paper wound around the core is small. In this

work, the core of the cylinder is assumed to be rigid and, hence, a situation when only a few layers

of paper has been wound would not yield satisfactory results if the core is compliant. When the

number of wound paper layers is increased, the solution becomes acceptable according to Saint

Venant's principle.

The elastic solution for the isotropic cylinder with a rigid core can be found in the references

[18,45,46] but for the orthotropic material, the corresponding treatment seems to be lacking.

However, the Fourier series solution presented for the isotropic cylinder can easily be extended for

the orthotropic case as well. The disadvantage of the cylinder solution is that several thousands of

Fourier series terms must by added to obtain a solution of reasonable accuracy. Hence, the half-

space solution, being computationally more cost effective, will be utilized whenever suitable.

The exact elastic solution of the paper sheet is more difficult to obtain because of the finite

dimensions of the sheet. In the half-space solution the boundary conditions on only one surface

have to be imposed, whereas for a strip solution the boundary conditions on all four bounding

surfaces must be accounted for.

An analytical solution for the sheet can be obtained by using the method of homogeneous

solutions and biorthogonality properties of the 2D elasticity problem formulated in terms of the

stress function and generalized biharmonic equation [28], by using the method of separation of

variables leading to a general series representation [42,21], or by using a sixth degree polynomial

for the stress function accounting for linearly changing boundary loads [21]. These solutions would

be valid for any sheet thickness. However, due to the complexity of these methods, an alternative

approximate solution, utilizing the thinness of the sheet, is considered here. An approximate

solution of an arbitrary degree of accuracy can be obtained by a series expansion for the stress

function in terms of polynomials in the transverse coordinate. This technique has been proposed by

Donnell [8,9] for isotropic beams in plane bending, Duva and Simmonds [10] for orthotropic strips

subjected to equal distributed transverse loads acting on the top and bottom surfaces and Tullini and

Savoia [52] for orthotropic strips subjected to any given continuous distribution of both normal and

shear loads. In this thesis a consistent, low order expansion, similar to what Tullini and Savoia

presented, is developed by forcing the stresses to satisfy the boundary conditions and then

integrating the displacements from the constitutive equations. The calculations are performed in the

rectangular geometry, although the treatment could easily be extended to cylindrical coordinates.
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Figure 6.  The orthotropic half-space loaded by tractions p(x) and
q(x).

2.1 Linear, elastic, orthotropic half-plane

Consider an elastic, orthotropic half-space loaded by a distributed pressure p(x) and

tangential traction q(x) over the region from x = −a to x = a (Figure 6). It is required to find the

components ux  and uy  of the elastic surface displacements. It is assumed that a state of plane strain

(�z = 0) is produced by the loading. This is justified because the thickness of the solid is large

compared with the width of the loaded region. The linear constitutive equations of the orthotropic

half-plane can be written as
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where the coefficients Axx, Axy, Ayy

and G are the orthotropic elastic

constants of the half-space.

Incompressible materials will be

excluded from the following

treatment and, hence, it is assumed

that 2 0xx yy xyA A A− ≠ . Substituting

Eqs. (10) into the equations of equilibrium with the absence of the body forces:
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the generalized Navier equations of the orthotropic elastic solid are obtained:
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Taking the Fourier transform with respect to the x-coordinate, and assuming that u→0 and v→0, as

x→±∞ we get
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where /' d dy=  and the Fourier transforms of ux and uy are defined by
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In order to solve Eqs. (13) exponential trial solutions are introduced

U ae

U be

x
y

y
y

=

=

λ

λ

,
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where a, b and λ are constants, independent of y. After substituting (15) to (13) the following linear

system for the coefficients a and b is obtained:
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( ) 0
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To obtain non-vanishing solutions the determinant of the coefficient matrix in Eq. (16) must be

zero:

4 2 2 2 2 4( ) 0 .yy xx yy xy xxGA G A A A G A Gλ ω λ ω − + − + + =  (17)

The roots of the characteristic equation (17) are



26

λ ω µ µ κ λ ω µ µ κ

λ ω µ µ κ λ ω µ µ κ

1
2

2
2

3
2

4
2

2 2

2 2

= − + − = − − −

= + − = − −

GA GA

GA GA

yy yy

yy yy

 ,   ,

    ,   ,  
(18)

where the real constants � and � are defined as

2 2

2

( )  ,

4  .

xx yy xy

xx yy

A A G A G

A A G

µ

κ

= + − +

=
(19)

S. G. Lekhnitskii [27] showed that for general linear anisotropic material the roots (18) cannot have

a vanishing real part. This imposes the constraint µ κ> −  on the elastic constants. It can be shown

that that leads to the limitation A A Axy xx yy<  for the admissible values of the elastic constants.

Hence, the roots can be rewritten as
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where
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When µ κ≠  the general solution of Eqs. (13) is
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The boundary conditions on the plane y = 0 are
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Taking the Fourier transform from the equations above yields
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where P and Q are the Fourier transforms of p and q, respectively. The second set of boundary

conditions is obtained by requiring that Ux and Uy are bounded functions of y. Inspection of the

roots (20) reveals that �3 and �4 always have positive real parts when µ κ> −  and, hence,

coefficients a3 and a4 in the solutions (22) must vanish.

Substitution of (22) to the boundary conditions (25) yields the following system for a1 and

a2:
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Utilizing the result above, the Fourier transform of the displacements (22), evaluated at y = 0,

becomes
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where the coefficients A, B and C are
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The inverse Fourier transforms
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are utilized. Although result (32) was derived for µ κ≠ , it can be proved to be valid for all

admissible (µ κ> − ) values of the elastic constants.
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Figure 7.  Orthotropic cylinder loaded by tractions p(�) and
q(�).

        (34)

2.2 Linear, elastic, orthotropic cylinder

An elastic, orthotropic cylinder

of radius R is loaded by the distributed

pressure p(�) and tangential traction

q(�) over the outer surface (Figure 7).

It is required to find the components ur

and uθ  of the elastic surface

displacements. The state of plane strain

(�z = 0) is assumed to be produced by

the loading. However, this assumption

is not essential to the following

treatment and the results are applicable

to the state of plane stress as well. In

either case the linear constitutive

equations of the orthotropic cylinder

can be written as
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where the coefficients Arr, Arθ, Aθθ and Grθ are the orthotropic elastic constants of the cylinder. The

equations of equilibrium in the cylindrical coordinates (r, �) are
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where Fr and F
�
 are the body force components in the radial and tangential directions, respectively.

When the stress-displacement relations (34) are substituted into the equilibrium equations above,

the following partial differential equation system for the displacements is obtained:

A
u

r

G

r

u A G

r

u

r

A

r

u

r

A G

r

u A

r
u F

G
u

r

A

r

u A G

r

u

r

G

r

u

r

A G

r

u G

r
u F

rr
r r r r r rr r r

r r

r
r r r r r r r

∂
∂

+ ∂
∂

+ + ∂
∂ ∂

+ ∂
∂

− + ∂
∂

− =

∂
∂

+ ∂
∂

+ + ∂
∂ ∂

+ ∂
∂

+ + ∂
∂

− =

′
2

2 2

2

2

2

2 2

2

2 2

2

2

2

2 2

θ θ θ θ θθ θ θ θθ

θ
θ θθ θ θ θ θ θ θθ θ θ

θ θ

θ θ θ

θ θ θ

 ,

 .

(36)

Since the displacements must be 2� periodic with respect to �, it is suitable to seek the solutions in

the form of Fourier series, i.e.,
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Utilizing the well known [44] orthogonality properties of the functions {1, sin�, sin2�� ..., cos�,

cos2�,...} and assuming that the displacements are continuously twice differentiable with respect to

�, the following set of ordinary differential equations for the Fourier coefficient functions u0(r),
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Fr = F
�
 = 0)

A u
A

r
u

A

r
u

v
r

v v

A u
A

r
u

A n G

r
u

A G

r
nv

A G

r
nv

G v
G

r
v

G n A

r
v

A G

r
nu

A G

r
nu

A u
A

r
u

A n G

rr
rr

rr n
s rr

n
s r

n
s r r

n
c r

n
c

r n
c r

n
c r

n
c r r

n
s r

n
s

rr n
c rr

n
c r

′′ + ′ − =

′′ + ′ − =

′′ + ′ − + − +
′ + + =

′′ + ′ − + + +
′ + + =

′′ + ′ − +

0 0 2 0

0 0 0

2

2 2

2

2 2

2

0

1
0

0

0

θθ

θθ θ θ θ θθ θ

θ
θ θ θθ θ θ θθ θ

θθ

 ,

 ,

 ,

 ,

θ θ θ θθ θ

θ
θ θ θθ θ θ θθ θ

r
u

A G

r
nv

A G

r
nv

G v
G

r
v

G n A

r
v

A G

r
nu

A G

r
nu

n
c r r

n
s r

n
s

r n
s r

n
s r

n
s r r

n
c r

n
c

2 2

2

2 2

0

0

+ +
′ − + =

′′ + ′ − + − +
′ − + =

 ,

 ,

(38)

where the prime denotes differentiation with respect to r. It should be noted that the third and fourth

equations form a differential equation system solely for u r v rn
s

n
c( ) ( ) and  and the fifth and sixth
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solely for u r v rn
c

n
s( ) ( ) and . In addition, it can be shown that if ( ) ( ) and ( ) ( )s c

n nu r r v r rφ ϕ= =  are

solutions for the third and fourth equations then ( ) ( ) and ( ) ( )c s
n nu r r v r rφ ϕ= = −  will satisfy the fifth

and sixth equations. Hence, it is sufficient to solve the first to fourth equations.

The first and second equations of (38) are easily solved since they are uncoupled. The result

is
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where the coefficients b0m and a0m are determined from the boundary conditions and

0
0 01 02

1
01 02

( )  ,  ,

( )  , ( )  .

m
m

rr

A
r r

A

r r r r

λ θθφ λ λ

ϕ ϕ −

= = − =

= =
(40)

To solve the third and fourth equations of (38), the exponential trial solutions

( )  , ( )  ,s c
n nu r ar v r arλ λ= = � (41)

are introduced. Substitution into (38) leads to the following linear system for the coefficients a and

ã:
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(42)

To obtain non-vanishing solutions the determinant of the coefficient matrix of Eq. (42) must be

zero:

A G A G n A A A G n A G A G nrr r rr r r r r r rθ θ θθ θ θ θ θθ θ θθ θλ λ4 2 2 2 2 22 1 0− + − + + + − =[ ( ) ( ) ] ( ) (43)

The roots of the characteristic Eq. (43) are (n = 2, 3, 4, ...)
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where the real constants �n and �n are defined by
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As in the previous section, Lekhnitskii's statement [27] can be applied and, hence, the roots λnm (n =

2, 3, 4, ..., m =1, 2, 3, 4) cannot have vanishing real parts. It can be shown that that leads to the

constraint A A Ar rrθ θθ<  for the admissible values of the elastic constants. For each λnm the ratio of

the coefficients a and ã is determined from Equation (42). Hence, the coefficient functions of the

Fourier series are
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(46)

The coefficients anm and bnm are determined from the boundary conditions and the functions φnm and

ϕnm are given by
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where the coefficients ηnm are defined by
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The boundary conditions of the problem consist of prescribed tractions at the periphery and

an undeformable core:

0 0
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It is assumed that p(θ) and q(θ) are well-behaving functions, and thus admit the Fourier series

presentations
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where the Fourier coefficients are calculated by the following integrals
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The Fourier series presentations of radial and shear stress are obtained from the constitutive

equations (34) with the aid of the Fourier series of displacements (37) and Eq. (46)
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Now the boundary conditions (49) can be applied, and the following equations for the coefficients

anm and bnm are obtained
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In the following, the terms of the first and second coefficient matrices of (53) are denoted by

�Cij  and 
~

( , ,2)C i jij  ,  =1 , respectively. The terms of the coefficient matrices of (54) and (55) will be

denoted by Cij,n, (i,j = 1,2,3,4 , n = 1,2,3,...). With these notations, the solution to Eqs. (53)-(55) can

be written as
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(56)

The characteristic sequences of the cylinder surface are defined as
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Utilizing Eqs. (56) and (57) the Fourier coefficients of the displacements (46) evaluated at r = R

become
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Hence, the following Fourier series presentations are obtained for the cylinder surface

displacements
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(59)

2.3 Linear, elastic, orthotropic thin strip

An elastic, orthotropic thin sheet of thickness 2h is loaded by the distributed pressures p+(x),

p−(x), tangential tractions q+(x), q−(x) and web tensions Tin and Tout as shown in Figure 8. The

coordinate system is in the center of the rectangular strip, so that the edges are at x = ±a. It is

assumed that at the ends of the strip the x-direction stress is uniform and shear stress vanishes. The

components ux
+, uy

+ and ux
−, uy

− of the elastic surface displacements of the top and bottom faces,

respectively, must be found

The Taylor series expansion of the shear stress with respect to y is

( )2 2 31 1
( , ) ( ) ( ) ( ) ( ) ( ) 0( ) ,

2 2 2xy

y
x y q x q x q x q x g x y h y

h
τ − + + −   = − − + + − +    (60)
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where g(x) is an unknown function. The positive direction of the tangential tractions q+ and q− is

towards the negative x-axis.

p+(x)

p−(x)

q+(x)

q−(x)

ToutTin

y

x
2h

Figure 8.  Orthotropic thin strip, loaded by tractions p+(x), p−(x), q+(x) and q−(x) and web tensions Tin and Tout.

Integration of σx(x,y) from the horizontal equilibrium equation of (11) yields

21
( , ) ( ) ( ) ( ) 0( ) .

2

x x

x in

a a

x y T q q d y g d y
h

σ ζ ζ ζ ζ ζ+ −

− −

   = + + − +    
∫ ∫ (61)

The vertical equilibrium equation of (11) is integrated first from h to y and then from –h to y; the

resulting equations are then added to get the expression for σy(x,y) and subtracted to obtain the

relationship between the tangential and normal tractions. The final expression for σy(x,y) is
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σ + − + − + −− ′ ′     = − + − − + + −     

′− +
(62)

Now the stresses (60), (61) and (62) satisfy the equations of equilibrium (11) and the boundary

conditions of the problem. What remains is to find expressions for the displacements ux(x,y) and

uy(x,y) which satisfy the linear constitutive equations of the orthotropic material
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where c11, c12, c22 and c66 are the orthotropic compliances of the solid. Integration of the first and

second equations above yields the expressions
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(64)

It is required that ux(x,y) remains bounded as h→0. Inspection of the expression of ux(x,y) above

leads to the following constraint for the external loading
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The vertical displacement uy(x,y) must approach zero as h→0. When the result (65) is utilized,

inspection of the expression of uy(x,y) in (64) leads to the following estimate for the order of

magnitude



38

u x h

u x h

y

y
n

( , ) ( )

( , ) ( ).( )

0 0

0 0

=

⇒

=

 ,

(66)

Utilizing the third equation of (63), the expressions above and the expression (60) for shear stress,

the following equation is obtained when the coefficients of the order 0(1) are equated
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where the constant C1 originates from the Taylor expansion

u a y C C y yx ( , ) ( )− = + +0 1
20 . (68)

Inserting the result (67) into (64) yields
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The final results for the stresses, correct up to the order of 0(h) for shear stress and 0(1) for the

vertical and horizontal stresses are now
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where up to the order of 0(h)

p x p x p x( ) ( ) ( )= =+ −  . (71)

The horizontal displacement correct up to the order of 0(1) and vertical displacement up to the order

of 0(h) become
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3 WINDING CONTACT PROBLEM

3.1 Contact equations

Consider the basic

winding configuration of

Figure 1.  Despite the growth

of the wound roll diameter,

steady state motion is

assumed. Figure 9 depicts

the wound roll and sheet (not

in scale) in their undeformed

states, comprising the

momentary initial con-

figurations of the deformed

states during the winding.

The center of the

undeformed wound roll is at

O1 and the center of the

undeformed sheet in the

vertical direction is at O. The

coordinate system O1X1Y1 is

attached to the wound roll and OXY to the sheet. After the deformation, point A1 of the wound roll

and point A+ of the sheet are displaced to the same contact point A. The position vector of point A1

of the wound roll in the O1X1Y1 coordinate system is r1, the deformation x1(r1) and the displacement

u1(r1). Correspondingly, the position vector of point A+ of the sheet in the OXY coordinate system is

r+, the deformation x+(r+) and the displacement u+(r+). The base unit vectors in the OXY coordinate

system are denoted by i and j. Hence, the vector presentations of the related quantities are

( ) ( )
( ) ( )

1 1 1

1 1 1

1 1 1 1 1 1 1

         ,          ,

         ,          ,

  ,

 .

x y

x y

X Y X Y

x y x y

u u x X y Y

u u x X y Y

+ + +

+ + +

+ + + + + + +

= − = +

= − = +
= + − − −

= + = − + −

r i j r i j

x i j x i j

u i j = i j

u i j i j

(73)

A+

2h

R1

r+

x+(r+)
u+

A

A1

x1(r1)

u1

r1

O
X

X1

O1

Y

Y1

Figure 9. Undeformed wound roll and sheet
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Since points A1 and A+ map to the same point A in space, the following vector equation can be

written:

O O1 1 1

→
+ ++ + − − =r u u r 0. (74)

The x- and y-components of the equations (74) are

1

1 1

 ,

 .

x x

y y R h

+

+

=

+ = +
(75)

From the general theory of small displacements, it is known that the displacement field can be

written as the sum of a rigid translation, infinitesimal rotation and pure stretch [29]. Hence, the

displacements can be written as

u u Y u u X

u u Y u u X

x x x y y y

x x x y y y

+ + + + + + + + + += − − = + −

= − − = + −

� �

� �

θ δ θ δ

θ δ θ δ

 ,   ,

 ,   ,1 1 1 1 1 1 1 1 1 1

(76)

where � , � , � �u u u ux y x y
+ +   and 1 1 are the pure stretch displacements, θ+  and θ1 the infinitesimal rotation

angles, δ x
+ and δx1 the horizontal and δ y

+, and δy1 the vertical translations of the sheet and cylinder,

respectively. The following orders of magnitude with respect to the semi-contact width a can be

assumed:

2
1 1 1 1 1 1 1

1 1

ˆ ˆ /  ,

 .

y y y y y y x xu u u u X X u u a R

x x X X a

θ θ δ δ+ + + + + +

+ +

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼ ∼
(77)

Combining the second equation of (75) and the expressions of the vertical displacements in (76) the

indentation equation for the wound roll and sheet contact is obtained:

2 2
1 1 1 1

1

ˆ ˆ ( )  ,y y xu u R R x u x
R

∆δ
+

+ + + ++ = + − − − − (78)

where 2
1 1 1 1( )  and /y yR a a R∆ θ θ δ δ δ+ + + += + = +∼ ∼ . By expanding the square root and retaining

the lowest order terms (∼ a2), the following equation is obtained:
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( )2 3
1

1

1
ˆ ˆ 2 0( ) .

2y yu u x x a
R

δ ∆+ + + + ++ = + − + (79)

The corresponding equation for the winding drum and sheet contact is derived analogously, the

result being

( )2 3
2

2

1
ˆ ˆ 2 0( ) .

2y yu u x x a
R

δ ∆− − − − −− = + − + (80)

Since the sheet is thin, the pressures are practically equal on both sides of the sheet and the

coordinates x+ and x− differ by the order of the displacements. It then suffices to use either of the

indentation equations, (79) or (80). However, due to reasons of symmetry, the usual practice is to

sum the indentation equations for the upper and lower contacts. Thus, adding Eqs. (79) and (80), the

following symmetric form of the indentation equation is obtained:

( )2 3
1 2

1 2

1 1 1
ˆ ˆ ˆ ˆ 2 0( ) ,

2y y y yu u u u x x a
R R

δ ∆+ −  
+ + − = + + − + 

 
(81)

where 	�= 	+ + 	− , ( )( ) 1

1 2 1 2/ / 1/ 1/R R R R∆ ∆ ∆ −+ −= + + and x differs from the coordinates x+ and

x− at most by the order of the displacements. Physically δ is the mutual approach of the cylinders

and ∆ the translation of the contact center in the x-direction. It can be easily shown that without loss

of generality the origin of the coordinate system Oxy can be chosen so that it is at the center of the

contact in the horizontal direction and Eq. (81) still holds.  Furthermore, since displacement in the

radial direction fulfills the relation ur = uy + 0(a3) in the vicinity of the nip, Eq. (81) can be written

in terms of the radial displacements of the wound roll and winding drum:

( )2 3
1 2

1 2

1 1 1
ˆ ˆ ˆ ˆ 2 0( ) .

2r r y yu u u u x x a
R R

δ ε+ −  
+ + − = + + − + 

 
(82)

As mentioned in Chapter 1, some portions of the contact slip relative to each other and some

stick together. Obviously, the tangential velocities of the contacting bodies must be equal in the

areas that stick. In order to formulate this statement in mathematically useful form, the surface

velocity of the material has to be expressed in terms of the strains. Hence, consider the stream tube
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of Figure 10 in a steady, planar flow. According to Ref. [34] the density field ρ in the deformed

state can be written as

ρ ρ
ε ε ε

=
+ + +

0

1 2 31 2 1 2 1 2� 	� 	� 	
, (83)

where 
0 is the reference density prior to the deformation and ε ε ε1 2 3,   and  are the principal strains.

In the plane strain conditions �z = 0 and without loss of generality it may be assumed that �z = �3 =

0. Eq. (83), written in terms of the normal strain �n, tangential strain �t and shear strain �nt reads as

( )( ) ( )( )
0 0

2
.

1 2 1 21 2 1 2 n tn t nt

ρ ρρ
ε εε ε γ

= ≈
+ ++ + − (84)

Figure 10. Stream tube in steady rolling conditions

Now it is assumed that the stream tube of Figure 10 is infinitesimally thin and is confined to the

surface of the material. Application of the continuity equation [29]

ρ ρa a

A

a b b

A

b

a b

d dv A v A� �⋅ = ⋅ (85)

yields
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( )( ) ( )( )
0 0  ,

1 2 1 2 1 2 1 2
a a b b

na ta nb tb

v A v A
ρ ρ

ε ε ε ε
=

+ + + + (86)

where va, Aa and vb, Ab are the speed and cross-sectional area at the tube ends, respectively. Because

there is no flow in the z-direction, the following relation holds [34]

l

l

l

l

A

A
b

a

nb

na

b

a

=
+
+

=0

0

1 2

1 2

ε
ε

 . (87)

Combining equations (86) and (5) then yields

v va

ta

b

tb1 2 1 2+
=

+ε ε
 . (88)

This result can be further simplified when it is assumed that the strains are small and only first order

(and higher) terms are retained:

v vb tb ta a= + −1 ε ε� 	  . (89)

Consider an arbitrary sticking contact

point either on the upper or lower contact

surface. The tangential speeds of the

wound roll and winding drum are Vθ1

and Vθ2, respectively, and the tangential

speeds of the upper and lower sheet

surfaces are V+ and V −, respectively. According to Eq. (89) the equality of the tangential speeds of

the contacting bodies can be written in the following form

V V V Vi i iθ θ θε ε ε ε= + − = + −± ± ± ±1 1
0 01 0 0� � � � =  , (90)

where the + (−) superscript is used for i = 1 (2), and εθ 0i and V i0  (i = 1,2) are the tangential strain

and speed of the cylinder in some well defined reference state. Similarly, ε 0
±  and V0

±  are the

tangential strain and speed of the sheet in some reference state. Unstrained reference states are

usually used whenever possible, but here for the sake of generality an arbitrary reference state is

assumed. With some algebraic manipulation, Eq. (90) can be written in the form

Figure 11. Tangential speeds of the media in contact
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ε ε ε ε ξ ξ ε ε ε εθ θ θ θ
± ± ± ± ± ±− − − + + + − + =i i i i0 00 0

2 0� � � �/  , (91)

where the creep ratio ξ ±  is defined by

( )
0 0

0 0

 .
/ 2

i

i

V V

V V
ξ

±
±

±

−=
+ (92)

Assuming that the strains are small, it is reasonable to assume that the creep ratio is also small

compared to unity. Hence, the last term from the stick equation (91) can be neglected as a second

order term and the following stick equation is obtained:

( )
00 0 .i iθ θε ε ε ε ξ± ± ±− − − + = (93)

For contact regions, which are slipping, Amonton's friction law is assumed. The direction of

the tangential traction must be opposite to the direction of slippage, hence the slip equations at

contact point x are

q x V V p x

q x V V p x

+ + +

− − −

= −

= −

( ) sgn ( )

( ) sgn ( )

θ

θ

µ

µ

1

2

� �
� �

 ,

 ,
(94)

where p(x) is the contact pressure, µ+ the layer-to-layer friction coefficient of the paper and µ− the

friction coefficient between the paper and the winding

drum.

3.2 Wound-on-condition

Wound-On-Condition (WOC) states in mathe-

matical terms that the sheet becomes part of the roll after

the nip. This aspect has to be explicitly stated because

the wound roll and sheet in the nip are modeled as

individual objects. Also, because the wound roll is

modeled as a cylinder instead of a spiral, the continuity
Figure 12. Elastic components: sheet and
wound roll.
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of the web tension at the trailing edge of the contact cannot be ensured or even stated. To derive

WOC, consider the winding of the outermost lap (Figure 12). At the opposite side of the nip (θ  =

180°) the internal stress field of the roll consists predominantly of the hoop stresses. It will be

shown in Chapter 4.9 that if there exists a speed difference between the web and the roll, then this

difference will monotonously increase along the undeformed (or slightly deformed) part of wound

roll rim. However, experimental observations and J-line measurements [32,43] show that all

significant layer-to-layer slippage occurs in the vicinity of the nip. Hence, it is presumable that the

topmost paper layer does not slip at θ  = 180°. The stick equation (93) written at this location reads

as

( )
01 0 1( ) ( ) 0 .θ θε π ε π ε ε ξ+ + +− − − + = (95)

Solving for ξ + and substituting it back into Eq. (93) yields

1 1( ) ( ) 0 .θ θε ε ε π ε π+ + − − − =  (96)

The problem with this WOC is that in order to utilize it the sheet solution should be extended 180°

further from the nip. This could be done but the governing equations would become nonlinear, as

will be shown in Chapter 3.5. In this work, in order to confine the treatment to the nip area and to

keep the problem within the linear theory, the sheet and the wound roll are assumed to stick

immediately after the nip. This is equivalent to replacing the continuity of the web tension by a rigid

"thumb pin" attachment of the web to the cylinder at the trailing edge of the nip. Hence, the WOC

used in this work is

ε ε ε εθ θ
+ +− − − =( ) ( ) ( ) ( )x x a a1 1 0 , (97)

where a is the contact half-width. An evaluation of the error caused by the approximation (97) is

given in Chapter 4.9.

3.3 Hertz half-width equation for linear and orthotropic half-space

The influence of the tangential traction upon the normal pressure and contact area is

generally small [24]. Hence, a good approximation of the pressure is obtained from the
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corresponding frictionless problem. Because the approach δ of the wound roll and winding drum  is

not known, a differentiated form of the indentation equation (81) will be used:

∂
∂

+
∂
∂

= +
�
��

�
��

u

x

u

x R R
xy y1 2

1 2

1 1
 . (98)

In the previous equation, the compression of the sheet was neglected as a small quantity and the

shift of the origin ε  was set to zero due to the symmetry.  The expressions of the displacements

were derived in Section 2.1 in Eq. (32). Setting the tangential traction to zero and differentiating the

latter equation yields

∂
∂

=
−

=
−
�u

x

C p s

x s
ds iyi i

a

a

π
( )

,2 ,   ,1 (99)

where, contrary to section 2.1, the positive direction of the displacements is directed out from the

half-plane. The following integral equation for p(x) is obtained when expression (99) is substituted

into (98):

p s

x s
ds

E

R
x

a

a ( ) *

−
=

−
� π

2
 , (100)

where the relative modulus E* and radius R* are defined as

1 1 1 1 1 1

1 2 1 2E E E R R R* *= + = + ,   , (101)

and the wound roll and winding drum generalized moduli Ei by

E
G A A A

A A A A G A A A
i

i yy i xx i xy i

xx i yy i xx i xy i i yy i xx i xy i

=
−

+ + −

2

2

2
, , ,

, , , , , , ,

� �

� �� �
 . (102)

With these notations, Eq. (100) becomes equivalent to the one studied in various textbooks (e.g.

[24]) for isotropic materials. Hence, the solution also becomes notationally equivalent, i.e., the

semi-half-width
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a
PR

E
= 2

*

*π
 , (103)

and the pressure distribution

p x
P

E
a x x a( ) *= − ≤2 2 2

π
 ,   , (104)

where P is the total load, i.e.,

P p s ds
a

a

=
−
� ( )  . (105)

3.4 Discretized contact equations

As shown in Chapters 3.1 and 3.2, some of the contact equations are expressed in terms of

kinematical quantities (Eqs. (82), (93) and (97)) and some in terms of the surface tractions (Eq. (94)

). This leaves a freedom of choice as the unknown quantities. Here the most general convention is

followed and the surface tractions are taken for the primary unknowns. Since the location and

number of slip zones is not known in advance, it is obvious that no closed form analytical solution

for the problems exists. Hence, to facilitate the numerical solution process the continuous

distributions of the traction are replaced by a discrete set of "traction elements" and the contact

equations are then satisfied at a discrete number of points. Thus, the following representations of

the tractions are introduced

1

1 1

( ) ( ) ,

( ) ( ) ,  ( ) ( ) ,

M

m m
m

M M

m m m m
m m

p x p x

q x q x q x q x

ψ

ψ ψ

=

+ + − −

= =

=

= =

∑

∑ ∑
(106)

where the piecewise linear base functions are

ψ m

m m m

m m mx

x x x x x x x x

x x x x x x x x( )

( ) /

( ) /=
− + − ≤ <
+ − < ≤ +

�
��

��

∆ ∆ ∆
∆ ∆ ∆

 ,   ,

 ,   ,

               ,  elsewhere0

(107)

and the evenly spaced grid points
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x a m x m M x a Mm = − + − = = −( ) ,2,..., / ( )1 1 2 1∆ ∆ ,   ,  . (108)

Note that with these definitions, pm = p(xm) and q q xm m
± ±= ( ) (m = 1,2,...,M). In what follows, the

expressions for the normal (radial) surface displacement and tangential strain of either the half-

space or cylinder and the sheet will be derived in terms of the unknowns pm, qm
±  and Tout. At the

leading edge of the contact, the normal and tangential tractions must vanish due to the continuity

requirements. Hence, 1 1 0p q±= = . At the trailing edge, the normal and tangential tractions vanish

obviously on the winding drum side but can be non-zero on the wound roll side. However, the

pressure between the topmost paper layer and the wound roll at the trailing edge is due to the hoop

stress and is thus much less than the contact pressures. Hence, the tangential traction must also be

relatively small. Thus, it will be assumed that 0M Mp q±= = .

The normal displacement can readily be calculated from the expressions (32) or (59) and the

tangential strains are obtained in principle by differentiating the expressions for the tangential

displacement. However, this brings about a uniqueness problem relating to the rolling direction of

the material. Careful study of the elastic contact equations presented in this chapter reveal that the

sense of the rolling direction is ambivalent, i.e., the problem has two solutions (at least). This

manifests itself by noninvertible system matrixes. The sense of rolling is introduced properly by

using either forward or backward difference approximation for the tangential strain [49]. In this

work, the rolling direction was defined by Figure 1. Here the coordinate systems are chosen so that

the coordinate tangential to the sheet always points in the direction of the mass flow and, hence, a

backward difference approximation of the tangential strains provides the correct rotation sense.

For the half-space approximation, the expressions (106) of the surface tractions are inserted

into the solutions (32) to get

1 1

2 2

1 1

2 2

( ) ( ) ( ) ln ( ) ( )  ,
2

( ) ( ) ( ) ( ) ln  ,
2

( ) ( )
( )  , ( 1

a x aM M
i i

i yi m m m m m
m ma a x

x a aM M
i i

i xi m m m m m
m ma x a

xi xi
i

C A
v x u x p s x s ds q s ds s ds

A B
u x u p s ds s ds q s x s ds

u x u x x
x i

x

ψ ψ ψ
π

ψ ψ ψ
π

ε

− −
±

= =− −

− −
±

= =− −

 
= − = − − − 

 
 

= = − − − − 
 

− − ∆≈ =
∆

∑ ∑∫ ∫ ∫

∑ ∑∫ ∫ ∫

, 2) ,

(109)
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where qm
+  corresponds to i = 1 (wound roll) and qm

−  to i = 2 (winding drum). The integrals in (109)

can easily be evaluated to obtain the normal displacements and tangential strains at the grid points

xl:

1 1

, , ,
2 2

1 1

, , ,
2 2

1 1

, , ,
2 2

( )  ,

( )  ,

( )  , ( 1, 2) ,

M M

l i i l lm i m lm i m
m m

M M

l i i l lm i m lm i m
m m

M M

l i i l lm i m lm i m
m m

v v x A p B q

u u x C p D q

x C p D q iε ε

− −
±

= =

− −
±

= =

− −
±

= =

= = +

= = +

= = + =

∑ ∑

∑ ∑

∑ ∑

(110)

where the influence coefficients are

( ) ( ) ( ) ( )

( ) ( )

( )

2 2

,

2
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, , , ,

, , 1 , ,

3 1 ln 1 2 ln
2

1 ln 1  ,
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 , /  ,
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i
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i

lm i i

lm i lm i lm i i i lm i
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C x
A l m l m x l m l m x

l m l m x

A x l m

B A x l m

l m

C B D B C A

C C C x D D
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− + − + ∆ 
∆ <

= − ∆ >
 =
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= − ∆ =

�

( ), 1 , /  .i l m iD x−− ∆

(111)

The surface displacements of the cylinder are presented in Eq. (59) as a function of the

Fourier coefficients of the surface tractions. Here, however, the expressions (106) were used to

discretize the tractions and, hence, the displacements have to be expressed as a function of the

coefficients in the expansions (106). This can be done by inserting the expressions (106) into the

integrals (51), defining the discrete Fourier transform and performing the integrations. The result is

1 1

, , , ,
2 2

1 1

, , , ,
2 2

 , ( 0,1, 2,...) ,  , ( 1, 2,3,...) ,

 , ( 0,1, 2,...) ,  , ( 1, 2,3,...) ,
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n i nm i m n i nm i m
m m

M M

n i nm i m n i nm i m
m m

c p n d p n

e q n f q n

α β

α β

− −

= =

− −
± ±

= =

= = = =

= = = =

∑ ∑

∑ ∑
(112)

where
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When the Fourier coefficients (112) are inserted into the expansions (59) of the surface

displacements, the following expressions are obtained:

1 1

0 , 0, , ,1 , ,2
2 1 2 1

1 1

, ,1 0 , 0, , ,2
2 1 2 1

( ) ( ) ( ) ( )  ,

( ) ( ) ( ) ( )  ,

1
( )

M M

i ri m i i nm i n i m nm i n i m
m n m n

M M

i i nm i n i m m i i nm i n i m
m n m n

i
i

v x u x p x q

u x u x p x q

x
R

θ

θ α γ α γ β γ

θ β χ α χ α χ

ε

− ∞ − ∞
±

= = = =

− ∞ − ∞
±

= = = =

   = = − + +      
   = = + +      

=

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

��

� �

( ) ( )
( )  ,i i

i

u x u x x
v x

x

∆
∆

− − +  

(114)

where
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The displacements and tangential strains evaluated at the grid points xl can still be calculated from

Eqs. (110) where the influence coefficients are now
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The infinite sums in Eq. (116) cannot be calculated analytically but must be truncated to some finite

number of terms N which, according to the Nyquist sampling theorem, should be greater than

πmax( , )( ) /R R M a1 2 1− . The computational burden can be remarkably reduced by noting that the

influence coefficients (111) or (116) have to be computed only for l = 1, since for other values of

index l the following symmetry properties of the influence coefficients can be utilized:
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When the expressions (106) of the surface tractions are inserted into the sheet displacement

solutions (72), the following equations are obtained:

( )

( )

( )

1

12
2

1

22
2

1
11 11

2

1
11

2

( ) ( ) ( , ) ( , ) ( )

2 ( ) ,

( , ) ( , )
( ) ( ) ( )

2 2

( )
2

xM

y y in m m m
m a

M

m m
m

xM
x x

in m m m
m a

M

m m
m x

v x v x u x h u x h c T q q d

c h p x

u x h u x x h c c
x x T q q d

x h h

c
q q x x

h x

ψ ζ ζ

ψ

ε ε ψ ζ ζ

ζ

−
+ − + −

= −

−

=

−
+ − + −

= −

−
+ −

= −∆

  − = − − = + + − 
  

± − − ∆ ±= ≈ = + +
∆

+ + − ∆ −
∆

∑ ∫

∑

∑ ∫

∑
1

12

2

( ) ( )  ,
x xM

m m m
mx x x

c
d p d

x
ψ ξ ζ ψ ζ ζ

−

= −∆

−
∆ ∑∫ ∫

(118)

These expressions for v v+ −−  and ε ±  evaluated at the grid points xl are needed in the indentation

and stick equations:
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where
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and
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Full dimensional analysis will not be carried out, but the unknowns and incoming web

tension Tin will be nondimensionalized as follows:
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where At is the tangential elastic modulus of the wound roll, i.e., either Aθθ,1 or Axx,1 depending on the

chosen wound roll model. The normal displacement and tangential strain in the expressions (110)

and (119) become
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where
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The indentation equation (82) written at grid point xl is
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Utilizing equation (123), this can be written as
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This constitutes the Normal Problem [25] of the winding nip. The pressures ~pm , the indentation

depth δ and the tangential shift of the origin ε are left on the left-hand side because they are

considered as unknowns of the normal problem. The tangential tractions ~qm
+  and ~qm

−  are moved to

the right hand side of the equation because they are considered as known quantities.

It was earlier discussed that the radial pressure is small at the trailing edge of the contact

and, hence, the tangential strain there can be estimated to be
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c
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h
ε + = (127)

Thus, the stick equation (97) for the sheet-roll contact becomes
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The reference strains in the stick equation (93) can be freely chosen. For the sheet-drum contact the

reference strains are chosen to vanish and, hence, the stick equation is written as

2
0 .θε ε ξ− −− + = (129)
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As a recapitulation, the stick equations written at the grid points xl are
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When Eq. (123) is inserted to Eqs. (130) the stick equations become
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At the contact points which are slipping, the slip equations (94) are applied:
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where the relative (non-dimensional) speed differences υ ±  are calculated as
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The equations (131) and (132) constitute the Tangential Problem of the winding nip. In contrast to

the normal problem, the tangential tractions ~qm
+  and ~qm

− , wound-on tension Tout and the sheet-drum

creep ratio ξ− are considered as unknowns and the pressures ~pm  are given. The significance of the

division between normal and tangential problems will become obvious in the next section, 3.5,

where the full description of the solution procedure will be given.

The net tangential loads Q+ and Q− and the compressive load P expressed in terms of the

tractions at the grids points can be easily calculated from the expansions (106)
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Utilizing the equation above, the torque balance of cylinder 2 (winding drum) and the horizontal

balance of the sheet (1) can be written as
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Finally, Eqs. (135) written in terms of the nondimensional unknowns becomes
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3.5 Extended model accounting for the wound roll wrap

The Wound-On-Condition was defined in Chapter 3.2 as a mathematical statement

describing that the incoming web becomes part of the wound roll after the nip. The contact

equations of the previous chapter were derived under the WOC assuming the incoming sheet would

stick to the wound roll surface immediately after the nip. The reason for using this arguably strong

assumption was dictated more by the practical considerations than the physical. If the stick had been

assumed to occur on the opposite side of the nip in the wound roll, the contact problem would have

to have been solved for about 180º on the roll periphery instead of the typical 1-10º nip angle. The

planar web theory derived in Chapter 2.3 could not have been used on the roll periphery, where the

pressure between the topmost sheet and paper roll is due to the hoop tension. In addition, the hoop

pressure depends on the curvature of the roll periphery. Although the strains and displacements are

assumed infinitesimal, the deviation of the radius of curvature from the radius of the undeformed

cylinders can be finite and hence should be accounted for. This makes the contact equations

inherently nonlinear.

In this chapter the theory for the winding contact problem extended to the wound roll wrap

is presented. Instead of assuming that the incoming sheet sticks to the wound roll immediately after

the nip, sticking is assumed to occur at the opposite side of the nip, i.e., the WOC of Eq (96) will be

used. The theory of the elastic solution of the cylinders can be directly applied to this extended
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loading area but a new theory for the elastic solution of the web of arbitrary curvature is needed.

Following the "Simplicity argument" stated in Chapter 1, the web model at this stage is chosen to be

as simple as is practically reasonable.

Accounting for the wound roll wrap mostly affects the compilation of the influence

coefficients of the wound roll. The additional contribution of the hoop pressure results in additional,

rather complex terms in the expressions of the influence coefficients of the radial displacement and

tangential strain. On the other hand, the calculation of the corresponding influence coefficient

presentations for the web and winding drum are straightforward without much change to the

previous chapter.

Consider the torque balance of the wound roll and winding drum and tangential force

balance of the paper web in the nip and wrap (Figure 13). It should be noted that now the web

tensions, Tout after the nip and WOT on the opposite side of the nip, are unequal. Since WOT is the

primary unknown for this problem, Tout will be eliminated to obtain
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where the net total tangential tractions are
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A small slice of a perfectly flexible thin sheet

wrapped around a deformed paper roll with a local radius

of curvature ρ+ is shown in Figure 14. As in Chapter 2.3, the tangential traction between the web

and the roll (drum) is denoted by q+ (q−). Because of the hoop pressure acting on the convex side of

the web, the pressures on the roll side p+ and on the drum side p− are unequal. The nominal web

tension is T. After taking the limit 0∆ϕ →  the force balance equations for the web in the radial and

tangential directions become

M
2

M
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Q
E

Q
+

Tout
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Qw
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Tin

Q
+

Q
E

Tout

Figure 13. Tangential total contact loads
and torques of the system.
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where the infinitesimal arc length increment satisfies under

small displacement theory

1 1  .ds d R dρ ϕ θ+= = (140)

The expression for the web tension can be integrated directly

from the last equation of (139):
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and thus the wound roll pressure p+ becomes
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Since the web is assumed to be very thin, the changes in the web thickness are small

compared to the deformations of the wound roll. Hence, the thickness of the web can be considered

as constant without much error in the indentation equation (125) and thus in the pressure

distribution. In addition, Poisson's ratio of paper is known to be very small and hence, the term

linking the normal pressure to the tangential strain will be disregarded. Accordingly, the expression

for the tangential strain of the web becomes (��������≡��±�)
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The tangential displacement of web ut can be integrated from Eq. (143):
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Figure 14. Loads on a web slice of
arbitrary curvature.
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The pressure p−(s) and tangential tractions q+(s) and q−(s) are chosen as the unknown loads

of the problem. Following the outline of the previous chapter, the continuous distribution of these

unknown tractions are discretized and the contact equations are then satisfied at a discrete number

of points. The following expressions for the tractions are introduced
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where the piecewise linear base functions are
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and the grid points 1 2 3 1 2 1 . . .  . . . M M M M M
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�

 will in general

be unevenly distributed. One possible discretization scheme is
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i.e., the discretization is uniform within the nip area and the wrap but the spacing is different. In

practice, the spacing in the wound roll wrap can be much sparser since the pressure and hence the

tangential traction is much smaller there than within the nip.

The proper sense of rolling is introduced by taking the backward difference approximation

for the tangential strain:
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Using the notations (122) the expression for the tangential web strain at the grid points sl becomes:
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Although the cylinder solutions (59) are directly applicable to the wrap, the dependence of

the wound roll pressure on the tangential tractions and the incoming web tension introduces

additional terms in the expressions of the displacements of the wound roll.

The Fourier presentations of the surface tractions were
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where the Fourier coefficients are calculated by the following integrals
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The expressions of the Fourier coefficients on the winding drum side remain unaltered. However, in

the wound roll side there will be an additional term in 0,1 ,1 ,1,   and n nc c d due to the hoop stress.

Inserting the expression (142) into Eq. (152) yields for i= 1:
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An expression for the radius of curvature is needed for the calculation of (153). When the radial

displacement ur1 is known, the expression of the curvature 1/ρ+ becomes [35]:
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The radius of curvature depends on the solution and, hence, introduces a nonlinearity in the

problem. Here an iterative approach is proposed: the iteration of the radius of curvature is added as

the outmost loop of the solution algorithm. In other words, the curvature (154) is calculated using

the radial displacement of the previous iteration loop. It should be noted that small displacements

were assumed when deriving Eq. (154) and that positive (negative) sign of ρ+ implies that the center

of curvature lies on the same (opposite) side of the wound roll periphery as the roll center. In order

to facilitate the calculation of the integrals (153), the square bracketed term of (154) is expressed as
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By inserting Eqs. (154) and (155) into Eq. (153) the expressions for the Fourier coefficients become
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where the coefficients of the winding drum pressures are
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the coefficients of the wound roll tangential tractions are
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the coefficients of the winding drum tangential tractions are
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and the coefficients of the incoming web tension are
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When the expressions (156) are inserted into the elastic solution of the cylinder (59), the influence

coefficient presentations for the wound roll radial displacement and tangential strain are obtained as
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Now the equations at disposal are the indentation equation
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and the stick equations
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or the slip equations
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3.6 Modified Panagiotopoulos Process

The numerical solution scheme is described here for the contact equations confined to the

nip area as presented in Chapter 3.4. The generalization to the extended theory of Chapter 3.5 is

straightforward.

The unknowns of the problem are p pM2 1,..., − , q qM1
± ±,..., , , , ,aδ ∆ ξ −  and Tout. The equations

at disposal are the indentation equation (126) and the stick/slip equations (131) and (132) written at

discrete points within the contact area and the equilibrium equations (136). The appropriate solution

process is a variation of the Panagiotopoulos Process [36]. For the sake of simplicity the contact

half-width a is taken as a given quantity as explained before and, hence, the iteration of the contact

area is excluded from the Panagiotopoulos process. The problem is now solved by the following

algorithm:
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Step 0. Initiate with 0 , ( 2,3,..., 1)l lq q l M+ −= = = − .

Step 1. Calculate  ( 2, 3,..., 1) ,  and lp l M ∆ δ= −  from the normal problem.

Step 2. Assume stick at all points xl . With pl  obtained from Step 1, calculate ql
+ , 

ql
− , ξ −  and Tout  from the tangential problem and total equilibrium.

Step 3. If q pl l
± ±> µ , then index l is placed in S±  (index set: area of slip in upper

 or lower contact).

If q pl l
± ±≤ µ , then l is placed in A±  (index set: area of adhesion in upper

 or lower contact).

Step 4. If l is in S± , then q pl l l
± ± ±= µ υsgn( ) . If l is in A± , then the corresponding stick 

equation is used. In conjunction with the global equilibrium equations (135), 

these are linear equations. Solve them.

Step 5. If l is in A± , as well as the just-found q pl l
± ±> µ , then l is placed in the area of slip 

S± .

Step 6. If A±  is changed in Step 5, then go to Step 4.

Step 7. If l is in S± , and ql
±  and the relative speed between the surfaces have the wrong sign 

with respect to each other (q± ± ≤υ 0), then l is placed in A± .

Step 8. If S±  is changed in Step 7, then go to Step 4.

Step 9. If the difference between the just calculated and the previous shear stresses is larger 

than the required tolerance, go to Step 1. Otherwise, stop.

When the iteration of the contact width is required, then it must be done at a loop one level higher

than the Panagiotopoulos process. In present work this loop, which calls the Panagiotopoulos

process successively, is implemented as a simple secant method. In order to obtain ±1 N/m

accuracy for the normal load P, typically three iteration loops are needed.
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4 NUMERICAL RESULTS

Although the theory accounting for the possible variation in the web tension of the topmost

paper layer wrapping the wound roll behind the nip was derived in Chapter 3.5, in the following the

numerical results will be based on the theory confined to the nip area as presented in Chapter 3.4.

This is justified since it will be shown in Chapter 4.9 that the slip behavior behind the nip has a

minor effect on the wound-on tension.

4.1 Independent winding parameters

For the winding configuration of Figure 1 the winding parameters are the compressive total

load P, the winding force F and the incoming web tension Tin. However, the nip-induced tension is

not dependent on all of them, as the next theorem proves.

Winding theorem:

Let � denote the relation between the nip-induced tension NIT, the other dependent variables pm,

mq+ , mq− , ξ−, δ and ∆  and the independent variables F, Tin and P of the contact problem for given

material parameters, i.e.,

(NIT, , , , , , ; , , ) 0 .m m m inp q q F T Pξ δ ∆+ − − =� (165)

Then for a given solution (165) and arbitrary Tin
*  there exists 

* * and ξ δ−  so that

* * *(NIT, , , , , , ; , , ) (NIT, , , , , , ; , , ) 0 .m m m in m m m inp q q F T P p q q F T Pξ δ ∆ ξ δ ∆+ − − + − −= =� � (166)

Proof.

It is assumed that the following equations hold

1) The indentation equation:
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2) The stick equations (at the stick points):
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3) The slip equations (at the slip points):
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4) Rotational balance of the winding drum and horizontal balance of the sheet:
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Let us define

** * *( ) , ( ) .in in in inB T T D T Tδ δ ξ ξ− −= + − = − − (171)

With these definitions, Eqs. (167)-(170) hold, with δ* in place of δ, 
*ξ −  in place of ξ −  and Tin

* in

place of Tin. This proves the theorem. �

Hence, it suffices to study the winding nip behavior as a function of P and F; the results will be

applicable for arbitrary admissible ( 0 web breaking tensioninT< < ) values of Tin. The interpretation

of the Winding Theorem can be seen from Eqs. (123): Due to the Poisson's effect, an increase in

tension reduces the thickness of the sheet. Hence, the mutual approach of the cylinders is decreased

as shown by (171) (B < 0). The tangential strain of the web is increased as seen from the last Eq. of

(123). However, the cylinder solutions are independent of Tin and, hence, the surface speeds of the

cylinder must remain unaltered. Because the surface tractions are equal for all web tensions, the slip

and stick zone distributions must be equal. The conclusion is that the web speed also remains

independent of the web tension. In order to accommodate this, the web speed in the undeformed

state must be reduced and hence the creep ratio is reduced as shown by (171) (D > 0).
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4.2 Basic mechanism of nip-induced tension

With the indentation (126), stick (131) and slip (132) equations established in Chapter 3 and

the Panagiotopoulos process of Section 3.6 in hand, the necessary apparatus for carrying out

numerical simulations of the winding nip behavior is now available. Unfortunately the parameter

space of the problem is huge. Thus, it is only possible to cover a very limited portion of that space

in this study. In order to make the results more concrete, a decision was made to present the results

in dimensional units. Before starting to explore the influence of the winding parameters, the layer-

to-layer friction coefficient, wound roll and winding drum radius, winding drum cover and paper

orthotropic elastic constants, the basic mechanism of the nip-induced tension will be described in

this section. The basic material parameter values used in this section and most of the subsequent

sections are shown in Table 1. Steel's elastic modulus and Poisson's ratio were used for the winding

drum. The winding force F was 100 N/m (the winding drum is braking) and the compressive load

P = 1900 N/m. According to the winding theorem of the previous section the results are applicable

to all admissible values of Tin. In the following, the general stick and slip behavior of the winding

nip is explained. It should be emphasized that the treatment of this section is restricted to the rigid

winding drum!

Table 1.
Material parameter values used in the calculations

Parameter Notation Value

Paper to roll friction coefficient µ+ 0.2

Paper to drum friction coefficient µ− 0.4

Wound roll radius R1 0.3 m

Winding drum radius R2 0.5 m

Radial elastic constant Arr 20 MPa

Tangential elastic constant Aθθ 3 GPa

Cross elastic constant Arθ 5 MPa

Shear modulus Grθ 10 MPa

The tangential tractions q+ (solid line) and q− (dashed line) together with the traction bounds

µ+p (lighter gray shading) and µ−p (darker gray shading) are shown in Figure 15 (a) and the relative

tangential speed differences υ+ (solid line), υ− (dashed line) and the web tension (dash-dotted line)

within the nip in Figure 15 (b).
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Figure 15. (a) Tangential tractions of the upper (solid line) and lower (dashed line) contacts and the friction limits µ−p
(darker gray shading) and µ+p (lighter gray shading) and (b) the relative tangential speed differences υ+ and υ− in the
web-roll contact (solid line) and web-drum contact (dashed line) and web tension (dash-dotted line).

When the paper web enters the nip there is first a slip zone in the web-roll contact (non-zero

relative speed) and a stick zone in the web-drum contact (this applies whenever �−�> �+). Because

υ+ is negative, the web is moving slower than the wound roll in this region. At point A, the web-roll

contact starts to stick and the web-drum contact remains sticking. After this region, at point B, the

web-roll contact will slip till the end of the contact area so that the web moves faster than the roll.

In some cases this slip zone can be split into two consecutive slip zones separated by a very short

stick area located at the vicinity of point C. The web-drum contact remains in stick still for a while

before it starts to slip from C to the trailing edge of the contact. Now both the upper and lower

contacts are slipping so that the web is moving faster than the wound roll and winding drum. In this

region, from C to the trailing edge of the contact,  the increase in web tension develops. It should be

noted that the tangential strain ε − cannot change in the area from the leading edge to point C, as the

sheet and the rigid winding drum are in contact. For a thin sheet it can be seen from Eq. (72) that

ε + = ε − and, hence, that ε + cannot change either. The slight decrease in the web tension in the area

from the leading edge to point C is due to Poisson's effect and the normal (radial) compression of

the sheet.

The general mechanism of the winding nip behavior, applicable when the winding drum is

rigid, was described above. Only the relative lengths of the slip zones and possibly the slip

directions vary with the winding parameters. In order to facilitate the future analysis of the

influence of various parameters and material parameters on the winding nip behavior, the following

three "slip ratios" are defined:
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(172)

The sign of these slip ratios is chosen to be positive if the sheet advances the roll or drum and

negative if the sheet falls behind.

4.3 Influence of the winding force

In this section the influence of the winding force on the NIT and contact width is studied as

a function of the net compressive load P. The material parameter values used in the calculations

correspond to Table 1. The winding force F takes values –500, -400, -200, 0 and 100 N/m. The

case F = 0 N/m corresponds to center winding and the other values correspond generally to hybrid

winding except when Tin = -F, which correspond to surface winding.
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Figure 16. (a) Nip-Induced Tension and (b) the nip width as a function of the net compressive load P for the following
winding forces: -500 N/m (lowest solid line), -400 N/m (dashed line), -200 N/m (dash-dotted line), 0 N/m (dotted line)
and 100 N/m (highest solid line).

The Nip-Induced Tension and nip width are shown in Figures 14 (a) and (b), respectively.

First, it can be concluded that NIT is to some extent influenced by the winding force while the nip

width is practically independent of it. Secondly, for all P, the higher the winding force the higher

the NIT. Furthermore, the influence of F seems to be more pronounced for a small P.

Calculation shows that, likewise with the nip width, the mutual approach of the paper roll

and winding drum is also independent of the winding force. Hence, the theory presented by
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Jalkanen [23] and Särkelä [48] cannot be valid, since NIT was only a function of the mutual

approach of the winding drum and paper roll (Eq. (9)) in their model.
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Figure 17. (a) Leading and (b) trailing edge roll slip ratios as a function of the net compressive load P for the following
winding forces: -500 N/m (highest solid line), -400 N/m (dashed line), -200 N/m (dash-dotted line), 0 N/m (dotted line)
and 100 N/m (lowest solid line).

The leading and trailing edge roll slip ratios are shown in Figures 15 (a) and (b),

respectively. The non-smooth character of the slip ratio curves reflects the discretization of the

contact, which in this example consists of 200 equidistant grid points. The influence of F is more

pronounced for small P values on the roll slip ratios as well. When the winding force value is 100

N/m, the roll slip ratios are almost independent of P, while for lower winding force values the

influence of the compressive load is much stronger. It is interesting to note that sr1 = 0 and sr2 = 1

for very low values of P and F, i.e., the sheet-roll contact is in total slippage so that the sheet

advances the roll. From the signs of sr1 and sr2 it can be concluded that at the leading edge slip zone,

the roll always advances the sheet and at the trailing edge slip zone the sheet always advances the

roll.
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Figure 18. The dual slip ratio as a function of the net compressive load P for the following winding forces: -500 N/m
(lowest solid line), -400 N/m (dashed line), -200 N/m (dash-dotted line), 0 N/m (dotted line) and 100 N/m (highest solid
line).
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The dual slip ratio is shown in Figure 18. The signs of the dual slip ratio and NIT

correspond each other. For F ≥ 0 N/m the dual slip ratio decreases with P and for F ≤ -200 N/m it

increases. As P increases all curves seem to approach a common limit, which is about 0.1 in this

example. Hence, for high nip loads the absolute length of the dual slip zone is proportional to the

nip width and independent of F and P.

4.4 Influence of the layer-to-layer friction coefficient

The nip-induced tension as a function of the layer-to-layer friction coefficient is shown in

Figure 19 for two nip load values a) 1910 and b) 4897 N/m. At first glance the expected behavior,

the decrease of the nip-induced tension as the layer-to-layer friction coefficient increases, seems to

occur. Surprisingly, however, for the lower nip load at the winding force values F = -500, -400 and

–200 N/m the NIT curves exhibit a local maximum in the lower µ+ range of the plot. For the higher

nip load in Figure (b) the NIT curve corresponding to F = -500 N/m also attains a maximum.

Another interesting feature is that the curves NIT(µ+) seem to be steeper for higher compressive

loads P.
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Figure 19. Nip-Induced Tension as a function of the layer-to-layer friction coefficient µ+ for the following winding
forces: -500 N/m (lowest solid line), -400 N/m (dashed line), -200 N/m (dash-dotted line), 0 N/m (dotted line) and 100
N/m (highest solid line). µ− = 0.4, (a) P = 1910 and (b) P = 4897 N/m.

The general winding nip slip behavior, described in Section 4.2, applies only to µ+ < µ−.

Figure 20 (b) shows how the case µ+ > µ− deviates from the winding nip behavior described in

Section 4.2, which is exemplified in panel (a). The coefficient of friction between the winding drum

and the sheet is in both cases 0.4 and the layer-to-layer friction coefficient is 0.3 in panel (a) and 0.5

in panel (b). In panel (b), another dual slip zone emerges at the leading edge of the contact, where

the sheet slightly advances the winding drum. Unlike the more common case, described in Chapter
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4.2, the trailing edge slip zone starts to develop at the winding drum-sheet contact prior to the

wound roll-sheet contact. First, the drum advances the sheet and the nip-induced tension decreases.

Next, on the very last portion of the nip, the sign of the relative speed changes and finally some 125

N/m of total NIT is developed. In panel (a) the total NIT is 206 N/m.
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Figure 20. The relative tangential speed differences on the web-roll contact (solid line) and web-drum contact (dashed
line) and nip-induced tension (dash-dotted line) for (a) 0.3 = µ+ < µ− = 0.4 and (b) 0.5 = µ+ > µ− = 0.4.

4.5 Influence of the wound roll and winding drum radius

The five curves of Figure 21 show the behavior of the nip-induced tension as a function of

the wound roll radius R1. The nip load is a constant P = 4850 N/m and the winding force attains the

values –500, -400, -200, 0 and 100 N/m. In panels (a) and (b) the winding drum radii are 0.25 and

0.5 m, respectively. The other material parameter values correspond to Table 1. The following

trends can be concluded

•  the NIT decreases as the paper roll radius increases

•  the change in NIT is more pronounced for small roll radii; for R1 > 0.5 m the change in NIT

is negligible.

•  the influence of the roll radius on NIT decreases as the winding force decreases

•  when the winding drum radius is larger, less NIT is produced but the curves are steeper

Inspection of the dual slip ratio shows what can be anticipated: sd decreases as either the roll

or drum radius increases. Hence, in order to deduce by simple reasoning that the NIT increases as

the roll radius decreases it remains to be shown that the NIT is an increasing function of the dual

slip ratio sd. Indeed, approximating the actual pressure distribution to be Hertzian and applying the

results of Section 4.2, the following dependence is obtained:
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It can be easily shown that the resulting function NIT(sd) is an increasing function and, hence, the

conclusion is that NIT increases as the radius decreases. It should be noted that (173) could be used

for the experimental determination of NIT if the dual slip ratio could be measured by some means.
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Figure 21. Nip-induced tension as a function of the paper roll radius R1 for the following winding forces: -500 N/m
(lowest solid line), -400 N/m (dashed line), -200 N/m (dash-dotted line), 0 N/m (dotted line) and 100 N/m (highest solid
line). P = 4850 N/m, (a) R2 = 0.25 and (b) R2 = 0.5 m.

The five curves of Figure 22 show the behavior of the nip-induced tension as a function of

the winding drum radius R2. The nip load is a constant P = 4850 N/m and the winding force attains

the values –500, -400, -200, 0 and 100 N/m. In panels (a) and (b) the wound roll radii are 0.25 and

0.5 m, respectively. The other material parameter values correspond to Table 1. All the conclusions

drawn when inspecting the influence of the wound roll radius apply also to the winding drum.

J. D. Pfeiffer concluded from extensive winding simulation tests, done by rolling a drum on

a flat horizontal bed with several paper layers clamped rigidly from the other end, that the NIT

seems to be inversely proportional to the square root of the drum diameter [41]. When the simulated

results are curve fitted, the conclusion is that nip-induced tension is actually inversely proportional

to the square root of the relative radius R = (1/R1+1/R2)
-1, not to the drum radius. Pfeiffer's

inaccuracy is understandable because his experimental set-up consisted of an infinite wound roll

radius.
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Figure 22. Nip-induced tension as a function of the winding drum radius R2 for the following winding forces: -500 N/m
(lowest solid line), -400 N/m (dashed line), -200 N/m (dash-dotted line), 0 N/m (dotted line) and 100 N/m (highest solid
line). P = 4850 N/m, (a) R1 = 0.25 and (b) R1 = 0.5 m.

4.6 Winding drum cover design aspects

The nip-induced tension and nip width are shown in Figures 21 and 22 as a function of the

winding drum modulus of elasticity E2, respectively. The results are calculated for five distinct

values of Poisson's ratio ν2 – 0.1, 0.2, 0.3, 0.4 and 0.499. In panels (a) and (b) the compressive load

P is 2000 and 5000 N/m, respectively. The cover thickness is 2cm and the other material parameter

values corresponds to Table 1. It should be noted that the x-axis is plotted on a logarithmic scale.
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Figure 23. Nip-induced tension as a function of the winding drum modulus of elasticity E2 for the following values of
the Poisson's ratio: 0.1 (lowest solid line), 0.2 (dashed line), 0.3 (dash-dotted line), 0.4 (dotted line) and 0.499 (highest
solid line), (a) P = 2000 N/m and (b) P = 5000 N/m.

The nip-induced tension increases approximately logarithmically in the range of E2 ∈

[106,1010] N/m2. When E2 > 1010 N/m2 the NIT is independent of either the modulus of elasticity or

Poisson's ratio. As E2 is below 1010 N/m2 the nip-induced tension increases as Poisson's ratio

increases. At the lower values of Poisson's ratio the influence is negligible but when Poisson's ratio

approaches 0.5, which is the value of an incompressible material, the influence of ν2 becomes
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significant. The qualitative picture does not seem to depend on the magnitude of the compressive

loading P. Most of the conclusions above also apply to the nip width. Perhaps the influence of

Poisson's ratio is even less. In addition, the nip width becomes independent of Poisson's ratio and

the modulus of elasticity even for smaller values of E2 – 2a is practically constant when E2 is above

109 N/m2.
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Figure 24. Nip width as a function of the winding drum modulus of elasticity E2 for the following values of the
Poisson's ratio: 0.1 (highest solid line), 0.2 (dashed line), 0.3 (dash-dotted line), 0.4 (dotted line) and 0.499 (lowest solid
line), (a) P = 2000 N/m and (b) P = 5000 N/m.

It is interesting to compare the winding contact stresses when winding with soft covered and

rigid winding drum. The tangential tractions and relative tangential speed differences for a winding

drum with a 2cm thick cover, a cover modulus of elasticity 1⋅107 N/m2 and Poisson's ratio 0.1, are

shown in Figure 25. The other material parameters correspond to Table 1 and the winding force is

100 N/m. When Figure 25 is compared to Figure 15 the most striking difference is perhaps that the

tangential tractions are more than 50 % smaller. The slip behavior in the sheet paper roll contact is

basically unchanged: at the leading edge of the contact there is a slip zone where the sheet lags the

paper roll and at the trailing edge there is another slip zone where the sheet advances the paper roll.

The slip pattern of the winding drum contact differs in two respects: there is also a slip zone in the

leading edge of the contact (sheet lags the drum) and the slip direction changes from positive (sheet

advances) to negative (sheet lags) very near the trailing edge. In addition, the magnitude of the

relative tangential speed difference is larger on the winding drum contact, since the tangential strain

is larger due to the compliance of the drum cover (at the edges the absolute value of the relative

tangential speed υ− is about 0.35 %). Now the NIT development mechanism is more complex, since

the tangential stress on the sheet can also vary noticeably when there is a stick zone in the winding

drum contact. Indeed, most of the variation in the tangential stress occurs when both contacts stick.

The web tension attains it lowest value at the nip center when it has dropped almost 150 N/m. The
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consequence of this is that if the incoming web tension Tin is less than 150 N/m, then the web

tension is negative in the vicinity of the nip center.

-- 0.51 0 0.5 1

-0.1

-0.05

0

0.05

0.1

-0.5 0 0.5 1

-0.1

-0.05

0

0.05

0.1

-- 0.51 0 0.5 1

-

-

0.05

0.1

0

0.05

0.1

-200

-100

0

100

200

x�ax�ax�a

q�
�M
P
a�

q�
�M
P
a�

�
�

��
�

T
�N
�m
�

a� b�

Figure 25. (a) Tangential tractions of the upper (solid line) and lower (dashed line) contacts and the friction limits µ−p
(darker gray shading) and µ+p (lighter gray shading) and (b) the relative tangential speed differences in the web-roll
contact (solid line) and web-drum contact (dashed line) and the web tension increase (dash-dotted line).
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Figure 26. (a) Nip-induced tension and (b) the nip width as a function of the net compressive load P for the following
winding drum covers: hard with E2 = 2.11⋅1011 N/m2 and ν2 = 0.3 (solid line), 2cm rubber layer with E2 = 1⋅106 N/m2

and ν2 = 0.499  (dashed line) and 2cm cellular elastomer layer with E2 = 1⋅106 N/m2 and ν2 = 0.1 (dash-dotted line).

The nip-induced tension and nip width for a winding drum with rigid, rubber and cellular

elastomer covers are shown in Figure 26 as a function of the compressive load P. In order to

simplify the treatment the elastic behavior of the rubber is approximated by the isotropic

constitutive equations with Poisson's ratio of 0.499. The modulus of elasticity of the rubber and

cellular elastomer are taken to be 1⋅106 N/m2 while Poisson's ratio of the elastomer is 0.1. The

thickness of the cover is taken to be 2cm. For the cellular elastomer, the NIT is very small and

practically independent of P. This agrees with the result of Peters [38]. The NIT for the rubber

cover is also noticeably smaller than what it is for the winding drum. However, it increases with P

so that the derivative of the NIT curve decreases. This disagrees with Peters [38], who claims that

the derivative of the NIT curve with respect to P increases.
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Figure 27. (a) Nip-induced tension and (b) the nip width as a function of the winding drum cover thickness ∆R2 for the
following winding drum covers: rubber with E2 = 1⋅106 N/m2 and ν2 = 0.499  (dashed line) and cellular elastomer with
E2 = 1⋅106 N/m2 and ν2 = 0.1 (solid line).

The variation of the NIT and nip width with the winding drum cover thickness ∆R2 for

rubbery material (Poisson's ratio 0.499) and cellular elastomer (Poisson's ratio 0.1) are shown in

Figures 25 (a) and (b), respectively. The modulus of elasticity of the winding drum is taken to be

1⋅106 N/m2 and the compressive load P = 5000 N/m. The other material parameters correspond to

Table 1. As the NIT is very small for the cellular elastomer, the influence of the cover thickness is

insignificant in the absolute scale. On the other hand, for the rubbery material the cover thickness

has a definite effect on NIT. Namely, the NIT decreases as the cover thickness increases. The

dependence of the cover thickness upon NIT is more pronounced when the rubber winding drum

cover is thin (∼  10mm).

4.7 Influence of the elastic constants of the paper

The influence of the orthotropic elastic constants on the nip-induced tension is studied in

Figure 28. The tangential elastic constant Aθθ runs on the x-axis and the curve parameter in each

panel is the radial elastic constant Arr, taking the values 4 (solid line), 20 (dashed line) and 100 Mpa

(dash-dotted line). The value of the cross elastic constant Arθ is 0.1 MPa in the left column, 1 MPa

at the center and 40 MPa in the right column. The value of the shear modulus Grθ is 1MPa in the top

row, 20 MPa in the midmost row and 100 MPa in the bottom row. The radial nip load is 5 kN/m

and the winding force 100 N/m for every panel.
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Figure 28. Nip-induced tension as a function of the tangential roll elastic constant Aθθ for the following radial roll elastic
constants Arr: 4⋅106 N/m² (solid line), 2⋅107 N/m² (dashed line) and 108 N/m² (dash-dotted line). Frames with letter label
tags (ai), (bi) and (ci) (i = 1,2,3) correspond to the shear modulus Grθ values 1, 20 and 100 MPa, respectively. Index tags
1,2 and 3 correspond to the cross elastic modulus Arθ values 0.1, 1 and 40 MPa, respectively.

The following conclusions can be drawn from the figure:

•  NIT increases as the tangential elastic constant Aθθ increases.

•  NIT increases usually as the radial elastic constant Arr decreases. The only exception in the

studied range of the elastic constants is seen when Aθθ ∈  [0.5,0.6] GPa, Arθ = 40 MPa and

Grθ = 100 MPa.

•  NIT increases as the shear modulus Grθ increases

•  For small values (≤ 1 MPa) of the cross elastic constant Arθ, NIT is independent of Arθ. For

larger values of Arθ, NIT decreases as Arθ increases

The influence of the orthotropic elastic constants on the dual slip ratio is studied in Figure

29. The x-axis, row, and column set up correspond to Figure 28. Again, the non-smooth character of

the curves is due to the finite discretization of the contact width. As in the NIT curves, the dual slip

ratio increases as the tangential and radial elastic constants and shear modulus increases. However,

unlike the NIT, the dual slip ratio increases as the cross elastic constant increases. The reason for
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this is that due to the radial stress and strong interaction between the tangential and radial directions

the web tension is decreased in the stick zone of the winding drum. This phenomena is depicted in

Figure 30 where the web tension of the sheet within the nip area is shown for Aθθ =7 GPa, Arr = 20

MPa, Grθ = 100 MPa and Arθ = 40 MPa (solid line) and 1 MPa (dashed line). The radial nip load is

5 kN/m and the winding force is 100 N/m. The web tension decreases almost 100 N/m prior to the

dual slip zone for Arθ = 40 MPa, whereas it remains constant for Arθ = 1 MPa. The tension increases

in the dual slip zone more for the larger value of the cross elastic constant but the net increase over

the whole nip range still remains smaller.
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Figure 29. Dual slip ratio sd as a function of the tangential roll elastic constant Aθθ for the following radial roll elastic
constants Arr: 4⋅106 N/m² (solid line), 2⋅107 N/m² (dashed line) and 108 N/m² (dash-dotted line). Frames with letter label
tags (ai), (bi) and (ci) (i = 1,2,3) correspond to the shear modulus Grθ values 1, 20 and 100 MPa, respectively. Index tags
1,2 and 3 correspond to the cross elastic modulus Arθ values 0.1, 1 and 40 MPa, respectively.

It should be noted that Eq. (173) was derived under the assumption that the web tension does not

change in the stick zone of the winding drum. Therefore, it is not applicable to large cross elastic

constants. However, for paper winding it seems to be a valid approximation since the cross elastic

constant is know to be small (< 1 MPa)[26].
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Figure 30. The web tension within the nip area for the cross elastic constant Arθ = 40 MPa (solid line) and 1MPa
(dashed line). The other elastic constants are Aθθ =7 GPa, Arr = 20 MPa and Grθ = 100 MPa. The radial nip load is 5
kN/m and the winding force is 100 N/m.

4.8 Computational aspects

The widely accepted and utilized constitutive law for a paper roll is a modification of the

conventional 2D-plane strain, Hooke's law [19]:
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where the orthotropic compliance crr is a function of the radial stress, whereas the other

compliances and the shear modulus are constants. The functional form of the crr = crr(σr) is usually

determined from a stack modulus test [43,39] where a stack of paper is compressed between two

rigid plates. The elastic modulus Er = Er(σr) = 1/crr(σr) is then determined from the measured stress-

strain curve. A sample of elastic modulus curves for newsprint, LWC and SC paper grades is shown

in Figure 31. The measurements were carried out by Valmet Winders using the hydraulic press and

instrumentation available at the KCL laboratory in Finland. It should be noted that these results are

not general, rather than just arbitrary representatives of newsprint, SC and LWC paper grades.

Figure 31 shows that the radial modulus varies noticeably in the pressure range of 0 to 1.5 MPa,

which is roughly the range to be encountered in practice. This brings about a serious concern for the

applicability of the linear theory presented in this work. However, as stated in the introduction,

quantitatively the data obtained from the linear theory might be inaccurate but it is likely that the

phenomenological behavior will still be correct. This hardening behavior in the out-of-plane
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direction of the paper stack is partially explained by the escape of the air residing in between the

paper layers and partially by the topological behavior of the fibers projecting from the sheet [43].
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Figure 31. Radial (stack) modulus as a function of the normal pressure for the following paper grades: newsprint (solid
line), SC (dashed line) and LWC (dash-dotted line).

The tangential (machine) direction elastic modulus as a function of the web tension for

newsprint, SC and LWC grades is shown in Figure 32.  In this direction, the modulus decreases

when the tangential stress is increased. Although the variation of the modulus in the range 0 –1200

N/m is quite large, it might be relatively small in the range in which the web tension varies in the

contact problem. Hence, with some caution, the tangential modulus, as a first approximation, can be

considered a constant.
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Figure 32. Tangential modulus as a function of the web tension for the following paper grades: newsprint (solid line),
SC (dashed line) and LWC (dash-dotted line).
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From the studies of the structural properties of paper, it is know that the cross compliance

crθ or the cross elastic constant Arθ are small quantities [30,37]. Furthermore, it was shown earlier in

this chapter that for small Arθ the contact mechanical solution is independent of the cross elastic

constant. Hence, it obviously does not matter if Arθ varies as a function of the stress state of the

paper.

The most problematic elastic constant appeared to be the shear modulus, since firstly it is

very hard to measure and secondly because it seems to affect greatly the contact mechanical

solution of the winding nip. The only reference found where a numerical value for the shear

modulus between the z- and machine direction was given is a recent study by Stenberg [47]. With

special apparatus, he succeeded in measuring the shear modulus for thick board grades.

The application area of the half-space solution is of great interest, since the evaluation of the

influence coefficients is much faster for the half-space solution than what it is for the cylinder

solution. Numerical calculations show that the error (or deviation) in the NIT values is typically less

than 3 % when the winding drum is rigid and the thickness of the paper layer wound around the

core is more than 5 cm. For soft covered winding drums it is recommended to use the cylinder

solution, since the error increases very fast as the thickness of the cover is reduced. Even with 5 cm

cover thickness, the error in the NIT can be about 15 %.

The main reason why the half-space solution is faster to compute than the cylinder solution

is the high number of terms needed in the Fourier series (116). Typically, 15000 - 35 000 terms

have been used in the numerical calculations. The lower bound for the number of the needed

Fourier terms N can be calculated from the Nyquist sampling theorem [2]. As soon as the Nyquist

criterion is fulfilled, the number of terms in the Fourier series seems to be insignificant.

The number of equidistant grid points at the contact area M should be chosen large enough

to enable the piecewise linear presentations of the contact tractions to approximate the solutions

accurately enough. The approximation of the pressure does not present any problems, since its

evolution is quite regular. However, the abrupt jump in the winding drum tangential traction (Figure

15), at the beginning of the trailing edge slip zone, requires a dense grid in order to obtain a feasible

approximation of the tangential traction. The computation time and NIT as a function of the number

of grid points are shown in Figure 33. The compressive radial load P is 2000 N/m, the winding

force F = 0 N/m and the material parameters correspond to Table 1. The computation time

increases exponentially and, hence, will set a bound to M. The NIT curve seems to converge, but

quite slowly. For most of the calculated examples, a value of 200 was used for M as a compromise

between the computation time and accuracy.
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Figure 33. Computation time (solid line) and NIT (dashed line) as a function of the number of contact grid points.

Actually, the discretization error is dependent on the nip width 2a and the number of

collocation points M. When either the nip load P or the size and elastic constants of the cylinders

are changed, a is also changed. Hence, it should be noted that when the influence of the nip load

and wound roll and winding drum radii and elastic constants on NIT were studied, the discretization

length ∆x was not constant. However, the variation in the accuracy related to this seems to be less

than 5% when the nip width was within the range of 7mm−20mm (Figure 16). Hence, the trends in

Chapters 4.3, 4.5, 4.6 and 4.7 should be unaffected by the non-uniformity of the error.

4.9 Evaluation of the Wound-On-Condition

Since all the numerical examples calculated so far show that the web-wound roll contact

slips just before the trailing edge of the nip, it is presumable that the web will actually continue

slipping behind the nip. How far will this slippage continue and what effect has it on the wound-on-

tension? How great an error is created when the web is forced to stick to the wound roll at the

trailing edge of the nip (WOC)? The purpose of the present chapter is to address these questions. In

the following, it will be demonstrated that the slippage of the incoming web is restricted to a very

small area immediately behind the nip. As shown in Chapter 4.7, the influence of the cross elastic

constant Arθ on the wound-on-tension is negligible. This justifies the use of the "wire" model of the

web, presented in Chapter 3.5. According to Eq. (139) the force balance equations for the web

behind the nip are
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It is assumed that the web slips so that

.q pµ+ + += ± (177)

By combining Eqs. (175)-(177) the following equation for web tension is obtained:
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Utilizing Eq. (154), the solution becomes
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This shows that the leading term of the capstan formula is not affected by the deformation of the

cylinder surface.

Consider next the wound roll surface far away from the nip area, where the deformations

and strains due to the nip contact loads are small. The claim is that the topmost layer cannot slip in

that area of the wound roll! To justify this, it is assumed that the topmost layer is slipping. For

definiteness, assume that the web is faster than the roll, i.e., the + sign should be used in Eq. (177).

To leading order the relative speed difference between the web and the roll (133) becomes
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++ + + += − + = − + (180)

where � is measured from a reference point within the slip area and T0 is the web tension at that

point. Since υ + is positive when the slip starts and by an intuitive argument (which will be justified

later) the tangential traction q+ increases more the tangential strain of the web than that of the roll

surface, the speed difference keeps on growing. Consequently, the web cannot stick at any later

stage and is forced to slip through the whole undeformed or slightly deformed area of the wound
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roll, that is, almost a whole circumference back to the front of the nip. This does not, however,

comply with experimental observation (the web tension of the topmost paper layer does not vary as

much as Eq. (179) predicts and J-line measurements do not support as large a layer-to-layer

movement). Thus, the web can slip only at locations where the growth rate of the tangential strain

of the roll surface is comparable to that of the slipping web, i.e., very close to the nip area. The

promised justification for the growth rates of the web and roll tangential strains is given in Figure

34. The loads used in the calculation are

0
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(181)

and the material parameters correspond to Table 1 except that µ+ = 0.5. It should be remembered

that the roll surface areas where the nip load deformations are small are considered. It can be seen

that the growth rates differ by several decades in magnitude. Thus, it has been shown that the loads

between the web and the wound roll have a much larger effect on the web than on the roll.

Consequently, the argument seems to hold. The case when the web is moving slower than the roll

can be treated analogously.
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Figure 34. Magnitude of the growth rates of the tangential strains at the surface of the wound roll (solid line) and web
(dashed line) under the surface tractions (181).

The next question is how far away from the nip area can the web still slip. This leads to the

question: how far from the nip is the tangential strain of the roll due to the nip loads still of a

substantial magnitude to significantly influence the relative speed difference υ + ? Figure 35 (a)

shows the tangential strain of the wound roll �
��

 in the vicinity of the nip for P = 10 kN/m and µ+ =
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0.7 and 0.2 (solid and dashed lines, respectively). It should be noted that �
��

 exhibits a rapid change

only close to the nip area. Figure 35 (b) shows the rate of change of 1θε  and ε +  behind the nip. It

should be noted that the decay rate of 1θε  is higher than that of ε +  only for �� 0.5° and is much

smaller for larger values of �. If the web sticks at �����s, so that ��(�s) = 0, Eq. (180) implies
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Figure 35. a) Roll surface tangential strain and b) magnitude of the growth rate of the roll surface and web tangential
strains for P = 10 kN/m, µ+ =0.7 (solid and dashed-dotted lines) and µ+ =0.2 (dashed and dotted lines).

When typical values for the elastic constants of paper were used, a positive value of 1θε  was

never observed within the nip zone. This was due to the dominance of the term /ru r  over the term

1/ /r uθ θ∂ ∂  in the expression of the tangential strain (34). This term dominated, since the radial

load P gives rise to large compressive (negative) radial displacements ur within the nip zone.

Behind the nip the radial displacements relaxed monotonically towards zero. Consequently, in all

cases studied, strain 1θε  was an increasing function behind the nip. In principle, however, strain 1θε

could also be positive at the trailing edge of the nip under some extreme conditions (for small P, G

and 1 0,M � 2 0M � , for example). It is also evident that in this case, 1θε  relaxes monotonically

towards zero behind the nip. Now the following statements concerning the slip behavior behind the

nip can be presented:

Case 1. ( ) 0aυ + <  and 1( ) 0aθε <

Now 1θε  increases and ε +  decreases behind the nip so that 1 0θ∆ε >  and 0∆ε + < . This

means that the stick condition (182) cannot be fulfilled so that the topmost layer must slip

all the way around the wound roll wrap, which contradicts experimental observation.
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Accordingly, the topmost paper layer cannot slip at all behind the nip (i.e., it must be that

( ) 0aυ + = ).

Case 2. ( ) 0aυ + >  and 1( ) 0aθε <

Now both 1θε  and ε +  increase behind the nip so that 1 0θ∆ε >  and 0∆ε + > . According to

Eq. (182) 1θ∆ε  must be larger than ∆ε +  for the sheet to stick. As demonstrated in Figure 35

(b), this is possible only in the immediate vicinity of the nip edge. Accordingly, the topmost

paper layer can slip only within a small region behind the nip.

Case 3. ( ) 0aυ + <  and 1( ) 0aθε >

Now both 1θε  and ε +  decrease after the nip so that 1 0θ∆ε <  and 0∆ε + < . A similar

argumentation to Case 2 can be given. Accordingly, the topmost paper layer can slip only

within a small region behind the nip.

Case 4. ( ) 0aυ + >  and 1( ) 0aθε >

Now 1θε  decreases and ε +  increases behind the nip so that 1 0θ∆ε <  and 0∆ε + > . A similar

argumentation to Case 1 can be given. Accordingly, the topmost paper layer cannot slip at

all behind the nip (i.e., it must be that ( ) 0aυ + = ).

In general, the relative speed difference υ+ at the trailing edge is positive for center winding

(Case 2) but can also be negative for surface winding with small nip loads (Case 1). Hence, in

center winding the web slips for some distance behind the nip whereas in surface winding with

small nip loads the web must stick immediately at the nip edge. The relative error introduced to

WOT by assuming the stick state at the trailing edge of the nip (WOC) can be estimated from the

capstan formula (179). A conservative estimate is θs = 5° and 0.5µ+ =  leading to a 4.5% relative

error. Finally, it should be noted that in the previous considerations numerical results calculated

using WOC have been utilized to justify the use of WOC. A comparison to experimental results for

WOT in Chapter 5 shows, however, that the relative error in the calculated value of WOT (and Tout)

is small. Since WOC could be substituted in the contact mechanical equations by a given value of

Tout, it can be concluded that the solution using WOC must be a good approximation for the exact

solution employing the contact mechanical equations behind the nip (Chapter 3.5). This completes

the above considerations about WOC.
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5 COMPARISON WITH EXPERIMENTAL DATA

Since at least the radial modulus of the wound roll i s dependent on the local stress state, the

application of the present linear theory in practice will bring about the diff iculty of choosing the

elastic constants of the linear theory to represent the nonlinear nature of the paper appropriately.

The tangential elastic constant Aθθ can be easily measured and, within the web tension variation

range during winding, could be considered as constant (Figure 32). The cross elastic constant Arθ

has been demonstrated to have a negligible effect on WOT predicted by the present theory. Hence,

at least in principle, the arbitrary (within the linear theory) radial elastic constant Arr and the

unknown shear modulus Grθ could be used as tuning parameters to obtain a close fit between

experiment and theory.

In this chapter the validity of the winding theorem of Chapter 4.1 is evaluated using

experimental data measured on WHRC's WIT-WOT winder (page 15). In addition, the WOT vs. nip

load curves produced by the present theory are compared with the corresponding experimental

curves for center winding. The radial elastic constant Arr and shear modulus Grθ will be fit to

produce the measured WOT at one measurement point and then used when calculating all other data

points. Experimentally measured values will be used for the other material parameters.

Figure 36. WHRC's WIT-WOT winder.

Load Cell - WOT
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The WIT-WOT winder used to obtain the experimental data is shown in Figure 36. The

unwind tension is measured by a load cell and a feedback signal is fed to the unwind drive to keep

the tension at a set value. At the winding section the web is guided through a 180° wrap of the nip

roll to the winding roll. After wrapping the winding roll for about 90°, the web is steered to another

load cell and then finally back to the wound roll. The measurement of this load cell is inferred as

WOT and the unwind tension as Tin. The radial nip load between the winding roll and the nip roller

is measured with a third load cell and feedback-controlled by the nip loading cylinder. Whether this

type of WOT measurement is an interfering test method has been studied by Good et al. [15]. When

the internal pressures of the newsprint rolls wound with and without leading the web through the

WOT load cell in otherwise identical conditions were compared, it was found that the internal

pressures of the rolls wound without the WOT measurement were higher. Their conclusion was that

the outer lap of the web must slip while wrapping the winding roll.

Here, however, the results of Chapter 4.9 will be utilized and the web tension will be

evaluated exactly at that point where the web exits to the WOT load cell. Assuming that the web

sticks to the wound roll at this exit point and utilizing Eq. (128) gives

1 1 12 ( 90 ) ( )  ,meas outWOT hA a Tθθ θ θε θ ε = ≈ − + 
� (183)

where WOTmeas is the value predicted by the theory for the load cell measurements. The tangential

strain of the wound roll at 1 90θ = � can be evaluated from Eq. (114). The material parameters used in

the calculations are shown in Table 2 and the experimental and theoretical values in Table 3. The

experimental and theoretical results are also shown in Figure 37.

Table 2.
Material parameter values used in the calculations

Parameter Notation Value

Paper to roll friction coefficient µ+ 0.19

Paper to drum friction coefficient µ− 0.2

Wound roll radius R1 0.1 m

Winding drum radius R2 0.0762 m

Radial elastic constant Arr 27 MPa

Tangential elastic constant Aθθ 3.38 GPa

Cross elastic constant Arθ 5 MPa

Shear modulus Grθ 10 Mpa

Web thickness 2h 66 µm
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The values of the radial elastic constant and shear modulus were chosen so that the results of the

theory and experiments coincided when P = 3502 N/m and Tin = 350 N/m.

Table 3.
Experimental and theoretical wound-on-tensions in center winding

Tin N/m

Nip Load N/m

175

Exp.

175

Theory

263

Exp.

263

Theory

350

Exp.

350

Theory

350 266 257 327 345 410 432
876 316 324 416 412 482 499

1751 416 405 496 494 566 581
3502 525 524 598 612 700 699
5837 637 643 715 731 815 818

The theoretical values agree surprisingly well with the experimental ones as can be seen from Table

3 and Figure 37. One possible explanation for the close fit can be that the shear modulus also

increases with the radial pressure. When the nip load is increased, higher values for the radial elastic

constant and the shear modulus should be used but, as was shown in Chapter 4.7, an increase of the

radial elastic constant decreases NIT while an increase of the shear modulus increases NIT and,

hence, opposing effects, possibly canceling each other, are generated.

Center Winding
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Figure 37. Experimental (solid lines) and theoretical (dashed lines) wound-on-tension curves for the incoming web
tensions 175, 263 and 350 N/m.

For the center winding configuration the winding force is zero and, hence, for a constant nip

load the prerequisites for the application of the winding theorem of Chapter 4.1 are fulfilled. Since

the difference between Tout and the measured WOT is constant for a given nip load (winding
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theorem), the experimental data could be used to determine NIT (plus an additive constant

depending solely on P). The evaluated experimental NIT values and the correspondig averages and

standard deviations are shown in Table 4. Apart from very low nip loads, the NIT seems to be

independent of the incoming web tension to a good relative accuracy. The same conclusion was

drawn by Good et al. [15] in their article on WIT-WOT measurements.

Table 4.
Experimental nip-induced-tension in center winding

Tin N/m

Nip Load N/m

175 263 350 Average Standard

deviation

350 91 64 60 72 17
876 141 153 132 142 10

1751 240 233 216 230 13
3502 350 335 350 345 9
5837 462 452 464 459 7
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6 CONCLUSIONS

The aim of this thesis was to develop a contact mechanical model for the winding nip. Being

aware of the potential pitfalls, a linear elastic description was used for the paper roll and paper

sheet. The liberty to avoid any unnecessary degree of difficulty was taken because of the novelty of

the contact mechanical approach on the winding applications. The list of the most significant

presumptions goes as follows:

1. The stress state was assumed a two-dimensional plane strain at the cross-sections.

2. All the contacting bodies were assumed to obey linear constitutive equations.

3. Steady state conditions were assumed.

4. The core of the wound roll was rigid.

5. The sheet was assumed to stick to the wound roll at the trailing edge of the contact.

6. Normal and tangential tractions were assumed to vanish at the trailing edge of the contact.

7. The nip-induced tension was assumed to develop at the topmost paper layer of the wound

roll.

Because of these assumptions, the main outcome of the model should be regarded phenome-

nological and methodological with only a limited applicability to yield quantitatively accurate

results.

With the mathematical apparatus, developed in Chapters 2 and 3, a wide numerical

parameter study was carried out in Chapter 4. A specific stick and slip pattern was found to occur in

the winding nip when the winding drum was hard. Hence, a general mechanism of the nip-induced

tension was found to be due to the appearance of a simultaneous (double sided) slip zone in the

vicinity of the trailing edge of the nip. In this slip zone the sheet moves faster than the wound roll

and winding drum and, hence, the sheet tension increases.

When the influence of the winding parameters upon nip-induced tension was studied the

following general trends were found:

•  At very small nip load levels, NIT is approximately equal to the layer-to-layer friction

coefficient times the nip load.

•  Slope of the NIT-P curve decreases as the nip load increases

•  Nip-induced tension increases with the winding force.
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All these items comply with experimental results.

According to the numerical simulations, nip-induced tension decreases generally for

increasing layer-to-layer friction coefficient. This complies with experimental results. The

numerical simulations showed that if the sheet-drum friction coefficient is less than the layer-to-

layer friction coefficient, then nip-induced tension will be much less than in the opposite case. No

experimental data was available to verify this.

According to the numerical simulations, nip-induced tension decreases for increasing the

winding drum and wound roll radii. This complies with the experimental results presented in the

references [12] and [41]. The rate of decrease was found to be approximately inversely proportional

to the square root of the relative radius.

According to the numerical simulations, the nip-induced tension is decreased when the

modulus of elasticity of the winding drum cover is reduced. It was also calculated that with a soft

cellular elastomer cover the nip-induced tension was almost independent of the nip load. This

complies with the results presented in [38].

According to the numerical simulations, nip-induced tension is generally increased when the

tangential elastic constant and the shear modulus of the wound roll are increased and is decreased

when the radial and cross elastic constants of the wound roll are increased. It was also shown that

the cross elastic constant does not have any influence on nip-induced tension if it is small. This

contradicts the NIT model of reference [16], where nip-induced tension was explained to be due to

the cross elastic constant (or Poisson's ratio).

The validity of the wound-on-condition, stating that the web sticks to the wound roll surface

at the nip exit, was justified numerically.

As a conclusion it can be stated that all the numerical simulations are very intelligible and

most of the predictions comply well with the experimental results found in the literature.

In order to improve the exploitability of the winding contact model the following adjustments will

be made in the future:

1. The winding drum wrap will be included.

2. The non-linear compressive modulus of paper will be accounted for.

With the above-mentioned modifications, the substance of the winding nip model would be

improved at a level where it could give quantitatively reliable results. A further obvious extension

to a 3D winding nip model does not seem feasible in the near future because of the enormous

demands on the computing capacity.
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