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Abstract

New approximate simplifications are made to the high flux correction matrix for the film model and the penetration model, as
derived from the Maxwell-Stefan mass transfer theory. Approximations are valid for both predetermined total flux, when explicit
method results, and equivalently when total fluxes must be iterated. These presented simplifications are simple enough so as to be
always includable in the mass transfer calculations, and the zero total flux assumption (equimolar transfer) is never needed for

computational reasons in practical calculations. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multicomponent mass transfer can be calculated with
the following equation:

(N) = c[KI[E](xr — xp) + Ne(x), M

where [k] is the matrix of mass transfer coefficients, and
[=Z] is the matrix of high flux corrections (to the mass
transfer coefficients). The mass transfer coefficient matrix
is defined for the film theory as [k] = [D]/¢, where [D] is
the matrix of diffusion coefficients and ¢ is the mass
transfer film thickness. This film thickness is usually not
known, and a correlation of dimensionless numbers must
be used to calculate the mass transfer coefficient matrix.
In the equations to follow, the mass transfer coefficient
matrix is used straightforwardly, instead of the diffusion
coefficient matrix and the film thickness separately. Bene-
fit of this approach is that the mass transfer equations are
similar for the film and for the penetration theories.
The high flux correction matrix for the linearized film
model and for the exact Maxwell-Stefan film model is

(2] = [W]lexply] — 1117} @
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and for the penetration theory it is

[5]= exp<%‘ll}2><[1] +erf ([—\;_D)_ ' 3

In these equations, [/] is the matrix of mass transfer rate
factors. For the linearized film model (where the changes
in the total concentration and in the diffusion coefficient
matrix along the film are neglected, and averages used),
it is

Y1 = Nilje, [Do 17" = NiJe, Tha 17 Q)

For the exact Maxwell-Stefan equation, this matrix is
more complicated. The high flux correction takes ac-
count of the curvature in the composition profiles in the
mass transfer region. This curvature is due to convective
flux and diffusional interactions effects. In the linearized
model the composition profile curvature due to the
changes in the diffusional interactions is neglected.
(Taylor and Krishna, 1993, pp. 20, 163-165, 184-185;
Krishna and Standart, 1976).

2. High flux correction matrix simplifications

The film model high flux correction matrix can be
simplified by linearization. This cannot be done directly
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to the original form, but can be done by using exponen-
tial function series expansion

o k -1
=1 = vt - = o] § B -]
k=0 K

© lpk—l -1
85] g

If the last form is linearized at the origin [¥] = [0],
a very simple form is then obtained

(51 =[] —-1/2[¥] (6)

This corresponds to linearization at zero total flux for the
linearized mass transfer theory.

Penetration theory high flux correction matrix may be
simplified in several ways. The simplest may be the fol-
lowing. The exact correction form is linearized at the
origin (zero total flux, or [¥'] = [0])

(5] =[] —2/n[¥]. ™

These linearizations (and others) may be generalized to
an unified form

[E]=[1]—a[¥] ®

The high flux corrections are often multiplied with zero
flux mass transfer coefficient matrix. The result is called
the high flux mass transfer coefficient matrix. After recall-
ing the definition of the mass transfer rate factor matrix
this can be as

(k] = ko J[E(] = [ka] — aN,/c[T]. ©

Taylor (1982) suggests that the penetration theory high
flux correction matrix can be calculated from a rational
approximation. In the method presented here, no matrix
inversions are needed, conversely to Taylor’s suggestion,
and the high flux correction can be premultiplied to the
high flux mass transfer coefficient matrix, which results in
remarkably a simple form (9). This form make the deriva-
tion of a class of explicit methods possible.

3. Approximate explicit methods for the film- and the
penetration models

Explicit methods can be derived only if the so-called
bootstrap condition can be found. (Taylor and Krishna,
1993, pp. 147-149). In the following derivation for the
linearized theory the high flux superscript is used as
a reminder wherever the high flux correction is taken into
account. For molar fluxes we write

N;=J;+ xiIN;. (10)

The bootstrap condition states that the molar fluxes are
not linearly independent, and it is written here as

i v:N; = 0. (11)
i=1

Summing up over all components we get
Y vidi+ N Y, vixir =0. (12)
i=1 i=1
For J' we can write in the general case
() = alkaJ(Ax) = c[[ka] — aN./cJ(Ax)
= Ct[kav](Ax) —aN, (AX)
= (J) — aN,(Ax). (13)

Inserting this into Eq. (12) we get
> vilJ; — aN(x; 1 — x;8) + N, Z vixi =0, (14)
i=1 i=1

_ Yizt (i — v
Ne= -1 vi((1 — a)x;; + ax;p) (15

Thus, mass transfer fluxes are obtained from zero total
flux diffusion fluxes

N;=Ji+ xiN, = J; — aN,(x; — xp) + x; Ny, (16)
P21 k= va) (1 — @)xiy + axi p)Ji

M1 vi((1 = a)xjr + ax;p)
A high flux bootstrap matrix can then be defined as

Bix = Su — (1 — @) x; + axp) Ay, (18)

Ni=Ji—

a7

A, = Vk — Vn

T vi((1 = a)xj + ax;p)
Now the mass transfer fluxes can be calculated explicitly
(N') = c[ B1lkay)(xr — x), (20)

where [f7] is the high flux bootstrap matrix (the high flux
correction matrix combined with the original bootstrap
matrix). When these equations are compared to the orig-
inal bootstrap equations, it can be seen that this high flux
corrected bootstrap matrix may be calculated with the
same algorithm than the original matrix, by using the
following high flux corrected “pseudo mole fractions”

(x) =1 = a)(xy) + alxp). @1

This pseudo mole fractions approach is remarkably sim-
ilar to the property averaging that is used, for example,
by Young and Stewart (1986) for other properties. The
pseudo mole fractions, however, takes the high flux cor-
rection into account in the bootstrap matrix.

When we use the value a = 0.5 in the above equation,
we obtain, in fact, Krishna’s explicit method. Krishna

(19

where
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(1981) obtained this result by simply assuming that the
product of the bootstrap matrix and the mass transfer
coefficient matrix is constant along the diffusion path. It
should be noted that the high flux correction (9) with
a = 0.5 is equivalent to Krishna’s method when the de-
terminancy condition cannot be predetermined explicit-
ly. One more thing should be noted. Even though the
linearization to the high flux correction was done in the
origin (zero total flux) in the cases a = 0.5 for the film
theory and a = 2/n for the penetration theory, even then
the high flux correction is taken into account approxim-
ately in the bootstrap matrix defined above, if the total
flux is not zero in a practical application of the method.

Explicit solution for the exact Maxwell-Stefan film
model can be obtained if the flux ratios are known. The
result, however, needs somewhat more complicated
matrix calculations than the general method derived
above. Furthermore, compositions should be known at
both ends of the film as well as the flux ratios. This seems
to be of no practical importance, so it is considered to be
more reasonable to retain the linearized solution.

4. Methods to obtain the linearization parameter
4.1. Statistical approach

If the total flux is not known, the parameter a may be

4269

considered to include almost all practical mass transfer
situations), and the sum of squares of error is minimized.
As the standard deviation approaches zero, the optimal
parameter a value approaches those of the linearized
models (6) and (7). When chosen standard deviation
increases, a decreases. This parameter can then be chosen
in the computer process simulation codes according to
intuition of probable total flux variations. Optimized
values for different standard deviations are shown in
Fig. 1. It can be seen that good values for a lies some-
where between 0.5 and 0.46 for the film theory and 0.637
(or 2/m) and 0.58 for the penetration theory. Parameter
value a = 0 corresponds to the situation where the high
flux correction is ignored. We recommend that a = 0.48
and 0.61 can be used if no information about the total
flux direction or magnitude is available.

4.2. Known total flux

If the total flux is known from the previous step of
iterative solution for a mass transfer device, the lineariz-
ation parameter can be estimated. This is done by using
a scalar approximation of the mass transfer rate factor, so
that average value of mass transfer coefficients is used.
This average can be obtained, for example, by dividing
the trace of the mass transfer coefficient matrix by its
rank. Correct values for a are then

1 1

optimized by purely statistical means. This is done by a= e (22)
using a normally distributed weighting function. Weight- Pave  exp(Pave) — 1
ing takes account of the fact that near equimolar mass for the film theory and
transfer is more likely to occur than mass transfer with N
high total flux. This optimization is done for scalar ¥, a= 1 ( ___exp(Pave/m) > 23)
which may be interpreted as an eigenvalue of the [¥] Pave (1 +erf (Wave/ﬁ))
matrix. Different standard deviations are chosen, with for the penetration theory. Here
expected value ¥ = 0. Values are calculated in 21 dis- P y-re
crete points at the interval ¥e[ — 1,1] (which was Yave = Ny estimare(n — 1)/(c: Zky;). (24)
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Fig. 1. Optimal a value as a function of standard deviation of the mass transfer rate factor, for the film and the penetration theory.
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5. Numerical comparison

Extensive numerical comparison concerning different
approximations is made by Smith and Taylor (1983).
Among the seven tested methods there was the Krishna’s
explicit method, which was ranked third. As Krishna’s
method is only a special case of the methods presented
here, it can be assumed that in general our methods are
better or at least comparable to it.

Due to the simplicity of the Egs. (8), (9) and (20), the
approximate high flux correction can always be included
in practical calculations. In terms of a scalar correction
term ¥ (or an eigenvalue of a multicomponent matrix),
quite high fluxes (absolute value of ¥ up to about 0.5)
yields less than a 3% approximation error even if the
total flux is not known. The exact high flux correction is
then only needed if very high degree of accuracy is re-
quired. If the resulting high flux correction from these
calculations has an effect on the fluxes that is more than
20-30%, and very high accuracy is needed, then the exact
high flux correction can be used. When iterative solution
to the balance equations is needed, the approximate flux
values may then be used as initial estimates.

As the multicomponent mass transfer matrix calcu-
lations are shortened with the approximations of this
paper, the computational time is expected to decrease.
When a typical two-film mass transfer model with six
components was simulated, the observed computational
time was of the order 3-7 faster with the approximate
solution than with the full solution. It can be assumed
that computational times differ even more if the penetra-
tion theory is used, since the exact high flux correction is
then more complicated requiring calculation of two
matrix functions. If the number of components is in-
creased from six which was used in our example, the
difference in computation time is expected to increase.
This is due to increased matrix sizes, since the exact
solution spends relatively more time in the most time
consuming matrix calculations, which are mostly O(n®)
processes.

6. Conclusion

Approximate simplifications are presented for the film
theory and the penetration theory high flux correction
matrix, as derived from the Maxwell-Stefan mass trans-
fer equations. Both predetermined total flux and iterated
total flux are considered. In the previous case explicit
methods can be obtained.

These methods are at least equivalent to Krishna’s
explicit method for the film model (which is a special case
in the methods presented here) in terms of accuracy. The
simplifications here are presented in a unified form.
A statistical and an iterative approach for the optimal
simplification is included.

These simplifications require no special matrix calcu-
lations for taking the high flux effects into account in
the mass transfer calculations. Due to this, equimolar
mass transfer need not be assumed for computational
reasons even if the high flux correction is of minor im-
portance. On the other hand, quite high total fluxes can
be handled without excessive loss in accuracy. Even high
flux correction effects of about 20-30% may be cal-
culated approximately with very low risk of error. When
the total flux is known in the iterative solution, even
much higher approximate corrections can be made very
accurately.
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Notation

(c) column matrix of component concentrations,
mol/m3

[D] matrix of Fick diffusion coefficients, as cal-
culated from the Maxwell-Stefan equations,
m?/s

[ identity matrix, dimensionless

[k] mass transfer coefficient matrix, m/s

[k] high flux mass transfer coefficient matrix, m/s

(x) column matrix of component mole fractions,
dimensionless

a linearization parameter, dimensionless

total concentration, mol/m?

diffusion flux, mol/m?s

diffusion flux calculated with high flux correc-

tion, mol/m?s

film thickness, m

number of components

mass transfer flux, mol/m?s

mass transfer flux calculated with high flux

correction, mol/m?s

total flux, mol/m?s

mole fraction, dimensionless

high flux pseudo mole fraction, dimensionless

S w0

xRz ozzI =

Greek letters

A bootstrap matrix, dimensionless

ij Kronecker delta, dimensionless

y determinancy condition between fluxes, not
defined

[Z] high flux corrections matrix, dimensionless

g standard deviation, various

[¥] mass transfer rate factor matrix, dimension-
less
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Sub- and superscripts, general

9] refers to high flux value
()av average value

Os bulk phase

O refers to component i
Or interface

O liquid phase

O: total

Mathematical notations

A difference between some values, dimension-
less
[] square matrix, various

0 column matrix, various
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