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Abstract

Mass transfer coefficients are usually based on measurements from binary mixtures. This leads to scalar correlation equation
for mass transfer coefficient. These equations are usually obtained from dimensional analysis, and they include fractional powers
of the system parameters, like the Reynolds number and the Schmidt number. Generalization according to the linearized
Maxwell—Stefan theory (Ve¢, and V[D] are assumed zero along the diffusion path) is then made by replacing the scalar values by
corresponding matrix values. This leads to the problem of calculating the matrix fractional powers. This can be done by the
similarity transform or by the Sylvester’s expansion, but it is quite a tedious procedure. Krishna and Standart (1976) American
Institute of Chemical Engineers Journal 22, 383-9 proposed that the binary mass transfer correlations could be used for each
component pair in multicomponent systems. In this paper, another approximate approach is chosen for the simplification of the
calculations. In the Maxwell-Stefan diffusion coefficient matrix, the off-diagonal elements describe diffusional interactions. These
elements may be significant, but are usually smaller in magnitude than the diagonal elements. The method presented in this paper
is based on that fact. The method gives more accurate results than the practice of using binary mass transfer coefficients. It is
applicable to all mass transfer models, such as the film model, penetration model, and models resulting from boundary layer
analyses. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Mass transfer correlations for binary systems are
often in the form of

Sh=a - Sc? (¢9)

where a is a scalar, which depends on some of the
system parameters, especially the Reynolds number. p is
a real number, usually in the range of 0.25-0.66.

These correlations can be generalized to multicompo-
nent systems in a straightforward manner by substitut-
ing the dimensionless numbers by the corresponding
matrix form

[Sh]=a - [Sc} @
where a remains scalar. In the approach of this paper,

matrices in the Schmidt number are calculated from the
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Maxwell-Stefan theory. This manner of proceeding
was proposed by Toor (1964) and by Stewart and
Prober (1964). For a further reference, see Taylor and
Krishna (1993), pp. 214-215.

This generalization leads to problem of computing
matrix fractional powers. This can be done by similar-
ity transform or Sylvester’s expansion, after computing
the eigenvalues (and eigenvectors in the similarity trans-
form) of the [Sc] matrix. This might, however, be quite
time consuming if this correlation is to be used again
and again, for example in an inner loop of some
iterative solution for a process simulation or optimiza-
tion problem.

At this point it should be noted that the main root of
the fractional power is always needed, because both
[Sh] and [Sc] matrices have only real and positive
eigenvalues. This root can be then proven unique.
(Rudin, 1976, p. 10)

Krishna and Standart (1976) suggested that these
correlations could be used with binary diffusion coeffi-
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cients to obtain the matrix of binary mass transfer
coefficients. These coefficients are then used in the
Maxwell—Stefan-theory mass transfer matrix formula-
tion. This method might be most often used in practical
calculations, even though it has come in for criticism.
(Taylor & Krishna, 1993, pp. 214-215; Young & Stew-
art 1986)

The mass transfer coefficients are obtained from the
Sherwood number matrix in the following way

[k]=d - [Sh][D] ©)

where [D] is the Fickian diffusion coefficient matrix. It
is calculated in the following way according to the
Maxwell—Stefan theory: first calculate the matrix func-
tion of inverted binary diffusion coefficients, [B]

B= iy %
! Din k=19ik
ki
1 1
(i) o
[D] is then the inverse of [B]
[D]=[B] " 5

Matrices [D] and [B] are square matrices of size n— 1,
where n is the number of components. (Taylor &
Krishna, 1993, pp. 19-21)

The Schmidt number matrix is defined for the multi-
component system as

[Se] = v[D]~! (©)

Therefore, the required correlations for mass transfer
coefficients for components 1 ... » — 1 are usually of the
form

(k]=6-[D]' =7 @)

2. The matrix fractional power approximation

Another way to calculate the matrix fractional power
is to do it straightforwardly, but approximately. A
general approximate method for all kinds of matrices
cannot be derived without excessive loss of accuracy.
However, if we use our knowledge of the [D] matrix
structure, a reasonable approximation can be done. In
the Maxwell-Stefan formulation, the diffusion coeffi-
cient matrix [D] is not diagonal, but the diagonal
elements are usually greater than off-diagonal elements.
This knowledge can be used in the approximation

procedure.
Now we are presented with a problem of the form
(A1 = [B] (®)

where the matrix A is known and B is the desired
result. At this point, only rational exponents are con-

sidered. Generalization to real numbers in discussed
later.

We decompose the matrices A and B in diagonal and
off-diagonal parts

[Al=[F] +[M] ©
[B] = [E] + [N] (10)
So we can write this problem as

[A]" = (F] = [M])" = ([E] = [N])" = [B]" an

Now we use our knowledge that matrix A has larger
diagonal elements than off-diagonal, and assume that
the same is true for B, that is

IE > > v (12)
[ > > [N (13)
and

ICFPMI| > > [[FIIMP| (14)
IEPINT| > > [[[EINF| (15)
where || | states for some suitable matrix norm.

The last two inequalities are assumed to be true for
all the permutations of ([F], [F], [M]), ([F], [M], [M]),
((E], [E], [N]) and ((E], [N], [N]).

After expanding the binomial form (Eq. (11)) and
using approximations (Egs. (12)-(15)) we have

[FI" + [F]"~ '[M] + [F"’[M][F] + ... + [FIIM][F]" ~*
+[MIF} ' = [E}" = [E}" ~'[N]

= [E]" ~’[N][E] + ... + [E][N][E}" 2 = [NJ[E]"~'  (16)
Now it can be seen that

[F]" = [E]" a7

since [F] and [E] are diagonal and [M] and [N] are
off-diagonal.

For the off-diagonal elements (i %) we obtain the
following equality

my(fi Ly e ST S

=nyler ™' +ef e+ . euel T=el ) (18)
Using the summation equation for a geometric series
u=a-q'-!

n l_q
u,=a
;;1 I—¢q

for both sides, we end up with
()
—i Nl | mer i)
1- & ' 1— i
it €ii

n

(19)



V. Alopaeus, H.V. Nordén / Computers and Chemical Engineering 23 (1999) 1177-1182 1179

This and the next equation are valid for non-equal
diagonal elements i.e. e, # e; and f; # f; for all i and j.
This limiting case is considering later.

The final result for off-diagonal elements is obtained
after using Eq. (17)

=m, | fym-1NMEL 21

With Eq. (17) we then observe that matrix fractional
powers can be calculated termwise, when approxima-
tions (Egs. (12)-(15)) hold. These results are valid for
any fractional power n/m. However, by using the den-
sity argument for the rational field as a subfield of the
real field, we can extend these results for any (here
positive) real number p instead of rational n/m (Rudin,
1976, p. 9)
For a problem

[AY = [B] 22

we then have, after some manipulations, the following
approximate equations

n

B, = A% for diagonal elements (23)
A2 — A2,

B;=A4; —=—4 for off diagonal elements 24)
A,— 4,

These equations reduce to the exact solution in special
cases, two of which have practical importance. The first
is the case of infinite dilution of all but one component.
The second is the case, where the binary diffusion
coefficients are equal, as usually is the case when closely
similar chemical compounds diffuse. In these two cases
the [D] matrix is diagonal.

The exact solution is also obtained when p=0 or
p=1, but these two exponents have interest only as
limiting cases.

3. Other matrix functions

We assume that there is a power series expansion for
a general matrix function f( ) that we are interested in,
so that

0

BI=f([A) = ¥ a,[Al" 2%
n=0

So we can write using the notation of the previous
section

0

[B]= ZO a,[[F] + M]" (26)
expanding this series and also using approximations
from the previous section term by term, similarly to the
" matrix power approximation, we finally obtain

B,;=f(4;) for diagonal elements @7

f(Aii) _f(A/’j)

B.=A,
! ! Aii-Ajj

for off-diagonal elements  (28)
If some two diagonal elements of the [A] matrix are
equal or almost equal, we can use the derivative of the
(now scalar) function f( ) at the point A,;(=4;)

df(4.)

By=4y=44

for off-diagonal elements, 4; = 4,
(29)

This can be done also for the fractional power function,
which is, in fact, only a special case here.

4. Numerical comparison

The two approximate solutions of Krishna and Stan-
dart and the present method are compared to exact
(eigenvalue) solution by numerical simulations. Ran-
dom values are used as diffusion coefficients. The ele-
ments of the matrix of binary diffusion coefficients are
assumed uniformly distributed at the interval 0.5 x
10~° to 2 x 10~° m?/s. Random values are also used
for mole fractions at.two points of the system. The
difference between these points represents the driving
force for diffusion. Maxwell-Stefan diffusion coeffi-
cients (Eq. (4)) are calculated at the average
compositions.

Two criteria are used in the comparison. The first
criterion is the relative error ¢ in the mass transfer
coefficient matrices

n—1n—1

51: Z 2 (kij,approx.

i=1, =1

- kij,correc!.)2 (30)

n—1ln—1

Z 2 (kij,z:on'ect)2

i=1j=1
The second criterion is the relative error & of the
resulting diffusion fluxes. When the high flux correction
to the mass transfer coefficient matrix is neglected, i.e.
negligible convective flux is assumed, the criterion is

(/) = ¢[k](Ax) (3D

n—1 J _ J 2
82 = Z < i,approx. I.Correcl> (32)

i=1 Ji,correct

The first criterion is connected with the difference be-
tween the resulting matrices themselves. The second
criterion is connected with the resulting error in the
mass transfer calculations, and may thus be considered
more important than the first criterion.

The numerical results for several cases are collected
in Table 1. Cases with the number of components
n=23,4,5,8, and 25, and the correlation (2) exponent
p=0.25, 0.33, 0.4, 0.5, and 0.66, are considered. One
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thousand cases are calculated for each combination of
number of components and power p, so that in total
25000 cases are calculated.

Both methods result in errors that are in most cases
< 10%. Slightly larger errors are observed, if the num-
ber of components is high. This statistical comparison
shows that the present method rarely results in larger
errors than the binary mass transfer coefficient method.

As an example of the numerical comparison, a liquid
phase system of methyl isobutyl ketone (1), acetic acid
(2), ethanol (3), ethyl acetate (4), and water (5) is
considered. The estimated binary Maxwell-Stefan dif-
fusion coefficients are (10 ~° m?/s).

Dy, =120, D,y =132, D, = 1.84, D,;s=0.75, Dy,
=111, Dyy = 1.49, Dys = 1.22, Dy, = 1.64, Dss
=1.27, Dys=0.90

The matrix of binary diffusion coefficients is symmetric,
ie. D;=D,.

Average mole fractions in the mass transfer region
are

Table 1

x, =0.0037, x, =0.0328, x5 =0.0312, x, = 0.0067, x;
=0.9256

The Maxwell-Stefan [D] matrix is obtained from Egs.
(4) and (5)

0.7755  —0.0017 —0.0021 —0.0021
0.0004 1.2170 0.0040  —0.0056
—0.0009  0.0052 1.2621 — 0.0066
—0.0027 —0.0033 —0.0039 0.9294

[D] = 109 m? /s

Using the penetration theory, the matrix of average
mass transfer coefficients is

(k]=5 - [D]** (33)

where b=2(nt)~%° according to the residence time
model of Higbie (Taylor and Krishna, 1993, p. 232).
For the numerical comparisons of the two methods, the
parameter b is not important, since it cancels out when
the relative errors are calculated.

Numerical comparison of binary mass transfer coefficient method and the method presented here to the exact eigenvalue solution

Criterion 1 Criterion 2
n p ey, % Pey 2% &1 =812 N1 =¢12) % Pey 2% ‘H1=6, N(ey1=252)
3 0.25 0.36 0.09 3.97 0 0.92 0.21 4.28 0
3 0.33 0.42 0.10 4.18 0 1.55 0.42 3.66 0
3 0.4 0.48 0.12 4.02 0 1.72 0.26 6.66 0
3 0.5 0.48 0.12 4.00 0 1.08 0.25 437 0
3 0.66 0.47 0.13 3.65 0 3.05 0.38 8.01 1
4 0.25 0.60 0.18 3.36 0 2.29 0.97 2.37 (]
4 0.33 0.74 0.23 3.30 0 2.70 1.06 2.54 0
4 0.4 0.82 0.24 3.41 0 3.06 0.87 3.53 15
4 0.5 0.86 0.27 3.14 0 8.64 1.85 4.68 0
4 0.66 0.80 0.25 3.25 0 2.87 1.06 2.72 0
5 0.25 0.76 0.24 318 0 6.92 4.33 1.60 24
5 0.33 0.94 0.28 3.34 0 6.06 2.05 2.95 0
5 0.4 1.03 0.31 3.29 0 3.93 2.19 1.80 0
5 0.5 1.08 0.33 3.26 0 4.71 2.17 2.17 0
S 0.66 1.05 0.31 3.42 0 3.95 1.81 2.18 0
8 0.25 1.04 0.27 3.81 0 6.66 233 2.86 0
8 0.33 1.23 0.33 3.75 0 10.3 5.00 2.06 0
8 0.4 1.33 0.35 3.75 0 12.0 5.39 2.22 1
8 0.5 1.45 0.39 3.75 0 16.3 9.81 1.67 0
8 0.66 1.38 0.36 3.78 0 7.10 2.88 2.46 0
25 0.25 1.21 0.21 5.75 0 17.0 4.00 423 0
25 0.33 1.46 0.25 5.77 0 21.4 4.00 5.35 0
25 0.4 1.61 0.28 5.75 0 27.9 6.17 4.52 0
25 0.5 1.69 0.29 5.80 0 74.7 9.32 8.01 0
25 0.66 1.58 0.27 5.80 0 229 5.33 4.30 0

2 ¢, average error in the binary mass transfer coefficients according to criterion i.

¢ ,: average error in the present method according to criterion i.

© N(g;) <&): number of times the binary mass transfer coefficient method was more accurate than the present method according to criterion

i (out of 1000 cases).
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In the flux calculations, the following mole fraction
differences are used

Ax, = 0.0050, Ax, = —0.0076, Ax; = —0.0094, Ax,
—0.0168

The following relative errors are calculated:
Criterion 1 (relative errors in the matrices)

&1 = 0.13%
&, =0.003%

Binary k;
Matrix approximation

Criterion 2 (relative errors in the fluxes)

Binary k;;
Matrix approximation

&, =0.11%
&> =0.002%

Both these approximate methods gave results with a
reasonable accuracy. However, the matrix approxima-
tion developed here gives results that are much more
accurate than the binary mass transfer coefficient
method.

It is interesting that in this case even better results are
obtained, if the matrix approximation is applied in the
form [k]=5 -[B]~%% where [B] is the matrix of in-
verted binary diffusion coefficients. The errors are then
0.002% and 0.0009% for the two criteria. Usually the
approximate inversion of the [B] matrix increases the
error to some extent. The errors are, however, the same
order of magnitude whether the matrix inversion is
carried out approximately or not.

5. Computational work

For matrix eigenvalue calculations with QR decom-
position, we need about 5n° operation counts, where #
is the dimension of the matrix. Then we need n arbi-
trary functional calculations, one for each eigenvalue,
and one matrix inversion and two matrix multiplica-
tions. In the present method we need only » arbitrary
functional calculations, and 2n? other operation counts
(one for each element), and one matrix inversion, which
is of order (1/3)n3. Thus our method is certainly time
saving in practical calculations, especially for large n. If
time saving is of primary importance, matrix inversion
can also be avoided by using the inverted diagonal
elements of the [B] matrix straightly. Then we have a
true O(n?) process. This is obtained at the expense of
slight increase in the approximation error. (Press,
Teukolsky, Vetterling and Flannery, 1994).

In the relative computational time calculations it was
assumed that either the form of the diffusion coefficient
matrix or the value of the power p affects the computa-
tional time. Results for the different methods are pre-
sented in Table 2.

Table 2
Relative computational times

Number of Eigenvalue Matrix Binary k;
components solution approximation
3 1.00 0.29 0.32
4 3.00 0.52 0.65
5 5.36 0.84 1.09
8 20.2 291 3.56
11 44.6 7.06 7.76
15 109 16.2 18.5
20 223 35.6 41.8
25 426 71.2 74.1

It is clearly seen that the eigenvalue solution is much
more time consuming than either of the other two. The
use of the present matrix approximation is slightly
faster than the use of the binary mass transfer
coefficients.

6. Conclusion

The present approximate method for multicompo-
nent mass transfer coefficient correlations yields gener-
ally very accurate results. Up to four components the
errors are usually within 1%, and for a larger number
of components the errors are usually within 10%, also
when the binary diffusion coefficients are very unequal
and when no single component has a mole fraction near
unity.

The comparison of the present method with the
binary mass transfer coefficient method of Krishna and
Standart shows that the present method is significantly
more accurate. A further advantage of the present
method is that the matrix forms in the eigenvalue
solution and in the present approximate solution are
the same. The present method can be used with the
matrix of inverted binary diffusion coefficients in a
straightforward manner. In this case, no matrix inver-
sions are needed in the Maxwell-Stefan mass transfer
coefficient formulation.
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Appendix A. Notation

&, & approximation errors according to dif-
ferent criteria
A eigenvalue of a matrix

(Ax) vector of mole fraction differences
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arbitrary diagonal controlling matrices
appearing in the Maxwell-Stefan mass
transfer calculations

matrix function of inverted binary dif-
fusion coefficients (Egs. (5) and (6)) (s/
m?)

matrix of diffusion coefficients (m?/s)
arbitrary diagonal matrices

vector of diffusion fluxes (mol/m?s)
matrix of mass transfer coefficients (m/
s)

arbitrary off-diagonal matrices

scalars

coefficient of a power series

total concentration (mol/m?)

binary diffusion coefficient (m?/s)
arbitrary function

diffusion flux of component i (mol/
m?s)

number of components

scalar (power)

Sc Schmidt number, dimensionless
Sh Sherwood number, dimensionless
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