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Abstract

A simulation model has been developed to model drop populations in a stirred tank. A multiblock stirred tank model has been used
with the drop population balance equations developed in the literature. The stirred tank is modeled separately so that local turbulent
energy dissipation values and fluid flows are used in the drop breakage and coalescence functions. This model has several attractive
features, e.g. it can predict the inhomogenity of dispersions and some scale-up phenomena. Because local conditions can be used in the
drop rate functions needed in the population balances, it is possible to take these fundamental processes into closer examination. It
seems that the parameter values in the drop breakage and coalescence models depend on flow and turbulence averaging for the vessel.
This proposes that for “intrinsic” drop breakage and coalescence rates, a multiblock model for the stirred tank is needed in parameter
estimation as well. The stirred tank flow model may be obtained from measurements or from computational fluid dynamics
simulations in a straightforward manner. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many chemical processes are based on chemical reac-
tions taking place in stirred tank reactors. Often these are
two-phase processes, e.g. solid-liquid, liquid-liquid or
gas-liquid. Processes falling into these categories are, for
example, crystallization and suspension or emulsion pol-
ymerization, and dispersion processes in general. In these
processes the particle or drop size distribution, and the
heat and mass transfer often affect the product quality.

In two-phase reactors, the mass transfer between
phases can be determined from the expressions for mass
transfer fluxes, which consist of terms for diffusive and
convective fluxes, and the mass transfer area. The deter-
mination of drop size distribution and thus the mass
transfer area for liquid-liquid dispersions in a stirred
tank is the main objective of this article. The drop size
distribution may also vary considerably in different
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regions of the stirred tank. This variation is taken into
account in the simulation model presented in this work.

The classical method for determining mass transfer
area is based on the correlations for Sauter mean dia-
meter for droplets, as,. These correlations are usually
derived for a stationary state, but additional provision is
sometimes made to take transients into account. These
correlations are averages for the whole vessel only. They
do not give any information about the drop size distribu-
tion or possible inhomogenities in the stirred tank. In this
work, a population balance approach is applied in more
complicated and general cases. This approach is applic-
able in case the drop rate functions are known or can be
estimated. The droplets are also assumed to be spherical,
if another variable describing the deviation from the
spherical shape is not wanted. This additional variable
would probably complicate the system too much, with
negligible additional value.

The underlying idea in this work is that detailed stirred
tank flow data is applied in the model formulation. This
flow data can be obtained from a computational fluid
dynamics (CFD) model or from flow measurements.
From the population balance point of view, the most

0009-2509/99/8 - see front matter © 1999 Elsevier Science Ltd. All rights reserved.

PII: S0009-2509(99)00170-0


tsonkkil
Reprinted from Chemical Engineering Science, Vol. 54 (1999) pp. 5887-5899. Copyright 1999, with permission from Elsevier Science.


5888

V. Alopaeus et al. | Chemical Engineering Science 54 (1999) 5887-5899

Nomenclature

a drop diameter, m

as, Sauter mean diameter, ( = Zad/Za?), m

Gmax maximum drop diameter, m

Ainin minimum drop diameter, m

Aa width of droplet class, m

Ajj area between subregions i and j, m?

cr increase coefficient of surface area

Cm empirical constant

Cbc2>

C3,Cs,

Cs empirical constants

Cy empirical constant, m ™~ 2

D; impeller diameter, m

E surface energy, J

Fr two-phase Froude number ( = pcN?D?/
(Ap Hg))

F(a;,a;) binary coalescence rate between droplets
a; and g; in unit volume, m® s~*

g(a) breakage frequency of drop size a, s™*

glasa;)  breakage frequency of drop size a; to a drop
f size a; s~ ¢

H tank height, m

h(ai,a;)  collision frequency between droplets a; and
a; in unit volume, m* s ~*

hy, hy film thickness between drops at the begin-
ning and end of drainage

ki, ky constants

ks, ks  system parameters (m'? s™%%) and (kg
m~! s7%), respectively

ks, ks system parameters

n number of drops per unit volume, m~?>

Nin drop flow per unit volume into the region of
interest, s ' m™3

Aout drop flow per unit volume out from the
region of interest, s ! m~?

nb number of subregions (blocks)

nc number of drop classes

N impeller speed, s~ !

Np impeller power number

Nyg impeller pumping number

Ns dispersion scale-up number

P power, W

P, droplet volume distribution function

0 flow rate, m® s~ !

q parameter in coalescence efficiency function

0i; true flow rate from subregion i to j, m* s~

Qiik flow rate of drop class k from subregion i to
jym®s™!

QF; dimensionless flow rate from subregion i to j

r radial coordinate, m

Re Reynolds number

t time, s

t, circulation time, s

T tank diameter, m

Av

Uk

Yi,im Yi,ouz
Yi,j,im

Yi.yj‘nul
z

relative velocity between the dispersed and
the continuous phase, m s~ *

relative velocity between droplets and the
continuous phase, m s~ *
droplet terminal velocity, m s~
total tank volume, m?

volume of a subregion i, m?
relative volume of a subregion i

index number of drop class of characteristic
volume 77;

Weber number ( = paispersionN>D3/0)
number concentration of drop class i, m™~
number concentration of drop class i in
a subregion j, m~?

flow of drop class i per unit volume into and
out from the region of interest, respectively,
s*'m™?

flow of drop class i per unit volume into and
out from the subregion j,

respectively, s~ ! m ™3

axial coordinate, m

1

3

Greek letters

o

Blaia;)

B
Basa;)

I'(x)
I'(a,x)
&(z,r)
&

N e s

(ai>a j)
Hs Haisps

Up, Hc
w(a)

¢
P> Pdisps

Pps Pc
o

¢

@
o}

Wy

constant
probability that a drop of size g; is formed
when a; breaks, m ™!

constant

relative probability that a drop of size g; is
formed when a; breaks, m?

gamma function

incomplete gamma function

local turbulent energy dissipation, m?/s
average turbulent energy dissipation (per
unit mass) in a subregion i, m?/s 3
parameter in coalescence efficiency function
Kolmogroff length scale, m

viscosity ratio ( = up/uc)

eddy size, m

collision efficiency between droplets a; and
aj

viscosity in general, viscosities of dispersion,
dispersed phase and

continuous phase, respectively, Pa s
number of drops formed when drop of size
a is broken

size ratio between an eddy and a drop
density in general, densities of dispersion,
dispersed phase and

continuous phase, respectively, kg m™~
interfacial tension, N m~*

volume fraction of dispersed phase
relative turbulent energy dissipation
eddy-drop collision frequency, s !
frequency of velocity fluctuations, s~

3
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important fluid flow properties are the local turbulent
energy dissipations and the local velocities in the case of
turbulent flows, and the local shear force rates in laminar
flows. Various drop rate functions can then correspond-
ingly be used, possibly with suitable simplifications, with
these flow models.

The drop size distribution in two-phase processes is
generated by different phenomena, which can be divided
into different categories. These are:

e Feed or discharge of droplets in a particular region of
the vessel under consideration: Also relative velocities
between the continuous phase and the dispersed drop-
lets affect drop size distributions in different parts of
the vessel.

e Growth and nucleation of droplets: Droplet growth
(or shrinkage) follows from mass transfer into the
droplet or out from the droplet, or from those reac-
tions that do not conserve volume. Nucleation follows
when the system becomes thermodynamically unsta-
ble. This is the case when the Hessian matrix of Gibbs
free energy (with respect to mole fractions) is not
positive definite in some part of the fluid under consid-
eration (Haase, 1969, p. 69-76; Taylor & Krishna,
1993, pp. 59-66)

e Breakage and coalescence of droplets: These processes
are affected by the local mechanical conditions in the
dispersion, i.e. turbulent energy dissipation and shear
forces. Besides this, by physical properties, i.e. viscosity
and density of the phases, interfacial tension, and other
interfacial phenomena, such as the surface charge of
the droplets.

2. Population balance model

For the chemically equilibrated liquid-liquid disper-
sion (no growth or shrinkage of droplets due to mass
transfer or reaction), the population balance equation for
a unit volume is (Valentas & Amundson, 1966; Hsia
& Tavlarides, 1980)

d(njt(a)) = njA(a) + J ® o) Blad (@A) dd’

u

a/i/i
+ J M@® —a) B a((a® — a®) P a)
)
nA((@® — a®)'*mA(a)da’

— nowA(@) — g(a)nA(a) — nA(a)
Jw Ma,a"h(a,a)nA(a')da'. (1
0

This integro-differential equation can be solved by
dividing drop population densities into several discrete

classes, and calculating integrals in the above equation
numerically. The resulting set of ordinary initial value
differential equations can be solved with a standard nu-
merical algorithm. In the discretization, the preceding
equation is multiplied by da, and a new working variable
is set as

Y; = n;A(a;)da. 2)

Y; is the number concentration of drop class i, and a; is
the characteristic diameter of the class i. The following
working equations are then obtained for discrete drop
classes:

in nc
T Yiin + Z v(ay)B(aiazg(a)Y;Aa
j=i+1

#(2)
+ Y F(a?—a})'?a)YY;
i=t
EO =)

- Yi,oul - g(ai)Yi - Yi Z

j=1

Fla,a)Y, (3

where F(a;, a;) is combined notation for A(a;, aj)h(a;, a;).

#(¥";/2) stands for the index of the class whose charac-
teristic volume is half of the characteristic volume of class
i

#(¥ e — 7)) stands for the index of the class whose
characteristic volume is the last class characteristic vol-
ume minus the characteristic volume of class i.

The left-hand side stands for time change of number
concentration of drops in class i. On the right-hand side,
the terms aré as follows:

1. number concentration flow into the region where dis-
persion is assumed homogeneous (convection in),

2. number concentration frequency of droplets born
by breakage,

3. number concentration frequency of droplets born by
coalescence,

4. number concentration flow from the region of interest
(convection out),

S. number concentration frequency of droplets dead
by breakage,

6. number concentration frequency of droplets dead by
coalescence.

The dispersed phase volume fraction is given as (Hsia
& Tavlarides, 1980; Valentas & Amundson, 1966)

T

é=n f wgam(a)da =y v, o)

0 6i=1

For drop size discretization, we need a maximum drop
size so that a negligible amount of droplets have a
diameter larger than that. Usually maximum drop size
for the simulation can be obtained from the following
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correlation (Tsouris & Tavlarides, 1994):

Mp + 0-4llc> L2

Omax = Cm We‘O‘GDl(l +2.5¢ (5)

Mp + pe

where c¢,, is a constant, whose value is set at 0.125 or
a little larger for further assurance. If larger drops than
those predicted by this equation are fed into the vessel,
then these must be included in the size range. Minimum
drop size is obtained from the Kolmogroff microscale as
(Tsouris & Tavlarides, 1994)

Amin =1 = (1*/p%)""%. (©)

Then by assuming that the class width is the same for all
classes it is obtained from

Aa = (amax - amin)/nca (7)
and the first characteristic class diameter from
a; = Aaj2 + Amip- (8)

No serious error results in the last two equations if the
minimum droplet size is set to zero, provided that the
discretization interval Aa is larger than the Kolmogroff
length scale. In that case, the assumption that the min-
imum droplet size equals the minimum turbulent eddy
size is avoided. This assumption is furthermore criticized,
e.g. by Zhou and Kresta (1998).

3. Drop breakage and coalescence rate functions

In the past few decades, the drop rate functions given
by Coulaloglou and Tavlarides (1977) seem to have been
the“most widely used. However, recently some more
‘elaborated functions have been presented. These func-
tions are discussed here to give some insight into the
factors affecting the evolution of the drop size distribu-
‘tion. (Tsouris & Tavlarides, 1994; Luo & Svendsen,
1996).

In this work, attention is paid only to turbulent disper-
sions. The criterion to be satisfied is that the impeller
Reynolds number is greater than about 10°-10%, that is

Reim, = DINp/u > 10*. )

Then the power input into vessel is independent of the
impeller Reynolds number, and is given by

P = NppN°D}, (10)

where Np is the power number, and its value is usually
between 0.3 to 6.0, depending on the impeller type. The
power number may, however, assume values not in these
limits for more specialized impeller designs. (Brodkey
& Hershey, 1988, p. 375; Harnby, Edwards & Nienow,
1992, pp. 137-141, 331-332).

In the turbulent region, the droplet breakage rate is

given as
gl a(l + ¢)?
( -G 23,53 | (11

)=C €
g(a) 1(1 T )il Xp Py

The breakage is assumed to be binary, so that v(a;) is
always 2. Several daughter droplet probability density
functions (or “breakage kernels”) are used. Among these
are the normal distribution and the beta distribution.
(Coulaloglou & Tavlarides, 1977; Tsouris & Tavlarides,
1994)

If diameter is the variable that is used in the popula-
tion balance equations, the beta function can be written
as (Bapat, Tavlarides & Smith, 1983)

90a?(a?\ 2 a?\?
o) =" (5) (1-53)- 1

If the probability that a droplet is formed is related to the
increase of the surface energy in the drop formation, the
following equation for probability density is obtained:

Plana;) = Ein + (Emax — E(a7))
P 1 (Enin + (B — E(@))) da’

(13)

where E = na’c is the surface energy of the droplet
(Tsouris & Tavlarides, 1994)

If the scaling in the denominator is done separately
(see discussion below), the above equation can be put
into the following discrete form:

Biaia)) = amin + (/2 — Daj — af + (a] — agin)*"?
J J J
—(a} — a)*P. (14)

It can be seen that these functions are completely differ-
ent in shape, the beta function giving the maximum at the
equal volume breakage, while the probability based on
energetic aspects gives the minimum at the equal volume
breakage. Minimum drop size can again be set equal to
the Kolmogroff length scale.

The following equation for drop breakage does not
need an additional probability distribution or adjustable
parameters.

1301 (4 2
olaa) = kif(l — ¢)<j—;) L

J

min

12¢,0
oo ~ e o "

This gives the breakage rate of a drop of size a; to two
drops, one of size a; and the other correspondingly of size
(a? — a?)*/3, so that the probability distribution is impli-
citly built into the function. The physical interpretation
for ¢ is the size ratio between an eddy and a drop. The
following equations give us the unknown variable and
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constants.
ky = éx;—sfﬁ 12, (17)
By = 81"2[/3)“. (18)

o is a parameter, which comes from the relation for
a turbulent energy spectrum

E(k) = 0Pk ™53, (19)

Here o = 1.5 is used, so that ; ~ 2.0466 and k; ~ 0.9238
(Luo & Svendsen, 1996). The above integral equation can
be calculated by using incomplete gamma functions in
the following manner:

— 3k a1 — @) e\
gla, a;) = Tt a_f
{T(8/11,t,) — I'(8/11,b) + 2b**}(T'(5/11,¢,,)
— I[(5/11,b)) + b (T'(2/11,t,,) — T(2/11,b)}
(20
where
_ 12¢,0 _ “113
= _—ﬁlpcemaf/s and t, = b(n/a;) .

Numerical procedures for calculating incomplete gamma
functions are given in literature (Press, Teukolsky, Vet-
terling & Flannery, 1993, pp. 209-213).

The population balance equations must be slightly
modified with the above breakage function. This is
because the above function gives both breakage rates and
the daughter droplet size distributions. The term
Bla,a’)g(a’) is combined into g(a, a’), and the droplet dis-
appearance by breakage term must be obtained by integ-
rating birth by breakage rates over all possible daughter
drop sizes. The breakage rate is modified as follows:

g(a) is replaced byf Mda’. (21)
o 2a
This integral must be calculated numerically in the dis-
cretized population balance model.

A quite different mechanism for drop breakage has
been proposed by Wichterle (1995). In that work it has
been assumed that drop breakage depends on the
laminar boundary layer at the tip of the impeller, even in
turbulent dispersions. This approach is then shown to
give good results, at least if stationary drop sizes are
considered. However, no drop breakage frequency func-
tion was introduced in that work. Similar extensions to
the breakage models are proposed by Kumar, Kumar
and Gandhi (1991). They proposed that drop breakage
occurs through three mechanisms, turbulent breakup,

elongation flow breakup in the accelerating flow along
the impeller length, and shear mechanism in the bound-
ary layer at the impeller. These mechanisms then operate
simultaneously, composing the total breakage rate. How-
ever, no parameters needed for the population balance
approach are presented.

The binary droplet coalescence rate is given by
Coulaloglou and Tavlarides (1977). The original equa-
tion seems to be slightly erroneous, and the term
(a? + a})is replaced by (a; + aj)z. This correction is done
by several authors in the past (Bapat, Tavlarides & Smith
1983; Hsia & Tavlarides, 1983; Tsouris & Tavlarides,
1994).

1/3

1+¢

_ Hepce a;4; ¢
eXp( C“az(l +¢)3<ai+aj> ) @2)

In the above equations, C; — C, are empirical cons-
tants, and they are postulated to be universal. Some of
the values used by different investigators are shown in
Table 1.

A different equation is given by Tsouris and Tavlarides
(1994), with only one adjustable parameter. Their equa-
tions can be put in the following form: The collision
frequency is

F(a;a;) = Cs (a; + aj)z(aiz/3 + a;g/3)1/2

750(1/2

K
The parameter o is the same as in Eq. (19). It is retained

here because of its fundamental background in the turbu-
lence theory. The collision efficiency is

Waza;) = e'3(a; + a)*(a?? + a?)M (23)

6mucCsl - 31.25ND; ) o8

May, a;) = exp( —
! Pcedlan(a; + a)**(T*H)'P

with
2 4+ 1378¢ hi? 4+ 03129
(= 1.8721n<m> + 0'127ln<h§“+—0.312q
(25)

Table 1

Numerical values for the empirical constants in the drop rate functions
of Coulaloglou and Tavlarides (1977) (our Egs. (11) and (22)) according
to Bapat and Tavlarides (1985)

Proposed by/year C, C, Cs Cy(m?)

Hsia (1981) 0.01031 0.06354 45x107*  1.891x 103
Coulaloglou (1975) 0.00487 0.0552 217x107% 228x10'3
Ross et al. (1978)  0.00487  0.08 217x107% 3.0x10'?
Bapat and 0.00481 0.08 19%x1073  2.0x10'?
Tavlarides (1985)




5892 V. Alopaeus et al. | Chemical Engineering Science 54 (1999) 5887-5899

and

1/ aa; \'?
1= ;(2(ai +a j)> ’ 26)

This collision efficiency can be simplified to some extent.
First we use assumptions given by Tsouris and Tavlar-
ides (h3/* < 0.312q, and h; = 0.1(xcq)?), and then approx-
imate the logarithmic term numerically. Finally, we end
up with

May,a)) = (0.26144/k + 1)

Celtc
Pl=( — .
( pcNyPedla(a; + a)*PD3 ) 27)

where Cg &~ 1712Cs. It is interesting to note that this
collision efficiency depends on the impeller diameter as
well as the impeller power number. The impeller depen-
dent part in the collision efficiency equation comes from
the equation for frequency of velocity fluctuations in
a stirred tank, as given by Schwartzberg and Treybal
(1968):
31.25ND?

This is taken as a reciprocal of the contact time between
colliding droplets.

These functions give the collision frequency several
orders of magnitude greater than those of Coulaloglou
and Tavlarides (1977). Eq. (27) also predicts that coales-
cence efficiency increases with increasing drop diameter,
which is completely opposite to that of Eq. (22). In all
these drop rate equations, drops are assumed to behave
like gas molecules. This is quite a vague assumption, and
is, in fact, in conflict with the drainage models used in the
coalescence efficiency equation. A remedy to this should
be obtained in the future, as direct numerical simulations
of turbulent dispersions become increasingly precise, es-
pecially in the case of two-phase systems.

One possible estimate for the drop Sauter mean dia-
meter can be obtained by assuming only one drop class,
and setting coalescence and breakage rates as equal:

Y- F(a,a) = g(a). (29)

Inserting Y = 6¢/na® and the drop rate functions of
Coulaloglou and Tavlarides (1977), we get, after some
algebraic manipulation

Cs ucpce  [a\* a(l + ¢)°

Inl 10.8038¢——= | = Cho—5—=| = | — Co—55—=nx.

“( "’cl> S+ o) T o
(30)
This equation can be solved numerically for a to get an
estimate for the Sauter mean diameter. This estimate is

quite crude, but still a quite reasonable initial approxi-
mation. This approach has a more fundamental back-

ground than the commonly used Sauter mean diameter
correlations, where diameter is correlated from the
Weber number. Hence, it can be assumed that better
results are obtained by this method than the classical
method, provided that the three parameters, C3/Cy,Cy,
and C, are correct. With this approach, some of
the deficiencies in the Sauter mean diameter correlations,
as shown by Pacek, Man and Nienow (1998), are over-
come.

4. Implementation aspects

There are a few aspects to be considered when the
discrete model is coded for an equation solver. Firstly,
the probability density function f(a;a;) must be scaled so
that volume is conserved in drop breakage. In fact, mass
is the correct property to conserve, but since the system is
assumed to be in chemical equilibrium and incompress-
ible, this is equivalent to saying that volume is conserved.
This conservation is most easily done by setting the total
volume of droplets born by breakage as equal to the total
volume of the droplets dead by breakage. Then no scal-
ing is needed in the probability density function.

The other point is that #(77/2) and #(¥,. — ¥;) are
not necessarily integer numbers. In fact, if the drops are
divided into diameter classes of equal length, each speci-
fied by a characteristic diameter, then after a two-drop
collision the resulting drop diameter is never exactly
equal to any of the characteristic drop class diameters,
according to the celebrated Fermat’s theorem. The rem-
edy for this problem is the following. The coalescence
functions are calculated separately over all possible co-
alescence pairs. When two droplets coalesce, the resulting
droplet is divided into the two nearest drop classes ac-
cording to the third moment of the diameters. This divis-
ion is made so that both the number of the droplets and
their volume is conserved. If the resulting droplet has
a diameter greater than the largest droplet class, then the
actual volume of that droplet is put into the largest class,
so that a number of droplets greater than one is formed
for that class. This should, however, be avoided as far as
possible by selecting a large enough diameter for the
largest droplet class, so that negligible amounts of drop-
lets larger than that are formed. Care must also be taken
to avoid counting collisions between two equal drop sizes
twice.

Here the implementation is made so that arbitrary
discretization can be used if wanted. Selective refinement
during simulation can also be made. This article, how-
ever, focuses on nonuniform features of dispersion in
a stirred tank, so that the accuracy of the solution is
obtained by choosing a large enough number of drop size
discretization classes. These discretization aspects have
been discussed further by Kumar and Ramkrishna
(1996a,b)
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5. Stirred tank model

The breakage and coalescence phenomena are affected
primarily by local turbulence dissipation. Turbulence is
not homogenous in a stirred tank, so that near the
impeller turbulence is several orders of magnitude
greater than near the wall, or at the surface of the disper-
sion or at the bottom of the tank. The result is that
breakage of the droplets especially occurs almost exclus-
ively near the impeller. On the other hand, the impeller
pumps dispersion all over the tank. Inhomogenities in
the tank will result if circulation in the tank is not
sufficiently faster than the breakage and coalescence phe-
nomena. In the literature, a plug flow model is used to
take this inhomogenity and circulation into account
(Park & Blair, 1975). A new flow model implementation
based on the known flow fields is used in this work. These
flow fields have been presented, for example, by Bourne
and Yu (1994)

In CFD simulations the stirred tank is usually divided
into tens of thousands control volumes, and in some
cases, even up to a million. A complete CFD model
with population balances calculated in each cell is
thus considered too complicated for a full popula-
tion balance. Thus we average the results of these
complicated models and use a simplified flow model
that includes only a limited number of control vol-
umes. Simplification can be made in a straightforward
manner by averaging from the full-scale CFD calcu-
lations, and various degrees of simplification can be
made easily. It has also been assumed that a simplified
model can reveal all the underlying phenomena regard-
ing non-idealities in a stirred tank. A similar approach in
using CFD results has been recently adopted by Mag-
gioris, Goulas, Alexopoulos, Chatsi and Kiparissides
(1998), who used a two block flow model in the popula-
tion balances.

The stirred tank is divided into 11 subregions as shown
in Fig. 1, where one half of the tank is shown. Symmetry
around the impeller axis is assumed.

The local turbulence dissipations in the different sub-
regions, and flows between the subregions were obtained
from the work of Bourne and Yu (1994). Here each
subregion is assumed to be completely mixed and
homogenous, so that volume averaging must be done in
the following way for each region.

The energy dissipation is

7 (31)
where the volume of the subregion is
V.= f J 2nrdzdr. (32)

QY

4u A

Fig. 1. Subregions chosen for simulation in a stirred tank.

Average turbulent energy dissipation in the whole vessel
is obtained from

€ave = NpDN3/V. (33)

It is assumed that all energy input to the vessel is dissi-
pated by turbulent mechanisms.

The volume averaged relative turbulent dissipation is
defined as

¢ = &/eaye- (34)

Relative turbulent dissipations and corresponding sub-
region volumes are given in Table 2. Scaling is made here
so that

=1 (35)
Vi = 1. (36)
Internal flow patterns are needed for droplet convection
between the subregions. Dimensionless flow values

(pumping numbers between the subregions) are here de-
fined as

% = Q/ND}). (37

These values are given in Table 3.

These values are adapted from the velocities presented
by Bourne and Yu (1994), by taking their equation for
radial flow rate in discharge:

Ny = Q% = Q/(ND?) = 2.33(r/D;) — 0.379 (38)
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Table 2
Relative turbulent dissipations and volumes of different regions

Subregion v @;

1 0.0073 34

2i 0.0093 12

20 0.0755 4.6
3u 0.2052 0.56
31 0.0846 0.56
4u 0.0950 0.073
4] 0.1000 0.073
Su 0.0584 1.1

51 0.0219 1.1
6u 0.2603 0.092
6l 0.0825 0.092
Table 3

Dimensionless flow values between the subregions

Flow Q*

1-2i 0.7860
2i—20 1.1006
20— 3u 1.3641
20— 3l 1.0492
3u—4u 1.3641
31— 41 1.0492
4u — 5u 0.4443
41 - 51 0.3417
4u - 6u 0.9198
41 - 61 0.7075
6u —2i 0.1778
6l —2i 0.1368
6u — 20 0.7420
6l - 20 0.5707
Su—1 0.4443
Sl—1 0.3417

as a basis as the flow values are made consistent. The
exact positions of the subregions are, in fact, not impor-
tant provided that the turbulent dissipation and flow
rates are correct. These turbulent dissipation and flow
values are quite comparable to our own CFD calcu-
lations done with the CFX4 code, using 55,620 control
volumes. Further refinement of these values and the
methodology to choose the appropriate volumes are left
for the future.

Now the convection terms in the discretized popula-
tion balance equation (3) can be calculated as

nb . Yi .
Qkf B oand Y= 3 20 (39)
k=1 Vj

ljln= Z

where double indexed Y ;is the number concentration of
drop size i in block j, and the third index ;, Or o, again
stands for convection speed in or out. Additional terms
for convection into the vessel and out from the vessel
must be added for a continuous flow operation.

If the relative velocity between the drop phase and the
dispersed phase is taken into account, an additional term
must be added to the flow variable between the blocks as

Qij = Qij + Av 4y, (40)

where Auy is the relative velocity between the drop phase
and the dispersed phase for drop class k,4;; is the area
between blocks i and j.

If no drop separation due to a gravitational or a centri-
fugal field is assumed, then ¢ is constant in each block.
Otherwise ¢ varies from block to block, and the settling
and centrifugal characteristics of the vessel are also
modeled. For population balance simulations of
liquid-liquid systems with comparable densities of the
two phases, the relative velocity between the phases can
be neglected in most cases.

The relative velocity between the phases can be cal-
culated from terminal velocity and a correction for high
holdup (Coulson & Richardson, 1991, p. 604). Terminal
velocity can be calculated from a modified Stokes law if
droplets are small, rigid and spherical, and the drops are
assumed to accelerate to terminal velocity instantaneous-
ly. Stokes law is modified to take centrifugal forces into
account as

v, =galp/18yu, (41)

where g is the total acceleration due to gravity and
centripetal acceleration. This equation is valid only for
a drop Reynolds number less than about two.

Stokes law can be augmented to take circulation inside
droplets into account by multiplying the rigid drop ter-
minal velocity value by (1 + x)/(2/3 + k), where « is the
viscosity ratio between the dispersed and the continuous
phase. (Clift, Grace & Weber, 1978, pp. 33-35)

Apparent dispersion viscosity and = density for
liquid-liquid systems is calculated with the following
equations:

__KHc f Hp
Audisp - 1 — ¢\1 + 1 QIAﬂC n ”D> (42)
paisp = $pp + (1 — P)pc. (43)

These values are used whenever properties of the disper-
sion as a whole are needed, like in power input and
impeller Reynolds number calculations and in Kolmog-
roff length scales (Vermeulen, Williams & Langlois, 1955;
Perry & Green, 1997, pp. 15-24).

It has been proposed that the droplet sizes, and pos-
sibly the size distribution, has a significant influence on
dispersion viscosity and other rheological properties.
Fine emulsions are shown to have larger viscosities than
coarse emulsions (Pal, 1996). The range of drop sizes in
that work are below those usually found in stirred tanks,
and no quantitative equation is given for drop size effect.
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With the apparent dispersion viscosity and density, we
can write an equation for the turbulence damping effect
on turbulent energy dissipation. For turbulent energy
dissipation in dispersions, we adopt the following equa-
tion (Doulah, 1975):

3
Caiep =ac<"—c‘—’i“ﬂ) : (44)
HMdispPc

Inserting the above values for apparent dispersion viscos-
ity and density, we obtain

_ <(1 = $)Ppp/pc + (1 — ¢))> ?
Edisp = &c .

1+ 1592
Up + Uc

(45)

Dispersion inhomogenities are often disregarded when
drop size distributions are simulated. Experimentally,
these inhomogenities are reported to be in the range
1.2-29%, depending on the physical properties and the
dispersed phase volume fraction (Chatzi & Kiparissides,
1995). These experiments are, however, usually made in
small-scale tanks, which are usually about one liter in
volume. Furthermore, to try to avoid inhomogenities
in these experiments, an impeller larger in diameter than
the usual D; = T/3 may be used.

Dispersion inhomogenity in scaleup can be studied in
the following way. First we define a dimensionless num-
ber describing the proportion of average circulation time
to the average time interval of breakages in the vessel.
Here this number is called the “dispersion scale-up num-
ber”. It describes the relative susceptibility to in-
homogenity in a vessel. It is defined here as

Ns = tg(asa), (46)

where as, is the Sauter mean diameter. The circulation
time for stirred tanks agitated with the Rushton turbine
is given by Holmes, Voncken and Dekker (1964):

t. = k;N™YT/D)~ 47)

If the breakage function is as given by Coulaloglou and
Tavlarides (1977), and the Sauter mean diameter is as-
sumed to be as, oc (P/V)~%*, as most of the correlations
propose, the dispersion scale-up number can be put into
the following form:

ky(P/V)*?

Ns = ks(T/D)*D}{ *N** = N

(48)

The second equality assumes geometric similarity during
scaleup (constant T/D; value). k5 and k4 are parameters,
which depend on universal constants in the breakage
function, the power number of the impeller, physical
properties, dispersed phase volume fraction, but not on
the impeller speed or diameter. k4 also depends on geo-
metrical ratios of the vessel.

It can thus be seen that the dispersion scaleup number
increases as impeller speed decreases with constant
power/volume ratio and geometric similarity, as usually
is the case in dispersion process scale-up. This proposes
that inhomogenities increase in larger vessels.

6. Simulation results

Physical properties are taken from an industrially im-
portant synthesis, where two immiscible liquid phases are
stirred in a semibatch reactor. Two cases are studied: The
first corresponds to the situation at the beginning of the
synthesis and the second at the end. The corresponding
physical properties are:

System 1, at the beginning of the synthesis:

up = 0.00067 Pas, uc = 0.00126 Pas, p, =805kgm >,
pc=1064 kgm™> ¢=0024Nm™.

System 2, at the end of the synthesis:
up = 0.0205 Pas, puc=0.002 Pas, pp =923 kgm™?,
pc=1193kgm™3, ¢=0002Nm .

Vessel specifications for these simulations are:
Np=50, T=30m, H=30m
Di=10m, ¢=04.

A quite significant feature for this system is the relatively
low interfacial tension at the end of the synthesis. Along
with the high dispersed phase holdup fraction, this results
in a system where inhomogenities in the vessel are likely
to occur. ’

For illustration, the drop rate parameters of Hsia
(1981) are chosen, and the beta distribution is used as the
breakage kernel.

Firstly, the effect of drop diameter discretization is
studied by simulating the two systems with different
numbers of drop classes. Two steady states with different
impeller speeds (N = 0.5 and 1.0 s~ !) are studied for
both systems, and one transient where impeller speed is
increased from 0.5 to 1.0 s~*. Transient values are ob-
tained at the moment when the dispersion has been
agitated ten seconds with the higher impeller speed. Rela-
tive errors with different numbers of drop classes are
shown in Fig. 2. Since an analytical solution to the
population balance equation is not possible except in
some special cases, values are compared to those ob-
tained in simulations with a maximum reasonable num-
ber of drop classes, or a number of classes beyond which
no change is found as the number of classes is further
increased.

It can be seen that about fifteen drop classes give quite
reasonable results. In almost all cases, the error of both
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Fig. 2. Relative errors with different numbers of drop classes.

the Sauter mean diameter and the standard deviation is
less than a few percent, the error in the standard devi-
ation for the higher impeller speed being slightly higher.
For a steady-state solution, slightly fewer classes are
needed than for a transient solution. Maximum and
minimum drop class sizes must also be chosen so that
there are not many classes with negligible amount of
drops within. This effect can be seen from Fig. 3, where
drop classes are kept constant as impeller speed is in-
creased. This results in more useless drop classes at the
upper end of the discretization interval, and a slightly
larger error.

In Fig. 3, two transients are shown, where an emulsion
with system 2 properties is initially stabilized by mixing it
for a long time at impeller speeds N =0.5s"! and
N = 1.0 s, respectively. At time ¢t = 0 impeller speed is
either increased from 0.5 to 1.0 s~ ! or decreased from 1.0
to 0.5 s™1. 15 drop classes are used. Only one volume
block is used, i.e. the vessel is assumed as homogeneous.
When N is increased, the population curve moves from
the higher diameters to the lower ones, and when de-
creased, in the opposite direction.

It can be seen that the transient is much slower if the
impeller speed is decreased compared to the case where it
is increased. The drop population is quite close to steady
state after 60 s if impeller speed is increased, and after
about 2 min, if decreased.

The same transients are then simulated with the multi-
block model. In these transient calculations, it is assumed
that the flow patterns in the multiblock model are estab-
lished immediately after the step change in the impeller
speed. Fig. 4 shows transients for increasing (on the left)
and decreasing (on the right) impeller speeds. Sauter
mean diameters in three blocks and the overall Sauter
mean diameter in the vessel are plotted. Block names are
shown in Fig. 3. Corresponding steady-state populations
are shown in Fig. 5.

From Figs. 3-5, it can be seen that the discretization
affects populations to some extent, although the average

energy dissipation is the same. The standard deviation of
the population especially is much larger in the multiblock
model, about twice in these cases. The difference in the
Sauter mean diameter is, however, not so great at the
steady states, but during transients some deviations can
be seen, as is shown in Fig. 6. The multiblock model
predicts slower responses than the single block model.

7. Conclusion and future work

The population balance approach is capable of de-
scribing various phenomena in liquid-liquid systems.
However, by assuming a stirred tank to be homogeneous,
a serious error might be introduced, since turbulent en-
ergy dissipation is several orders of magnitude greater
near the impeller than far from it. This error can appear
in both giving erroneous values of drop sizes in different
parts of the vessel due to inhomogenity, but also because
fundamental breakage and coalescence processes are dif-
ferent if the vessel is examined more locally, leading to
erroneous overall drop mean diameter. The differences in
the drop populations revealed by the simulations of dif-
ferent flow models suggests that the drop rate parameters
should be fitted with a more realistic (i.e. multiblock)
model. Other drop breakage models can also be intro-
duced at that point. In a single block model serious errors
may be introduced if the drop populations are measured
at one point in a vessel only. Thus, the multiblock model
may also be used to give better parameter values.

The stirred tank model presented here is quite general,
and it is very flexible in describing inhomogenity in
a stirred tank. This model can also predict scaleup effects
in dispersions. These effects arise because equal power
input per volume cannot usually be sustained when a la-
boratory scale reaction is scaled up to a pilot or a full-
scale process, resulting in increased drop size and mass
transfer resistance. Furthermore, even if power per vol-
ume is kept constant, flow patterns change in a scaleup.
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Fig. 4. Transient Sauter mean diameters in a multiblock system.

A stirred tank population balance simulation approach

can reduce the uncertainty experienced in this process.
This work is continuing with drop population

measurements and parameter estimation with a multi-

block model. This is necessary to correctly describe the
various phenomena, and it is thus hoped to obtain more
universal drop rate parameters this way, since one further
phenomenon, i.e. the combined effect of flow patterns
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Fig. 6. Differences in Sauter mean diameter between the multiblock and the single block models.

and turbulence inhomogenity, can be excluded from the
“intrinsic” population balance simulation. In the future,
this model is to be used in connection with CFD reactor
simulations, by using the turbulence and fluid flow values
obtained from the CFD model, and also for the way that
this multiblock population balance model gives the drop
size information to the CFD reactor simulator for mass
transfer and two-phase flow calculations. Settling charac-
teristics may also be introduced, so that inhomogenity in
the phase fractions in different parts of a vessel is de-
scribed correctly. Furthermore, this stirred tank model
may also be used with population balance equations and
rate functions of other processes, such as precipitation or
crystallization.
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