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Appropriate Simplifications in Calculation of Mass Transfer in a
Multicomponent Rate-Based Distillation Tray Model

Ville Alopaeus* and Juhani Aittamaa
Department of Chemical Technology, Helsinki University of Technology, Helsinki, Finland

The Maxwell—Stefan approach has been successfully used to model mass transfer in distillation
columns and other multicomponent separation processes. This approach leads to rather
complicated and computationally intensive matrix calculations. In this work, several simplifica-
tions for a rate-based distillation tray model incorporating Maxwell—Stefan-type mass transfer
are evaluated according to their accuracy in predicting tray performance. The tray model is
based on an assumption of vapor flowing as a plug through a completely mixed liquid. Mass
and heat transfer resistance on both sides of the interface is considered. The basic plug flow
model, in which the number of mass transfer units in vapor phase is used to model the
composition profiles in the vapor, proved to be quite accurate. In that model, constant effective
interfacial compositions are assumed. These compositions are iterated during the solution of
the model. Approximating the high-flux correction can ease the computational procedure without
significant loss of accuracy. The use of overall mass transfer coefficients and the assumption of
a single-phase resistance proved to be inadequate.

Introduction

The Maxwell—Stefan approach to mass transfer has
been adopted by many researchers in the past two
decades, with very promising results. However, these
equations still seems to remain somehow obscure to a
large number of scientists and engineers who are
dealing with mass transfer models in their work. The
best way to implement Maxwell—Stefan mass transfer
models into reactor or mass transfer device models is
not clear, and various calculational approaches are
adopted without consideration of their validity, at least
quantitatively.

New approximations for these quite complex equa-
tions have been presented recently. In this article, some
aspects regarding practical application of these equa-
tions and their effects on simulation results are studied.
Various (simplified) formulations are tested with a plug
flow plate model, which is in a central position in the
chemical engineering practice.

The starting point here is the Maxwell—Stefan dif-
fusion equations with Toor—Stewart—Prober lineariza-
tion of constant physical properties in the diffusion path.
This assumption is validated in many instances, and
hence, a more complicated numerical integration over
the mass transfer film thickness is not needed. Then,
interphase mass and heat transfer is calculated by
assuming resistance in both phases. Mass transfer
coefﬁlcients are calculated from some suitable correla-
tion.

The equation for the mass transfer fluxes is written
in the following form (reaction effects in the mass
transfer region are neglected)

) = (D) + Ny@) = ¢, K1, — xp) + @)N, (1)

For the other phase, subscripts I (interface) and B (bulk
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liquid or vapor) are interchanged so that the mass
transfer direction is the same for both phases.28

The computational sequence for mass transfer calcu-
lations is the following:

1. Obtain all of the needed physical properties from
the thermodynamic models, such as binary diffusion
coefficients, densities, and viscosities of the two phases.
Also obtain other system properties needed in mass
transfer coefficient correlations. These are, for example,
terminal velocity and drop or bubble size for vapor—
liquid or liquid—liquid systems.

Binary diffusion coefficients at infinite dilution are
usually obtained from correlations. For gases and lean
liquid mixtures, these values may be satisfactory, but
for concentrated liquids, they may differ from the
observed values. There are a few methods for making a
correction in the concentrated liquids. The following
form has been suggested for taking the high mole
fraction correction into account.?

DU — (_Dg)(1+xj~xi)/2(ngi)(1+x,-*xj)/2 (2)

This form has been adopted here as a basis for diffusion
coefficient calculations. This issue has been discussed
in more detail elsewhere.*

2. Calculate matrix of inverted diffusion coefficients
and invert it to the (Maxwell—Stefan) diffusion coef-
ficient matrix.?

3. From steps 1 and 2, calculate the Reynolds number
and the matrix of Schmidt numbers. The multicompo-
nent diffusion coefficient matrix is used in the Schmidt
number instead of the scalar diffusion coefficient.

4. Calculate the matrix of mass transfer coefficients
using some suitable correlations. These are often of type
Sh = a + bRe"Sc™. The multicomponent mass transfer
coefficient matrix® is calculated then as

(k1 =20 + BEL o @
dp
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If there is a single film thickness that can be explicitly
known, the mass transfer coefficient matrix is obtained
in a straightforward manner from the diffusion coef-
ficient matrix as

(k] = 1/1[D] (4)

This is equivalent to eq 3 with 6 = 0 and a = d/l. It
should be noted that, in that case, no matrix fractional
power is needed.

Next, calculate the mass transfer rate factor matrix
and then the high-flux correction matrix according to
the chosen mass transfer model, e.g., the film or the
penetration model. The high-flux correction takes ac-
count of the fact that the mole fraction profiles are not
linear along the diffusion path.36

The total (convective) flux across the interface needed
in these equations is obtained from the summation
equation for the interface, that is, interface mole frac-
tions are iterated until the mass transfer fluxes are
equal at both sides of the interface and the sum of
interface mole fractions is unity. If the mass transfer
calculations are done in the same iteration loop with
the distillation column or reactor model calculations, the
total flux can usually be obtained from the material
balances. Some examples are:

For a distillation tray

V. .= V.+fF;
Nt —_J 1 Aj J (5)
For a CSTR

Z(FV_PV+VVrV)i
i=1
N=———"7—"7"—" (6)
amtrVR

For a single spherical particle, with reaction occurring
inside, assuming pseudo-steady-state

da
Nt = EZri (7)

i=1

Sometimes, a relation between the diffusion and the
mass transfer fluxes (the so-called bootstrap condition)
can be found. Mass transfer fluxes can then be obtained
explicitly from the diffusion fluxes and this relation
alone, without iteration. The exact bootstrap condition
can be found quite rarely. However, approximate rela-
tions are often available, as it is in distillation.

The bootstrap solution states that the mass transfer
fluxes are not linearly independent, and thus a deter-
minacy relation can be found. For distillation and other
vapor—liquid mass transfer situations, such a relation
can be found by assuming that the difference in conduc-
tive heat transfer fluxes between the two sides of the
interface is negligible compared to the heats of vapor-
ization. The energy balance for the interface then gives
us the relation

Y NH,, =0 ®
i=1

Then, the mass transfer fluxes can be calculated ex-
plicitly with the bootstrap matrix and the total flux from
the sum of the component mass transfer fluxes.3
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Another correction sometimes made in the mass
transfer expression in eq 1 originates from the fact that
the true driving force for diffusion is not the mole
fraction gradient, but the gradient of chemical potential.
This correction can be made by further multiplying the
high-flux-corrected mass transfer flux equation by a
matrix of thermodynamic corrections. For nonideal gas
mixtures, the corresponding correction can be made as
well. This is, however, necessary only in very high
pressures.?

The use of a thermodynamic correction with the
empirical mass transfer coefficient correlations is not
an obvious question. When the mass transfer coefficient
correlations are obtained from measurements of ther-
modynamically ideal systems and these correlations are
to be used in nonideal systems, then the use of a
thermodynamic correction factor is justified. However,
if the correlations are obtained from measurements of
nonideal systems, the introduction of a thermodynamic
correction afterward may lead to errors. One more
complication is that the thermodynamic correction
strongly depends on the chosen thermodynamic model.
Consequently, an accurate activity coefficient model
must be used. The activity coefficient model should
predict both the activity coefficients and their deriva-
tives with respect to mole fractions accurately.

Some Calculation Methods for the Interphase
Mass Transfer

To calculate interphase mass transfer, single-compo-
nent mass transfer fluxes must be calculated at both
sides of the interface. The interface compositions and
the total flux are then iterated so that the mass transfer
fluxes are equal and the mole fractions at both sides of
the interface sum to unity. This procedure can be done
separately in an inner loop of some separation unit or
reactor model solution or, preferably, simultaneously
with the other model equations.

Often, it is desirable to remove the interface composi-
tions in the mass transfer equations. In these cases, the
two mass transfer resistances are usually combined to
an overall mass transfer coefficient. The set of equations
is then diminished for faster solution. On the other
hand, composition profiles can be pre-integrated in the
plug flow type configurations, leading to a simpler
formulation of the model equations. The overall mass
transfer coefficient matrix for multicomponent systems
is usually defined by a straight generalization of the
corresponding binary form, leading to

ctv o1
—[M][k;) 9)

Cy

oyl ™ = [kl +

Here, [M] is the phase equilibrium linearization matrix,
M;; = 3y;*/ax;. If the distribution coefficients can be
described by the form K; = p;Syi/p, then this matrix is
equal to [K][T'], where [K] is a diagonal matrix of n — 1
first distribution coefficients

The equation for overall coefficients can be derived
for binary systems by assuming negligible total flux
(even though the high-flux correction to the mass
transfer coefficients is shown here). For multicomponent
systems, the derivation is not possible, as vectors cannot
be subtracted from the matrix equations. This is why
the equation for overall mass transfer coefficients must
be defined by the above equation.3”
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If the mass transfer coefficient matrices are calculated
using bulk compositions (and temperatures), instead of
film averages, the interphase mass transfer can be
calculated by iterating total flux only. This is ac-
complished by the following procedure. First, interface
compositions are calculated by equating the flux values
for the both sides of the interface as

(o) = {e L) + NI + e R KTY ™ {e R 0g) +
Nyyp) + ¢, lki](xp)} (10)

The total flux must be known when the above equation
is used. The residual of the summation equation (for
iterating the total flux) for an equation solver is then
obtained from

n—1

n-1
F= ;Kixl,i +K,(1- ;xl,,.) -1 11

The mass transfer fluxes are then calculated from eq 1,
as the convective part (the total flux) is known.

Computational Simplifications

Some steps in the calculation of the mass transfer
fluxes can be simplified to ease the computational
burden. First, in eq 3 for multicomponent systems, a
fractional power for a matrix is needed. This can be
achieved approximately, by using binary mass transfer
coefficients® or by using the knowledge of the structure
of the diffusion coefficient matrix. Matrix fractional
powers can be calculated approximately for matrices
with diagonal elements relatively greater than their off-
diagonal elements.

For a problem [A] = [DJ?, we have the following
approximate formulas

A; =D, for diagonal elements  (12)
_ - |
A= DUITD;‘:‘ for off-diagonal elements (13)

Other matrix functions can be approximated similarly.
For [A] = [D]), we can use the following®

A;=fD;) fordiagonal elements  (14)
D) — fDy) .
A= Dv—l;u—_T” for off-diagonal elements

(15)

Another simplification can be made for the high-flux
corrections. After linearization, the following approxi-
mate formulas give quite satisfactory results in most
of the mass transfer calculations. The high-flux-cor-
re(;ted mass transfer coefficient matrix is given simply
by

(k] = [kf] — aNc,1] (16)

where the linearization parameter a can be calculated
from the following equations: for the film theory

1 1

a= - 17
‘Pave exp(q’ave) -1 ( )

and for the penetration theory

exp(W2 /7)
a=lp1ve 1 —mgrm (18)
Here
Wove = Ni(n — Dic, Zk;) 19)
The Plug Flow Models

Basic Two-Film Model. Mass transfer calculations
here are made using a plug flow model. This model is
thought to be a good representative of a typical mass
transfer situation, and furthermore, it has some features
not found in simple two-film calculations, where both
phases are assumed well mixed. Here, the vapor phase
is assumed to flow as a plug through a well-mixed liquid,
which is often a reasonable approximation to small
distillation trays and to several other pieces of equip-
ment appearing in the chemical industry. There is a
resistance to mass and heat transfer in both phases
(although in some cases resistance can be assumed to
be in one phase only). 1

The variables for the model are the following: average
mole fractions in the V phase (n in number), average
mole fractions at the interface (n), mole fractions at the
L phase (n), distribution coefficients (n), molar fluxes
(n), and temperatures of the interface, V phase, and L
phase. This makes total 5n + 3 variables. V refers here
to the vapor phase and L to the liquid phase. The
equations to be solved are the mass transfer flux
equations for both films and an energy balance for both
phases. Composition profiles for the dispersed phase
must also be solved. The average compositions in the V
phase are kept as variables, because these compositions
are needed in the diffusion coefficient matrix in the V
phase. Some variables can be left out of the previous
list if the values calculated in the same iteration loop
are used. For example, distribution coefficients can be
calculated at the beginning of a loop, and these values
can be used in the rest of that loop. The same is true
for mass transfer fluxes, as these are needed only to
check interface mole fractions and for the energy bal-
ance. However, for nonlinear systems, it is probably
advisable to keep these variables in the set, as this is
thought to make the system more linear (even though
larger), which makes it easier, and sometimes even
faster, to solve. Variables of the basic plug flow model
are illustrated in Figure 1.

Pressure is assumed constant everywhere in the
considered system. The interface is assumed to be in
equilibrium, that is

¥ =Kay; (20)

where
K, =ypSp (21)
The mass transfer coefficients are calculated from the
diffusion coefficients and other required properties for
both phases. The mass transfer fluxes are calculated as
(NV) = Ctv[kaf](yB,ave - yI) + (yB,ave)Nt (22)
(Ny) = ¢ ki) — xp) + ()N, (23)

In the previous equations, it is assumed that the fluxes



Figure 1. Illustration of the basic two-film plug flow model.

can be calculated with the average interfacial composi-
tions. These averages are obtained from the solution of
the flux equations along with the rest of the set of
equations. The assumption that the average interfacial
compositions can be used is verified later.

The number of mass transfer units for the V phase is
calculated by assuming that the total vapor flow varies
linearly over the height of the stage, which gives

[Nyl = ctvﬁ[k;,] 24)

+

from which the average mole fractions in the V phase
can be calculated as

(yB,ave) =(yp —{lll - EXP(—[NV])}[NV]_I(yI —yp)
(25)

and the mole fractions above the stage as
(yp) = (yp — exp(—[NyDy; — yg) (26)

The last mole fraction is then obtained from the rela-
tion3 3x = 1.

The liquid-phase mole fractions are obtained from the
material balance as

(g) = () + A0) @
nyL niL

In fact, the mole fractions above the vapor phase are
preferably calculated from the material balances as well,
instead of eq 26. If the present tray model is to be used
in a column model, it is very important for the column
model convergence that the material balances of each
tray be solved to high precision, and the matrix calcula-
tions of eq 26 do not necessarily do that. Hence, the mole
fractions of the vapor leaving the stage are calculated
from
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Nyp
Ty

ompositions Tv,ave
mperature

coefficients

eat transfer fluxes across interface

Vapor phase, plug flow
Vapor phase average compositions

Y8

Vapor phase average temperature

Yi

Ve A
00) = ly) = ) (28)

The average temperature of the V phase is assumed to
be the arithmetic average of the temperatures of the
entering and leaving streams, i.e., T'vave = (Tv + Tvg)/
2. Additional heat can be supplied to the L phase.
Energy balance (divided by the mass transfer area) then
reads for the V phase

| .
TZ;)’EUHVE; = hy(Ty gy — TD + ;HVI, N+

nyL »

A i;yn,iHVL,i (29)
for the L phase

NiEd _ < Q_
_ZxE,i'HLE,i =h(T; - Ty + ZHLI,iAr it —=
A= = A

npy
— ) x Hyp; (30)
n g{ L,

and for the interface

hV(TV,ave - TI) + ZHVI,ilv i = hL(TI - TL) + ZHLI,iIVi
i=1 i=1
(31)

Molar flows out from the balance region (divided by
the mass transfer area) can be calculated from

nyr, Nyg n

—=—-YN, (32)
A A 3

ny, Nig n

—=—+ YN, (33)
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The liquid and vapor enthalpies are calculated by
assuming constant heat capacity for each component.

Hy;=cn (T~ 7 (34)
Hy;=Hyl + cuu(T — T° (35)

Solving the Equations. The residuals for an equa-
tion solver are obtained in the following manner The

Interface (n — 1 in number)

Fy=Ny - N, (36)
Flux equations (n — 1)
Fx =Ny~ Ngjer (37
Average mole fractions in the V phase (n)
Fy= YB,ave ~ YB,ave,solver (38)
Average mole fractions in the L phase (n)
Fp, = xp — 2p soiver 39
Distribution coefficients (n)
Fx =K, — K, giver (40)
Summation equations for both sides of the interface
Fg, =3x -1 (41)
Fg=3y;— 1 (42)

set of equations is completed by energy balance equa-
tions, one for each phase and one for the interface. This
makes total 5n+ 3 equations, and the set is closed. This
set of equations can be solved by a standard algebraic
equation solver, e.g., Newton—Raphson.

Differential Plug Flow Model. In the basic model,
average interface compositions were used to calculate
the mass transfer fluxes. This assumption is verified
by dividing the vapor into slices and iterating the local
interfacial compositions and temperature at each point.
This allows true local vapor properties to be used in
material balance equations and in energy balance
equations as well.

In the differential plug flow model, the liquid-phase
compositions and temperature are iterated by solving
the average mass transfer and energy fluxes. This is
done with two iteration loops. Variables in the outer loop
are liquid-phase compositions (n in number), total flow
out, and temperature. This makes total n + 2 variables.
Liquid-phase mole fraction residuals are obtained by
equating calculated and solver-given values. The liquid-
phase mole fractions are calculated from eq 27, with
average mass transfer fluxes. The residual for the
liquid-phase energy balance is obtained from eq 30,
again with averaged energy flux values. The residual
for the total flow is obtained from eq 32, with average
mass transfer fluxes.

The average flux values are obtained from the same
model as is used in the basic plug flow model, except
that the liquid-phase compositions and temperature are
obtained from the outer iteration loop and the corre-
sponding residual equations are neglected. The vapor
side is divided into slices, and the fluxes for each of these
slices are calculated in sequence, using the output

Iknown inlet conditions J lcalculated outlet conditions l

liquid phase, completely mixed

vapor phase, plug flow
4

ccmposmon & b vapor phase local properties
l4temperature from terated at the inner Joops

calculated outlet conditions known inlet conditions

Figure 2. Schematic illustration of the differential plug flow
model solution.

values from the previous slice as initial conditions.
Then, the resulting fluxes are averaged for the outer
loop. The calculation procedure is illustrated schemati-
cally in Figure 2.

The mass transfer area is assumed to be constant.
This is to simplify the calculations, as the description
of the flow conditions on a tray is considered a separate
problem from the mass transfer calculations. This
approach keeps the mass transfer calculations here
more general, as the tray dimensions and hydraulic
conditions need not be specified. In practice, these mass
transfer calculations can then be combined with the flow
description of a distillation tray.

In the solution of the differential flow model, it is very
important that the inner loop be solved to high preci-
sion. If the precision in solution of the inner loop is not
very high, then the outer loop is not converged. In
practice, the inner loop tolerance should be at least the
square of the outer loop tolerance. This is not a major
problem, because as the system of nonlinear algebraic
equations is close to solution, a Newton—Raphson-type
equation solver converges rapidly and not many itera-
tion steps are needed after a reasonably accurate
solution is found.

Simulated System

A system of six light hydrocarbons is considered. The
physical properties used in the present model are
obtained by solving a standard distillation column
model, implemented in a process flowsheet simulator.
Then, the conditions of a suitable plate are chosen for
the present model evaluation. This is to ensure that the
properties are reasonable and physically possible. The
simulated column had 45 plates, with feed to plate
number 26 (from the bottom). Properties from plate 27
(one above the feed) were chosen for this study.

Vapor pressures are estimated!! at the interface
temperature. Diffusion coefficients are estimated with
the Wilke—Chang correlation. The vapor phase is as-
sumed to be an ideal gas, and the liquid phase is
assumed to be thermodynamically ideal (i.e., all activity
coefficients are assumed to be unity). Component mole
fractions in the V and L phase feeds, and other physical
properties (that are assumed constant), are shown in
Tables 1—3. The reference temperature is taken to be
300 K.



Table 1. Components, Mole Fractions, and Physical
Properties

Vi Hy Cmv CmL
component xy 2, (m¥mol) (J/mol) (J/Kmol) (J/K mol)

propane 0.33 0.11 84 x10™° 143053 75.6 123.4
n-butane  0.23 0.22 1.0x 10™* 20890.8 1004 144.9
i-butane  0.22 0.15 1.0 x 10~* 18910.0 99.9 1441
n-pentane 0.08 0.22 1.2 x 10™* 26560.5 1229 1714
i-pentane  0.10 0.22 12x 10™* 250722 1216 167.7
n-hexane 0.04 0.08 1.3 x 10™* 318006 146.3 200.3

Table 2. Binary Ideal Dilution Diffusion Coefficients on
the Liquid Side (10~ m?%s)

0 8.764 10.32 6.795 7.380 5.687
11.37 0 8.791 5.790 6.288 4.845
11.29 7.416 0 5.750 6.245 4.812

9.910 6.510 7.664 0 5.482 4.224

9.928 6.522 7.678 5.057 0 4.232

8.856 5.817 6.849 4.511 4.899 0

Table 3. Binary Diffusion Coefficients on the Vapor Side
(107¢ m?%s)

0 1.024 1.031 0.8884 0.8950 0.7939
1.024 0 0.8499 0.7262 0.7317 0.6447
1.031 0.8499 0 0.7313 0.7368 0.6493
0.8884 0.7262 0.7313 0 0.6254 0.5482
0.8950 0.7317 0.7368 0.6254 0 0.5524
0.7939 0.6447 0.6493 0.5482 0.5524 0

Other parameters needed in the simulation are the
following:

ly=10"m
I,=10"°m

nyg/A = n /A = 2.0 mol/(m?® s)
p =6.1bar

so that a constant and known film thickness is assumed
for both films. Heat transfer coefficients can be calcu-
lated by assuming the same film thickness for heat
transfer as for the mass transfer. This gives

h=M (43)

or from the Chilton—Colburn analogy

ey 12)1/3

h= k( = (49)

For multicomponent systems, some average values (e.g.,
mole averages) must be used in the previous equation.

If we use somehow typical values Ay = 0.02 W/mK,
AL = 0.12 W/mK, Dy = 0.7 x 1076 m%s, D;, =6 x 107°
m?/s, ¢tV = 220 mol/m?, ¢’ = 9 200 mol/m3, ¢y = 115
J/(K mol), cmr, = 170 J/(K mol), kv = 0.007 m/s, and ki,
= 0.6 x 1073 m/s, then we have, for equal film thick-
nesses

hy = 200 W/(m® K) and 2, = 12 000 W/(m? K)
and from the Chilton—Colburn analogy

hy = 190 W/(m® K) and k; = 5 100 W/(m? K)
We shall use the latter in our simulations. The high-

molar-flux correction to the heat transfer coefficients is
neglected in this study.?
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Several computational aspects are studied and vali-
dated according to their impact on the calculated flux
values. Various simplifications are compared to the "best
available” method, which is chosen to be the Maxwell—
Stefan diffusion model with the linearized equation of
continuity (the Toor—Stewart—Prober approach). In the
base cases, the Vignes correction is used for high mole
fractions in the liquid binary diffusion coefficients. The
validity of assuming constant effective interfacial com-
positions (the basic plug flow model) is validated by
comparing the results to the differential vapor model,
as are the assumption of linear composition profiles and
the assumption of completely mixed vapor phase. Re-
sults when overall coefficients are used along with the
assumption of a single-phase resistance are compared
to the differential plug flow model as well. This is
because the assumption of constant interfacial composi-
tions is not needed in these models. The rest of the
computational practices are validated by comparing the
results to the basic plug flow model, as it illustrates
explicitly the effect of these simplifications.

The studied computational procedures are the follow-
ing: (1) calculation of the tray performance with the
basic plug flow model, i.e., assumption of constant
interfacial compositions (this assumption is made also
in the rest of the cases); (2) use of ideal dilution binary
diffusion coefficients in the liquid side, instead of
correcting them for high mole fractions; (3) linearization
of the high-flux correction term; (4) approximate calcu-
lations of matrix functions (eqs 12—15); (5) use of bulk
mole fractions in the calculations instead of the film
averages (then, eq 11 can be used for flux iterations with
one variable for simple two-film calculations, when the
bulk compositions are known); (6) use of the overall
mass transfer coefficients; (7) effect of neglecting mass
transfer resistance in one of the phases, when the mass
transfer coefficients are considerably higher in that
phase; (8) assumption of linear composition profiles in
the vapor phase and calculation of arithmetic averages
from the entering and leaving compositions instead of
eq 25; (9) use of outlet compositions as effective vapor
phase compositions, i.e., assumption of completely mixed
vapor phase; and (10) the practice of calculating the
bootstrap condition from the heats of vaporization.

For systems with large thermodynamic nonidealities,
additional questions concerning computational aspects
arise. Thermodynamic nonidealities appear in the cal-
culation of the mass transfer fluxes in two ways. First,
activity coefficients appear in the phase equilibrium
expression in eq 21, relating compositions on both sides
of the interface. This is a standard method of proceeding
for both rate-based and ideal stage models and need not
be considered any further here. Second, the composition
derivatives of the activity coefficients appear in the
correction for driving forces. As stated earlier, the
correction for thermodynamic nonidealities along with
an empirical mass transfer coefficient correlation is not
a straightforward issue. In this work, the effect of the
thermodynamic correction is not studied.

Numerical Results

In the base case, heat input into or out from the plate
(Q/A) is varied, and inlet temperatures are kept at
constant values of 335.3 K for the liquid phase and 337.7
K for the vapor phase. This is the situation when
external heating or cooling is supplied to the plate or
when there is a reaction in the liquid phase with
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noticeable heat of reaction: Reaction effects are obvi-
ously not considered in the material balances, as these
particular components would not react by themselves
in the liquid phase. The point here is to change the
thermal conditions within a plate to alter the total flux
and hence molar flows over the plate to see the high-
flux effects in the calculations. The range of heat inputs
was quite large, so that, in extreme cases, about 20% of
one phase was transferred to the other phase.

Comparisons are made by iterating the whole system
with the different calculation methods and then com-
paring the resulting fluxes to the base case values (the
differential vapor model).

The one-phase resistance assumption is tested by
reducing the thickness of one film (here the L-phase
film) and comparing the resulting fluxes to the fluxes
calculated by assuming single-phase resistance, that is

NV,appl‘Ox = ctV[k{f] (’yB,ave - y*) + (}'B,ave)Nt (45)
where
O*) = [K](xp)

In this case, the residuals of the interface composition
equations for the equation solver are obtained from the
difference of the interface and bulk liquid compositions,
so that the interface compositions become equal to the
bulk values. The same approach is used for the overall
coefficients, but the overall mass transfer coefficient
from eq 19 is used instead of the vapor-phase mass
transfer coefficient.

A similar equation can be used for the liquid phase,
but it is not needed here because only liquid-phase
resistance is assumed to be negligible. This assumption
is sometimes made in distillation. The heat transfer
coefficient is kept constant in this study.

The percentage error in the fluxes is calculated by the
following equation.

n

ZIIN approx N, exact]
E = 100n— (46)

n
Z‘N exact|
=1

This equation is used instead of the simple sum of
relative errors of the single fluxes to prevent a large
error resulting from a nearly zero mass transfer flux of
some single component. In most cases, the present error
criterion gives numerical values for the flux errors that
are similar to those obtained from the sum of relative
errors.

Other possible error criterion is obviously obtained
by comparing composition of the flows leaving the tray,
as calculated by the different methods. This is, however,
a very conservative criterion, as the compositions are
dictated mainly by the vapor—liquid equilibrium, and
not very large differences in the numerical values can
be found. Hence, the errors in the fluxes are used to
pronounce the errors in the mass transfer calculations.

(1) The Basic Plug Flow Model. First, the number
of slices needed to represent the differential plug flow
was estimated. This estimate was made by altering the
number of slices and calculating the corresponding
average mass transfer fluxes. It was found that about
five slices was enough, and not much additional im-

provement resulted when the number of slices was
increased. To ensure the accuracy of the solution, 10
slices were used in the rest of this work.

The basic plug flow model gave errors between 0.6
and 7.5% as the heat input was altered. The largest
errors occurred in the cases when all of the fluxes were
quite small, so that the denominator in the error
equation was small. The errors depend quite strongly
on the value of the inlet flow divided by the mass
transfer area, i.e., nyg/A. This alters the number of mass
transfer units and correspondingly affects the plate
efficiencies. Relative errors in the fluxes as functions
of n/A are shown in Figures 5 and 6. The highest errors
(with the lowest n/A) correspond to number of mass
transfer units ranging from about four to five, which is
quite exceptional for a distillation tray.

All of these errors were so small that the basic plug
flow model can be recommended for practical use. The
differential plug flow model was considerably more
complicated to solve than the basic model because of
the solution of large number of nested iteration loops.

(2) Ideal Dilution Binary Diffusion Coefficients.
The use of ideal dilution binary diffusion coefficients on
the liquid side, instead of correcting them for high mole
fractions, resulted in errors of approximately 10% in
magnitude. The binary diffusion coefficients are not too
far from each other in the present system, the relative
difference being approximately 2 at the largest on both
vapor and liquid side. For a system with a wider scale
of binary diffusion coefficients, this error is expected to
be larger.

Because the correction for high mole fractions is quite
easily done, it is recommended as a standard practice
even in the cases where the correction may be reasoned
to be of minor importance. Another aspect strongly
favoring the use of this correction is that it makes the
diffusion coefficient matrices independent of the com-
ponent numbering. The numbering dependency is found
when infinite-dilution binary diffusion coefficients are
used. These coefficients do not necessarily form a
symmetric matrix in liquid phases, and because the last
row of the binary diffusion coefficient matrix is not used
in the formulation of the Maxwell—Stefan diffusion
matrix, a numbering dependency results.

(3) and (4) Computational Simplifications of the
High-Flux Correction. The high-flux correction can
be linearized, and eqs 16—19 are then used for the high-
flux correction. The total flux is known from the previ-
ous iteration step, and at the converged value this
equals to the fluxes calculated using this linearization.

The matrix function simplifications, eqs 12—15, can
be used to correct the mass transfer coefficient matrices
in the following manner

fi= al
i c, le —J-YE- -1
| P cik;;
k;=f;, for diagonal elements
ki=Fk; {% for off-diagonal elements (47)
i Ry

In Figure 3, relative errors are shown for the two
approximate solutions

As the simplifications are made to the high-flux
correction, the errors are slightly larger when the total
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Figure 3. Relative errors for the linearized high-flux correction
and for the high-flux correction matrix function simplification.
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Figure 4. Relative errors in the fluxes for overall coefficients and
for single-phase resistance as functions of relative resistance of
the phases.

flux is larger. The errors were, however, so small in all
cases that both of these methods can be well recom-
mended. The matrix function simplification resulted in
slightly lower errors than the high-flux correction
simplification. However, it is slightly more dependent
on the structure of the diffusion coefficient matrix, so
that both methods can be ranked quite equally.

(5) Use of Bulk Compositions in the Diffusion
Coefficient Matrices. This approach gave quite ac-
curate results. The flux errors were, in all cases, less
than 0.3%, which is a very good result indeed. On the
other hand, as the interface compositions are iterated
anyway, there is no reason to make this assumption in
the full rate-based tray model.

The method of one-variable iteration was validated
in a separate isothermal study. The results were good
in terms of accuracy, but the iteration was slower than
in the solution of the complete model. This is because
of the extra matrix function calculation in eqs 10 and11,
and hence, the single-variable method is left only as an
algebraic curiosity and is not recommended in practice.

(6) and (7) Overall Coefficients and Single-Phase
Resistance. These two approximations were validated
by altering the resistance in the liquid phase. The
resulting errors are shown as a function of the relative
resistance of the two phases.

n—1
\%
Ct Z ky;
i=1
R=—- (48)
n—1
L
Ct sz,ii
i=1
In Figure 4, the relative errors in the fluxes are shown.

The errors are quite high for both methods, except
when the resistance is very high for one phase only.
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Figure 5. Errors in the basic plug flow model, errors as linear
composition profiles are assumed, and errors as completely mixed
vapor phase is assumed.

Even in the cases for which the liquid phase resistance
is only one-tenth of the vapor phase resistance, the
errors are approximately 25%. For equal resistance, the
errors are approximately 250%.

Quite unexpected is that the overall coefficients
resulted in larger errors in most cases compared to those
found for the one-phase resistance assumption. An
additional observation was that the overall coefficients
resulted in a component numbering dependency. This
is due to the use of only n — 1 distribution coefficients
in the calculation of the overall mass transfer coef-
ficients. It is suspected that the straightforward use of
the distribution coefficients is not a correct method for
combining the single-phase resistances.

Consequently, the use of overall mass transfer coef-
ficients is not recommended. The assumption of a single-
phase resistance is also quite doubtful, as it calls for a
very large difference in the resistances to be reasonably
accurate.

(8) and (9) Assumption of Linear Composition
Profiles in the Vapor Phase and Assumption of
Completely Mixed Vapor Phase. The assumption of
linear profiles resulted in errors in fluxes of approxi-
mately 10% in the basic case, and the assumption of a
completely mixed vapor phase resulted in approximately
50% errors. The errors depend significantly on the inlet
flow rate divided by the mass transfer area. This value
alters the number of mass transfer units. For systems
with low numbers of mass transfer units, and cor-
respondingly low efficiencies, the assumption of linear
profiles was quite a good one. For systems with high
numbers of mass transfer units, and correspondingly
high efficiencies, the linearity assumption was quite
poor. This is to be expected, as high-efficiency systems
operate close to equilibrium for a large part of the flow.
The assumption of a completely mixed vapor phase was
poor in all cases. This is quite surprising, and it was
expected that as high-efficiency systems (very low flow
per mass transfer area) operate near equilibrium for a
large part of the flow, the outlet compositions better
represent the average behavior. Some indications of this
behavior can be seen, but the errors were still quite
large. The errors are shown in Figure 5.

Although this is clearly a noticeable error in the
fluxes, the assumption of linear profiles eases the
computational burden, as the calculation of the matrix
exponential functions in eqs 25 and 26 are avoided. For
high-efficiency systems, quite high errors are found for
all cases. However, because the total operation of the
plate depends both on the fluxes and on the mass
transfer area, a more illustrative criterion for the mass
transfer calculation accuracy is obtained if the errors
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Figure 6. Flux errors in the three flow models multiplied by the
inlet flow per mass transfer area.

in the fluxes are multiplied by the flow per mass
transfer area. Then, high errors in fluxes, resulting from
the low flux values, are multiplied by a high mass
transfer area. These modified error values are shown
in Figure 6.

From Figure 6, a clear trend can be seen. The
assumption of linear profiles results in an error that is
approximately three times larger than the error in the
basic plug flow model. The assumption of a completely
mixed vapor phase becomes worse and worse as the inlet
flow per mass transfer area is increased.

In these comparisons, it was assumed that the flow
in the actual plate is a complete plug flow. If the vapor
is mixed, then the assumption of complete mixing is
obviously better than shown here.

(10) Use of the Bootstrap Matrix. The use of the
vaporization heat bootstrap matrix proved clearly in-
adequate in all cases. If the phase temperatures were
very close to each other, the errors were a few tens of
percents, but even a difference of 1 °C resulted in several
hundred percent errors. Additionally, as the bootstrap
solution does not ease the computation of a rate-based
model to any degree, it is not recommended. Only if the
use of the bootstrap condition leads to a completely
explicit solution, it can be used with caution in some
instances. In these cases, the high-flux correction should
be made in the bootstrap matrix.?

Conclusions

A plug flow distillation tray model was used to
compare certain simplifications quite often made in
mass transfer calculations. The simultaneous mass and
heat transfer, taking place on the modeled tray, was
calculated with a two-film Maxwell—Stefan model. The
following observations were made:

(1) The approximation of constant effective interfacial
compositions over the froth height, along with the plug
flow model, was quite satisfactory compared to a rigor-
ous approach of dividing the vapor into differential
slices. The assumption of linear composition profiles or
a completely mixed vapor phase resulted in larger
errors.

(2) The practice of calculating mass transfer fluxes
using overall mass transfer coefficients leads to severe
errors in the fluxes, except for a special case of truly
equimolar transfer. The bootstrap solution using heats
of vaporization also led to severe errors, except for the
case where inlet and outlet temperatures of the phases
were very close each other.

(3) Large errors were observed when the mass trans-
fer resistance was assumed in one phase. Only if this

assumption were justified by a very large difference in
the mass transfer coefficients might it result in reason-
ably accurate fluxes. Even if the ratio of the mass
transfer coefficients of the two phases were on the order
of ten, there were still about 80% errors in the fluxes.

(4) The linearization of the high-flux correction (eq
16) and the approximate calculation of the matrix
functions (eqs 14 and 15) resulted in negligible errors
in all of the cases simulated here. Therefore, these
simplifications can be used with confidence.

(5) The correction of binary liquid diffusion coefficients
for high mole fractions seems to be reasonable but not
compulsory, as the observed errors were not very large
when this correction was omitted. This is partly due to
some compensatory effect in these corrections. One
aspect strongly favoring the use of the Vignes-type
corrections for high mole fractions is that it makes the
flux calculation independent of the component number-
ing by making the binary diffusion coefficient matrix
symmetric.

(6) One-variable iteration for mass transfer fluxes was
justified in terms of the approximation error. However,
because the computational times were the same order
of magnitude as, or even larger than, those in the
corresponding exact solution, this method seems to be
of no practical use.
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Notation

General symbols

[A] = a matrix (generally)

[D] = matrix of Fick diffusion coefficients, as calculated
from the Maxwell—Stefan equations (m?%s)

[I1 = identity matrix

(J) = diffusion flux (mol/m?2s)

[k] = mass transfer coefficient matrix (m/s)

[£*] = high-flux mass transfer coefficient matrix (m/s)

[M] = phase equilibrium linearization matrix

[M’] = mass transfer coefficient combination matrix

[M”] = combination matrix for numbers of mass transfer
units

(N) = mass transfer flux (mol/m?s)

AV =V phase change of molar flow rate

(x) = column matrix of component mole fractions

[B] = matrix function of inverted binary diffusion coef-
ficients (s/m?)

a = linearization parameter

A = mass transfer area (m?)

a, b = parameters

amt- = mass transfer specific area (m2m3)

cm = molar heat capacity (J/K mol)

ct, ¢1V, ci“ = total concentration and total concentration in
V and L phases, respectively (mol/m3)

d = characteristic diameter (m)

D = diffusion coefficient (m?/s)

B, = binary diffusion coefficients (m?%s)

P;° = binary ideal dilution diffusion coefficients (m?%s)

E = heat transfer flux (W/m?)

F = residuals for equation solver (various)

F; = total feed rate to tray j (mol/s)

f; = function in the calculation of approximate high-flux-
corrected mass transfer coefficient (m/s)

fv = vapor mole fraction of feed to tray j



Fy = molar feed rate of the V phase in a CSTR (mol/s)

hvy, h1, = heat transfer coefficients, for the film in V and L
phase, respectively (W/m? K)

Hy® = vaporization enthalpy at the reference temperature
(J/mol)

Hvyg, Hvi, Hyi, Hig, Hu,, Hiu, = enthalpies: V phase
entering, interface, and leaving; L phase entering,
interface, and leaving, respectively (J/mol)

k = mass transfer coefficient (m/s)

K; = distribution coefficient

[ = film thickness (m)

L = liquid phase, completely mixed

m, n = parameters

n = number of components

N; = total flux (mol/m? s)

Ny, N, Nov = numbers of mass transfer units, V phase, L
phase, and overall number for V phase, respectively
nvE, nvL, NLE, nLL = molar flows: V phase in, V phase out,

L phase in, L phase out, respectively (mol/s)

p = system total pressure (Pa)

p;S = vapor pressure of pure component i (Pa)

Py = molar product rate of the V phase in a CSTR (mol/s)

R = mass transfer resistance ratio

r = reaction (production of a component) (mol/m3 s)

Re = Reynolds number

Sc = Schmidt number

Sh = Sherwood number

Ty, Tvg, T1, T, T° = temperatures: V phase outlet, V phase
inlet, interface, and L phase; reference temperature for
enthalpy (K)

V = vapor phase (plug flow)

V; = total molar flow rate from tray j (mol/s)

Vx = molar volume (m3mol)

V& = volume of the reaction mixture in a CSTR (m3)

Vv = volume of the V phase (m3)

Xcp = relative conduction to boiling parameter

X8, X1, XE, X, = L phase mole fractions: in the bulk, at the
interface, entering, and leaving, respectively

y* = equilibrium mole fractions on V phase side

YBaves Y1, YE, YL = V phase mole fractions: bulk average, at
the interface, entering, and leaving, respectively
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Greek letters

u = viscosity (kg/ms)

y = activity coefficient

4 = heat conductivity (W/mK)

p = density (kg/m?3)

[8] = bootstrap matrix

[I'] = thermodynamic correction matrix
[E] = high-flux correction matrix

[¥] = mass transfer rate factor matrix
W,.. = average mass transfer rate factor
0;j = Dirac delta function
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