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Modeling of diffusion within spherical particles is often an important part of model-
ing of many processes relevant to chemical engineering such as adsorption. The accu-
rate solution of the differential equations describing diffusion is quite a complicated task
involving calculation of infinite series. A rational approximation to the diffusion equa-
tion is presented in this article leading to a solution that is both very easy to use and
very accurate. The present method was compared to the exact solution for diffusion and
adsorption in spheres, and it was found that the present solution is practically indistin-
guishable from the exact solution. This method is also applicable to multicomponent

systems in a straightforward manner.

Introduction

Many important processes in chemical engineering include
modeling of diffusion within particles or fluid spheroids. Ac-
curate, but still computationally simple, solutions to these
diffusion equations are, therefore, of great importance. Dif-
fusion in adsorption processes has been subject to many stud-
ies since the classical approximate solution by Glueckauf
(1955). In that solution, the mass transfer within the spherical
particles is described by assuming that the mass-transfer rate
depends linearly on the difference between the average con-
centration within the sphere and the surface concentration,
along with the assumption of a constant (time-independent)
mass-transfer coefficient. Since then that assumption has been
used widely in the adsorber modeling. Furthermore, it has
been shown that the linear driving force assumption (LDF) is
equivalent to assuming a concentration profile within the
particles. Both these approaches are used to ease the compli-
cated solution of the time-dependent material balances in the
adsorbers (Goto et al., 1990; Ching, Lu, 1998; Haas et al.,
1988; Liaw et al., 1979; Li and Yang, 1999).

The LDF approximation is a very useful simplification in
the adsorber modeling. However, it is not very accurate, es-
pecially for short contact times. In the present work, the ex-
act solution of the particle diffusion equation is approxi-
mated by a rational function. The present approximation has
correct short and long time asymptotes, and the intermediate
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times are described by a five-parameter rational function. This
makes the present approach very accurate for all contact
times.

Diffusion Model

Diffusion and adsorption in a sphere can be described with
the following partial differential equation
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Here it is assumed that the adsorption from the fluid in
particle pores to the pore walls is in equilibrium at all times.
The adsorption equilibrium is assumed linear, or linearized
so that K = dc,gsomeq/dc. The initial concentration is as-
sumed constant. The development to follow is applicable to
fluid spheres, such as bubbles and drops with immobile sur-
faces, as well, if the mass transfer inside the fluid spheres is
considered. In these cases we only set e =1 and K =0.
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The diffusion equation can be put in the following conve-
nient non-dimensional form by using the modified Fourier
number (the dimensionless time) definition

Dt

Fo=——p3
R2(1+ K)
€
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The concentration is scaled as g = ¢ — ¢, and the radius as
z=r/R.
The resulting partial differential equation is

a 1 9 a
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The boundary conditions are now
Fo=0,g=0
99
=0,—=0 5
z2=0,—~ Q)
z=1,q=g*

This formulation is referred often as the pore diffusion
model.

It must be noted that in all these equations, the diffusion
coefficient D and the distribution coefficient K are assumed
both time and radius invariant. In practice, average values
can be used in the cases where these coefficients are weak
functions of time and/or radius. For strong time and/or ra-
dius dependence of these coefficients, the following develop-
ment must be considered with caution.

For the adsorber mass balance, the volume-average (or
cup-mixing) compositions within the adsorbent particles are
needed. These composition are defined as

t§=3[01q(z,t)z2dz (6)

Some analytical solutions to the diffusion equation (4) are
available in the literature (Crank, 1975, pp. 89-98). When
the surface concentration, g*, is time-independent, the solu-
tion for fractional approach to equilibrium is

Q)

1
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n

For situations where the surface concentration is not con-
stant, some special solutions are available. In these solutions,
however, numerical solutions for the eigenvalues of the series
expansions are needed. This may be quite an awkward task
for slowly converging series expansion, and the solution of
the adsorber model becomes quite complicated. Hence, the
adsorber modeling is best accomplished by solving the time-
dependent adsorber material balance and the diffusion equa-
tions with proper simplifications.

The time-dependent modeling can be done conveniently by
expressing the equations with the Sherwood number and the
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Fourier number. In terms of the cup-mixing compositions, we
have

97 _3 Sh(g* —q 8
Fo ~25Md" — ) ®)

In the definition of the Sherwood number, the driving force
for diffusion inside the particle is taken to be the difference
between the cup-mixing concentration and the surface con-
centration (Clift, Grace, and Weber, p. 57).

Solution to the diffusion equation in terms of the Sher-
wood number is then

s

exp (— n?m*Fo)

272 -
Sh="—3-—+"1 : Q)
Y., —exp(—n*w?Fo)
n=1 n
For short contact times the solution is
Sh 2 10)
"~ JmFo (
and for long contact times the asymptotic solution is
2m?
Sh= =5 (11)

A time-average Sherwood number can be calculated with

—2In(1-F)

Sh
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Here the Sherwood number is averaged over the contact time.
For short contact times the solution is

4
Sh

(13)

ave

wFo

For long contact times, the asymptotic solution for the time
averaged Sherwood number is the same as for the instanta-
neous case (Eq. 11). This time-averaged Sherwood number is
not usually needed, since for the case of constant surface
concentration, the fractional approach to equilibrium can be
calculated straight from Eq. 7 for any given adsorption time.

Simplified Solutions to the Transient Adsorption
Equation

To avoid the calculation of the infinite series in Eq. 9, sim-
plified solutions are welcomed. The most classical and
widespread simplification in the adsorber modeling is the
classical LDF solution to Glueckauf (1955). It stands as

q
— =15(q* - 7). 14
r = 150" D) (14)
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Comparing Egs. 8 and 14, it can be seen that in the
Glueckauf’s solution a constant Sherwood number Sh =10 is
assumed.

Lee and Kim (1998) presented a different kind of approxi-
mation. They calculated the time-dependent cup-mixing com-
positions with the Padé approximations to the Laplace trans-
formed diffusion equation. The most accurate method in their
work was the Padé [2,3] rational approximation. It can be
written with the present notation (for time domain) as

dq

E =—378q + q, +81q*

&= -17 325c7+q3+8316q* (15)
dFo ’

dq; _

E = 135,135(q* - q).

Here g, and g, are additional state variables. This ap-
proach was shown to be superior compared to the classical
LDF approach. In fact, Lee and Kim showed that the classi-
cal LDF solution is a first-order Padé approximation.

Here a completely different approach is adopted. Equation
9 for the Sherwood number is approximated by a rational
function. Both short contact time and long contact time
asymptotes (Egs. 10 and 11) are set correct. The intermediate
contact times are represented by a rational approximation,
where five adjustable parameters are fitted to give the best
representation of the exact solution. The following equation
was found to follow the exact solution very accurately.

2m? s
al-\/ﬁ+a2-FO+-3—a5'Fo :

4o
Sh= + , (16
ymFo  1+a;-VFo +a, Fo+as-Fo'® (16)
where

ay=2, a,=117,346, a, = 39,596, a; = 62,166, a, = 31,169,
and a5 = 337,258.

For the constant surface concentration, the following ap-
proximation can be used to any given contact time without
any integration. The functional form of the time-averaged
Sherwood number is the same as for the instantaneous case,
but the adjustable parameters are the following: ay =4, a; =
63,237, a, = 171,892, a;= 33,616, a, = 45,628, and as=
116,673.

The cup-mixing compositions are then calculated from

F=qi*=l——exp(—l.S-F0~Shave). (17)

In this case, no series expansions or numerical integrations
are needed. However, as mentioned earlier, constant surface
concentration is only a special case, and hence the more gen-
eral time-dependent modeling is recommended for varying
surface concentration g*.
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Figure 1. Approximate and exact solutions to the frac-
tional approach to the equilibrium in a sphere.

Numerical Comparisons

The accuracy of the three approximate solutions, LDF,
Padé, and the solution presented here, are validated numeri-
cally. The time-dependent diffusion equations are integrated
numerically with respect to the Fourier number, and the re-
sulting approaches to equilibrium are compared to the exact
solution.

In Figure 1, the approximate solutions are compared to the
exact solution. From the two approximations presented in this
work, the instantaneous Sherwood number approach is used
because of its generality. However, almost indistinguishable
results are obtained if the time averaged form (17) is used.
The instantaneous case is used here also to convince that the
approximation errors are not accumulated during the time
integration.

Hence, the three approximations are the LDF (Eq. 14), the
Padé [2,3] approximation (Eq. 15), and the instantaneous
Sherwood number approximation of this work (Eq. 8 and 16).

As can be seen, the presented approximation is almost in-
distinguishable from the exact solution. The Padé approxima-
tion works well for the long contact times, but there are devi-
ations in the short contact time behavior. Of course, the or-
der of the Padé approximation can be increased to make the
solution more accurate, but this complicates the solution. The
present approximation follows the exact solution very accu-
rately even for short contact times, since the asymptote was
set to the theoretical value in the parameter fit. The LDF
approximation cannot be considered very accurate.

The sum of squared absolute errors are calculated at di-
mensionless times Fo=10"", where N=0, 1,2, 3, 4, 5, 6
and 7. The results are shown in Table 1.

It must be noted that no additional state variables were
needed in the present solution. In the high order Padé ap-

Table 1. Sum of Squared Absolute Residuals at Dimension-
less Times Fo =10 ", where N=0,1,2,3,4,5, 6 and 7

Method Sum of Squared Errors
LDF (Eq. 13) 0.037775707
Padé [2,3] approximation 0.001967182

Present work 1.33866x 10°
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proximations, additional state variables are needed. This ob-
viously complicates the solution.

If relative errors were considered in Table 1, the differ-
ences between the different models would be even more pro-
nounced. This is because the present approach is superior to
the other approximations especially for short contact times.
At short contact times, the fractional approach to equilib-
rium is low, resulting in higher relative errors.

Generalizations to Multicomponent Systems

The exact solution can be generalized to multicomponent
systems in a straightforward manner. In multicomponent sys-
tems, a diffusion coefficient matrix is generally needed in-
stead of scalar coefficients, and the component concentra-
tions are represented as a vector. For further discussion of
this subject (Taylor and Krishna, 1993, p. 235; Toor, 1964).

Since this approximation is a function of the diffusion coef-
ficient matrix only, it is readily generalized to the following
multicomponent form

[Sh]= 7= Fo] "

0.5 2a? 1.5
+|a, [Fo]" +a2-[F0]+Ta5-[F0] -

-([1]+ a3+ [Fol*’ + a,-[Fo]+ as-[Fo]]'S)‘1 (18)

Here the matrix of Fourier numbers is defined similarly to
the scalar number, except that the scalar diffusion coefficient
is replaced by a matrix.

This matrix function can be easily calculated with the ap-
proximate matrix function formula of Alopaeus and Nordén
(1999).

Conclusions

The linear driving force model (LDF) has been widely used
to model batch adsorbers. However, especially for short con-
tact times, the LDF approach deviates significantly from the
exact solution. In this work, a rational approximation to the
interparticle mass transfer coefficient is presented. It has the
correct asymptotic values for both short and long contact
times. The intermediate contact times are modeled by a five-
parameter rational function. This approach avoids the use of
the series expansions needed in the exact solutions, leading
to significant ease to be computational burden. The accuracy
of the present method compared to the exact solution is ex-
cellent. In fact, the two solutions are almost indistinguish-
able.
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Notation

¢, ¢*, ¢y =concentrations within the pores: general, surface, initial,
mol/m?
Cadsorbed =CONCentration in absorbent, mol/m*
D =diffusion coefficient, m%/s
F =fractional approach to equilibrium, F = g/g*
Fo =(modified) Fourier number
K =distribution coefficient, mol/m* (solid)/mol/m*(fluid)
q,q*, g =scaled concentrations: general, surface cupmixing
(mol/m*) (volume average)
>, q; =state variables, mol/m?
r =radial distance from the center, m
R =radius of the spherical particle, m
Sh =Sherwood number
ave =time-averaged Sherwood number
t =time, s
z =dimensionless radius

Sh
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