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ABSTRACT

In many industrially important unit operations, mass transfer between dispersed and
continuous phases takes place. The accurate and fast solution of the mass transfer
model equations is essential in order to design these unit operations accurately.

The mass transfer rate between phases is calculated in two parts. The first part is to
solve the interphasial mass transfer fluxes. With multicomponent systems, this is best
done with the Maxwell-Stefan diffusion model along with a mass transfer model. The
other part is to calculate the mass transfer area between the phases. This can be done
with population balance models, preferably with a flow model that discriminates
various regions of the modeled system. The flow model is needed if the phenomena
affecting the development of the mass transfer area are not homogeneous in separate
parts of the considered region. The mass transfer rate needed in the material balances is
then a product of the mass transfer fluxes and the mass transfer area.

The mass transfer calculations with the Maxwell-Stefan model leads to complicated
matrix function calculations. This is very time consuming because these models need to
be solved many times during the solution of a unit operation or reactor model. Two
simplifications to these complicated functions are presented in this work. The first is a
method to calculate general matrix functions related to the multicomponent mass
transfer models approximately. It is based on the fact that the diffusion coefficient
matrices have larger diagonal than off-diagonal elements. The other approximation is a
linearization of the high flux correction. The applicability of these two approximations,
along with other modeling aspects, is considered with a distillation tray model. An
approximation was also presented in this work for calculating diffusion, and further the
mass transfer coefficients, within spherical particles.

A population balance approach is used with a stirred tank flow model to calculate drop
size distributions in liquid-liquid dispersions. In order to test the applicability of the
flow model with population balances, drop size distributions are measured and the drop
breakage and coalescence function parameter values are estimated. The inhomogeneous
character of the dispersion in a stirred tank can be used in the parameter estimation
process.
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LIST OF SYMBOLS

#(V) index number of drop class of characteristic volume V;

Aa width of droplet class

[A] a matrix appearing in the Maxwell-Stefan models

[B] matrix of inverted binary diffusion coefficients

[D] matrix of diffusion coefficients

(1] identity matrix

[k] mass transfer coefficient matrix

A(a) population density based on diameter

a parameter

a linearization parameter

a drop diameter

as Sauter mean diameter, az; = = af/ > ajz

b parameter

c concentration

C;...Cs  empirical constants

Ct total concentration

D impeller diameter

b binary diffusion coefficients

F(ai, a;) binary coalescence rate between droplets ¢; and g; in unit
volume

[Fo] matrix of Fourier numbers

g(a) breakage frequency of drop size a

h(a;, a;) collision frequency between droplets ¢; and a; in unit volume

J diffusion flux

l film thickness

m parameter

N mass transfer flux

n number density

n number of components

nc number of drop size categories

Np impeller power number

N; total flux

r reaction rate (production of a component)

t time

\'% molar flow

X, XB, mole fraction, mole fraction in bulk, mole fraction at

X1 interface

Y; number concentration of drop class i

Yiin, flow of drop class i per unit volume into and out from the

Yiout region of interest, respectively

(mol-m~s™)
(s)
(mol-s™)

O

(m™)
(s'm”)



Greek symbols

€

o

¢

[Z]

[\P]
v(a)
B(ai, aj)

Mai, aj)
lIJ&VC
Up, Uc
Pp, Pc

turbulent energy dissipation (per unit mass)

interfacial tension

volume fraction of dispersed phase

high flux correction matrix

mass transfer rate factor matrix

number of drops formed when drop of size « is broken
probability that a drop of size a; is formed when a drop of
size a; breaks

collision efficiency between drops a; and q;

scalar average mass transfer rate factor

dispersed phase and continuous phase viscosities
dispersed phase and continuous phase densities

Mathematical notations

O
[]

column matrix
square matrix

(m’s”)
(Nm™)
O
O
O
O

m™)

O

O
(Pas)
(kgm™)

various
various



1 INTRODUCTION

Mass transfer occurs between immiscible phases if the phases are not in equilibrium,
i.e. if the chemical potentials of the two phases are different. This deviation from

equilibrium is the driving force for mass transfer between the phases.

Most unit operations in chemical engineering include exchange of material between
phases. In distillation, extraction and absorption, among others, the mass transfer
between phases is exactly the desired operation. Usually the desired mass transfer is
achieved by using either mechanical or thermal energy. Sometimes a mass separating
agent can be used. In these cases, some components are deliberately added to the
system in order to carry out the desired separation. For example, in extraction a solvent
is used to separate components whose miscibility to the solvent varies. Mechanical
energy is brought to the mass transfer process by e.g. stirring the multiphase suspension
to increase the area between the phases. Thermal energy is used in e.g. distillation,
where the desired vapor and liquid flows through a distillation column are obtained by
boiling the liquid and condensing the vapor. Calculation of mass transfer is then

essential in understanding and designing these unit operations.

In multiphase reactors, interphasial mass transfer may limit the observed reaction rate.
The two phases may be present because some of the reactants are immiscible or
because the reactions are carried out with solid catalyst. Presence of two phases is
utilized also in so-called reactive separation processes, where reaction and separation
occurs simultaneously. There are some advantages in these kinds of processes; for
example, the reaction equilibrium limitations can be avoided by transferring the
product out from the reaction phase. This results in a faster observed overall reaction

rate.

Mass transfer limitations are rarely desired in reactors, so mechanical energy needs to
be brought to the reaction mixture to enhance mass transfer. On the other hand, excess
energy consumption is not wanted either. In these cases, accurate mass transfer

calculations are needed to design the reactors properly.



2 INTERPHASIAL MASS TRANSFER AND THE MATERIAL BALANCES

Unit operations and reactors are usually modeled by a set of algebraic or differential
equations, or by a combination of these. These models consist of equations for material
balances for each component, energy balances, phase equilibrium and other
thermodynamic equations, reaction rate equations for reactive systems, pressure drop

equations, and other system specific equations.

Interphase mass transfer appears in these models in the material balance equations. The
mass transfer rate is usually a product of two terms: the mass transfer fluxes (the
amount of components changing phase in unit time per unit interface area) for each

component, and the mass transfer area.

In order to calculate interphase mass transfer, material balances need to be formulated

for the phases between which mass is transferred.

2.1 Mass transfer fluxes

The material balance for a differential volume element fixed in space (or in phase

boundary if mass transfer between phases is considered) is

ac,
SoHVN =n )

The mass transfer fluxes, Nj, are made up of diffusive and convective terms
Ni=J; + xiN; @)

Several methods are presented for calculating diffusive fluxes. These methods can

usually be written in a form of a (generalized) Fick’s law

n—1
J.=—,).D, Vx, 3)
k=1
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where diffusion of component i is affected by all independent mole fraction gradients.
The most fundamental method so far for calculating Dj’s seems to be the Maxwell-
Stefan equation, which is based on conservation of momentum in collisions between
various molecule types (various components considered). Concentration dependent
Di’s are calculated from the mole fractions of the species and the binary diffusion
coefficients (the By’s) [7, 8].

Diffusion fluxes are often presented in a compact matrix form

() =-c[DIV(x) )

Here (J) is a column matrix of the diffusion fluxes J;...J,.1. [D] is a n-1 square matrix of

diffusion coefficients. (x) is a column matrix of the mole fractions.

According to the Maxwell-Stefan diffusion model, the following elements for the [D]

matrix are obtained. First a matrix of inverted binary diffusion coefficients is calculated

(5)

[D] is then the inverse of [B]

[D] = [B]" (6)

Together with the total flux induced convective mass transfer term, the mass transfer

flux equation becomes

(N) = -¢[DIV(x) + Ni(x) )
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This could be inserted into the material balance equation (1), resulting in the following

equation:

%= (e, [DIV(X) = V(N (x)) +(r) (8)

where (c) is a column matrix of component concentrations [8].

This equation, together with differential energy and momentum balance equations and
equations of state (and often separate phase equilibrium equations), describes the
system to be analyzed. Mass transfer between phases (the mass transfer fluxes) is
calculated by a suitable integrated mass transfer model. Geometric models for the phase
boundary (e.g. the film model, the penetration model) are needed for initial and
boundary values for differential equation (7) or (8). In non-stationary cases the
composition gradients are calculated from equation (8) and then used for the mass
transfer flux calculations. Some approximations must usually be made so that the
equations can be integrated, preferably analytically. Usually, the total concentration and
the matrix of diffusion coefficients are assumed constant along the diffusion path. Also,

non-diffusional interactions are often neglected.

If the system is thermodynamically highly nonideal, the deviation from ideal behavior
can be taken into account with a separate thermodynamic nonideality correction matrix.
The thermodynamic nonideality matrix takes into account the fact that the actual
driving forces for diffusion are not the mole fraction gradients, but the gradients of

chemical potentials [8].

For a general analytical solution, the reaction term of equation (8) must be assumed
negligible compared to the diffusion term. These assumptions are valid for non-reacting
systems, or when the reactions are not very fast. A fast reaction is defined loosely here
so that it affects noticeably concentration profiles close to phase boundary. In these
cases, the reaction-diffusion equation (8) must usually be solved numerically. Other
than fast reactions affect mass transfer only by changing bulk compositions. This

assumption is made here.
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Diffusion equation (8) can be linearized by assuming that the matrix [D] and the scalar
¢t are not mole fraction dependent in the mass transfer region. This manner of
proceeding is referred as the linearized theory of mass transfer, or Toor, Stewart and
Prober approach [9, 10]. Although some analytical solutions to the mass transfer
models with the exact Maxwell-Stefan approach are available (Krishna & Standart,
1976), the linearization approach is taken here. The validity of the linearization is

considered by Smith and Taylor [11] and by Young and Stewart [12].

If the reaction effects to mass transfer are assumed negligible, and the linearized mass

transfer approach is taken, eq. (8) can be written as

a(x)

017=01[D]V2(X)—V(N1(X)) )

Integration of this differential material balance equation or the flux equation (7) can be
completed once a geometric model for the phase boundary has been defined. The
integrated mass transfer equation is then used in the total (integrated) material balance
equations of the whole system, e.g. in reactor or mass transfer device models. The mass

transfer models considered here are formed for one spatial variable.

2.2  Material balances

The amount of material exchanged between phases needs to be calculated for the
material balance of unit operation or multiphase reactor models. The amount of
material exchanged in unit time is a product of the mass transfer fluxes and the

interfacial area.
V =NA (10)

where N is the mass transfer flux, i.e. moles transferred in unit time divided by the

mass transfer area, and A is the total mass transfer area between the phases.

If segregation of the dispersed phase is significant, an additional variable describing the

segregated property is needed. By segregation, it is meant that some property of the
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dispersed phase is not homogeneous or constant throughout the system, so that the
dispersed phase cannot be assumed completely mixed. Usually this property is the
particle (solid or fluid) size; i.e. particles of various sizes behave differently. In
addition, residence time of particles in a balance region may be the segregating
variable. In case of segregation, the dispersed phase must be divided into discrete
categories, and mass transfer needs to be calculated separately for each category. The

material balances must then be formulated separately for each category.
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3 CALCULATION OF MULTICOMPONENT MASS TRANSFER FLUXES

A geometric model for the phase boundary needs to be defined in order to calculate the
mass transfer fluxes. Two models have generally been used; namely, the film model
and the penetration model. In the film model, mass transfer is assumed to occur in a
film next to the interface, and in this film, the turbulent diffusion is assumed negligible.
Beyond this film, referred usually as a bulk phase, the molecular diffusion is assumed
negligible compared to the turbulent diffusion. This results in constant concentrations

in the bulk.

In the penetration model, a volume of bulk fluid is assumed to be exposed to the
interface, and diffusion is assumed to take place for a certain contact time. After that,

the volume returns to the bulk phase, where concentrations are assumed constant.

The following equation can be derived for multicomponent mass transfer calculations
[8]. It applies both to the film and the penetration models. Here it is written in a form
where thermodynamic nonidealities are neglected. A correction matrix for
thermodynamic nonidealities needs to be included, if the deviation from ideal behavior

is considered important [8].

(N) = c[k][E](xp - x1) + (xB)N; (11)
Here [k] is the matrix of mass transfer coefficients and [Z] is the matrix of high flux
corrections. These matrices are calculated slightly differently for the film and the

penetration models.

3.1  Mass transfer coefficients

For the film theory, the matrix of mass transfer coefficient is defined as

[k]=[D]/{ 12)
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where [ is the film thickness. For the penetration theory, the mass transfer coefficients
are also functions of the diffusion coefficients (usually to a power of 0.5), and the
chosen contact time distribution for the volume elements. However, the film thickness
or the contact time distribution is rarely known. Then empirical correlations for the

mass transfer coefficients must be used. These are often of the following form
[k] = a-[D] + b-[D]" 13)

Here the dependence of the mass transfer coefficients on the diffusion coefficients is
emphasized due to the matrix nature of the multicomponent mass transfer coefficient
correlations. Generally, parameters a and b depend on physical properties. This
equation reduces to a theoretical film model by setting a = 1// and b = 0, and to a
penetration model by setting m = 0.5 and a = 0. In the latter case, the factor b depends

on the chosen contact time distribution.

For the dispersed phase side, an analytical solution to the diffusion equation can be
derived. This requires that some assumptions are fulfilled. If the dispersed phase
consists of stagnant spherical particles (solid or fluid), and the interfacial compositions
are not time dependent, the following solution can be found for the transient diffusion

equation

[k]D]" /a= %(i exp(— n’n’ [Fo]) i%exp(— n’n’ [Fo])]_1 (14)

n=1 n=1

where [Fo] is the matrix of Fourier numbers, defined as [Fo] = 4t/a*[D]. For the case of
adsorption to solid adsorbent, the Fourier number needs to be modified to take into
account the adsorption equilibrium. The equation (14) is an infinite series of matrix
functions, and especially for short contact times, many terms are needed in order to
converge the series. A rational approximation to this equation can be used to help the

solution. The following rational function follows the exact solution closely [5].
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[IDI" /a == [Fo] " +

Ir
(al [Fo]” +a, '[FO]"‘%% - [Fol? J ([I]+a3 -[Fo]”* +a, -[Fo]+a, - [Fo]" )_1

(15)

This is based on asymptotic solutions for both short and long contact times. The
intermediate contact time region is described by a rational function, where five
parameters are estimated to represent the exact solution. The following parameters can
be used to calculate the instantaneous mass transfer coefficients: ag = 2, a; = 117346, a,
= 39596, a3 = 62166, a; = 31169, and as = 337258. If time averaged values are needed,
the same function applies, but with the following parameters: ap = 4, a; = 63237, a, =
71892, a3 = 33616, ag = 45628, and as = 116673. The first set of parameters can be used
when the unit operation model is solved with respect to time, and the second when
average mass transfer rates over a time period are needed in an unit operation model

[5].

In Figure 1, the exact series expansion solution to the instantaneous case is shown with
the rational approximation. As can be seen, the two solutions are almost

indistinguishable.

1

0.9
08 * exact

0.7 — rational
0.6
05
0.4
0.3
0.2

0.1

Fractional approach to equilibrium

0 7 T T .
0.000001 0.00001 0.0001 0.001 0.01 0.1 1
Fourier number

Figure 1. Exact solution to diffusion in a sphere and a rational approximation
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3.2 High flux correction

The matrix of high flux corrections takes into account the fact that the mole fraction
gradients are not linear in the diffusion region if the convective mass transfer is
noticeable. This can be seen from the mass transfer flux equation (7). Since the mass
transfer fluxes are constant along the diffusion path, and the mole fractions vary, then
the diffusive fluxes must vary as well. But as the diffusion coefficients were also
assumed constant, then as a result, the mole fraction gradients must be curved. The
matrix of high flux corrections accounts for this curvature. For the film theory, the

following matrix function can be derived to take the high flux correction into account

[8].
[E] = [¥1lexp[¥] - [1IT" (16)

For the penetration theory it is

[£]= exp(_ [\P]%I[I] + erf([% Dl (17)

In these equations, [\¥'] is the matrix of mass transfer rate factors. For the linearized
mass transfer theory, the changes in the total concentration and in the diffusion
coefficient matrix are neglected in the region where the mass transfer is calculated, and

averages are used. Then the mass transfer rate factor matrix is
[¥] =Nt fei [Da] ™ = Nifer [k (18)

The subscript ,, in the mass transfer coefficient matrix notes that the matrix is

calculated at the average compositions in the mass transfer region [1, 8].

3.3 Some approximations to multicomponent mass transfer calculations

Usually complicated matrix functions are needed to calculate the multicomponent mass
transfer fluxes with the Maxwell-Stefan models. This is very time consuming,

especially since the mass transfer models are usually a part of a more complicated
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model for a mass transfer unit operation or a reactor. Often these unit operation models
are combined into a flowsheet of several unit operations and reactors [13]. The solution
of the whole flowsheet may then need sequential iterative solutions, and the number of
mass transfer flux iterations may become very large. Reasonable approximations are
welcomed to describe the fluxes accurately but with a lower computational burden. The
following approximations help to calculate the matrix functions with considerably less

work than the exact formulations.

Krishna and Standart [14] suggested that the mass transfer coefficient correlations may
be used directly to the binary diffusion coefficients, and then the matrix of
multicomponent mass transfer coefficients could be calculated from the binary mass
transfer coefficients. This is based on the film theory, and if a single well-defined film
thickness for all components can be used, this method reduces to the definition of mass
transfer coefficients in the film model. In that case, however, no matrix function

calculations are needed in the mass transfer coefficient correlations.

The matrix fractional powers rising from the multicomponent diffusion models can be
calculated approximately, after noting that the diffusion coefficient matrices must have
large diagonal elements compared to the off-diagonal. The reason for this is that for a
thermodynamically stable phase, the diffusion coefficient matrix must be positive

definite [8, 15]
For the problem [A] = [D]P, we can then use the following approximate formulas [2]

A;i =Dy for diagonal elements, and (19)

Df - DP
A, =D, for off-diagonal elements. (20)

ij ij _
D; =Dy

Other matrix functions can be approximated similarly. For a general problem [A] =

f([D]) we can use the following

Ai=1f(Dy) for diagonal elements, and (21)
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f(D;)-f(D
A. =D, (u)—(n) for off-diagonal elements. 22)

ij ij Dii _ DJJ

When this method is applied to the multicomponent mass transfer coefficient
correlations, generally very accurate results are obtained. In numerical simulations, for
four component systems the errors are usually within 1 %. For a larger number of
components the errors increase, but are usually within 10 % in all the calculated cases.
These errors were calculated by comparing the approximate results to the pure
multicomponent approach where the diffusion coefficient matrices are used in all
places instead of the scalar single component diffusion coefficients. The errors were
comparable to the errors in the binary mass transfer coefficient method, but usually

slightly lower [2].

Other approximation can be made by linearizing the high flux correction. This leads to

the following approximate high flux correction [1]
[KI[E] = [K] - a*Ni/cd{1] (23)

where the linearization parameter a can be calculated from the following equations. For

the film theory

1 1
L 24
. Y, exp(‘l’ ) -1 @)

ave

and for the penetration theory

el
= Tl

(25)

Here
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Wae =Ni*(n- 1) / (e Zkip) (26)

In practical calculations, the approximation error that results when using this method is
negligible even when the total flux is significant. Therefore, the linearized high flux
correction can be used in all cases with confidence. In numerical simulations of a rate-
based distillation tray model, which is one of the most typical mass transfer situations,
the errors rising from the approximate calculations of the high flux correction or the
mass transfer coefficient matrix were negligible compared to the effect of other

modeling assumptions [1, 4].

3.4 Solution of the interfacial mass transfer flux models

In the calculation of the interfacial fluxes, iterative solution is needed. At minimum, the
iterated variables are the interface compositions, temperature, the distribution
coefficients, and the total flux. In these models, the mass and heat transfer fluxes across
the interface must be equal on both sides of the interface. Simultaneously the phase
equilibrium at the interface needs to be fulfilled. The remaining two equations are the
obvious (but sometimes forgotten) summation relations, since the mole fractions must

sum up to unity on both sides of the interface [4].

If mass transfer between bulk fluid and a solid catalyst is calculated, the phase
equilibrium needs not to be calculated (unless an adsorption equilibrium model is
used). Then the iterated variables are the compositions at the surface, temperature the

and total flux.

If complete matrix calculations are performed, the matrix multiplications should be
carried out from right to left, so that no multiplications with two square matrices need
to be done [16]. Then the most time consuming matrix function calculations are the
matrix function evaluations at the high flux correction, the matrix fractional power
calculations at the mass transfer coefficient correlations, and the matrix inversions both

in the high flux corrections and in the nonlinear algebraic equation solver.

When the unit operation model consists of nonlinear algebraic equations, mass transfer

is preferably calculated simultaneously with the other model equations. If the unit
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operation consists of differential equations, mass transfer needs to be calculated many
times during the integration of the unit operation model. Then it is essential to use good
initial values for the iterated variables. Good initial values can be obtained from the
previous iterative solution, which is spatially or with respect to time close to the present

location. Then the mass transfer flux calculations usually converge very rapidly.
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4 CALCULATION OF MASS TRANSFER AREA

To model a mass transfer situation, the mass transfer area needs to be known. In case of
mass transfer between dispersed and continuous phases, this is the surface area of the
dispersed phase. Generally, the surface area may depend on the physical properties of
the system, the energy input on the system, and the volume fraction of the dispersed

phase.

New surface forms when the energy put into the system is dissipated to surface energy.
As an example, in gas-liquid or liquid-liquid dispersions bubbles or droplets are broken
when the dispersion is stirred. In many classical unit operations, such as distillation, the
energy to form surface area is brought by letting one of the phases to flow through

orifices, and the pressure drop is partly transformed into surface energy.

Classically, empirical or semi-empirical correlations have been used to calculate the
surface area in various dispersed phase systems. These correlations are formed e.g. by
equating the total energy dissipation to the system, and the surface energy terms.
Adjustable variables are then used to fit these correlations to experimental data. A
common feature for these correlations is that they are simple to use, but they are limited
in applicability. In most cases, they apply only for the systems with similar physical

properties and dimensions for which they are developed.

4.1 Population balances

A more detailed description of the dispersed phase surface area can be obtained by
using the population balance models. Then separate models can be used to describe all
the phenomena affecting surface area. Mechanistic models can be formulated for
bubble or drop breakage and coalescence, formation of new bubbles or drops,
convection into or out from the considered balance region, growth or shrinkage due to
mass transfer, and other possible effects, such as occurrence of reactions that do not
conserve volume. In the following development, the dispersed phase is referred as the
drop phase, although the development can be used straightforwardly for other

continuous — dispersed phase systems, such as gas in liquid, solid in liquid etc. A
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stirred tank is used as an example of a process to be modeled, but the population

balance approach is also applicable to any other multiphase system.

For a chemically equilibrated liquid-liquid dispersion (no growth or shrinkage of
droplets due to mass transfer or reaction), the population balance equation for a unit

volume is

A0A) _, Alaefv(o Bl lela A (e ke

dt
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Here the term on the left side is the time rate of change of the population density
function. The terms on the right side are: flow of drops into the balance region, birth of
drops by breakage, birth of drops by coalescence, flow of drops out from the balance
region, disappearance of drops due to breakage, and disappearance of drops due to

coalescence [17, 18].

This integro-differential equation can be solved by dividing the drop population density
into several discrete classes, and calculating the integrals in the above equation
numerically. The following working equations are then obtained for the discrete drop

classes [3]

. nc #(Vi/Q)
dczl = Yi,in + ZV(aj )B(di ,aj)g(aj)YjAa + z F(
j=i+l =
#(Vnc_vi)
Yi,out - g(ai )Yl — Yi z F((li , aj )YJ

=1

(af =a3) ", oy

(28)

This set of ordinary differential equations can be solved with a standard initial - value

ordinary differential equation solver.
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4.2  Flow model

In stirred tanks, the main phenomenon affecting drop breakage and coalescence is the
dissipation of turbulent energy. This dissipation varies several orders of magnitude in
various regions of the tank, being greatest near the impeller where the turbulent
vortices appear, and lowest far away from the impeller. Drop breakage occurs almost
exclusively near the impeller, but coalescence throughout the vessel. Then the drop
sizes increase as the suspension circulates at the quiescent parts of the vessel.
Therefore, a flow model describing these various regions is considered to improve the
results obtained with the population balance models compared to a simple model where
the vessel average turbulence properties are used. In Figure 2, a compartmentalization

of a stirred tank is shown.

QY

qu —

5u 6u T

Figure 2. Multiblock model for a stirred tank

In this model, the population balances are solved in each of the regions separately. The
breakage and coalescence of drops are calculated with the local turbulence properties.
Furthermore, convection of drops between the regions is calculated from the known

flow rates. A detailed description of the flow model is presented in [3].
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4.3 Drop breakage and coalescence function parameter estimation

When a multiblock flow model is used, the parameters used in the drop breakage and
coalescence functions should be estimated by using a similar flow model. The local
drop size distributions are measured from a stirred tank and the drop breakage and
coalescence parameters are estimated with a nonlinear parameter optimization
algorithm. With only vessel averaged turbulence values, transients after an impeller
speed change can be used to identify the drop breakage and coalescence rate
parameters. With a multiblock model, vessel inhomogeneity can be used in addition
with the transients to identify the parameters. This approach has some advantages
compared to using vessel-averaged transient drop size distributions only. Longer time-
averaged measurements are much more reliable than short time measurements. Other
aspect favoring time-averaged local measurements is that in the population balance
models, the flows are assumed to reach the new steady state immediately after the
impeller speed step change. This is not quite correct, and if the transient times in the
evolution of the drop size distributions are of the same order of magnitude than the
transients for the flows to reach the new steady state, the use of the transient drop sizes

calculated with the steady state turbulence levels are questionable [6].

4.4  Drop size distribution measurements

In order to verify the usefulness of the present model, some experiments with
immiscible liquids were carried out, and the results were used to estimate the
parameters of the drop breakage and coalescence rate functions [6]. The laboratory
vessel was a 50-liter standard stirred tank with four baffles. The stirrer was a six-bladed
Rushton turbine, with which the speed can be set without step changes. The
experimental system was an Exxsol in water-dispersion, and the volume fraction of the
dispersed Exxsol was 0.4 in all experiments. This volume fraction is so high that the

dispersion can be considered quite dense.

Exxsol is a commercial organic solvent, with the following measured physical
properties at room temperature: density 800 kg/m”, viscosity 1.0 cP, and surface tension

(against air) 24.4 mN/m. Interfacial tension between the organic solvent and water was
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obtained by subtracting the surface tension of Exxsol from the surface tension of water.

The interfacial tension was 43.6 mN/m.

Drop size distributions were measured using a Lasentec® FBRM (Focused Beam
Reflectance Measurement) device. It is based on a rapidly rotating laser beam. The
measured property of the dispersion is the drop chord length distribution. This means
that the laser beam randomly measures chord lengths of passing drops, and thus a
distribution of chord lengths is obtained even for droplets of uniform size. The
measured distribution must then be converted into a drop size distribution by assuming
spherical droplets. This procedure is described by Tadayyon and Rohani [19]. The drop
size range is divided into 38 channels, and the number of drops belonging to each of
these channels is measured. Typically, several hundreds or thousands of drops are

measured per second.

4.5 Functions related to drop breakage and coalescence

After testing several sets of drop breakage and coalescence functions, the following
functions were found to represent the experimental data with reasonable accuracy [6].

For the breakage frequency, the following function was found to give good results:

gla,)=C,e"erfc \/Cz S __icC Ho (29)

2/3 5/3 3 1/3 4/3
Pt g VPcPp€

This is based on a drop breakage frequency function proposed by Narsimhan, Gupta &
Ramkrishna [20]. The original form was extended by including viscous forces in the
energy balance for the drop breakage. Furthermore, all the parameters C,;, C,, and C;
were left as adjustable, and a dependency on energy dissipation to a power of 1/3 was

assumed.

For the drop coalescence, the following functions are used. The drop collision term of

Coalaloglou and Tavlarides [21] is used. It stands as
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A simplified form of the coalescence efficiency function of Tsouris & Tavlarides [22]

is used [3]:
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The product of h(ai, @) and Mai, @;) is then the coalescence rate function F(a;, g)).
Yet the daughter drop size function needs to be specified. It gives the distribution of the

formed drops when a breakage occurs. The following function was found to give good

results [23].
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There are five parameters in the drop rate functions chosen for the parameter
estimation. Due to limited experimental data, especially with systems with varying
physical properties, all of the parameters could not be identified properly. Thus, Cs was
set to 0.2 and Cs to 2000 at the last phase of the estimation procedure, and three
parameters, namely C;, C,, and C4 were left to be optimized. The frozen coefficient
values were obtained by reasoning from the extrapolation studies with various physical
properties, and these should not be considered to have any other but order of magnitude
accuracy. It must also be noted that the parameters and the functional forms are not
independent, but a consistent set of equations and corresponding parameters must be

used whenever the drop size distributions are calculated.
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4.6 Results from the single block model

In the single block model, three parameters were estimated along with the two that
were kept constant during the estimation procedure. Three measured steady state
population distributions were used, one before the step change to a higher impeller
speed, one after the change, and one after the step change back to the lower value.
Besides that, two transient distributions after the step change to the higher impeller
speed were used. In all these cases, the Sauter mean diameter and the population
densities at four locations of the distribution were used. Hence, totally 25 experimental

points were used in the parameter estimation procedure [6].

The optimal parameter values for the single block model were C; = 0.986, C, =
0.892:107, and C, = 0.433-10™. The estimated Sauter mean diameters were quite close
to the average measured values, as can be seen from the Figure 3. Some deviation

remains in the population density distribution, as shown in Figure 4.
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Figure 3. Simulated and measured Sauter mean diameters for the averaged vessel

properties during a transient between two steady states.
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Figure 4. Simulated and measured volumetric population densities for the averaged

vessel properties at steady states.

4.7  Results from the multiblock model

In the multiblock model, we have two sources of transient data for the population
balance parameter estimation. The first one is to use the transient data as the impeller
speed is altered, similarly to the single block model. The other source is vessel
inhomogeneity from both the steady state measurements, and measurements taken
during the transients. As the dispersion flows into the impeller region, the drops are
broken, and during the circulation, they collide and coalesce. Then the parameters for
the breakage functions can be estimated separately by measuring the drop size
distributions at various points in the circulation region. The longer the time period over
which the distributions are measured (time-averaged), the more accurate are the results.
Thus, parameter estimation with the multiblock model and several measuring points
should give more reliable parameter values than the vessel averaged model with only
transients in impeller speed. Another source of error, when the transient response data
is used, is that the flow fields are assumed to reach their new steady states immediately
after a step change in the impeller speed. For turbulent energy dissipation, this may be a
reasonable assumption, but for the flow fields, there are transients of a few seconds

even for small-scale vessels. A problem with the measurements at various locations in
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the vessel is that the measuring probe may slightly alter the flow fields. Of course, if
the measured drop size distributions at various locations of the tank are entirely
homogeneous, then the transient parameters cannot be identified by using local

measurements [6].

The drop rate functions were the same than in the single block model. The optimized
parameter values for the multiblock model were C; = 3.68, C, = 0.775-10'3, and
Cy=1.55- 102, In Figure 5, the measured and the estimated Sauter mean diameters from

two blocks are shown. These correspond to the blocks 31 and 6u of Figure 2.
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Figure 5. Simulated and measured Sauter mean diameters in the multiblock model

during a transient.

The inhomogeneity in the vessel was from 4 to 6 % in the Sauter mean diameter. The
calculated drop size distributions are shown in Figure 6. Even though the
inhomogeneity was quite small due to a small scale stirred tank, it was enough to be

used as a source of data in the parameter estimation.
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Figure 6. Simulated population densities at two locations of the vessel with two

impeller speeds.
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5 CONCLUSIONS

Mass transfer models are often important when modeling unit operations and reactors.
Accurate calculation of the mass transfer rates is essential when predicting the

operation of processes relevant to chemical engineering.

In this work, mass transfer modeling with the Maxwell-Stefan diffusion model was
studied. Rigorous modeling of multicomponent mass transfer results in matrix
equations and several matrix function calculations. This is very time consuming,
especially since these models need to be calculated many times during the solution of a
unit operation or reactor model. Some computational simplifications were presented in
order to ease the computational work associated with these models. The first was a
method to calculate approximately the matrix functions appearing in the
multicomponent mass transfer models. The second was a linearization of the high flux
correction. Both these methods result in negligible approximation errors in almost all
the practical cases. The applicability of these two approximations, along with other
modeling aspects, was considered with a distillation tray model. An approximation was
also presented in this work for calculating diffusion, and further the mass transfer
coefficients, within spherical particles.

The mass transfer rates appearing in the material balances of unit operation or reactor
models are products of the mass transfer fluxes and the mass transfer area. Hence,
accurate prediction of the mass transfer area is also an important part of the mass
transfer modeling. The most fundamental way to calculate the mass transfer area is to
use the population balances. However, in many cases the parameters affecting the mass
transfer area vary between various parts of the considered balance region. A flow
model needs then to be used along with the population balances. One such model is
presented in this work, where a stirred tank is divided in a number of subregions
describing various turbulence levels in the tank. The drop breakage and coalescence
rate parameters of liquid-liquid dispersions are then estimated with experimental data to
test the population balance models with the flow model, with a reasonable success. This
proves that a flow model can and should be used with the population balances

whenever the mass transfer area needs to be calculated accurately.
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