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Abstract 
 
 
Model-based task planning is one of the main capabilities of autonomous mobile 
robots. Especially for model-based localization and path planning, a large-scale 
description of the operation environment is required. Cognitive communication 
between man and his machine could be based on a common, three-dimensional 
understanding of the environment. In the case of a personal service robot, the 
operation environment may comprise both indoor and outdoor spaces. In this 
thesis, a method for the generation of a three-dimensional geometric model for 
large scale, structured and natural environments is presented.  
 
The environment mapping method, which uses range images as measurement data, 
consists of three main phases: first, geometric features are extracted from each of 
the range images. Secondly, the relative coordinate transformations (i.e. 
registrations) between the sensor viewpoint locations, where the range data was 
measured, are computed. And, finally, an integrated map is formed by 
transforming the sub-map data into a common frame of reference. 
 
Two types of geometric features are extracted from the range images: cylinder 
segments (or more generally truncated cone segments) and straight-line segments. 
With cylinder segments tree trunks and other elongated cylindrical objects can be 
modeled, whereas the straight line segments correspond to the upper corners of 
vertical walls. The features are utilized as natural landmarks for registration 
computation.  
 
The presented method is tested by mapping three test sites representing structured, 
semi-structured and natural environments. The structured environment corresponds 
to a part of the premises of an office building, the semi-structured environment 
corresponds to the surroundings of a parking lot and the natural environment is a 
small forest area. The dimensions of the test sites are about 50 meters, 120 meters 
and 40 meters square, respectively. A simple incremental approach is used to build 
an integrated model for the parking lot and office corridor environments. For the 
principal mapping experiment, concerning the small forest area, a statistically 
more sound, optimal approach is applied. With respect to the feature extraction 
methods and the computation of the relative coordinate transformations between 
the viewpoints, robustness to outlier data and failure modes of the methods are 
discussed in more detail. 
 
 
Keywords: Geometric feature extraction, viewpoint registration, 3D environment 
mapping 
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Chapter 1 
 

Introduction 
 
 
1.1 Description of the mapping task 
 
Environment mapping deals with the problem of building a topological and/or 
metric model of the scene visible to the mapping sensor. In many cases, only a part 
of the target environment can be modeled from a single viewpoint and multiple sets 
of measurement data must be collected to cover all corners of the environment. 
Therefore, integration of the local sub-maps into a unified model comprises one of 
the most central tasks of environment mapping. 
 
A map built from an environment can contain different levels of qualitative and 
metric information. Topological maps describe characteristics, which are 
independent of environment geometry and sequential relationships within the 
environment. For example, the significant locations and travelable connections 
between them may be described with a topological map. If also information on the 
lengths of the connections is also contained in the map, the map structure can be 
called metric-topological. In Figure 1.1 an example of metric topological maps is 
depicted. 
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Figure 1.1 An example of the layout of metric-topological maps. The available 
paths from the starting location “S” to the goal location “G” are described within 
the map. 
 
Metric maps represent the properties and coordinates of each location within the 
borders of the area of interest. A popular realization of a metric map, especially in 
the mobile robot research community, is the evidence/occupancy grid map. The 
mapped area is divided into regular sized cells, each of which contains the 
accumulated evidence of being intersected by an object or belonging to free space. 
Until the perception sensor probes a particular grid cell it will contain the 
'unexplored' status.  
 
An alternative to the metric grid maps is geometric feature maps. Instead of 
dividing the mapped space into regular sized grid cells, a more explicit 
representation of the geometry of the contours of the objects in the environment is 
used.  
 
For example, straight-line segments and circles may be used to model the 2D 
projection of wall planes and major objects in an indoor office environment. The 
models discussed above suit well to a task such as the collision-free path planning 
of mobile robots, especially in structured indoor environments. However, 2D maps 
may not be rich enough for fully autonomous robots to reliably carry out complex 
operations, for long periods, in real environments. Navigation is clearly one of the 
key capabilities of any autonomous (service) robot. In structured environments, 2D 
navigation may be good enough to guarantee reliable operation of an autonomous 
mobile robot. However, manipulating the 3D world to perform some useful work is 
often a more challenging task, which requires 3D perception capabilities. When 
autonomous robots need to co-operate with human beings, a common 3D 
understanding of the operation environment in particular would be very beneficial.  
 
 
1.2 Motivation of the dissertation 
 
Future service robots should be able to co-operate with people seamlessly both in 
indoor and outdoor environments. Cognitive communication with the operator and 
autonomous capabilities to accomplish versatile tasks requires 3D modeling of the 
operation environment. In natural outdoor environments several characteristics 
make the 3D mapping task particularly challenging. Changes in foreground and 

A
D

H

S B E

F
C

G

3

1

2 2

1 

1 1 

4 

3 

2 

2 



 

 3

background illumination complicate the extraction of an object’s contours from 
camera images. Occlusion in cluttered environments may change the visible scene 
contents drastically even due to a small displacement of the sensor. Acquiring a 
good initial estimate for the traveled distance between perception positions may be 
difficult due to rough outdoor terrain conditions. 
 
Localization of a mobile robot carrying the perception sensor is the first step in the 
simultaneous localization and map building (SLAM) process. In the computer 
graphics community this is often referred to as the registration of viewpoints, 
where measurement data is acquired. For large scale mapping of indoor and 
outdoor environments, reliance on the availability of distinguishable landmarks 
may be problematic. Symmetric architectural features or natural, equal looking 
objects such as trees may complicate the composition of a rich enough set of unique 
feature pairs for registration computation. In that regard, the ideal registration 
method should possess the following characteristics: 
 
• Robustness to outliers and missing data 
• Ability to find globally optimal alignment within a relative large search space 
• Support a multiple hypothesis registration result 
• Give an estimate of the probability of correctness of the result (optimal 

alignment may not necessarily be the correct one) 
 
Indeed, the registration techniques that are able to utilize indistinguishable feature 
data seem to offer the proper basis for the implementation of a generic method for 
computing the relative alignment between 3D feature maps.  
 
 
1.3 Contribution of the dissertation 
 
A method to construct a 3D model for static indoor and outdoor environments has 
been developed and tested with real measurement data, acquired with a high-end 
range-imaging sensor. The developed method consists of three main phases: first, 
for all range images, feature models are computed by means of the dense range 
image data. Then, sub-maps are created from the feature object models, by 
describing their coordinates with respect to the reference frame, which is attached 
to the location where the corresponding range image was originally acquired. 
Second, relative alignment coordinates among the partly overlapping sub-maps are 
computed with respect to the x-, y- and z- translation degrees of freedom as well as 
with respect to the rotation angle around the z-axis. As the third mapping step, an 
integrated large-scale map is formed from the feature object models, which were 
described with respect to the corresponding local sub-map, and from the relative 
alignment data computed for each of the overlapping sub-map pairs. For 
computing an integrated model, a straightforward, incremental approach was 
applied for the first two test environments whereas a statistically more sound, 
optimal approach was used to compute a large-scale model for the natural forest 
terrain.  
 
The main contribution of the thesis is related to the development and experimental 
verification of a simultaneous localization and mapping (SLAM) method for static 
3D environments. The method is based on existing estimation algorithms which 
have been studied, with the most proper one being selected for the method. This is 
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one of the first systems that exploit the new 3D range imaging technology for 
modeling large-scale environments. Moreover, building automatically an optimal 
feature-based map for a natural forest terrain, by using data acquired at several 
locations, is, to the author’s knowledge, the first implementation of its kind.  
 
The second contribution of this work is related to the extraction of geometric 
models from range image data for two different kinds of natural landmarks. The 
first landmark type corresponds to elongated cylindrical objects which can be used 
to model the geometry of supporting columns and light poles in structured 
environments and, in particular, to model the visible sections of tree trunks in 
natural environments. The method, for the modeling of curved elongated objects 
with a circular cross-section, is based on an iterative process. The generated 
models are compact cylinder segment approximations, ideal building blocks for an 
abstracted feature-based model of the natural (forest) terrain environment. The 
knowledge of knowing the geometric type of the observed objects can be utilized for 
high-level communication between human and autonomous robot. With a 
conventional polygon approximation of the object contours, the same information 
content of the model is not attained. The other landmark type corresponds to the 
upper edges of vertical wall planes, which augment the feature set of cylindrical 
objects in a structured environment to facilitate more reliable computation of the 
relative alignment coordinates between overlapping sub-map pairs. Here, the 
contribution is related to the technique of how the 3D point coordinates are 
generated from the 3D occupancy grid for straight-line approximation. 
 
The third contribution of the work is the extension of an existing viewpoint 
registration algorithm to 3D environments. In particular, problems related to the 
approximation of the uncertainty of the registration result and assessment of the 
correctness of the result, are discussed. The individual contributions, in order of 
relative importance, can also be given in list form (starting with the most 
significant one): 

 
• Development and experimental verification of a simultaneous localization 

and map building method for large scale, static environments. In this 
context, the residual information, computed from the integrated optimal 
map is demonstrated to provide means to assess the correctness of a new 
relative map alignment observation, which is to be added to the map 
building process. In this way a more error tolerant autonomous SLAM-
method can be realized. (Chapters 6 and 7). 
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• Extraction of cylinder segment models, or more generally, truncated cone 
segment models from range image data for modeling elongated cylindrical 
objects. The contribution is related to the iterative algorithm for 
approximating curved elongated objects, with a circular cross-section, by a 
sequence of cylinder segment objects (or more generally, truncated cone 
segment objects). Moreover, the method can be configured to accept 
objects, or rather, measurement echoes from objects, which indicate 
different levels of circularity in the object cross-section. This is particularly 
important due to the wide laser beam pattern and significant divergence of 
the beam, which increases the noise in the measurement data as a function 
of the measured distance. Also, tree trunks, which are the principal category 
of objects considered in this work, do not have an absolutely circular cross 
section. (Chapter 4.6). 

 
• Registration of a pair of feature maps in four dimensions. An alternative 

way to approximate the precision of the result, related to the implemented 
method, is suggested. Also, the possibility to assess the correctness of the 
result is discussed (Chapter 5.4). A method to classify the newly computed 
relative alignment hypothesis as being correct or faulty is then presented in 
Chapters 6.4 and 7.1. 

 
• Approximation of the upper end corners of vertical wall planes by means of 

a straight-line segment model. The contribution is related to the extraction 
of the 3D point data from the 3D occupancy grid. The estimation of the 3D 
straight line equation parameters from the point data is done by means of a 
standard algorithm (Chapter 4.7). 

 
 
1.4 Outline of the study 
 
The dissertation consists of eight chapters. Two first chapters comprise an 
illustrative introduction to the subject of 3D model construction, especially for 
outdoor mobile robot applications. In Chapter 3, the state-of-the-art in 
simultaneous localization and map building (SLAM) is discussed. At the beginning 
of Chapters 4 and 5, previous research related to feature extraction methods and to 
the registration of overlapping feature maps is discussed, respectively. At the end 
of Chapters 4 and 5, our own contribution to the subjects is presented. In Chapter 
6, construction of large-scale models for both structured and natural environments 
is discussed. In Chapter 7, a technique to automatically assess the correctness of 
the constructed optimal map is proposed. And finally, the developed methods are 
summarized and warrants for future research are presented in Chapter 8. A more 
detailed description of the contents of the work is given in the form of the following 
list: 
 

• In Chapter 2, construction of 3D maps from the map contents point of view 
is discussed. Three different 3D model appearances are illustrated. The 
models were created by means of one of the range images, used later in the 
modeling experiments. 
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• In Chapter 3, the most significant, probabilistic map construction methods 
are summarized. The presented methods cover the majority of published 
SLAM implementations. The published methods, which often aim at 
achieving real time operation performance, usually produce a 2D model. 

 

• In Chapter 4, different perception systems for acquiring 3D measurement 
data are first presented. Then, segmentation of range data as the first step 
in feature extraction is discussed. At the end of the chapter, our 
contribution to range image-based feature extraction will be presented.  

 

• In Chapter 5, computation of the relative alignment coordinates between 
overlapping sets of perception data (i.e. sub-maps) for the construction of 
an integrated, large-scale map will be discussed. Again, published work 
within the subject is first presented. Then our own contribution, in the form 
of applying one of the published methods to the registration of 3D data sets, 
will be described. 

 

• In Chapter 6, the main contribution of the thesis, which considers the 
construction of a large-scale 3D environment model, will be discussed. First 
the perception sensor used and the environment mapping method are 
described. Then experimental results with respect to three different test 
environments are presented.  

 

• In Chapter 7, the possibilities to assess the correctness of the constructed 
environment model are discussed. 

 

• And finally, a summary of the work and directions for future research are 
presented in Chapter 8. 
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Chapter 2 
 

Three-dimensional environment 
mapping 
 
 
2.1 Introduction 
 
2.1.1 Definition of an environment map 
 
The environment maps, considered in this work, can be defined as a description of 
a physical environment for some specific application. An environment model is 
usually formed by merging perception data acquired from a number of different 
positions within the environment. The locations of the coordinate frames, attached 
to the perception positions or to the locations of some important geometric 
features in the environment, constitute the skeleton of the environment model. The 
substance of the final model, designed for the end-user, will be built above the 
skeleton. For example, the structure or skeleton of the model may be estimated by 
means of natural landmarks or features extracted from the 3D perception data. 
However, the end user desires to have a detailed polygonal mesh approximation of 
the contours of the objects in the environment. The feature models, utilized to 
compute the coordinates of the local frames of reference forming the map 
structure, can now be replaced with the polygonal mesh approximations computed 
from the “raw” measurement data. The principle is illustrated in Figure 2.1. 
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Figure 2.1 An illustration of the two phases in the construction of a geometric 
map. On the right, the map, desired by the end user. 
 
In the left part of the figure, the relative alignment of the sub-maps (marked with 
the reference frames) has been estimated by means of the features corresponding to 
the dots in the image. In the right part of the figure, another representative form (a 
surface mesh) of the objects in the environment is laid out on the top of the 
reference frames (i.e. the skeleton of the map).  
 
 
2.1.2 Topological or metric map representation 
 
Topological maps can be described as a semantic layout of significant locations in 
the environment. The distribution of and connections between the significant 
locations are based on qualitative data. Topological maps are relatively compact 
and allow utilization of fast navigation and mapping algorithms. Their major 
drawback is the same as their benefit, which is the sparse and non-metric 
environment representation. Applications that require fine-grained information 
about a random location within the environment cannot rest solely on topological 
environment representations. 
 
Metric environment models can be separated into two representation classes: 
numerical and geometric. In numeric maps the model space is divided in regions of 
constant numeric value of desired quantity. Grid-based models are the most 
popular representational types of numeric maps, in which the model space regions 
are rectangular cells.  
 
Geometric models explicitly approximate the objects of interest with a surface or 
volumetric primitive representation. The rest of the scene’s contents remains 
undefined, with only the objects being modeled. An example of a generic 
representation tool for object surface geometry is the triangular mesh model. For 
example, the VRML-format is a realization of triangular mesh maps. Volumetric 
model primitives, on the other hand, describe the volume enclosed by the envelope 
defined by the model equation. A volumetric model primitive, utilized in this work, 
is the cylinder segment model, which defines the sub-space enclosed within its 
boundaries by means of six pose parameters and the radius and the length of the 
cylinder segment. A generalization of the cylinder segment model is the truncated 
cone segment model in which the radii of the two end points of the segment are 
defined separately. Realizations of the cylinder segment model can be seen in 
several pictures throughout the thesis. 
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2.1.3 Level of abstraction of the model 
 
The representation modes for an environment map can be divided into different 
categories. Semantic and topological maps describe qualitative information about 
the environment whereas metric maps give numeric or geometric information. 
Qualitative information, such as the geometric primitive type of the object, can be 
given interactively by the operator [Forsman and Halme, 1989] and [Forsman and 
Halme, 1995]. However, perception sensors may also be programmed to extract 
semantic information on the environment. Quek et al. discussed a generic-to-
specific refinement process for computing compound cylinder and planar object 
models from dense range data [Quek et al., 1993]. They explain that extracting 
feature models from the numeric measurement data corresponds to providing a 
semantic description of the perceived objects and the scene. Nevertheless, a priori 
knowledge, that the object types under consideration are a good interpretation of 
the scene’s contents, is required. Indeed, many of the proposed scene modeling 
methods, for example [Högström and Wernersson, 1998] and [Betgé-Brezetz et 
al., 1994a], where the processing advances from a data-based description to a 
higher level representation, follow the generic-to-specific principle. 
 
 
2.1.4 Action planning for efficient exploration 
 
To make the exploration of unknown environments more efficient, planning of the 
perception positions can be applied. Active exploration methods, such as [Whaite 
and Ferrie, 1997] and [ Fox et al., 1998], are capable of planning the route of the 
robot and perception positions in a way that takes into account, for example, the 
traversability of the terrain and the location of unmapped sections in the 
workspace.  
 
 
2.1.5 2D versus 3D mapping 
 
The majority of the work for simultaneous localization and mapping has only taken 
into consideration 2D environments. The restriction to operate on a 2D plane is 
justified when navigating in structured indoor environments. Outdoors, and 
especially in natural terrain, 3D models are required to describe the geometry of 
the environment. Maybe the simplest example of a 3D model is the elevation map, 
where the altitude value of the highest/lowest laser beam hit point within each of 
the small area patches (i.e. xy-grid cells) is recorded. The elevation map is one of 
the basic model types used in this work. 
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2.2 Structures of metric 3D maps 
 
The realization of map geometry, built above the computed map structure, as 
depicted in Figure 2.1, depends on the end-user application. For example, in order 
to assess the traversability of an outdoor terrain, an elevation map may be desired. 
On the other hand, if the outer shape of a historical monument needs to be 
recovered, a polygonal mesh model might be preferred. For cognitive 
communication between a human operator and a service robot, a more abstracted 
feature model may be required. To illustrate the different model types, the scene 
shown in the photographs of Figure 2.2 will be mapped by using these three 
alternative representations of map geometry. 
 

 

 
 

Figure 2.2 Two camera images of the scene visible from the location from where 
the range image “scanF” was measured. 
 
In the images of Figure 2.2, the north side of the Computer Science Building of 
HUT and a group of trees are depicted. To demonstrate the different 3D model 
representations, the measurement data contained in the range image “scanE” is 
worked into an elevation map, triangular mesh map and geometric feature map 
representation. Note that the range image “scanE” was measured from a location 
near the trees on the right hand side of the driveway.  
 
 
2.2.1 Grid maps 
 
As an example of a metric grid map, an elevation map formed from the range 
image “scanE” is depicted in Figure 2.3. The dimensions of the grid are 600 
elements in both vertical and horizontal directions. 
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Figure 2.3 Elevation map computed by means of the range image “scanE”. The 
size of the grid map is 120 meters square corresponding to the dimensions of 0.2 
meters square for one grid cell. 
 
An example of an environment, where elevation maps can be used is an open mine. 
Also, large scale elevation maps for open terrain can be generated from the data 
collected by an airborne sensor. 
 
 
2.2.2 Polygon mesh maps 
 
Polygon mesh maps approximate the original object geometry by triangular planar 
surface patches. A number of commercial software packages can generate a 
polygon representation from the original measurement data. Moreover, programs 
such as the PolyWorks utility program package can align and merge smaller 
models into a larger, unified representation. This is exactly the same problem 
discussed in this work. However, the PolyWorks program, studied in this work, 
seems to apply (actual methods are confidential) an iterative corresponding point 
or feature pair computation method. Such algorithms require a relative good initial 
approximation to converge to the globally optimal alignment solution. In our study, 
we apply a different alignment technique in order to be able to relax the accurate a 

Groups of 
trees 

Building 
wall 
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priori alignment requirement. In Figure 2.4 a polygonal mesh model of the scene, 
depicted in Figure 2.2, is shown. 
 

 
 
Figure 2.4 A polygonal mesh map generated from the range scanner data set 
“scanE”. The PolyWorks program package of InnovMetric Software Inc. was used 
to generate the polygon representation. 
 
The model, generated from a cluttered scene consists of a large number of 
polygons. Moreover, the qualitative information contained within a triangular mesh 
model is small. Actually, there is no abstracted information on the geometric type 
of the object from which the measurements originate. For a human being it is quite 
easy to figure out from the image its contents. To generate a corresponding 
algorithm for a machine may not be straightforward. Indeed, a more abstracted 
model, that would also yield the basic geometric type of the underlying physical 
object, might be a better basis for designing “intelligent” (or cognitive) 
communication interfaces for mobile robots. 
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2.2.3 Geometric feature maps 
 
A geometric feature map consists of a set of geometric primitive objects. In this 
work, the geometric primitive models considered are cylinder segment (or 
truncated cone segment) models and straight-line models. The former object type is 
used to approximate the geometry of narrow elongated objects with a circular 
cross-section. Examples of physical objects in this category are pillars, telephone 
poles and tree trunks. Straight-line objects are used to describe the location of the 
upper corner of walls. The extracted feature objects are primarily used for 
computing the relative alignment between neighboring scanner positions. However, 
they can also be used to visualize the environment geometry as depicted in Figure 
2.5. In the figure, the straight-line models corresponding to the upper end of the 
visible wall planes of the building, depicted in the left photograph of Figure 2.2, 
are extended up to the expected ground level (z-coordinate set to zero). The size of 
the model is only a few kilobytes. 
 

 
 
Figure 2.5 Feature object models generated from the data in the range image 
“scanE”. The planar surfaces on the left correspond to the estimated wall planes of 
the building whereas the cylinder models to the right represent the visible sections 
of the tree trunks and the light pole. 
 
The compactness and information content of the geometric primitive models make 
them attractive to real time applications, such as model based task planning and 
cognitive communication between human and robot. Moreover, the large-scale 3D 
description of the environment geometry can be utilized as the “ground truth” 
model for real-time navigation of the mobile robot. The robot can calibrate its 
global location parameters by utilizing the suitable 2D profile extracted from the 
large-scale 3D model. For example, building walls and the locations of the trees 
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can serve as beacons for resetting the accumulated error in the robot coordinates. 
The WorkPartner robot [Halme et al., 2001], which is the target application for 
the utilization of the feature-based 3D environment models developed in this work, 
is shown in Figure 2.6. 
 

 
 
Figure 2.6 WorkPartner, the prototype of a mobile service robot designed to work 
interactively with humans in outdoor environments. The robot is equipped with a 
2D laser scanner used for autonomous, model-based navigation. 
 
The high-level communication interface of the WorkPartner robot can be based on 
a model such as the one depicted in Figure 2.5. In particular, if the virtual model is 
augmented with texture data corresponding to the natural, photograph-like 
appearance of the environment, a proper basis for cognitive communication 
between man and his machine can be established. Examples of reality-augmented 
virtual model views are given in Chapters 4.6.2 and 6.3. 
 
It should be emphasized that the large-scale feature object models developed in this 
work comprise the basis of the final environment description. Dynamic and/or small 
sized objects can be augmented to the environment model by using, for example, an 
interactive method. With the quasi-coaxial arrangement of a laser pointer and a 
video camera, mounted on the head of WorkPartner, the human operator can 
easily augment the basic model appearance by using, for example, the method 
described in [Forsman, 1994]. 
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Chapter 3 
 

Probabilistic formulation of  
the simultaneous localization and 
mapping task 
 
 
3.1 Introduction 
 
Map building by means of a mobile perception sensor mounted, for instance, on an 
autonomous mobile robot can be described as a sequence of two alternating tasks: 
localization with respect to the existing map and an updating of the map based on 
the result of localization. The localization and map update steps are tightly coupled 
with each other and therefore we are faced with the classic chicken-and-egg 
problem. 
 
Construction of a model for the environment concerns the fusion of perception data 
collected from a number of viewpoints. The perception data can be in the form of 
features extracted from the measurement data or sub-maps. Sub-maps correspond 
to a collection of entities such as measurement points or extracted features 
represented with respect to the reference frame of the sub-map. The uncertainty 
related to the location of the entities with respect to the reference frame of the sub-
map is assumed to be bound. The error bounds can be determined from the 
accuracy of the perception sensor and/or the feature extraction method. The 
individual features or sub-maps correspond to the model objects, which are the 
building blocks to be welded together for a unified environment representation.  
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The main phases in simultaneous localization and map building process can be 
described as: 
 

• Acquisition of external measurement data from several viewpoints.  
• Registration of the measurement data with respect to each other or with 

respect to a common frame of reference. 
• Globally optimal organization of the map items, based on their mutual 

registration dependencies. 
 
The mutual synchronization of the phases may differ significantly. For example, 
the collection of measurements from the environment and the registration of 
measurement data can be carried out alternately, in real time, resulting in the 
popular simultaneous localization and mapping procedure. On the other hand, a 
major part of the perception data can be collected before the optimal map 
generation step is executed (off-line). Obviously, it is up to the laboriousness of the 
mapping method whether it can or cannot be carried out on-line, while exploring 
the environment.  
 
A considerable amount of work concerning simultaneous localization and map 
building has been published during the past 10 to 15 years. The procedures for 
making observations and maintaining spatial relationships of most of the proposed 
methods can be classified into three categories. In the first category, the spatial 
locations of the map objects are first observed, remotely, with respect to the sensor 
frame. Based on the remote observations, relationships for the map objects with 
respect to a global reference frame are computed. We will call the principle here 
the remote observation-global localization (REMO-GL) approach. Technically, the 
global location of the map object (landmark) is updated as a function of the 
difference between the real and the predicted observations of the landmark. The 
predicted observation is computed as the difference between the estimates of the 
global location of the landmark and the global location of the sensor platform. The 
REMO-GL approach is clearly the most popular approach adopted by many 
research groups. Previous work related to the application of a REMO-GL type 
SLAM approach has reported, for example, in [Moutarlier and Chatila, 1989], 
[Rencken, 1993], [Feder et al., 1998a] and [Thrun et al., 1998a]. The key idea is 
that the perception sensor mounted on a mobile platform observes map objects, i.e. 
features or landmarks, remotely. The global location of the map objects and the 
global location of the perception sensor (or the equivalently global location of the 
mobile sensor platform) are updated concurrently, for example, within a Kalman 
filter mechanism. The REMO-GL principle is depicted in Figure 3.1.  
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Figure 3.1 An illustration of the remote observation-global localization (REMO-
GL) approach. The circles denote the landmarks, Mx describes the estimate of the 

global location of the Mth landmark, rx is the estimate of the global robot location 

and Mrd  is an observation of the Mth landmark with respect to the robot. 
 
In the figure the symbols NM xxxx ,,,,, 21 ��  denote the true and unknown 
locations of the map objects (features or landmarks) to be estimated by making 
remote observations thereof with respect to the global location of the mobile sensor 
platform (such as the autonomous mobile robot). For example, the observation of 
the Mth landmark with respect to the reference frame of the robot, marked with the 
symbol Mrd , is to be combined with the estimate rx̂ of the current (unknown) 

location of the robot rx to yield the actual measurement of the global location of 
the landmark. 
 
In the second category of methods, the global location of map objects is estimated 
through observations on relative relationships between map objects. Characteristic 
of the published implementations of this approach is that the map objects in the 
stochastic environment model correspond to past locations of the perception sensor 
augmented with the corresponding observation data [Lu and Milios, 1995] and 
[Thrun et al., 1998b]. Sensor locations combined with the corresponding 
measurement data compose sub-maps that are registered with each other in the 
maximum likelihood sense. The relative observation-global localization (RELA-
GL) principle is illustrated in Figure 3.2.  
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Figure 3.2 An illustration of the relative observation-global localization (RELA-
GL) approach. The circles of a particular texture describe the feature objects 
extracted from the measurement data, acquired from the corresponding sensor 
location, symbolized with the box of the same texture. 1x  is now the location of the 
sensor frame of reference of the perception position number one with respect to the 
global frame of reference, fixed to the first perception position indicated by the 
number zero. The computed relative alignment (i.e. registration) observations 
between the perception locations are marked with the symbol d . 
 
In the figure, the global reference frame is selected to coincide with startup, the 
zeroth location of the sensor platform. The state variables to be estimated are the 
other locations of the mobile platform corresponding to the places where 
perception data was collected. They are marked with 1x  and 2x  in the figure. 

Measurements, marked by 10d , 20d  and 21d  in the figure, on the relative 
displacements between the state variables are made by optimally registering 
overlapping sub-maps. If no registration can be reliably computed between two 
consecutive measurement locations, an estimate of the relative displacement can 
also be formed by means of odometry information. Note that, in Figure 3.2, the 
multiple realizations of each single physical object are represented with the same 
texture as the corresponding sub-map frame of reference. For the final, unified 
model of the environment the different, partly overlapping geometric 
approximations should be merged to yield a similar model structure as depicted in 
Figure 3.1. Obviously, the RELA-GL approach best suits the implementations 
where the perception sensor remains motionless during the collection of external 
measurement data. However, it has been applied successfully in a situation, where 

1 

2 
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2x

10d

21d

20d



 

 19

an autonomous robot, equipped with a 2D laser range scanner (and 24 sonar 
sensors), explored an unknown environment [Thrun et al., 1998b].  
 
The connected network of past viewpoint locations form the backbone of the 
environment model. Within each sub-map the entities of interest, for example raw 
measurement data points or features extracted from the raw measurement data, 
are described with respect to the reference frame of the sub-map with known (or 
bound) uncertainty. A major difference of the RELA-GL approach with respect to 
the REMO-GL approach is that the current location of the perception sensor is not 
included in the map representation. Instead, the history of perception sensor 
locations is maintained and updated during maximum likelihood map estimation.  
In the third category of methods, relative relationships between map objects are 
both observed and estimated during map building [Durrant-Whyte, 1988] and 
[Csorba et al., 1997]. A rigorous stochastic treatment of the approach is more 
challenging than that of the REMO-GL approach [Moutarlier and Chatila, 1989]. 
Moreover, it is not clear how this approach could be applied to yield stochastically 
consistent estimates of the global locations of map objects [Csorba et al., 1997] 
and [Csorba., 1997]. 
 
The simultaneous localization and map building methods can also be distinguished 
according to their capability to cope with different kinds of environments. In the 
stochastic mapping approaches, originally presented in [Smith et al., 1990] and 
[Moutarlier and Chatila, 1989], the statistics of the map objects are expressed by 
the approximated expected value (mean) and the approximated mean squared error 
(covariance). The main restriction, related to the approximation of a probability 
distribution by the first two moments, is related to the assumption that sufficient 
statistics for the uncertainty are concentrated around a single peak in the 
likelihood space. Exploration of environments that contain symmetric locations or 
featureless spaces requires accurate and reliable odometry information to be 
available, if only a single expected value together with the related covariance 
matrix should be robust enough to describe the location estimate of a map object. 
In real implementations of stochastic mapping, large displacements of the 
perception sensor between the measurement positions and imprecise odometry 
information about the displacement may result in the ambiguous association of 
measured features with corresponding features on the map. If these ambiguities are 
neglected and only one of the measured object-map object pairs is selected, risk for 
faulty association and consequent map divergence is considerable. 
 
The Markov localization approach was proposed as a generic-form approximation 
of the likelihood function corresponding to the belief of where the robot might be 
[Burgard et al., 1996] and [Fox et al., 1999b]. In the original form of metric, 
Markov localization, the belief state of the robot is implemented by dividing the 
dimensions of the state space of the robot into discrete intervals forming a 
multidimensional grid. Each grid cell contains a scalar value corresponding to the 
probability (or belief) that the true and unknown location of the robot is within the 
envelope of the mobile robot configuration space described by the grid cell. By 
adjusting the size of the grid cells the desired level of accuracy of the probability 
density approximation can be achieved. In Figure 3.3, a likelihood distribution grid 
over the x- and y-coordinates of the relative alignment between two sub-maps is 
depicted.  
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Figure 3.3 Ambiguous (multiple mode) distribution of the registration score 
density for the relative alignment between sub-maps “6” and “7” during the indoor 
mapping experiment. The image has been generated by projecting the connected set 
of four-dimensional registration search space cells onto the x- and y- search plane. 
The x- and y–coordinates of the discrete search space cell possessing the maximum 
score value is marked with a simple cross-hair. The x- and y- coordinates of the 
center of gravity of the score distribution “cloud” is marked with the ended cross-
hair the lengths of which describe the sample standard deviation of the cloud. The 
dimensions of the search space in the figure are 10 meters square. 
 
In the figure, the likelihood of the relative alignment, determined by means of 
external perception data, is distributed in a complex manner. The ambiguous 
distribution of the likelihood is due to the characteristics of the geometric features 
used as reference for the computation of the “match score” for the different 
relative alignment coordinate hypotheses within the discrete alignment search 
space. For the sub-map pair “76”, the only common features within the two maps 
were the straight-line segments corresponding to the upper end corner of vertical 
walls in the office corridor environment. Often, with such kind of features a large 
number of alignment hypotheses result in relatively good match score value. The 
widely distributed likelihood could be compressed by means of accurate odometry 
information. If an accurate initial estimate of the a priori displacement of the 
sensor would be available, it could be convolved with the perception-based 
registration distribution to yield a single strong candidate (peak) for the relative 
alignment between the two sub-maps.  
 
Approximation of the entire likelihood score mass by its first two moments does 
not give a good estimate of the correct registration as indicated by the modified 
cross hair in Figure 3.3, which designates the center of gravity of the total score 
mass. On the other hand, selecting the alignment coordinates corresponding to the 
highest peak center, marked with the simple cross-hair in the figure, would neither 
necessarily yield the correct answer. 
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3.2 Stochastic, single hypothesis map representation 
 
In the stochastic formulation of the mapping task, a system state vector with the 
position of the sensor platform as well as all the positions of the map objects, are 
maintained. The approach corresponds to the REMO-GL formalism depicted in 
Figure 3.1. Also, the uncertainty values of the position parameters and the 
correlation dependencies between the state variables are stored and updated within 
the (Kalman) filter mechanism. Generally, a Kalman filter-based simultaneous 
localization and map building algorithm (SLAM) works by tracking existing map 
features and by adding new features to the map as reliable measurements thereof 
have been acquired. In some cases, features may also be removed from the map, 
especially if they appear to correspond to dynamic objects. 
 
Kalman filter-based estimation has been applied with great success in practical 
simultaneous localization and mapping applications [Moutarlier and Chatila, 
1989] and [Feder et al., 1998b]. However, there are situations where the risk of 
divergence in the map increases. These situations are related especially to the 
ambiguities in data association. If a landmark, extracted from the measurement 
data, is associated with an existing landmark model corresponding to a different 
physical object, the computed corrections in the locations of the landmark models 
are made with erroneous information. This causes the true uncertainties in the 
state estimates to move outside the estimated error bounds determined by the 
system covariance matrix. The model becomes overconfident and the estimate 
diverges [Feder et al., 1998b].  
 
 
3.2.1 Remote observation-global localization approach 
 
3.2.1.1 Single state space formulation 
 
In the first papers of stochastic, simultaneous localization and map building the 
position of all map objects including the robot were maintained in a single state 
vector [Smith et al., 1990] and [Moutarlier and Chatila, 1989]. Moutarlier and 
Chatila discussed two approaches to represent the spatial relationships among the 
reference frames of modeled features and the current location of the sensor 
platform [Moutarlier and Chatila, 1989]. In the first, the "Relation" approach, a 
state variable is related to another by an uncertain transformation between their 
reference frames [Durrant-Whyte, 1988]. The result is a network of links that has 
to be updated, as new data becomes available. In the second, the "Location" 
approach, the positions and related uncertainties of all map objects are described 
with respect to a common reference frame. They named the latter approach, which 
represents the feature and robot positions in a common world frame, as a 
preferable alternative. The formalism, which is called here the REMO-GL 
approach, was depicted in Figure 3.1. 
 
The stochastic representation of the environment model includes an estimate ( )kx̂  

of the unknown state variables x along with the covariance matrix ( )kP  modeling 

the uncertainty, xε , related to the estimate, 
 

( ) ( )kk xεxx += ˆ                                                                   (3.1) 
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( ) ( ) ( ){ }TkkEk xx εεP =                                                                     (3.2) 
 
where k can be imagined to be, for example, a discrete time instant or the current 
“phase” of the mapping process. The states to be estimated include the location of 
the mobile robot (and possibly other terms such as the velocity of the robot) 
carrying the perception sensor, ( )krx̂ , and the locations of the geometric features 

corresponding to some physical objects in the environment, ( ) ( )kk Nxx ˆˆ1 � . 
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The covariance matrix, describing the uncertainty of the state estimates and the 
correlations among them can now be expanded:  
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Moreover, let us assume that the inclination angles related to the location of the 
reference frames attached to the environment objects can be determined with a 
bound precision. Therefore, only the remaining four degrees of freedom of the 3D 
spatial relationships are to be included into the stochastic model of the 
environment. For example, the vector of uncertain spatial relationships of the first 
landmark in the map can be expanded into the following four-dimensional vector: 
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where )(ˆ1 kx , ( )ky1ˆ  and ( )kz1ˆ  are the estimates of the unknown (constant) x-, y- 

and z-coordinates of the first landmark on the map and ( )k1̂φ  the estimate of the 
unknown (constant) rotation angle of the landmark frame around the z-axis of the 
global frame of reference. Each sub-matrix of the variance-covariance matrix ( )kP  
can be expanded into a four times four matrix. For instance, the covariance matrix 

1rP has the form (time index (k) omitted for simplicity of presentation): 
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where, for example, 

1xxr
P  corresponds to the product of uncertainties 

1xxr
εε  of the 

x-coordinates of the robot and first feature locations, respectively. The dimensions 
of the system state vector and the associated variance-covariance matrix are 
4(N+1) and 4(N+1)x4(N+1) respectively, where N is the number of features or 
map objects in the model. (Note that the velocity term of the sensor platform, if 
included, will increase the dimensions by four). In the problem of map building, 
discussed here, the feature objects are assumed to be static and only the location of 
the robot is assumed to be controllable. However, the state estimation method itself 
would equally well support dynamic environments, on the condition that models for 
feature dynamics would be available. So, let us assume that the sensor platform is 
the only dynamic object in the environment map. The dynamics of the discrete time 
state space representation of the sensor platform (e.g. a mobile robot) can be 
expressed with the (non-linear) equation, 
 

( ) ( ) ( )( )kkkkk rr ,),(,1 vuxfx =+                                                           (3.7) 
 
where )(ku  corresponds to the control input for transporting the sensor platform to 

another location between the (time) instants k and k+1. The process noise ( )kv  is 
modeled as a zero-mean, white, random sequence with a known covariance matrix 

( )kQ . It should be noted that ( )kQ  describes the “basic” noise level, which will be 
scaled up or down within the system dynamics model (Equation 3.7). For example, 
properties of the terrain and the curvature as well as the time constraints of the 
trajectory may have large effects on how uncertainty is accumulated into the sensor 
location during the transportation of the sensor from perception position A to 
perception position B.  
 
Similarly, measurements of the state can be modeled as a (non-linear) function of 
the state as described by the measurement equation, 
 

( ) ( ) ( )( )kkkk ,, wxhz =                                                                 (3.8) 
 
where ( )kw  is again assumed to be a zero-mean, independent, random noise 

sequence with a known covariance matrix, ( )kR . 
 
The state space representation of the stochastic map is maintained and updated 
through the simultaneous localization and map construction mechanism. As new 
features are observed the state vector and the corresponding covariance matrix are 
augmented. In the opposite situation, existing map objects, which are not supported 
by the observation data, although they should be, may be deleted from the map. In 
order to add the location of the new feature into the state vector, its location with 
respect to the global frame of reference has to be computed from the relative 
observation, 
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( )newrN zxgx ,ˆˆ 1 =+                                                             (3.9) 
 
where the (non-linear) function g  corresponds to the measurement kinematics 

linking the current estimate of the robot location rx̂  with the relative observation 

of the (N+1)th feature newz  to yield an initial estimate of the location of the (N+1)th 
feature with respect to the global frame of reference. The new state vector is then 
added to the system state vector described by Equation 3.3. The covariance sub-
matrices to be added to the system covariance matrix, Equation 3.4, can be 
calculated as [Hébert et al., 1995],  
 

TT
rrNN newnewrr zzxx RGGGPGP +=++ 11                                                (3.10) 
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PGPP x== ++ 11                                                                    (3.11) 

 
where 

rxG  and 
newzG  are the Jacobian of g  with respect to the current robot state 

and to the relative observation of the new feature, respectively. 
 
In the REMO-GL map construction method, the robot location is included in the 
system state vector. This makes the system state correspond to a dynamic 
stochastic system, which evolves in time. This is the case even when assuming that 
the geometric features in the environment are static. Therefore, an estimation 
technique that also considers the change of state variables as a function of time is 
required. For the convenience of the reader, the principal estimation algorithms, 
utilized in the state-of-the-art SLAM implementations, are presented in Appendices 
E, F and G. First the basic Kalman filter algorithm is presented in Appendix E. 
Then, in Appendix F, the extended Kalman filter (EKF) is outlined. Linearization 
of the non-linear system equations, as part of the application of the extended 
Kalman filter, may be problematic in practice, especially if the system is composed 
of many states and is highly non-linear [Julier et al., 1995]. An alternative 
filtering approach, called the distribution approximation filter, will be presented in 
Appendix G. 
 
 
3.2.1.2 Relocation-fusion strategy 
 
In conventional stochastic mapping it is assumed that the correlations between the 
uncertainty in the location of the perception sensor platform and the uncertainty in 
the location of the landmarks are known. Often, due to the linearization of non-
linear system equations and imperfect sensor models, the assumption is not 
justified and bias is introduced into the state estimates. This phenomenon decreases 
the quality of the resulting model as the mapping proceeds. To decrease the speed 
of deterioration of the environment model, Moutarlier and Chatila proposed the 
sub-optimal, relocation-fusion strategy [Moutarlier and Chatila, 1989]. In the 
method, the observations of existing map objects are first used to relocate the 
robot. Only after that the other (unobserved) map objects, that are correlated with 
the observed map objects and with the robot state, are updated. Similarly, after the 
relocation phase, new features can be integrated into the map. 
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3.2.1.3 Decoupled stochastic mapping 
 
In addition to the relocation-fusion strategy presented in the previous chapter, 
another technique, in which the map objects are reorganized into local frames, can 
be used to alleviate the consequences of bias. In the method, neighboring map 
objects are grouped and their global transformation coordinates substituted with 
coordinates given with respect to a local frame of reference [Betgé-Brezetz et al., 
1996]. The direct correlation link between the sensor location values and the 
landmark coordinates vanishes. However, the locations of the local frames are still 
modeled with respect to the global reference frame, similar to the location of the 
perception sensor, and unbound increase of the bias in the location estimates is 
then possible. 
 
Another motivation for grouping the model data into sub-maps is the decreased 
computational complexity of stochastic map estimation [Leonard and Feder, 
1999a]. For example, in sub-sea navigation applications the operation areas are 
large and it is difficult to supply the area with artificial beacons. The feature maps 
built for navigational purposes in such environments easily contain thousands of 
features. Maintaining all features in a single state vector becomes computationally 
heavy to update. As a solution to the problem of large scale mapping of 
unstructured environments Leonard and Feder propose decoupled stochastic 
mapping strategy where the operation area of the robot is, a priori, divided into 
overlapping regions. At any time, the robot location estimate together with the 
estimates on the locations of features in the region where the robot is situated, are 
updated. All the other feature states related to the other regions can be left intact. 
To traverse between the regions, the information on the state estimates is 
propagated in a way that aims at maintaining consistent estimates while at the 
same time maximizing the efficiency of state estimation. 
 
 
3.2.2 Relative observation-global localization map formulation 
 
The main difference of the RELA-GL map formulation with respect to the 
conventional, REMO-GL approach is that the current location of the perception 
sensor has not been, explicitly, included in the state space representation of the 
stochastic map. Instead, the history of perception sensor locations is maintained 
and updated during estimation. In fact, the past sensor locations form the structure 
of the stochastic map. The actual measurement data, i.e. the substance of the map, 
is brought to the overall map representation through their spatial relationships with 
respect to the corresponding (local) perception sensor frame. The RELA-GL map 
formulation was depicted in Figure 3.2.  
 
Let us assume that the number of perception positions, where observation data has 
been collected is (N+1). The state vector of the stochastic map can now be 
expressed as, 
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where the state sub-vectors correspond to the past perception sensor locations at 
discrete times, indicated by the indexes 1 to N. The spatial location where the first 
set of perception data was measured is given the index zero. This location is chosen 
as the global frame of reference of the environment map. All the other perception 
positions are described with a spatial relationship with respect to this global frame 
(compare Figure 3.2). Time index N corresponds to the sensor location where the 
most recent perception data was collected. The corresponding covariance matrix 
can now be written as, 
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As discussed already in Chapter 3.1, this kind of mode of operation is best suited 
for implementations where the sensor (or the robot carrying the sensor) stops to 
collect the perception data for the 3D model construction. A separate filter, using 
odometry information from the wheel encoders of the robot platform, carries out 
the estimation of the sensor motion in between the perception positions. This 
estimate of the relative displacement between two consecutive perception positions 
can be utilized as the initial guess for the map object-based registration of the 
perception positions. Or, if the correct registration cannot be determined with high 
probability, then the odometry-based estimate itself can be used as the relative 
observation of the spatial relationship between the two consecutive perception 
positions.  
 
By definition, the states in the state vector, corresponding to the past perception 
positions, do not evolve as a function of time. Consequently, the dynamics equation, 
Equation 3.7, can be rewritten as, 
 

( ) ( )kk xx =+ 1                                                                               (3.14) 
 
where F  corresponds now to the identity matrix which is not shown in the equation 
above. The values that are observed are the relative displacements between the map 
objects. Map objects correspond here to the sub-maps composed of the position of 
the sub-map frame with respect to the global frame of reference and the geometric 
data defined with respect to the sub-map frame. The relative location of the sub-
map frame i with respect to sub-map frame j is described as jiij xxd −= . An 

observation of this relative relationship is denoted by ijd  [Lu and Milios, 1995]. 

For the linear measurement equation, Equation 3.8, the coefficient matrix H will 
contain 0, -1 or 1 on all entries. Let us take the three-location setup, depicted in 
Figure 3.2, as an example. The observations 10d , 20d  and 21d  can now be 
embedded into the measurement equation yielding 
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which can be further expanded, 
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In the equation, 10φd is an observation of the heading angle of the first sub-map 
frame with respect to the zeroth sub-map frame (i.e. with respect to the global 
frame of reference). In this case, 10φd  itself is an observation of the unknown 

parameter 1φ , which is to be estimated. On the other hand, 21φd is an observation of 

the difference in the unknown orientation angles 2φ  and 1φ . In our case, the 
uncertainty related to the measurements can be determined separately for each 
observation. This is due to the fact that the observations, ijd , are generated by 

applying a sub-map registration method that gives an estimate of the precision 
related to the computed relative alignment coordinates. The registration methods 
will be discussed in Chapter 5.  
 
Now, let’s assume that the uncertainty of the observation ijd can be approximated 

with a Gaussian distribution with covariance ijC  and is independent of the 

uncertainties related to the other observations. The cost function over the entire set 
of observations, which is a summation of the squared observation errors weighted 
by the related observation uncertainty, can be written as the following Mahalanobis 
distance [Lu and Milios, 1995], 
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which can be rewritten as, 
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The cost function W can be expressed in matrix form, 
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( ) ( )HxdCHxd −−= −1TW                                                (3.19) 
 
Minimizing the equation above gives the maximum likelihood or minimum variance 
estimate [Bar-Shalom and Fortmann, 1988]. The estimate for the global position 
of the sub-maps that minimizes the cost function W  is given by, 
 

( ) dCHHCHx 111ˆ −−−= TT                                                                  (3.20) 
 
And the associated covariance is computed as, 
 

( ) 11 −−= HCHCx
T                                                                      (3.21) 

 
The minimum variance estimation method presented above is a batch process, 
solving all the location variables at the same time. Every time the perception 
sensor is moved to a new location, a new sub-map is created. The new sub-map is 
then aligned with the existing neighboring sub-maps. The observations on relative 
alignments which are judged as being correct with high probability, are augmented 
to the d  vector and H  matrix while increasing their dimensions correspondingly. 
The equations above are then solved again to produce the new optimal estimates of 
the global sub-map locations. 
 
 
3.3 Maximum likelihood, multiple hypothesis map estimation 
 
The main drawback of the application of the stochastic filtering algorithms, such 
as the extended Kalman filter (EKF) or the distribution approximation filter 
(DAF) [Julier et al., 1995], into map construction is the fact that they assume that 
uncertain information can be modeled accurately with a single expected value 
together with the related covariance. Ambiguous operation environments and large 
prediction (odometry) errors may produce complex, multi-modal distributions of 
probabilities which cannot be easily handled by an estimation method that 
approximates the probability distributions by means of the first two moments. 
Numerical approximation methods, with which the distribution of information 
about the unknown parameters can be modeled up to the desired precision and 
extent, seem to be more appropriate to solve the problem. 
 
In the base line SLAM implementations, new information is fused into the map 
once and is then forgotten. These implementations correspond to the REMO-GL 
approach presented in Chapter 3.1. While exploring an unknown environment, 
systematic error may accumulate to the robot location and consequently also to the 
map. When re-observing landmarks mapped at different stages of the exploration 
process, ambiguous data association situations may emerge, which cannot, 
algorithmically, be solved by a REMO-GL approach. The reason is that REMO-GL 
type methods are unable to revise measurements backwards in time [Thrun et al., 
2000a].  
 
The alternative, more generally applicable approach extends the SLAM 
methodology in these two respects [Thrun et al, 1998a], [Thrun et al, 1998b], 
[Thrun et al, 2000a]. The goal of the method is to find the most likely integrated 
map given the data,  
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)(maxarg* dMpM

M
=             (3.22) 

 
where M  is an integrated map built by porting the geometric data from the sub-
maps into a common frame of reference. d corresponds to an alternated sequence 
of a priori alignment information and data from the external perception sensor, 
 

{ }NNN ppppd ,,,...,,,, 111100 −−= uuu          (3.23) 
 
where ip  is a set of 3D measurement points used for computing the optimal 

alignment between a sub-map and an integrated map and iu  is the a priori 

estimate of the displacement from the thi perception position to the ( )thi 1+  
perception position. A set of viewpoint registration data points can be described as, 
 

{ }iRiip pp ,...,1=               (3.24) 
 
where R is the number of 3D point vectors in the thi  sub-map. The maximum 
likelihood function, Equation 3.22, can be re-written as, 
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where the integral is over all possible viewpoint location combinations in the 
discrete transformation space. In the equation, ( )ii Mpp x,  is the perception model 

and ( )iiip xux ,1+  describes the statistics of the prediction for the displacement 

between consecutive viewpoint locations. 
 
 
3.3.1 Probabilistic task models 
 
A probabilistic model is required to describe the statistics on the estimate of the 
predicted sensor location when moving from the current perception position to the 
next one. In order to correct the predicted location by means of measurement data 
from the external perception sensors, such as an ultrasonic or a laser range finder, 
a perception model is required. 
 
 
3.3.1.1 Prediction of sensor motion 
 
While moving between perception positions, uncertainty accumulates in the state 
estimate of the sensor location. The amount of uncertainty depends, for example, 
on terrain properties and traveled distance. Now, let us discuss the accumulation of 
uncertainty by means of an artificial example. Assume that a mobile robot is 
following the walls of a rectangular room. While the robot is going forward, 
uncertainty is accumulating in the estimate of the traveled distance in proportion to 
the distance. As a consequence, the uncertainty in the x- and y- coordinates 
increases correspondingly, depending on the direction of the straight line 
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movement. Similarly, when turning at the corners, uncertainty accumulates into the 
estimate of the heading angle of the robot. In Figure 3.4, the distribution of 
uncertainty with respect to x- and y-coordinates is depicted. The distributions have 
been realized by a set of 5000 samples propagated according to the robot motion 
commands and according to the predefined percentage of accumulated uncertainty 
per distance traveled or angle turned. The robot was commanded to return to the 
location from where it started. 
 

 
 
Figure 3.4 The evolution of uncertainty in the robot location while following the 
walls of a rectangular room. The distribution of uncertainty was approximated by 
means of 5000 samples. When the robot started at the lower left corner of the 
room its location was known (modeled by a point (Dirac delta) distribution). 
 
In practice, it is often difficult to create an accurate model for the accumulating 
uncertainty. This is true especially while moving in natural outdoor environments.  
 
 
3.3.1.2 Perception model 
 
The perception model, marked as ( )ii Mpp x, , describes the likelihood of external 

measurement data with respect to a given sensor location hypothesis and existing 
environment map. An example of likelihood score distributions given by the 
perception model, utilized in this work, was illustrated in Figure 3.3. 
 
 
3.3.1.3 Approximation of multi-modal probability distributions 
 
As multiple, good candidates for a Gaussian location estimate are computed, it 
should be carefully considered whether the best among them should be selected and 
the other be discarded.  A better alternative might be to preserve them all until new 
measurement data makes it easier to select the correct one among the good 
candidates. Austin and Jensfelt propose a tree structure to maintain the history of 
multiple hypotheses for the location of a mobile robot [Austin and Jensfelt, 2000]. 
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Earlier, multiple Gaussian distributions have been utilized, for example, to track 
multiple target hypotheses [Bar-Shalom and Fortmann, 1988]. 
 
Another technique to approximate multi-modal probability distributions is 
probability grids. Burgard et al. used a position probability grid to estimate the 
absolute position of a mobile robot [Burgard et al., 1996]. The method was able to 
handle uncertain sensor information and multiple position hypotheses. An example 
of the grid approximation of a localization score distribution was depicted in 
Figure 3.3. 
 
The third alternative to approximate a multi-modal probability distribution is to 
use a set of samples drawn from it. The method has been used to propagate 
conditional position estimate densities for contour tracking [Isard, 1998]. For 
mobile robot localization, sample based density approximation has been proposed 
in [Dellaert et al., 1999a] and [Fox et al., 1999a]. The application of sample 
based density approximation for SLAM has been discussed in [Thrun et al., 
2000a]. An illustration for using samples to approximate the distribution of 
uncertainty in a location estimate was given in Figure 3.4. 
 
 
3.3.2 Maximum likelihood map generation 
 
3.3.2.1 Globally optimal map from Gaussian approximation of uncertainties 
 
If the uncertainty, related to the perception and motion models in Equation 3.25, 
can be modeled as Gaussian distributions and if the observations of the relative 
alignment coordinates among viewpoint positions are generated from the external 
measurement data, the maximum likelihood map can be computed as a weighted 
least squares solution for the connected network of viewpoint (sub-map) 
registration transformations. The method, which was given the name relative 
observation-global localization (RELA-GL), was discussed in Chapter 3.2.2. 
 
 
3.3.2.2 Expectation-maximization algorithm for map tuning 
 
In a generic case, computation of the integral in Equation 3.25 for all possible 
maps would be computationally challenging. However, there exists an efficient 
technique for an iterative search of a local maximum within the space of possible 
map configurations. The algorithm, called Expectation-Maximization (EM), is a 
hill climbing routine in likelihood space, which alternates the two steps: the 
Expectation step and the Maximization step. In the context of SLAM the E-step 
corresponds to an estimation of the viewpoint locations by means of the a priori 
alignment information and the current map. Thereafter the M-step is executed, 
which re-computes the map by using the external perception data and the viewpoint 
locations, computed during the E-step. 
 
The E-step computes estimates for the viewpoint locations by means of data 
collected both before and after the time when the robot, or equivalently, the 
perception sensor, was at the current location under consideration. 
Mathematically, this can be expressed as the normalized product of two terms 
[Thrun et al., 1998b], 
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( ) ( ) ( ) ( ) ( )iiMppMpppMdp Niiiii βηαη == + ,,...,,,...,,, 100 uxuxx   (3.26) 

 
where η is a normalizer ensuring that the left hand side of the equation sums up to 
one. For each viewpoint location ix  the terms ( )iα  and ( )iβ  are computed 
separately. The former corresponds to a normal (Markov) localization step where 
an estimate for the location is computed by means of past measurements. The 
latter term is computed by means of measurement data that was collected at later 
points of time. Indeed, the ( )iβ  term adds in the extra capability to be able to build 
maps of environments where multiple, ambiguous links between sub-maps may 
emerge. It should be noted that the same principle of utilizing past and future 
measurements is realized also by the RELA-GL mapping method, presented in 
Chapter 3.2.2. 
 
The M-step aims at computing the optimal integrated map given the perception 
data and the viewpoint locations, which corresponds to maximizing 

( )NN ppMp ,,...,, 00 xx . During the next E-step, the estimates for the viewpoint 

locations are then computed by means of the new integrated map M. Note that in 
the RELA-GL approach, the neighboring sub-maps are always aligned with respect 
to each other, not with respect to an integrated map. The integrated map can be 
computed at the end of the mapping process above the “skeleton” consisting of the 
global locations of the sub-map frames yielded by the RELA-GL method. 
 
 
3.3.1 Map topology 
 
In real environments, multiple conflicting map hypotheses may be encountered. The 
modeling process should be able to weight the different hypotheses and select the 
best one or put them into an order of increasing likelihood. In practice, treatment 
of several map hypotheses can be considered a data administration problem. The 
situation occurs as multiple, good candidates for the relative alignment between the 
objects, currently extracted from the measurement data, and the existing map are 
identified. Each of the relative alignment hypotheses would correspond to a 
different location in the existing map whereto the new map data could be 
integrated. To handle the ambiguity with map construction, a new “map track” for 
each probable map hypothesis could be initiated. As new observations are acquired, 
map hypotheses that are supported by the data are maintained, while the others can 
be deleted. 



 33

 
 
 
 
 
 
Chapter 4 
 

Feature extraction from three 
dimensional measurement data 
 
 
4.1 Introduction 
 
Segmentation of the measurement data is typically the first step in feature 
extraction. Data segmentation corresponds to the grouping of neighboring data 
points into homogeneous spans or regions. Homogeneity can be defined, for 
example, as (nearly) equal distance from the perception sensor or similar curvature 
of the surface computed locally by groups of neighboring data points. 
 
In addition to data segmentation, feature extraction usually considers the “mining” 
of more abstracted information from the measurement data, grouped within the 
boundaries of a segment, as well. With environment mapping, the abstracted 
information is often the geometric shape of the object probed by the data points 
within the segment. The geometric shape or the realization of the parameters of a 
geometric model prototype (such as a polynomial equation) can be determined by 
fitting the model to the measurement data. A good fit will then speak for the 
assumption that the geometry of the visible object surface can be approximated 
with the given geometric model. In general, feature extraction can be described as 
the condensation of the original set of geometric signals into a compact and 
reliable geometric description of the objects’ visible shape [Hébert et al., 1994]. 
 
As an example, let us imagine that the task is to find out whether in some 
particular office environment cylindrical, vertical supporting columns exist. 
Further, assume that a scanning (with horizontal and vertical scanning 
mechanisms) laser range finder is used to collect 3D measurement data. Now, the 
task can be divided into two phases. First, the data of each overlapping, horizontal 
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line scan is segmented to sets of consecutive measurement points having a similar 
distance from the laser scanner. Thereafter, those segments having an 
approximated width, let’s say, from 0.1 to 1 meters are selected for further 
analysis. Groups of similar size segments are then sought after in the vertical 
direction. Any overlapping set of segments might originate from a cylindrical 
shape, vertical supporting column. However, in an office environment, other 
architectural features, such as the doorframes, can generate similar range profiles 
and can, consequently, be confused with the supporting columns. Also, specular 
reflections can contribute to the (false) detection of a narrow elongated object 
within the range data. A range image taken from the corridor of the premises of 
the Automation Technology Laboratory is shown in Figure 4.1. The sector spanned 
by the image is 324 degrees horizontally and 77.4 degrees vertically. The 
resolution of the image is 3000x720, yielding altogether 2.16 million measurement 
points.  
 
 
 
 
 
 

 
 

Figure 4.1 A wide angle, 324x77 degree range image acquired at the intersection 
of two corridors. In the image, the measured distances from one to 10 meters have 
been pseudo-colored from red to blue, respectively.  

 
The black stripes in the image correspond to people passing by the range scanner at 
a distance less than one meter from the sensor. The acquisition of the image with 
the Riegl LMS-Z210 scanner took about 3 minutes and 40 seconds. 
 
In order to find out whether the underlying object can be approximated (with 
relatively good precision) by a cylinder model, the data within each selected 
horizontal segment is fitted into a geometric circle model. By analyzing the 
distribution of the signs of the residual fit errors of the measurement points with 
respect to the estimated model, information on whether the true underlying object 
from which the data points originate is cylindrical can be gained. A similar 
procedure, called the region test, was used to determine the proper order of a 
polynomial surface model to be fitted to the segmented range data [Besl and Jain, 
1988]. In Figure 4.2(a) an artificial example of a horizontal measurement profile 
for a cylindrical supporting column, such as the one marked in Figure 4.1, is 
illustrated together with the fitted circle model. In Figure 4.2(b) the distribution of 
the distance deviations between the measurement points and the circle contour are 
sketched. In Figure 4.2(c) and 4.2(d) the corresponding results are presented in 
the case where the underlying object is the doorframe, such as the one pointed out 
in Figure 4.1. 
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      a)              b) 

 
      c)        d) 

Figure 4.2 Analysis of the error between measurement points and the fitted model 
contour when fitting range data to a true cylindrically shaped object is 
demonstrated in images a) and b). The corresponding results for a target (marked 
with a dashed line) having a rectangular cross-section are presented in images c) 
and d). In images b) and d), ccd  corresponds to the distance from the circle center 

and ccl  corresponds to the distance along the half of the circle contour facing the 
sensor. The distance of the estimated circle contour from the circle center is 
indicated with the horizontal line. 

 
The difference in the distribution of the signs of the residual fitting errors is 
substantial and can be utilized to determine the appropriateness of the geometric 
type hypothesis with respect to the underlying object image data.  
 
Feature extraction, discussed in this work, emphasizes (optical) measurement 
techniques and related feature extraction methods, where the measured points are 
(randomly) scattered over the object surface. In practice, this means active sensing 
methods where energy is transmitted towards the target object, and the (range) 
measurements are computed as a function of the backscattered signal. Passive 
methods, such as stereovision, are only briefly outlined.  
 
In what follows, different perception technologies for the extraction of three 
dimensional measurement data are discussed in Chapter 4.2. Then, the basic 
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approaches used for the segmentation of range data into homogeneous regions are 
discussed in Chapter 4.3. In the following two chapters, geometric models to 
describe objects’ visible shape in structured indoor and natural outdoor 
environments, respectively, will be presented. In Chapter 4.6, our method for 
creating a cylinder segment model for narrow elongated objects, such as tree 
trunks, will be introduced. And finally, a method, which utilizes the 3D occupancy 
grid to extract straight line features corresponding to the upper corners of building 
walls, is presented. 
 
 
4.2 Perception sensors for 3D data acquisition 
 
When weighting up different perception systems, the spatial extent for acquiring 
3D measurement data and the precision of the data are of primary importance. For 
example, the time-of-flight measuring principle utilized in many laser range finder 
systems allows a large measuring depth, which is a function of the power of the 
laser pulse. The range-measuring uncertainty is also rather insensitive to the 
measuring range. Another example is stereo camera systems, which utilize the 
triangular configuration of the sensors (i.e. the cameras) and the target to measure 
depth. With the measurement principle the uncertainty related to the measured 
distance increases proportionally to the distance. 
 
The uncertainty of the “raw” measurement data is the starting point for 
determining the uncertainty for the extracted geometric features. In the limit, if the 
features are estimated with an unbiased estimator from an infinite set of 
measurements, whose uncertainty corresponds to a white, zero mean, random noise 
sequence, the uncertainty of the features will approach a very small number (zero). 
In such a case, the uncertainty value of the approximated feature parameters will, 
in practice, be well below the uncertainty to rise from other sources during the 
process of mapping a large-scale environment.  
 
 
4.2.1 Triangulation-based measurement systems 
 
Triangulation based measurement systems get their name from the geometry of the 
measurement setup, where the two passive receivers (dual camera stereo vision 
system) or the transmitter and the receiver (active stereoscopic system) and the 
measured location form a triangle. As an example, let us consider the active 
triangulation based measurement system shown in Figure 4.3. 
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Figure 4.3 A simple, active triangulation-based measurement system. 

 
In the figure, f  is the focal length of the camera, px  is the position of the light 

spot on the image plane of the camera, b  is the distance of the light source from 
the camera and β  is the angle of the light beam with respect to the x-axis of the 
camera frame. The coordinates of the measured point with respect to the camera 
frame of reference are given by cx and cz . The y-coordinate of the measured point, 
with respect to the camera frame, is assumed to be zero. Now, the equations for the 
x- and z- coordinates can be formed from the measurement triangle, 
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The measurement “window”, within which the target must be located in order to 
have the light spot hitting its surface and being visible in the camera image, is quite 
narrow. If the size of the measurement “window” is increased along the optical z-
axis of the camera by increasing angle β, it will happen at a cost of decreased 
measurement resolution along the same axis. To find the sensitivity of the 
measurement resolution to the measurement geometry, the formula for the z-
coordinate, Equation 4.1, can be differentiated with respect to px  yielding, 
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Now, if angle β is increased in order to increase the length and distance of the 
measurement window along the z-axis, the resolution will decrease proportionally 
to the second power of βtan . From Equation 4.3 it can be also noted that the 
resolution (and uncertainty) of the measured distance is proportional to the square 
of the distance. 
 
In general it is quite problematic to use such a triangulation based measurement 
system, especially if the precision and stretch requirements of the measurement 
task vary from case to case. Moreover, it may be difficult to plan the perception 
task such that both the light source and the camera catch sight of the target at the 
same time. This is the case especially in cluttered environments. With respect to 
the autonomous mobile robots, the most appropriate application fields for 
triangulation-based 3D perception include manipulation tasks and environment 
modeling within ranges of a few meters. 
 
 
4.2.2 Single signal path-based range measurement 
 
Single signal path based range measurement techniques do not suffer from the 
complications of the triangulation-based measurement systems related to the 
usable measurement range. If the target is visible from the current location of the 
sensor, its range can, in principle, be determined. The factors, which determine the 
upper limit for the measurable range, are the reflectance characteristics of the 
target surface and the power of the laser beam. The range measurement principle, 
based on quasi-single signal path, is illustrated in Figure 4.4. 
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Figure 4.4 Range measurement geometry of the Riegl LMS-Z210 range imaging 
sensor. 
 

In the Figure, the signal transmitter “T” and receiver “R” are two separate units 
mounted side by side. Range measurement techniques available for this category of 
devices include the time-of-flight of the laser pulse and phase shift between 
transmitted and received (continuous) signals [Everett, 1995].  
 
 
4.2.3 Fusion of range data and camera image for 3D perception 
 
The strength of single signal path-based range measurement devices is in the 
capability to accurately evaluate the range to the hit point of the laser beam. The 
drawbacks are related to the mechanical system rotating the beam around one or 
two axes. The angular resolution of such systems is relatively poor and acquisition 
times easily lengthen for dense coverage of the target environment. These 
difficulties related to the mechanical scanner systems can be alleviated by replacing 
the mechanical scanner with a camera for determining the object boundaries in 
angular direction [Juujärvi et al., 1998] and [Byrne and Singh, 1998]. Common to 
these methods is the sensor which is directed manually towards the target for 
distance measurement. The angular width is then determined automatically from 
the camera image. Both of the implementations were developed to determine the 
volumetric size of a tree, required for forest inventory. The principle for 
determining the circular cross-section of a tree from range and camera image data 
is depicted in Figure 4.5. 
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Figure 4.5 Manually manoeuvred tree size measuring system. 

 
A more automated approach for the fusion of intensity and range images for 3D 
shape recognition was proposed in [Umeda et al., 1996]. The method is based on 
the assumption that a planar surface, which passes through the optical centre (i.e. 
the pin hole in the pin hole model of a camera) and the extracted straight line 
segment on the camera image, can be created. Moreover, the straight line segment 
is assumed to belong to the contour of a planar surface, for which a 3D plane 
model has already been estimated by means of range data. Now, the intersection of 
these two planes yields an estimate of the 3D straight line segment corresponding 
to the contour of the planar object surface. A similar, semiautomatic method for 
quasi-coaxial camera-range finder system was proposed in [Forsman, 1994].  
 
 
4.2.4 3D perception through motion 
 
Sensor movement can be utilized to construct a 3D representation from lower 
dimensional perception data. A three-dimensional model can be built by 
accumulating 2D perception data along the sensor path [Thrun et al., 2000a]. In 
the method, the robot is equipped with both a 2D laser range finder scanning 
forward, in a horizontal direction, and another 2D scanner tilted 90 degrees and 
scanning upwards. The system has been used to construct a 3D model for an indoor 
environment, by first estimating the maximum likelihood path for the robot and 
corresponding maximum likelihood map in two dimensions by using the forward-
looking scanner. The 3D model was then built by integrating the measurement data 
from the upward-looking scanner into a multi-polygon surface model. 
 
Another way to utilize motion to acquire 3D environment geometry is by the 
integration of motion between image acquisitions for the small displacement 
determination. The estimated displacement and the pair of images form a 
triangular configuration for which the same mathematics, as used in acquiring 3D 
geometry from a pair of stereo cameras, can be exploited. However, in this case, 
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the displacement is not rigid and is therefore known with limited precision, which 
has to be accounted for when estimating the uncertainty of the acquired geometry. 
 
A limitation of both of the approaches outlined above is related to the requirement 
that the sensor must pass through the space that is to be mapped. This is due to the 
fact that the first approach uses the upward looking scanner to acquire 3D data at 
the current location of the robot. Similarly, the second approach, which utilizes 
optical flow for image acquisition, is most effective in mapping the parts of the 
space which are located perpendicular to the current trajectory of the robot.  
 
 
4.3 Segmentation of range data 
 
The problem of range image segmentation can be informally defined as “the 
process of labeling the pixels whose measurements are from the same surface with 
the same label” [Hoover et al., 1996]. Segmentation of a range image (2D case) 
or a range data sequence (1D/scan line case) is often the first step in the process of 
3D environment perception. Therefore, the different characteristics of different 
segmentation methods with respect to “real world” segmentation problems may 
have different relative importance in different applications. For example, the 
tendency to fail to find an existing segment in a range image (false negative result) 
is not a desirable property of a range image based collision avoidance system. On 
the other hand, sensitivity to finding a landmark on a location where no landmark 
exits (false positive result) might confuse the functioning of a landmark-based 
localization system whereas, for collision avoidance, it is not, in general, too 
dangerous to see occasional phantom obstacles. So, the application framework 
dictates the criteria for selecting the most suitable segmentation method.  
 
Most of the published range data segmentation methods expect outlier free data. 
Consequently, “abrupt” range discontinuities are always labeled as true segment 
borders. This may be a justified assumption in structured environments. In 
cluttered (outdoor) environments, however, filtering of non-surface data points is 
required. The subject will be discussed in Chapter 4.6.1. 
 
Range image segmentation methods utilize different techniques for grouping the 
range measurements into segments. One of the main approaches is region growing, 
in which the segments are iteratively built up from the seed regions. Usually, the 
growing process is carried out pixel by pixel [Besl and Jain, 1988] and [Hoover et 
al., 1996], but another approach, which utilizes the scan line structure of the range 
image in the segment growing process has been presented as well [Jiang and 
Bunke, 1994]. These two region-growing approaches will be discussed in the 
following two chapters. 
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4.3.1 Pixel-based region growing by means of variable order surface fitting 
 
The algorithm begins by computing the mean curvature and the Gaussian curvature 
across the range image. These curvature values can be combined to yield scalar 
surface features that are invariant to rotations, translations and changes in 
parameterization. The eight fundamental, viewpoint independent surface types that 
can be characterized by using only the mean curvature and the Gaussian curvature 
are [Besl and Jain, 1988]: Flat, Minimal Surface, Peak, Ridge, Saddle Ridge, Pit, 
Valley and Saddle Valley. This first step produces a coarse segmentation. 
 
The second segmentation step starts by isolating the largest connecting region of 
any surface type in the surface type label image. Through a contraction operation, 
a small isolated sub-region is selected as the seed region for the iterative region-
growing phase. First, a plane equation is least-squares fitted to the seed region. If 
the plane does not fit with the data points of the seed region better than the given 
error threshold, a higher order surface will be fitted. If all the polynomial surface 
equations from the order of one to the order of four are tested and the average fit 
error is never less than the threshold, the seed region is discarded. In the opposite 
case, if a surface equation passed the error threshold test, and the distribution of 
the signs of the fit errors is homogeneous enough (region test), the iterative region 
growing begins. Now, all pixels in all coarse regions of the image, currently outside 
the seed region, are tested for possible inclusion into the current region. To be 
joined to the seed region the depth of the pixel from the sensor must not differ 
more than a threshold from the corresponding depth to the fitted surface model. 
And, secondly, the estimated surface normal on the corresponding locations on the 
range image and the surface model must not differ from each other by more than 
another threshold [Besl and Jain, 1988]. The largest connected region, which is 
composed of range pixels in the seed region and range pixels that pass the 
compatibility tests, is chosen as the new seed region. Expansion continues until 
there is almost zero change in region size or the region does not pass the error 
threshold test. Now, the new region must pass a somewhat relaxed error threshold 
test (i.e. the error threshold used for the original seed region increased by 50 
percent) in order to be accepted. If the region is accepted, all the corresponding 
range pixels in the surface type label image are marked off. In the event, it is not 
accepted, only the range pixels corresponding to the original seed region are 
discarded. 
 
The results after applying the method for segmenting range images taken from 
scenes consisting of both planar and curved surfaces reveal large amount of over-
segmentation and noise [Powell et al., 1998]. By considering the clutter and noise 
in the range images taken from the natural outdoor scenes, the tendency of the 
method to oversegment the data would be disadvantageous. In the next chapter, an 
alternative method for the segmentation of range images will be discussed. 
 
 
4.3.2 Range image segmentation based on scan line approximation 
 
The goal of scan line approximation is to detect and classify discontinuities in a 
sequence of range data points. The location and type of the discontinuities or edges 
can be utilized for segmenting the range data (and consequently the underlying 
object geometry). In range images, three different basic edge types can be 
distinguished [Jiang and Bunke, 1996]: jump edges, crease edges and smooth 
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edges. Jump edges are usually defined as discontinuities in the range data. Crease 
edges are formed where two surfaces meet, and are characterized by discontinuities 
in surface normals. And, finally, smooth edges correspond to object geometry 
where surface normals are continuous but surface curvature changes. Such an edge 
is formed, for example, at the intersection of a plane and a cylindrical surface. 
Examples of the three different edge types are given in Figure 4.6. 
 

Figure 4.6 Examples of object geometries yielding a jump, crease and smooth edge 
respectively. 
 

The underlying idea in the scan line-based edge detection is that each scan line 
corresponds to a curve in 3D space [Powell et al., 1998]. By detecting the edges 
within the scan line, a segmentation of the underlying object surface geometry can 
be achieved. If the perception data consists of parallel, overlapping scan lines, 
then, by grouping the detected edges, regions of homogeneous surface geometry 
can be formed. The parameters of the underlying geometric primitive models can 
then be estimated by means of the labelled measurement points within each region. 
The estimation of circle model parameters from segment data will be discussed in 
Chapter 4.6. Note that the range data used in our experiments is rather noisy 
compared to most of the test range images presented in the literature for the 
development and testing of the different range image segmentation methods. In the 
natural outdoor environments considered in this work, jump edges in particular are 
the most important type of range discontinuity. Actually, for the extraction of the 
cylindrical objects from the range images, to be discussed in Chapter 4.6, only 
jump edges will be considered for the initial segmentation of the range data.  
 
 
4.4 Shape extraction in structured environments  
 
In structured indoor environments most of the object surfaces are, usually, planes. 
In a typical 2D implementation, a mobile robot, equipped with a one-axis range 
scanner, is moving on a (planar) floor and is scanning the environment. The 
measurement points, acquired by the scanner, are distributed along straight line 
segments in 2D space. If the laser beam can also be tilted in the vertical direction, 
2D range profiles of the 3D object surfaces can be acquired. In both cases, various 
range data segmentation methods can be used to group the measurement points 
belonging to the same surface. A comprehensive review, with experimental results, 
of the methods for segmenting range images in planar patches has been presented 
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in [Hoover et al. 1996] and is also available on the WWW at 
http://marathon.csee.usf.edu/seg-comp/SegComp.html.  
 
After segmentation, the data within each segment can be fitted to a straight line 
model (2D-case) or to planar surface models (3D-case). The borders of the planar 
surfaces can be acquired by studying the range data within the segment or, if the 
range scanner is accompanied with a camera, from the camera image [Forsman, 
1994]. In 2D operation space, other techniques, such as the Hough transform, can 
be utilized to extract the profiles of planar surfaces as well [Forsberg et al., 1995]. 
 
 
4.5 Geometric models for natural outdoor environments 
 
Opposite to man-made structured environments, most major surfaces present in 
natural outdoor environments have a complex and irregular form. The main 
exception to this rule is tree trunks, the cross section of which can be 
approximated, in many cases, with a circle model up to a relatively good level of 
accuracy [Byrne and Singh, 1998]. Consequently, cylinder segment models, or 
more generally, truncated cone segment models, are one of the few volumetric 
primitive types of representation usable in natural outdoor environments. However, 
a bounding box type representation can be created for (any) object discover in an 
outdoor terrain environment. 
 
 
4.5.1 Polynomial volumetric models 
 
Betgé-Brezetz et al. compute, from a single range image, the center of mass of the 
measurement points ( )ggg ZYX ,,  and the inertia matrix M  [Betgé-Brezetz et al., 

1994a], 
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A coarse object model, which they call “3D blob”, can then be constructed from 
the approximated object position, ( )ggg ZYX ,, ; object orientation, given by the 

eigen-vectors of M ; and, an estimate of its size along each of the three inertia 
axes. 
Hyperquadrics are volymetric shape models that can model a broad range of 
asymmetric shapes. A hyperquadric is a surface defined by a set of points ( )zyx ,,  
satisfying the following equation [Kumar et al., 1995], 
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where N is any arbitrary number and ii ∀≥ 0γ . For feature based mobile robot 
localization and viewpoint registration applications it is desirable that the model 
representations are as viewpoint invariant as possible. It would be even better, if 
the models were symmetric. With symmetric models, the requirement of having 

http://marathon.csee.usf.edu/seg-comp/SegComp.html
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visibility to the same part of the object surface from different viewpoints could be 
relaxed to the requirement that any side of the object surface is visible to the 
sensor. Superquadric, which is a special case of the hyperquadric, Equation 4.5, 
with  
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In the equation, absolute values of the point coordinates are taken, therefore the 
superquadric is symmetric about the coordinate axes. Nevertheless, even points, 
sampled from a somewhat irregular object surface, could be fit to the superquadric 
model to give a coarse, symmetric approximation of the object shape. Indeed, 
Betgé-Brezetz et al., propose the superquadric as a more accurate alternative to 
the “3D blob” in the case that a more comprehensive distribution of measurement 
points on the object surface has been acquired [Betgé-Brezetz et al., 1994a]. 
 
 
4.5.2 Cylinder segment models 
 
Högstöm and Wernersson proposed an automatic method for modeling forest 
scenes [Högstöm and Wernersson, 1998]. First, the range measurements were 
transformed into a 2D histogram by projecting them to the xy-plane. Peaks in the 
histogram were assumed to correspond to the tree trunks visible in the range 
image. The measurements around each of the significant peaks in the xy-histogram 
were labeled to belong to the particular tree trunk. Then, the horizontally projected 
data points labeled for a tree object hypothesis were fitted to a smoothed cubic 
spline for estimating the center line of the tree trunk. The radius of the tree trunk 
was determined by studying the range discontinuities around the center line 
approximation. The proposed method has the following drawbacks: 
 

• The method relies on the high peaks of accumulated data points in the xy-
histogram for identifying the tree trunk objects. This has the consequence 
that a major part of the tree trunk must be visible to the sensor to generate 
a clear peak in the histogram. 

 
• The method cannot distinguish between cylindrical and other, nearly 

vertical, elongated objects. This can be a significant disadvantage, 
especially in structured environments. 

 
• The method expects an object with a low degree of curvature.  

 
The method, to be proposed in the next chapter, offers some improvements with 
respect to the aforementioned drawbacks.  
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4.6 Fitting cylinder segment models to narrow elongated 
  objects 
 
Basic properties of range data, measured from an unstructured, natural outdoor 
environment include: 
 

• Large range discontinuities 
• Cluttered data 
• Bad viewpoint invariance of measurement point patterns due to 

occlusion 
• Absence of specific types of features such as straight line segments and 

surface planes common in structured environments 
 
These circumstances prevail in forested environments in particular. However, the 
possibility exists to utilize tree trunks as natural landmarks for viewpoint 
registration [Högström and Wernersson, 1998]. Tree trunks constitute a specific 
type of geometric object that can be reliably extracted from 3D range data. To 
perform segmentation and feature extraction one has to know that the 
corresponding model primitives are a reasonable abstraction of the underlying 
range data [Quek et al, 1993]. We apply the assumption that the visible parts of 
tree trunks (and possibly other visible objects with a circular cross-section) can be 
approximated as a connected sequence of cylinder segments or truncated cone 
segments. A truncated cone shaped model differs from a cylindrically shaped model 
in that the radius of the two end points can be different. 
 
 
4.6.1 Segmentation of cluttered range data 
 
In natural outdoor environments the external perception data can be cluttered, for 
example, due to bad weather conditions or due to vegetation blocking the view to 
the actual target objects. With respect to the segmentation of range scan data, 
discussed in Chapter 4.3, the clutter may cause “holes” to the range profiles 
formed by the laser beams hitting a smooth object surface on the background. 
These holes should not cause a break in the segment of (nearly) constant distance 
from the perception sensor to the target object. On the contrary, they should be 
filtered away from the measurement data belonging to the segment. The situation 
is illustrated in Figure 4.7 where a horizontal range scan is cast over a tree trunk, 
partly blocked by a branch of a tree.  
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           a) 

 

           b)                   c) 

Figure 4.7 An artificial example of applying the outlier filtering technique for the 
initial segmentation of range profile data. In the upper image, the sliding window 
for computing a filtered distance to the contour of the object-of-interest is 
illustrated. In the lower left image, two separate segments (filled and non-filled 
circles) are extracted if the filtering technique is not applied. In the lower right 
image, a single segment corresponding to the size of the large object is extracted by 
means of the outlier filtering technique.  
 

Random (outlier) noise can be smoothed out by going through the whole data set 
(i.e. range image or a range scan line) and by replacing the current data element 
with the median value computed by means of its (immediate) neighbors [Sinha and 
Schunck, 1992] and [Jiang and Bunke, 1994]. Instead of smoothing the data, the 
center range measurement of the NxN filtering window can be removed or be given 
the outlier label if it deviates more than the threshold with respect to the median 
value computed from the data points within the mask [Hoover et al., 1996]. 
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However, in the situation, presented in the upper picture of Figure 4.7, the outliers 
do not appear randomly among inlier measurements, but form connected groups. 
The size of the groups is dependent on the size of the object blocking the view into 
the background surface. Conventional median filtering may not work properly with 
such outlier distribution. If the goal is to determine the borders of the object in the 
measurement data set, the maximum value instead of the median can be used to 
replace the center data element of the sliding filtering window. The size of the 
window can be determined by the maximum limit width of a branch, considered in 
outlier filtering. Objects, larger than the limit, will always cause the end of the 
segment to be declared. The “blocking object”-filtered distance values can then be 
used to determine the beginning and the end of the segment of nearly equal distance 
data points. After the borders of the segment have been determined within a 
horizontal range scan, the outlier-filtered distance to the middle of the segment is 
evaluated. All the measurements within the segment, that deviate more than a 
threshold from the middle point reference range value, are given the outlier status. 
When detecting narrow elongated objects, the threshold value can be determined by 
means of the above-evaluated width of the segment and the expected curvature of 
the underlying object. A good candidate for the outlier threshold, for an object with 
a circular (elliptical) cross-section, is given by  
 

rangesegout WT σ35.0 +=                                                             (4.7) 

 
where segW  is the evaluated width of the segment and rangeσ  is the standard 

deviation of the range measurement uncertainty. The formula for computing the 
value of the threshold was determined based on the experiments with real data. The 
value of outT , computed according to Equation 4.7, means that measurement 
points, whose projected distances from the perception sensor are within the 
±approximate segment radius span with respect to the distance to the center point 
of the circular segment, are accepted as valid measurements. The additional 
component “ rangeσ3 ” is added at both ends of the span to allow for the uncertainty 

in the range measurement. The results of applying the technique are shown in 
Figure 4.7(c), where the data points detected for a single segment are marked with 
filled dots whereas the other data points (outliers) are marked with a star symbol. 
The segmentation results, without applying the sliding window are shown in Figure 
4.7(b) where two separate segments have been (incorrectly) extracted instead of 
one large segment. Note that data points hitting the blocking object, in Figure 
4.7(a), form a group too small to be declared as a valid segment. 
 
A range image of a natural area with tree trunks is presented in the following 
figure.  



 49

 

 

Figure 4.8 Range image from a group of trees. Ranges between 3.5 and 10 meters 
have been pseudo-coloured from brown to blue respectively. 

 
The results of applying the segmentation method for the range image, presented in 
Figure 4.8, can be seen in Figure 4.9. During the segmentation, horizontal scan 
lines were processed in order to find connected sets of data points with a nearly 
equal distance from the range sensor. Another criterion was set for the segment 
width, which had to be between 0.06 and 1 meter. 
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Figure 4.9 Horizontal segments extracted from the range image, presented in 
Figure 4.8. The range segments, the length of which was found to be between 0.06 
and 1.0 meters, have been painted black. 
 
After applying the robust filtering technique, described above, during range image 
segmentation, further tolerance to outliers, in context of a least squares estimation 
method, can be achieved by analyzing the statistics in the measurement data. From 
the distribution of residual errors of the data points with respect to the estimated 
model, a threshold can be determined. The data points that are further from the 
model surface than the threshold are discarded. A new model and a threshold are 
calculated with the remaining data points and the process is repeated [Zhang, 
1994]. A good candidate for the threshold to classify data points to inliers and 
outliers equals three times the standard deviation of the fitting errors. This 
technique has been applied for fitting a circle model to the data points within the 
range segments. The subject will be discussed in the following chapter. 
 
 
4.6.2 Estimation of the circle model from segmented range data 
 
Our method has adopted the idea of projecting the data points to a plane, 
perpendicular to the estimated cylinder center axis, to determine the radius of the 
cylinder [Umeda et al., 1996]. In the method of Umeda et al., the center axis 
orientation was determined from the Extended Gaussian Image (EGI). EGI 
represents the distribution of surface normal vectors computed from local groups 
of neighboring data points on the object surface. The method works fine if the 
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underlying object is a regular cylinder segment. In our case, the most important 
target group of objects, the tree trunks, has a more complex geometry with a 
smooth and curved surface in a longitudinal direction, which can be locally 
approximated with a circular cross-section [Byrne and Singh, 1998]. The objective 
is to approximate this curved, variable width object with cylinder segments (or 
truncated cone segments) extracted from the range data. To compute the circle 
cross-section at each location along the visible part of the tree trunk, the range 
data is first projected to a plane perpendicular to the estimated orientation of the 
tree trunk at that location. Another constraint, selected for the projection plane, is 
that it passes through the origin of the sensor frame. The principle of data 
projection and circle model approximation for the cross-section of a cylindrical 
target object (tree trunk), based on the projected data points, is illustrated in 
Figure 4.10. 
 

Figure 4.10 Illustration of the computation of a circle model approximation for 
the cross-section of a location on the tree trunk. 
 

In our implementation, an alternative method to the Extended Gaussian Image is 
used to determine the orientation of the tree trunk at a particular location. The 
projection plane orientation is determined by means of the circle models estimated 
from the measurement data in the local neighborhood of the current measurement 
location during the previous iteration round. The projection plane normal can be 
estimated by computing the principal components of the 3D circle center point 
cloud corresponding to the overlapping circle models. If the Singular Value 
Decomposition method is used, the singular vector corresponding to the smallest 
singular value gives the direction vector of the longest principal axis of the fit data 
point cloud. Another way to compute the normal vector direction for a particular 
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circle model is to concatenate the individual direction vectors from the center point 
of the circle model to all the neighboring circle model center points. The unit vector 
computed from the concatenated direction vector can then be used as an estimate 
of the direction of the center axis of the tree trunk at that location. The direction 
vector will then be utilized to project the data points for the computation of the x- 
and z-position parameters of the center of the circle model on the projection plane 
and the circle radius as depicted in Figure 4.10. The latter approach has been used 
in our experiments. The computation of the orientation of the projection plane 
normal vector is carried out by using the point coordinates of the circle model 
center positions, computed in the previous cycle of the iterative circle model 
computation process. The computation of the projection plane normal direction is 
illustrated in Figure 4.11. 

 
Figure 4.11 Computation of projection plane normal direction for a circle model. 
 
In Figure 4.11, the configuration parameter for defining the available span for 
direction vector computation around the valid range segment under consideration 
(painted with thick line) was set at 0.5 to 0.7 meters in the experiments. The 
validity of a range segment is defined as the availability of a circle model computed 
for it at the previous iteration (or initialization) phase. Two orientation vectors, 
one above and one below, are computed if possible. Then the weighted average of 
the two vectors is used as the normal vector of the projection plane in re-computing 
the circle model parameters for the current range segment during the next 
iteration. The iterative process is discussed in more detail in Chapter 4.6.3. It 
should be noted that the computed circle models are projected back to the true 
spatial 3D location of the measured object surface. 
 

At the beginning of the cylinder model approximation process, no circle segment 
models exist and we have to start with the original range image. During the 
segmentation step, groups of measurement points of nearly equal distance from the 
range sensor along desired (true or artificial) scan lines are extracted. For the 
generation of a geometric model for the tree trunks, horizontal rows of the range 
image are used as the scan lines. All horizontal scan lines are segmented and sets 
of approximately overlapping segments are searched for further processing. 
Sequences of overlapping 2D segments can now be grouped together as potentially 
belonging to the same elongated, approximately vertical object. The initial 
orientation approximation of the projection plane (compare with Figure 4.10) can 
be attained from the overlapping segment data or, as used in the context of tree 
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trunk/supporting column modelling, from the assumption that the objects are 
roughly vertical (within ±30 degree bounds).  

 
Now, a number of data points collected from the close neighbourhood of 
overlapping 2D segments around the current segment under study have been 
projected onto the projection (fitting) plane. The projected data points, on the 2D 
fitting plane, are next fit into a circle model. A circle model for approximating the 
projected data points is given by, 
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where prx  and prz correspond to the coordinates of the projected measurement 

points, 0x  and 0z are the unknown coordinates of the circle center with respect to 
the projection frame and r is the unknown circle radius to be estimated. A linear 
equation with respect to the unknown parameters can be formed with the following 
substitutions, 
 

v
a 0.1=  

v
zb 02−=  

v
xc 02−=                                                                                         (4.9) 

 
yielding, 
 

( ) 0.122 =+++ prprprpr cxbzxza                                                        (4.10) 

 
The circle model parameters, i.e. the coordinates of the circle centre point, 0x  and 

0z , and the radius of the circle r , can now be computed from the least squares 
estimates of the parameters as follows, 
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If required, the covariance matrix of the estimated parameters can be readily 
computed from the results of the singular value decomposition (SVD) method 
[Press et al., 1992]. Let us mark the 3x3 covariance matrix of the estimated 
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parameters with abcC . The diagonal of the covariance matrix, i.e. the variances of 
the fitted parameters, are of primary interest. They should be propagated through 
the non-linear model linking the estimated parameters with the actual circle model 
parameters, Equation 4.11. By assuming that the non-linear equation can be 
approximated (in the close neighbourhood of the estimated parameters) with a 
linear equation composed of the first two terms of the Taylor series expansion of 
the non-linear equation, the variances of the circle parameters can be computed 
from the following equation, 
 

( )( ) ( )( ) cccaaaxx CxCxC 2
0

2
000

∇+∇≈                                     (4.12a) 

( )( ) ( )( ) bbbaaazz CzCzC 2
0

2
000

∇+∇≈                                       (4.12b) 

( )( ) ( )( ) ( )( ) cccbbbaaarr CrCrCrC 222 ∇+∇+∇≈                     (4.12c) 
 
where 

00xx
C  is the approximated variance of the 0x coordinate of the circle model 

with respect to the projection plane (compare with Figure 4.10), ( )ax0∇ is the 

derivate of the right hand side of Equation 4.11a with respect to a and aaC is the 
variance of a  given by the SVD method. The range segments in Figure 4.9, for 
which a valid circle model could be computed, are shown in Figure 4.12. 
 

 
 

Figure 4.12 The valid circle models computed from the measurement points stored 
within the range segments, shown in Figure 4.9. 
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In Figure 4.12, the width of the estimated circle models is clearly smaller than the 
width of the corresponding range segments, shown in Figure 4.9.This is due to the 
fact that the Riegl LMS-Z210 range scanner (refer to Chapter 6.1.1 for more 
detail) is designed for measurement distances up to 350 meters. Therefore, even a 
minor share of the emitted laser pulse, hitting the surface of a close target, yields a 
valid range measurement. Overall, the width of the range segments for cylinder 
model computation, extracted in this work, overestimates the true object cross-
section. Interestingly, in another reported forest mapping research work, the width 
of the range segments corresponding to the cross section of tree trunks, was found 
to be systematically smaller than the true tree width [Högström and Wernersson, 
1998]. This is, most probably, the consequence of a less powerful laser range 
measuring system, which requires that more than the half of the laser beam hits the 
object surface for a valid range measurement. 
 
Due to vegetation and branches, blocking the view to the tree trunks, the sets of 
overlapping valid range segments are rather fragmented in Figure 4.12. 
Nevertheless, cylinder segment models, yielding an approximation of a major part 
of the tree trunks visible in the range image, could be assembled from the 
computed circle models. In Figure 4.13, a reality augmented, virtual camera view 
into the generated cylinder segment models estimated from the range image data of 
Figure 4.8, is presented.  
 

 
 

Figure 4.13 Camera view of an outdoor scene overlaid with the 3D cylinder model 
representations, computed from the range image data, shown in Figure 4.8. 
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The method for constructing the cylinder segment models will be discussed in the 
next chapter. 
 
 
4.6.3 Construction of cylinder segment models from circle model data 
 
The iterative process for extracting cylinder segment models from range images is 
illustrated in Figure 4.14.  
 

 

Figure 4.14 A schematic diagram of the iterative process for modeling the narrow, 
elongated objects, with circular cross-sections, visible in the range image. 
 
In Figure 4.14, for the initial estimation of circle model parameters, the default 
projection plane orientation is applied. In the experiments, it corresponds to the 
vertical direction. For the initial estimation, the control parameters, which are 
used for discarding circle models corresponding to non-circular objects, are relaxed 
somewhat. In this way, a valid circle model can also be computed for the cross-
sections of narrow objects, which are not orientated strictly vertically. After the 
initial phase, the computation of projection plane parameters and the subsequent 
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estimation of circle models are repeated until the model parameters stabilize. 
Usually, two iterations (in addition to the initial estimation phase) are required. 
And finally, volumetric cylinder object (or truncated cone segment object) models 
are assembled from the overlapping circle models. In all the experiments presented 
in this work, cylinder segments are used as volumetric models. The radius of such a 
cylinder model is approximated as the average of the corresponding circle object 
models, allocated for the cylinder object. The utilization of the more general, 
truncated cone segment models was omitted due to the relatively large variation in 
the radius values of the circle models, especially in outdoor environments. The 
variation was due to noisy data, and also due to the, strictly speaking, non-circular 
shape of the tree trunk cross-sections. Nevertheless, this has no effect on the 
relative alignment computation between the overlapping sub-maps, because the 
radius information is not utilized to generate the data point sets for alignment 
computation. More details concerning the computation of relative alignments 
among pairs of sub-maps can be found in Chapters 5.3 and 5.4. 
 
 
4.6.4 Experimental results 
 
To extract cylinder segment (or truncated cone segment) feature models from the 
range image, several computation configuration parameters are required. Those 
most central to the initial range image segmentation are listed in Table 4.1.  
 
Table 4.1 Typical values of the key configuration parameters for range data 
segmentation. The indoor test case is presented on the left side of the table and the 
outdoor/forest test case is on the right. 
 

Parameter name Value Parameter name Value 
    

Low limit for 
segment/circle size 

0.2 meters 
Low limit for 

segment/circle size 
0.06 meters 

High limit for 
segment/circle size 

1.0 meter 
High limit for 

segment/circle size 
1.0 meter 

Maximum occluding 
object size 

0.04 meters 
Maximum occluding 

object size 
0.04 meters 

Standard deviation  
of a single range 

measurement 
0.025 

Standard deviation  
of a single range 

measurement 
0.025 

Range step for 
segment end 
declaration 

0.11 meters 
Range step for 
segment end 
declaration 

0.11 meters 

Minimum segment 
size in terms of 

measurement number 
4 

Minimum segment 
size in terms of 

measurement number
4 

 
In the table, the “maximum occluding object size” parameter corresponds to the 
maximum size of an occluding object, such as the branch of a tree, depicted in 
Figure 4.7. The “standard deviation of a single range measurement” is also used to 
model the precision of a single measurement point for the circle model computation 
phase. The effective uncertainty due to the angular precision of the laser beam 
pointing system is not considered separately, but is assumed to be covered by the 
aforementioned value. This can be justified by the fact that the effective metric 
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uncertainty due to the uncertainty in the laser beam pointing angles is relative 
small (for more detail, refer to Chapter 6.1.1). The “range step for segment end 
declaration” parameter should be set to be larger than three times the standard 
deviation of the uncertainty of a single range measurement. 
 
As an example of the overall performance of the method, the range image, labeled 
“scanE”, was segmented and circle models were estimated from the data belonging 
to the valid segments. The output of range image segmentation is illustrated by 
painting black the locations on a white binary image of the same size as the 
original range image (3000x720 pixels) where a valid horizontal segment of 
smoothly varying range values was found. Locations on the image, related to 
segments shorter than 0.06 meters or longer than 1.0 meter are left white. The 
segmentation results are depicted in Figure 4.15b). 
 
 

 
a) 

 

 
b) 

 

 
c) 

Figure 4.15 In the middle image, the results of the initial segmentation of the 
range image are presented. In the lower image the valid circle models computed 
from the segments in the middle image are shown. The original range image 
“scanE” is given in the upper image for reference. 
 

In Figure 4.15b) it can be seen how long horizontal segments, corresponding to the 
ground or large wall planes, are left white, i.e. are discarded from cylinder object 
modeling. In Figure 4.15c) the segments (or rather small sets of overlapping 
segments) yielding a valid circle model are painted black.  
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The key parameters in estimating the cylinder (or truncated cone segment) model 
from the segment data are listed in Table 4.2. In the table the first parameter 
describes the average signed error distribution of the measurement points from the 
circle contour. The interpretation of the signed error was illustrated in Figure 4.2. 
This parameter has turned out to be very important in discriminating the 
circularity of an object cross-section and hence assigning to the circle model 
hypothesis the “valid” or “outlier” status.  
 
Table 4.2 Typical values of the key configuration parameters for circle/cylinder 
segment model parameter computation. The indoor test case is presented on the 
left side of the table and outdoor/forest test case in on the right part. 
 

Parameter name Value Parameter name Value 
    

Measurement point 
inlier/outlier error 

symmetry threshold  
0.7 millimeters 

Measurement point 
inlier/outlier error 

symmetry threshold 
4.1 millimeters 

Distance above and 
below the current 

segment for collecting 
data points 

±0.15 meters 

Distance above and 
below the current 

segment for collecting
data points 

±0.15 meters 

Maximum number of 
segments above and 
below the current 

segment for collecting 
data points 

14 

Maximum number of 
segments above and 
below the current 

segment for collecting
data points 

14 

Minimum length of 
cylinder segment 

object 
1.0 meter 

Minimum length of 
cylinder segment 

object 
0.3/ 0.5 meters 

Curvature threshold 
to start a new 

cylinder segment 
12.0 degrees 

Curvature threshold 
to start a new 

cylinder segment 
10.0/ 12.0 degrees 

 
As the circle model parameters have been stabilized for the final values, it is time 
to compute the volumetric cylinder segment models from the circle model data. In 
natural environments, the principal objects of interest are tree trunks, the 
orientation of which is smoothly varying. To partition the model of the tree trunk 
into cylinder segments, the information of the projection plane normal orientation, 
stored into the data structure of each of the circle models, is utilized. The situation 
is depicted in Figure 4.16. 

 

Figure 4.16 Illustration of the parameters involved in cylinder segment 
computation. 

First circle model of the 
cylinder segment 
candidate 

Allowable empty 
space between 
consecutive circle 
models

θ
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A cylinder segment model is formed by starting from the next valid circle model, 
which has not yet been considered by the cylinder object model approximation 
process. The circle model has been drawn with the thick line in Figure 4.16. After 
that, the orientations of the overlapping circle models are studied to determine 
whether they deviate from the orientation of the first circle model more than the 
given threshold. For example, in the outdoor (i.e. parking lot) mapping experiment, 
the threshold was set at 10 degrees. The search is continued until either the θ angle 
exceeds the threshold or overlapping circle models are no longer available. As 
indicated in Figure 4.16, empty spaces are allowed to exist between two 
consecutive circle models. The value of the maximum allowable size of an empty 
space, applied in most of the experiments, equals at 0.24 meters. The minimum 
length for a valid cylinder segment was set at 0.3, 1.0 and 0.5 meters in the 
parking lot, indoor environment and forest terrain mapping experiments, 
respectively. 
 
Next, the accuracy properties of the circle model computation method are studied 
by modeling the cylindrical pillar objects in the office corridor environment. The 
manually measured ground truth radius of the pillars is 0.192 meters. In the indoor 
mapping experiment, a pillar object was modeled 17 times across its full length, 
from the floor level up to the ceiling at a height of about 2.3 meters. Moreover, the 
cylinder segment models were generated from a distance with respect to the 
perception sensor that varied from 1.2 to 18.4 meters. The radius of the cylinder 
segment model for a pillar object was computed as the average of the radii of the 
individual circle models belonging to the object. In Figure 4.17 the correlation 
between the computed cylinder radii with respect to the distance from the 
perception sensor is illustrated.  
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Figure 4.17 In the figure, the correlation between the measurement distance and 
the computed radius of the pillar object is shown. The manually measured radius is 
indicated with a solid horizontal line.  
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As can be seen in Figure 4.17, a relatively accurate estimate for the pillar radius 
can be computed when the pillar object is located at a distance from the sensor. 
With close measurement distances, a radius value, which is too small, is obtained. 
A possible cause for the phenomenon is the wide laser beam pattern and consequent 
folding of the beam along the object surface. The folding may produce a non-
symmetric error component to the measured beam hit point coordinates, which 
distorts the circle model parameters. However, care should be taken, if the results 
of Figure 4.17 were to be generalized to other measurement environments. The 
characteristics of the non-symmetric error component probably depend on the 
properties of the cylindrical target object, especially on its size. The measurement 
set-up for acquiring range data from a pillar object is depicted in Figure 4.18. 
 

 
Figure 4.18 Measurement set-up for computing a cylinder model for the pillar 
object. 
 
Next, the precision of the circle model approximation, computed for an object 
cross-section, is studied in more detail. In Figure 4.19, the estimated radius of a 
cylindrical pillar object as a function of the elevation of the circle model from the 
floor plane is depicted. The distance of the pillar object from the range scanner was 
14.5 meters. In the experiment, the elevation of the range sensor from the floor 
plane was about 1.3 meters. In the figure, curves corresponding to the initial 
estimation phase and the second (final) iteration phase of the feature extraction 
process are presented. (The iterative process was depicted in Figure 4.14). The 
curve drawn with the dash dotted line corresponds to the initial estimation of the 
circle parameters. For the initial estimation phase, the projection plane normal 
orientation, tilted 30 degrees sideways with respect to the measurement direction 
from the correct vertical orientation, was applied. The curve drawn with the solid 
line corresponds to the circle radii computed during the final iteration phase. 
Corresponding results for the situation, where the initial orientation of the 
projection plane normal was tilted 30 degrees along the measurement direction are 
illustrated in Appendix B, Figure B.10. 
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Figure 4.21 The computed circle model radius as the function of its elevation from 
floor level. The distance of the pillar object from the range scanner was 3.7 meters. 
The manually measured radius (0.192 meters) is indicated with the horizontal line. 
 
In Figure 4.21, the decrease in the estimated radius during the initial estimation 
phase, when the data points are projected to a plane that has been tilted sideways 
with respect to the measurement direction, is clearly visible. An opposite 
phenomenon, i.e. increase in the estimated radius during the initial estimation 
phase, can be observed in the results, depicted in Figure B.11, in Appendix B. For 
the initial estimation phase curve, shown in Figure B.11, the projection plane was 
tilted 30 degrees along the measurement direction. Both phenomenons can be 
understood by considering the spread of the measurement points across the 
projection plane in the two cases. As already indicated in Figure 4.17, the final 
radius estimates, computed for the cross section of a closely lying pillar object, are 
consistently below the correct value. 
 
To demonstrate the quality of the measurement data, examples of the estimation of 
a circle model from the projected measurement data are presented in Appendix B. 
In Figures B.12, B.13 and B.14, the results for the circle cross-section 
approximation of the pillar object at about 14.5 meters’ distance are presented. 
The circle model was computed for a cross-section cut of the pillar at about 1.4 
meters’ elevation from the floor plane. Circle model estimates, corresponding to 
two different initial iteration phases and a final estimation phase, are presented. In 
Figures B.15 and B.16, the results for the circle cross-section approximation of the 
right most, relative thin tree (0.055 meters radius) in Figure 4.8, at about 1.5 
meters’ elevation from the ground, are presented. In this experiment, the default 
projection plane orientation was set equal to the vertical direction. 
 

“-.” initial estimation phase
 “-” second iteration phase 
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4.7 Fitting straight line models in free space to unknown/occupied 
space borders 

 
The cylinder segment objects, considered in this work, are oriented, more or less, 
vertically. The computation of the relative coordinate transformation between 
overlapping sub-maps, containing only vertical objects, would be difficult, 
especially in indoor environments. Outdoors, tree trunks are normally somewhat 
tilted with respect to the vertical direction such that a reliable registration with 
respect to the z-coordinate direction can be achieved as well. To augment the set of 
vertical features in structured environments, horizontal straight line segments, 
extracted from the free space to unknown/occupied space borders of the 3D 
occupancy grid map, were selected as the second category of natural landmarks. 
 
 
4.7.1 Description of the method 
 
A schematic diagram of the method for extracting the wall/ceiling corner line 
segments from the range image data is depicted in Figure 4.22. 

 
Figure 4.22 A schematic diagram of the wall/ceiling corner line extraction process. 
 
Range imaging devices with a high angular resolution, such as the Riegl LMS-
Z210 scanner, can be used to acquire an exhaustive scan throughout the 3D 
workspace around the sensor. Further, the dense range image can be converted into 
a 3D occupancy grid, with clear borders between free space and unknown/occupied 
space. A 2D projection of the free space to unknown/occupied space border is 
shown in Figure 4.23.  
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Figure 4.23 A 2D projection of the free space to unknown/occupied space border 
computed from the 3D occupancy grid and corresponding to the range image 
“scanE” presented in Figure 4.15a). The darker the colour of the border line, the 
higher the elevation. 
 

In the image, which has been formed from the scan depicted in Figure 4.15a), the 
gray scale value at the borderlines corresponds to the height of the free space to 
unknown/occupied space border with respect to the perception sensor frame of 
reference. Consequently, the x-, y- and z-point coordinates can be extracted from 
the height information combined with the corresponding location of the border 
point in the xy-plane. 3D straight line segments corresponding to the consecutive 
sets of these points can now be computed.  
 
The computation of the 3D line segments is separated into two phases. First the 
direction vector of the 3D line segment is computed by passing the 3D point 
coordinates into a singular value decomposition (SVD) routine [Press et al., 
1992], which yields the orthogonal main directions and the relative lengths of the 
3D point cloud along the coordinate axes of the reference frame. The direction 
(unit) vector corresponding to the smallest singular value, or equivalently the 
largest variance, gives the direction of the 3D straight line segment. This is due to 
the fact that it is assumed that the spread of the data points along the free space 
boundary is the largest. A 3D point, through which the line is passing, can be 
computed as the center of gravity of the 3D point cloud. A similar method has been 
applied in the context of surface classification for estimating the coefficients of a 
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plane equation [Flynn and Jain, 1988]. Now, the formula for the 3D straight-line 
can be given by means of the unit direction vector and the line via point. Taking the 
furthest projection points of the 3D point cloud with respect to the straight-line 
model, the two end points of the straight line segment can be approximated. The 
method is illustrated in Figure 4.24. 
 

 

Figure 4.24 In the drawing, the grid cells corresponding to the free space to 
unknown/occupied space border, are marked with the squares. The 3D border grid 
cells, which were found to correspond to a nearly straight line segment are marked 
with the dots. 
 

The straight line segments, which were computed based on the data shown in 
Figure 4.23, can be seen in Figure 4.25. 
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Figure 4.25 A 3D view of the straight-line features corresponding to the wall-
ceiling corners extracted from the 3D point data displayed in Figure 4.23. A CAD 
model of a mobile robot is shown at the location where the range image “scanE” 
was measured. 

 
 
4.7.2 Implementation considerations 
 
There are a number of parameters for controlling the process of wall/ceiling border 
straight line segment estimation. For example, the allowed orientation of 
acceptable wall/ceiling corner lines with respect to the horizontal plane can be 
adjusted. In the experiments, presented in this work, this threshold was set at ±5 
degrees, i.e. only horizontal wall/ceiling borderlines were used as landmarks in 
view-point registration. 
 
As can be seen in Figure 4.25, in some cases, only a part of the, in a large scale 
straight, wall/ceiling borderlines are successfully transformed into straight line 
segments. This is often due to local curvature variations in the point data queues 
generated from the free space to unknown/occupied space borderline data such as 
the one depicted in Figure 4.23. The local curvature variation can cause a break in 
the straight line segment, resulting in a large number of short segments that do not 
pass the “minimum acceptable wall segment length” threshold given in Table 4.3. 
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Table 4.3 Typical values for the key configuration parameters for wall/ceiling edge 
segment model parameter computation. Indoor test case is presented on the left 
side of the table, and outdoor test case is on the right. For the interpretation of the 
parameters, refer to Figure 4.24. 
 

Parameter name Value Parameter name Value 
    

Minimum acceptable 
wall segment length 

2.0 meters Minimum acceptable 
wall segment length 

1.5 meters 

Segment tangent 
direction difference 

threshold 
80.0 degrees 

Segment tangent 
direction difference 

threshold 
90.0 degrees 

Interval length for 
segment tangent 

computation 
1.0 meters 

Interval length for 
segment tangent 

computation 
1.4 meters 

Point distance for 
wall segment end 

computation 
0.15 meters 

Point distance for 
wall segment end 

computation 
0.4 meters 

Grid cell size along 
x-, y- and z-
dimensions 

0.1 meters 
Grid cell size along 

x-, y- and z-
dimensions 

0.2 meters 

 
The problem can be alleviated by increasing the “segment tangent direction 
difference” angle threshold parameter (compare with Figure 4.24). However, if the 
threshold is increased too much, the risk that major changes in the wall direction 
are not detected increases. Values for the parameters in Table 4.3 were determined 
empirically, based on trial and error. More results on extracting straight line 
models from the range images can be found in appendices B and D. 
 
 
4.8 Conclusions 
 
Two types of feature objects were modeled from range image data. The first object 
type corresponds to the narrow elongated objects with a circular cross section. An 
iterative method was developed to form the cylinder segment models (or, more 
generally, truncated cone segment models) to approximate the volume of the 
objects. The method is designed in particular for modeling objects that may not be 
strictly rectilinear or have a perfectly circular cross-section. In the work, only 
nearly vertical objects (tilted at a maximum of about ± 30 degrees with respect to 
the vertical direction) were considered. However, the method can be easily adapted 
to model, for example, horizontally aligned cylinder shape objects. 
 
The other type of landmark objects to be modeled from dense range data were the 
upper corner lines of vertical walls. These features were selected due to the fact 
that they usually provide the maximum achievable visibility to the perception 
sensor. Also, they are horizontally oriented and therefore nicely augment the 
feature set consisting of the vertical cylindrical objects. The new idea for modeling 
the wall/ceiling corner lines was related to the utilization of the 3D occupancy grid 
for the generation of the 3D data points for the computation of the parameters of 
the straight line equation. 
 
A major problem, related to the extraction of the two feature object types, is 
related to the determination of the computation configuration parameters. These 
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parameters contribute to the balance between false negative and false positive 
modeling results. It is up to the particular application to set preferences between 
the sensitivity of the modeling system to ignore an existing object or create a model 
for a phantom object. For the experiments, presented in this work, the parameter 
values were determined through trial and error. However, an automatic self-
calibration function would be a considerable improvement to the presented 
methods.  
 
The primary motivation to extract the feature object models from the range images 
was the generation of the 3D data points for the computation of the relative 
alignment coordinates between a pair of (neighboring) viewpoint locations where 
range images were acquired. The subject is discussed in Chapter 5. 
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Chapter 5 
 

Registration of a pair of sub-maps 
 
 
5.1 Introduction 
 
Within this work, a large-scale environment model is built from local sub-maps by 
importing the data, contained within the local maps, into the common frame of 
reference of the integrated map. The first step in this process is the determination 
of the most likely match of the local sub-maps with respect to the other 
(overlapping) sub-maps. The most likely match is described as the coordinate 
transformation that, for example, minimizes the sum of the shortest distances 
between each of the data points in the first map with respect to all the data points 
in the second map. 
 
 
5.1.1 Problem description 
 
Viewpoint registration is the problem of finding an optimal estimate of the 
translation and rotation that would align the Cartesian coordinate frames located 
at the origins of the viewpoints. In the probabilistic framework the optimality 
criterion usually refers to the maximum likelihood estimate. The output of 
probabilistic viewpoint registration methods is a probability distribution over the 
translation and rotation degrees of freedom of the relative viewpoint pose 
parameters. To solve the problem it is assumed that the 3D measurement data 
from external perception sensors and, optionally, odometry data from the internal 
sensors of the platform, carrying the perception sensors, is available. The 
perception data can be in the form of measurement data points (x-, y- and z-
coordinates together with corresponding measurement uncertainty) or geometric 
features extracted from the measurement data. The probabilistic perception model 
(also called sensor model) can be described with the following conditional 
probability density (likelihood) function, 
 



 

 72

( )mdp ,x                (5.1) 

 
where d corresponds to the sensor data, x is the a priori estimate of the sensor 
alignment and m  symbolises an existing map. The a priori estimate of the sensor 
alignment can be obtained by means of the motion model of the sensor platform. 
The probability density value, after acquisition of perception data d, that the 
perception sensor location corresponds to x , can now be computed as the product 
of the likelihood of observing d when being in x  with the prior probability that the 
perception sensor was moved to x  from the previous perception position, 
 

( ) ( )mpmdpmdp xxx ,),( η=                                               (5.2) 

 
where ( )mp x  corresponds to the prior probability (computed, for example, by 

means of the odometry information) that x  is the correct sensor location. With η  

it is ensured that the integral of the probability ),( mdp x  with respect to x  equals 

one. 
 
The limits on the acceptable uncertainty of the initial estimate depend on the 
uniqueness of different parts of the environment to be mapped as well as on the 
characteristics of the measurement update model. If the environment contains long 
featureless sections or symmetric (ambiguous) features, good initial prediction of 
the relative viewpoint position is required. This is the case also if a greedy search 
method, which uses the predicted position as a starting value, is used to find the 
optimal alignment. In contrast, an environment with unique features and utilisation 
of a global search method to find the optimal alignment may permit viewpoint 
registration without an a priori estimate. It should be noted that viewpoint 
registration problem as described above is analogous to perception based mobile 
robot localization. In place of the robot vehicle, other means of carrying the sensor 
can be imagined. For example, the sensor can be moved manually to each 
viewpoint to collect the perception data. In such a case, odometry information can 
be replaced with a subjective assessment of the relative transformations between 
the viewpoints or it can be omitted entirely. Without a good initial estimate, 
however, it may not be possible to find the globally optimal (and correct) 
registration.  
 
Viewpoint registration methods found in the literature can be grouped into two 
categories based on the need to solve explicitly the correspondence problem before 
the optimal alignment can be computed. In solving the correspondence problem the 
pairs of corresponding data entities in the current measurement data set, called the 
local map, and the other data set, called the global map, are found. The 
distinguishable characteristics of the map objects can be used as the 
correspondence criteria for finding a pair of data entities from the two maps that 
belong to the same physical object in the environment. The least squares estimation 
techniques and the (Extended) Kalman filter algorithm are examples of methods 
which require that the data elements in the current measurement set and in the 
reference map must first be associated together. Betgé-Brezetz et al., extracted 
two types of object-based representations from range data: coarse ellipsoid models 
and more accurate superquadrics models [Betgé-Brezetz et al., 1995]. Depending 
on the accuracy requirement of the registration between the local and global maps, 
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pairs of xyz-points from ellipsoid or superquadrics models are used to compute the 
least-squares solution for the alignment. Huber and Hebert compute local shape 
signatures, called spin-images, for a fraction of the 3D points of a high-resolution 
triangular mesh formed from dense measurement data [Huber and Hebert, 1999; 
Huber et al., 2000]. After finding a set of pairs of corresponding spin images, an 
estimate of the transformation that aligns the model surfaces is computed. 
Thereafter the ICP (Iterative Closest Point) algorithm is applied to find a more 
accurate alignment. 
 
In the second class of registration methods, in which we do not have to solve the 
correspondence problem explicitly, we find map correlation computation 
techniques. Konolige and Chou project the sensor data onto a local discretized 
occupancy map (called sensor patch), which is correlated with a discretized global 
map [Konolige and Chou, 1999]. Olson proposed a viewpoint localisation technique 
that is able to utilise indistinguishable landmarks and is able to find the globally 
optimal alignment between the local and global maps [Olson, 2000]. In the method 
the space for possible robot positions is examined by means of a multi-resolution, 
hierarchical divide-and-conquer strategy. The match score or similarity measure 
between the transformed local map and the global map is computed as a function 
of the distances from each data element in the local map to the closest element in 
the global map. The match score models measurement uncertainty and the 
possibility of having no counterpart for a data element from one map to another in 
the second map. This makes the map similarity measure robust to outliers and 
missing data 
 
In the large scale mapping of indoor and outdoor environments reliance on the 
availability of distinguishable landmarks may be problematic. Symmetric 
architectural features or natural, equally looking objects such as trees may 
complicate the composition of a large enough set of unique feature pairs for 
registration computation. In that respect, the ideal registration method should 
possess the following characteristics: 

 
• Robustness to outliers and missing data 
• Ability to find globally optimal alignment within the given search space 
• Support multiple hypothesis registration result 
• Give an estimate on the probability of correctness of the result (optimal 

alignment may not necessarily be the correct one) 
 

Indeed, the registration techniques that are able to utilise indistinguishable feature 
data seem to offer a proper basis for the implementation of a generic method for 
computing the relative alignment between maps. Therefore, in the following 
chapters, the methods that work directly over the 3D map data sets, without 
requiring the determination of a priori correspondence, are discussed in more 
detail. 
 
5.1.2 Raw measurement data versus feature-based registration 
 
In order to be able to align two sets of 3D perception data, it is required that 
overlap between the data sets exists. The required percentage of overlap depends 
on the registration method. For example, the least-median-of-squares (LMS) 
method requires an overlap of at least 50 percent between the data sets. If the 
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“raw” data points, delivered by the measurement device, are used to compute the 
optimal alignment, a relatively restricted motion between the viewpoints can be 
allowed. In cluttered environments especially, the contents of the scene visible to 
the sensor changes rapidly as a function of the perception position. However, if 
symmetric features are available in the scene they could be used as the source of 
data points to compute the relative motion between the viewpoints. In this way the 
requirement of having an overlap over object surfaces would be relaxed to having 
any side of the same symmetric object within view of the two measurement 
locations. 
 
 
5.1.3 Multiple hypothesis registration 
 
In real world applications locations may not always be unambiguously resolvable. 
Symmetric environment geometry or a lack of features may result in multiple likely 
hypotheses for the relative alignment between maps. Premature pruning of the 
somewhat less likely hypotheses at an early mapping phase may prevent us from 
finding the topologically correct map. Instead, if both of the potentially correct 
map alignment candidates are saved, new data acquired at a later mapping phase 
can, retrospectively, help to resolve the ambiguity.  
 
 
5.2 Methods for finding a locally optimal registration 
 
5.2.1 Iterative, point-based matching 
 
5.2.1.1 Iterative closest point 
 
The iterative closest point (ICP) algorithm is an iterative procedure that converges 
monotonically to the nearest local minimum [Besl and McKay, 1992]. At each 
iteration, the closest 3D point in the second map is found for each point in the first 
map. The rigid motion between the maps is then computed as a function of the 
point pairs. The rigid motion for example of a 3D point corresponding to the 
current viewpoint, iv , is given by a linear transformation 
 

tRvv += iiT )(                                                                    (5.3) 
 
The 3x3 rotation matrix, R , and the translation vector, t , corresponding to the 
rigid motion can be computed by using a quaternion-based algorithm [Besl and 
McKay, 1992] or by the singular value decomposition (SVD) method [Haralick et 
al., 1989]. These methods assume that pairs of data points in the maps to be 
aligned can be found for computing the least squares solution for the alignment. 
Unfortunately, even one false outlier pair of data points can cause the result to 
deteriorate. Transition to a combination of random sampling and least-median-of-
squares (LMS) estimation techniques is one way to alleviate the problem [Masuda 
and Yokoya, 1994]. However, the number of subsets of pairs to be sampled from 
the original set of feature pairs to find an outlier free sample with high probability 
may not be computationally affordable. 
 
A drawback of the ICP algorithm is that it does not give an estimate of the 
uncertainty, related to the computed rotation and translation parameter values, nor 
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can the possibly different error values of the individual data points be taken into 
account. A solution to circumvent the problem is to use ICP to solve the 
correspondence problem and then apply the Extended Kalman Filter to yield the 
final estimate of the registration parameters [Madhavan et al., 1998]. 
 
 
5.2.1.2 Iterative dual correspondence 
 
The convergence properties of the ICP algorithm have been found to be rather 
slow, especially if the object’s surfaces, from which the data points are extracted, 
are curved. This is due to the fact that the closest-point correspondence rule seems 
to provide little information about the rotation between the two observation 
locations [Lu and Milios, 1994]. Lu and Milios propose a different correspondence 
rule, which represents the situation when the translation movement between the 
two observation locations is negligible. In this case, a pair of points, whose 
distance from the corresponding measurement frames is the same, have a 
difference in their polar angles that corresponds (with high probability) to the 
unknown rotation displacement between the measurement frames. The situation is 
illustrated in Figure 5.1. 
 

 

Figure 5.1 Two observation frames with only a mutual rotation displacement. The 
measured angle to the observed target point changes from α1 to α2. 

In the figure, φ is the unknown rotation between the measurement frames and α1 to 
α2 are the polar angles to the same physical position on the object’s surface with 
respect to the first and second observation frames respectively. Now, for every 
point in scan i a pair is found in scan j by using both the closest point rule and the 
matching (nearly equal) range rule. Then, a least squares solution for the 
displacement between the observation locations is found for both sets of point 
pairs. And, finally, the rotation component of the matching range rule solution and 
the translation component of the closest point rule solution are selected as the 
relative location update to iteratively search for the optimal estimate of the rigid 
motion between observation locations. The method is called the iterative dual 
correspondence (IDC) algorithm [Lu and Milios, 1994]. 
 
 

x1 

y1 

x2 

y2 

α1 

α2 
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5.2.2 Gradient ascent in search space 
 
In this case it is assumed that the likelihood score, computed over the registration 
search space, can be described with a monotonically increasing function and 
gradient ascent techniques can be applied to find a locally optimal registration. In 
the method, the gradients of the registration score function are evaluated at the 
current relative map location with respect to each of the degrees of freedom of the 
search space. Then, the current relative location coordinates are updated in the 
direction given by the gradient vector. The step size of the update can be 
determined, for example, as a function of the local curvature of the likelihood 
function. 
 
 
5.3 Global registration methods 
 
The global registration methods are guaranteed to find the global maximum of the 
registration score within the given search space. The uncertainty related to the a 
priori alignment between the maps can be used to determine the size of the required 
search space. In real-time applications and in patch type map building processes 
the speed/precision requirements of the methods may differ significantly.  
 
A local registration method, such as iterative closest point matching, converges on 
the nearest local maximum of the cost function. To find the global maximum the 
local method can be combined with a preprocessing step which yields a starting 
position close to the globally optimal alignment. Alternatively, the local search 
method may be started at several random locations within the search space and the 
registration corresponding to the best of the local maximums is selected as the 
globally optimal registration. However, the required number of random locations 
may be difficult to determine in practice, especially if the cost function has many 
closely lying maximums. In such a case the number of random starting locations 
for the local search method, which would guarantee that the global optimum is 
found with a high probability, may become unacceptably large. 
 
 
5.3.1 An augmented local method 
 
In some cases, the most effective search strategy can be designed as the 
combination of a local, greedy search method, preceded by a coarse registration 
step.  
 
 
5.3.1.1 Local method preceded by a coarse global registration step 
 
A local registration method, such as the gradient descent search or the iterative 
closest point algorithm, can be combined with an exhaustive, global search phase. 
The purpose of the global search method is to restrict the search space to a small 
neighborhood around the global maximum of the registration score function.  
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5.3.1.2 Combination with simulated annealing 
 
As it was stated before, iterative closest point algorithm (ICP) converges to the 
closest minimum of the objective function. If the algorithm could be started from a 
number of locations within the registration state space that would cover all the 
regions of attraction, the best of the local minimums would yield the globally 
optimal alignment [Besl and McKay, 1992]. Usually the error surface is not 
analyzed but the algorithm is started at random locations and the best solution is 
used. A better alternative is to use simulated annealing (SA) to escape a local 
minimum that has been found by ICP [Luck et al., 2000]. In this way, SA produces 
guided restarts for ICP. This process is repeated until the error score is driven 
below a given threshold. 
 
 
5.3.2 Maximum correlation registration  
 
In a correlation based registration method, the similarity between two data sets is 
computed over the given registration space. The alignment corresponding to the 
maximum similarity then yields the most likely registration. The cross-correlation 
between two stochastic functions can be given by [Weiss et al., 1994], 
 

( ) ( ) ( )dxyxgxf
X

yc
X

XX
+= �−∞→ 2

1lim                                    (5.4) 

 
where ( )yc  corresponds to the similarity measure computed as the function of the 

unknown alignment y . The functions ( )xf  and ( )yxg +  may correspond, for 
example, to distances to the environment objects as a function of the polar scan 
angle of the data points in the first data set and the sum of the polar scan angle 
and the rotation shift between the observation frames corresponding to the second 
data set, respectively. As already noted in Chapter 5.2.1.2, the distances of the 
measurement points from the measurement frames can be, ideally, used to resolve 
the unknown displacement, which (practically) only consist of the rotation 
component. For the situation where the relative displacement to be estimated 
consists of both the rotation and translation components, Weiss et al. propose the 
angle histogram [Weiss et al., 1994]. The computation of the angle histogram is 
most conveniently described if each measurement in the measurement set is 
considered a position vector pointing from the origin of the measurement frame to 
the measured position. The angle histogram is then formed by recording the angles 
of the differences of each pair of consecutive measurement vectors with respect to 
the measurement frame. The maximum of the angle histogram gives the rotation 
component of the relative displacement between the observation locations. 
Maximums in the angle histogram are due to linear surface segments visible to the 
perception sensor. In structured environments the peaks in the angle histogram 
usually correspond to building walls. After applying the rotation transformation to 
the data points of the second data set, the alignment along the translation degrees 
of freedom can be computed, for example, by using an occupancy grid based 
technique. Before that, the range measurements have to be projected onto an 
occupancy/evidence grid map. 
 
In the occupancy grid framework, the correlation score for a particular alignment 
can be computed by summing up the results of occupancy values of each grid 
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element of the transformed grid map multiplied with the occupancy value of the 
corresponding grid element in the other map. Schultz et al., compared two 
different map matching score computation techniques for evidence grids [Schultz 
et al., 1999]. In the binary match technique score "1" was returned if the grid 
values in both maps indicated evidence of an empty grid cell, i.e. the value of the 
element in the range [-1, 0). "1" was also returned if the grid values in both maps 
indicated evidence on an occupied grid cell, i.e. value of the element in the range 
(0, 1]. In case of a disagreement between the grid elements, "0" was returned. In 
the alternative, product match technique, all the corresponding cell values in the 
current measurement data-based map and the existing map were multiplied and 
added to the total score. In the study as well, two different search techniques were 
compared to search for a more accurate robot alignment with respect to the 
existing map in the close neighborhood of the robot's a priori pose estimate. In 
both of the search methods the search space was divided into discrete steps. The 
combination of product match score with a search technique that takes pose 
samples for score computation throughout the given search space and then 
computes the center of the mass of the cell scores as the optimal registration was 
selected for future work.  
 
 
5.3.3 Divide and conquer search based on Hausdorff metric 
 
5.3.3.1 Map similarity measure 
 
By following the formulation in [Olson, 2000], let us assume that the local map, B, 
corresponding to the current viewpoint for data acquisition, contains n data 
elements { nbb ,...,1 }. The other map, A, which is sometimes called the “global 
map”, may correspond to the data collected from another viewpoint or a more 
complete integrated map, contains m data elements { maa ,...,1 }. Let us mark a 
Cartesian coordinate transformation, which maps the data elements in the local 
map (map B) to the global map (map A) with kT . Now, the (Euclidean) distance 

between a data element ib of the transformed local map and a data element ja in 

the global map is given by 
 

( ) ( )jikkij TdistTd ab ),(=             (5.5) 

 
The distance from a map data element in the local map to the closest data element 
in the global map is called ( )ki TD . 
 

( ) )(min
1 kijmjki TdTD

≤≤
=              (5.6) 

 
The assumption that these distances are not correlated is not strictly speaking true, 
but modeling them as such has been found to yield good results [Olson, 2000]. 
Now, we can formulate a likelihood function for the perception model. 
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A good approximation for the probability density function that models both the 
precision of data elements and the presence of outliers in the local map is given by 
the sum of a normal distribution and a constant factor.  
 

( )( ) ( ) 22 2/)(2
1 2

p σ

πσ
ki TD

ki ekkTD −+=                                    (5.8) 

 
where the constant factor 1k makes a lower bound for the probabilities between 
unmatched pairs of data elements. For the lower bound factor the average distance 
of a feature point in map A with respect to a feature point in map B is computed 
over all possible alignments within the registration search space. It will correspond 
to the average mutual distance of a pair of outlier points. Now, constant factor 1k  
is given as the product of the assessed share of outlier points in data set B and the 
probability density value corresponding to the average outlier distance. The 
constant factor 2k  corresponds to the share of inliers with respect to the total 
number of data elements in the local map. The standard deviation of measurement 
uncertainty of a data element, which is an inlier, is marked by σ . In general, the 
map registration task is not sensitive to the values of these constants. It should be 
emphasized that ( )( )ki TDp  is not a probability distribution, because it does not 
integrate into one. However, the use of a score function such as Equation 5.8 is 
unavoidable if we want to have a lower bound for the value given by the score 
function for large distances ( )ki TD  [Olson, 2000]. For computational convenience, 
the likelihood function, Equation 5.7, which was formed as the product of the 
likelihood score values, can be replaced with the sum of the natural logarithms of 
the score values [Olson, 1998] yielding, 
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Because the logarithm is a monotonic function, the ordering of the hypotheses of 
the relative map positions is preserved. If an estimate of the a priori alignment 
between the perception positions is available, it can be incorporated into the 
likelihood score function, Equation 5.9, yielding 
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where )(p kT models the a priori distribution of the likelihood for the relative 

alignment of map B with respect to map A. 
 
 
5.3.3.2 Global search strategy 
 
To find the globally optimal alignment between the local and global maps the 
likelihood score, Equation 5.9, is first computed for the predicted position of the 
local map with respect to the global map. Then the transformation space is divided 
into rectilinear cells (at a coarse resolution) and each cell is tested whether it could 
contain a position that is better than the best position found so far. The cells, that 
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cannot contain a position that could contribute to a higher score value, are 
removed from the search space and the other cells (i.e. stretches in the 
transformation space) are divided into two parts along the longest search direction 
and are tested in the same way. The progress of the search, in a two-dimensional 
registration example, is illustrated in Figure 5.2. 
 

 

Figure 5.2 Multi-resolution, divide and conquer search, for the maximum 
likelihood registration with respect to the x- and y-axis. kT  indicates the center of 

the cell and xyz
C∆  is the maximum distance of the center from the border of the cell. 

The consecutive search phases are indicated by the index t. 

 
To test cell kC , in a conservative way, the distances of the data elements in the 

map B with respect to the closest data elements in the map A, )(TDi , are computed 

for the transformation kT  corresponding to the center of the cell. Then value C∆  is 
subtracted from each data element distance to compute an upper bound for the best 
overall likelihood score that can be found within the transformation subspace 
enclosed within the boundaries of cell kC , 
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where 
 

)0,max( Ci
C
i DD ∆−=                                                           (5.12) 

 
It is easy to compute C∆  for the translation degrees of freedom of a search space 

stretch as illustrated in Figure 5.2. xyz
C∆  is computed simply as the distance of a 

corner from the center of the 3D rectilinear cell. This value is independent of the 
locations of the data elements within the maps to be aligned. A somewhat more 
complicated task is the computation of the upper bound for the change in the 
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distance between data elements in the local and global maps due to a span in the 
heading direction φ

C∆ . This value is a function of the distance of a data element 
from its origin on the local map. For a particular rotation movement corresponding 
to the half of a cell in the discretized heading direction search space, the distance 
change that a data element undergoes due to the angular change of the (heading) 
orientation of the local map with respect to the global map, can be computed as 
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sin2 φφ
eC d                                                                         (5.13) 

 
where ed corresponds to the distance of a feature from the origin of the local map 

and φ is half of the rotation angle of the search space span under consideration. 

The computation of φ
C∆  is depicted in Figure 5.3. 

 

 

Figure 5.3 Computation of the relative distance of a data point, φ
C∆ , due to a 

rotational movement corresponding to φ, which is half of the z-rotation dimension 
of the discretized search space span. The distance of the data point from the origin 
of the local map frame is marked by ed . 

 
Values for xyz

C∆  and φ
C∆  can be computed off-line and stored into a lookup table. 

The maximum distance change due to the dimensions of the cell in the search space 
to determine an upper bound for the likelihood value corresponding to a data 
element in the local map can be computed as the sum of the above values. 
 

φ
C

xyz
CC ∆+∆=∆                                                                       (5.14) 

 
Actually, the sum gives a rather conservative measure for the upper bound. This 
has the drawback that more cells will survive the pruning phase, which slows down 
the registration computation. A more precise value for the upper bound distance 
due to the dimensions of the pose cell in the transformation space, C∆ , can be 

computed by projecting the distance change component values xyz
C∆  and φ

C∆  along 
each of the x-, y- and z-coordinate directions, summing them up and then 
computing C∆  as the square root of the squared sums of axis-wise upper bound 
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distances. The search for a more precise alignment can be continued by always 
dividing the cells in the search space along its longest dimension until a desired 
level of precision is achieved. 
 
 
5.3.3.3 Gaussian approximation of the registration uncertainty 
 
After having reached the desired level of accuracy within the discretized search 
space a sub grid cell size solution for the localization problem can be computed. 
Olson proposed that the log-likelihood values at the close neighborhood of the 
maximum value could be fit to the parabolic equation to yield the parameters of a 
Gaussian distribution [Olson, 1998]. In the experiments, we found this kind of 
uncertainty approximation unsatisfactory, when the original distribution has a 
rough, relatively non-symmetric form. Instead, we compute the center-of-gravity of 
the connected score cell cloud around the corresponding maximum score cell to 
serve as the registration parameter estimate. The uncertainty of the estimate can 
then be computed as the normalized, weighed sample covariance of the connected 
score cloud. The Gaussian approximation of the registration uncertainty will be 
utilized to compute an optimal integrated map from the network of relative 
alignment dependencies between the sub-maps as will be described in Chapter 6.4. 
The optimal, relative observation-global localization map building method was 
presented in Chapter 3.2.2. 
 
 
5.3.3.4 Assessment of correctness of the registration result 
 
As the computed relative alignment coordinates that correspond to the maximum 
overlap between the two feature maps, are not necessarily correct, Olson proposed 
a measure to evaluate the correctness of the result [Olson, 1999]. The correctness 
measure is based on the assumption that the majority of the registration score mass 
is concentrated within the immediate neighborhood of the registration peak in the 
case that the found registration is the correct one. However, the percentage of 
score mass required to be concentrated around the peak alignment result seems to 
depend on the distribution, overlap and richness of the features sets on the two 
maps to be registered. It makes the applicability of the correctness evaluation 
technique difficult. 
 
Even though the correctness of a relative location estimate of a sub-map with 
respect to another map may be difficult to resolve separately, the characteristics of 
an integrated map built from several local maps may provide information about the 
existence of a false registration result. In Chapters 6.4 and 7, the possibilities to 
assess the correctness of the constructed integrated map will be discussed in more 
detail. 
 
 
5.4 Probabilistic registration of feature maps 
 
The map based viewpoint registration method to be presented is based on the work 
of Olson and colleagues [Olson, 2000], discussed in Chapter 5.3.3. In their 
implementation, the relative alignment of the new robot location (or equivalently 
the viewpoint location) with respect to the previous location was sought for along 
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the x- and y-translation coordinate directions. They also briefly discussed how the 
method could be extended to consider rotation degrees of freedom.  
 
Our contribution is related to the implementation and experimental verification of 
the method for finding an optimal alignment between the viewpoints in three-
dimensional translation and one-dimensional rotation space. The remaining two 
rotation degrees of freedom, i.e. the inclination angles of the sensor platform, are 
measured explicitly. The data points, among which the maximum correlation 
(overlap) is sought, are formed by sampling the straight line features at desired 
intervals, as depicted in Figure 5.4. 
 
Let us briefly explain how the environment mapping method, discussed in this 
work, proceeds. First, 3D perception data is collected at N locations in the 
environment. Second, geometric features are extracted from each of the N sets of 
perception data (i.e. sub-maps) with relatively good precision described by the 
Euclidean distance ifε , where i is the index of the sub-map and f identifies the 

feature within the sub-map. Each of the N sets of extracted features, annotated 
with a Cartesian frame of reference, constitute a sub-map. In the third mapping 
step, the mutual relative alignment of pairs of overlapping sub-maps is computed. 
For the computation of the alignment, sets of 3D data points are formed from the 
geometric feature models within the sub-maps. For example, the data points may 
be generated by sampling from the geometric feature model, such as the center line 
of a cylinder segment model. In that case, from the sub-map registration point-of-
view, a major part of the uncertainty of the sampled data points will be determined 
as a function of the spacing between the sampled points on the line model. The 
dependence is due to the fact that the locations from where the point samples are 
taken do not coincide in practice. Ideally, the sampled locations on the centerline 
segments of the corresponding cylinder models in the two maps should correspond 
to the same locations with respect to the physical object (such as a section of a tree 
trunk). The situation where the physical object to be modeled corresponds to a 
section of a tree trunk is illustrated in Figure 5.4. 
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Figure 5.4 Two sequences of xyz-data points sampled from the cylinder segment 
models corresponding to the visible sections of the same tree trunk observed from 
the origins of the sub-map frames A and B. 
 

In the figure, the point sets, for the overlapping part, will be sampled from slightly 
different physical spots of the tree trunk. The uncertainty, due to the mismatch of 
the closest points in data sets A and B, can be evaluated as the function of the 
spacing, d∆ , between the two consecutive point samples, 
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d
∆=ε                                                                     (5.15) 

 
where dε is the standard deviation of the uncertainty of the sampled data points and 

d∆ is the spacing between two consecutive sampled data points. Note, that 
Equation 5.15 corresponds to the standard deviation of a rectangular distribution 

within the interval d∆±
2
1

. Now, if the sampling interval is 50 millimeters, the 

uncertainty, which is related to the assumption that the nearest data point in set B 
with respect to a data point in set A actually corresponds to the same physical 
location on the centerline axis of the tree trunk, becomes 14.4 millimeters. Note 
that the analysis is relevant to the approximation of the uncertainty of the data 
points extracted from the overlapping parts of the geometric feature models. The 
uncertainty of the data points in set A which have no counterpart in set B has to be 
considered separately. More information on approximating the uncertainty of 
unmatched points can be found in Chapter 5.3.3.1. Now, if dε can be proven to be 
considerably larger than the Euclidean distance values corresponding to the 
uncertainty of the geometric feature models from which the data points were 
sampled, i.e.,  
 

( )fiifd ,∈>> εε                                                           (5.16) 

Equally spaced 
data points on 
the center line 
segment in sub-
map A 

Equally spaced 
data points on 
the center line 
segment in sub-
map B  

Two overlapping 
cylinder segment 
approximations of 
the visible section 
of a tree-trunk. The 
overlap of the 
cylinder segments 
is marked with the 
thick line. 
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the explicit uncertainty value, ifε , for the particular geometric feature model can 

be omitted. However, the number of measurement points to compute an estimate 
for the unknown parameters of a geometric feature model is limited in practice and 
an explicit estimate for the uncertainty of the feature parameters may become 
important to consider at the later stages of a mapping process.  
 
A third source of uncertainty is related to the assumption that the circle model is a 
good approximation of the cross section of a tree trunk. This is not exactly true and 
an additional uncertainty component is created due to this fact. Altogether, all 
these sources of uncertainty should be summed up to approximate the uncertainty 
of an inlier data point. 
 
The search for the location, in the discrete search space, that yields the maximum 
“match” score value between the two 3D point sets is illustrated in Figure 5.5.  

 
Figure 5.5 A schematic diagram of the divide and conquer alignment search 
method. The method is able to find the location in the multidimensional (here four 
dimensional) discrete search space, that corresponds to the maximum score value. 
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discretization level 
has been reached 
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5.4.1 Experimental results 
 
In order to implement the method, described in Chapter 5.3.3, the parameters for 
the map similarity measure have to be determined. The parameters, assigned to 
Equation 5.8, were given the following values: the standard deviation of a single 
data point, σ, extracted from the feature models was given the value 0.035 meters. 
This uncertainty value corresponds to an inlier feature point, for which there is 
assumed to be a counterpart on the other map. Its value was determined to reflect 
the uncertainty from two main sources: The first uncertainty component comes 
from the discrete sampling interval of the data points. This component, computed 
by means of Equation 5.15 yields an uncertainty of 1.44 centimeters for the 
sampling interval of five centimeters. The other source of uncertainty is related to 
the deviation of the cylinder approximation model from the actual tree trunk 
object. This has been assumed, based on feature model construction experiments, 
to be in the range from two to five centimeters. The share of inliers parameter with 
respect to the total number data points, 2k , was set at 0.3 (i.e. 30 percent). 

Parameter 1k , in Equation 5.8, was computed by using the distance threshold of 
0.3 meters to classify data points as inliers or outliers. This means that the lower 
bound score value for any pair of closest data points in the two maps was computed 
by assuming the distance between the data points newer to be greater than 0.3 
meters. (For more detail refer to Chapter 5.3.3.1). 
 
For the computation of the relative alignment between two sub-maps, the initial 
size of the search space has to be defined. The size values with respect to x-, y- and 
z-translation degrees-of-freedom (dof) and with respect to the heading rotation 
can, for example, correspond to the uncertainty of the a priori estimate of the 
relative alignment. Also, the desired accuracy of the divide and conquer search in 
the form of the final size of the pose cell has to be determined. The search will stop 
as the final size of the pose cell, for example 0.04 meters, along each of the four 
search dimensions is reached. For the rotation dof of the 4D pose cell, an angular 
value corresponding to the size value, given in meters, can be determined by 
assigning the average horizontal distance of the 3D point features from the origin 
of sub-map B into the Equation 5.13. 
 
Now, let us compute the relative alignment of the sub-map “F” with respect to the 
sub-map “E” (note: real sub-map data sets are referenced with a label enclosed 
within the quotes. For example, the label “X” refers to the corresponding range 
image “scanX”). The corresponding range images as well as the cylinder segment 
features and the straight line features, extracted from the range images have been 
illustrated in Figures A.1, A.2, D.7 and D.8 respectively. For the experiment the 
following results, presented in Table 5.1, were acquired.  
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Table 5.1 Results for the computation of the relative alignment between sub-maps 
“F” and “E”. Units are meters for the x-, y- and z-coordinates and degrees for the 
z-rotation angle. The alignment estimate corresponds to the discrete registration 
space cell size of 0.04 meters. 
 

Search space 
degree of 
freedom 

Initial search space 
dimensions along both 
positive and negative 

directions of the given dof

A priori 
alignment 

Computed 
alignment 
estimate 

Standard 
deviation of 
the estimate 

     

x 5.0 11.0 12.37 0.04 

y 5.0 0.0 0.03 0.08 

z 1.25 0.0 0.15 0.37 

φ 180.0 -90.0 -87.75 0.43 

 
In the table, the size of the search space, along with both negative and positive 
directions of the given dof, are presented. The total transformation space covered 
was twice the given values. Thus, for the z-rotation, the entire search space 
corresponds to 360 degrees. The discretization threshold for stopping the search 
was set at 0.02 meters along both negative and positive search directions 
corresponding to a length of the pose cell of 0.04 meters along each of the 
translation dofs and 0.35 degrees around the heading angle search direction. The a 
priori alignment was determined by subjectively assessing the traveled distance 
between the measurement locations. (The laser scanner was mounted on a 
manually maneuvered cart). The estimate, given in Table 5.1, was computed from 
the connected score cloud around the score cell corresponding to the maximum 
score value. The estimate corresponds to the center of gravity of the connected 
score cloud and the standard deviation of the estimate was given as the squared 
root of the sample variance parameters. The predicted estimate is rather accurate 
compared to the computed alignment estimate. However, it is not necessary for the 
method to find the alignment corresponding to the maximum registration score 
value, as long as the optimal alignment is located within the search space borders 
around the predicted alignment coordinates [Forsman, 2001]. 
 
If one of the feature sets consists of only a small number of features or the 
distribution of the features in the environment is not unique, multiple good 
registration peaks within the search space may be found. Such a situation can 
appear in structured environments if, for example, wall planes are used as natural 
landmarks for viewpoint registration. In that case, a good initial alignment 
estimate is desired.  
 
The convergence properties of the divide and conquer registration search algorithm 
can be studied by means of the following example, illustrated in Figure 5.6. In the 
figure, the peak alignment, corresponding to the pose cell with the highest score 
value, against five different alignment discretization search thresholds are plotted 
with the solid line. In the same images, the location of the estimate, corresponding 
to the center of gravity of the score mass around the peak alignment, is plotted 
with a dash-dotted line for reference. Theoretically, the center of gravity alignment 
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estimate should yield a more accurate, sub-pixel estimate for the alignment 
coordinates. In the figures, the corresponding final center of gravity alignment 
estimate is shown for reference with the horizontal dashed line. The size of the pose 
cell (along each of the four search directions) in the discrete search space 
corresponding to 0.64, 0.32, 0.16, 0.08 and 0.04 meters are indicated with the 
numbers 1,2,3,4 and 5 on the horizontal axis. 
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Figure 5.6 a) Convergence of the alignment search with respect to the x- search 
direction. 
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Figure 5.6 b) Convergence of the alignment search with respect to the y-axis 
search direction. 
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Figure 5.6 c) Convergence of the alignment search with respect to the z-axis 
search direction. 
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Figure 5.6 d) Convergence of the alignment search with respect to the (z-rotation) 
phi angle search direction. 
 

From the results of Figure 5.6 it can be observed that the center of the score cloud-
based estimate, marked with a dash-dotted line, yields a more accurate alignment 
result than the alignment corresponding to the highest registration computation 
score value only at the end of the search. This is due to the fact that with larger 
score cell sizes the score (probability) mass is distributed, asymmetrically, over a 
much larger area around the highest peak. 
 

As presented in Figure 5.6, two different alignment values are computed in the 
registration experiments. First, the alignment corresponding to the center of the 
search space cell of the highest overall score value is recorded. And second, the 
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connected set of search space cells around the highest score alignment cell are 
grouped into a score cell cloud. Then the center of gravity location and the sample 
standard deviation dimensions of the cell cloud are computed. These values are 
recorded in Tables 5.2 and 5.3 for the indoor test environment when using both the 
actual and corrupted a priori alignment values as the center of the divide and 
conquer search space. The range images, called “scan1” up to “scan8”, which 
were used in the indoor mapping experiment, are illustrated in Appendix A, in 
Figures A.11 to A.18. 
 
Table 5.2 Viewpoint alignment results for the indoor map building experiment. The 
real a priori alignment value, given by the operator, was used as the center of the 
search space. The human operator of the sensor subjectively assessed the a priori 
alignment values (without using any measurement instruments). The dimensions of 
the search space were ±5 meters in x- and y-directions, ±0.625 meters along the z-
direction and ±30 degrees around the a priori heading direction. The results 
correspond to the alignment search space cell size of two centimeters along each of 
the search directions (for the φ-angle search direction, a corresponding angular 
threshold was used). Units are meters for the translation displacements and 
degrees for the rotation angle. 
 

Registration 
pair labels 

21 32 

   
Real a priori alignment 
given by the operator 

0.0, -14.0, 0.0, 0.0 0.0, -22.0, 0.0, 10.0 

Highest score alignment 0.32, -13.70, 0.11, 0.88 -0.93, -21.62, -0.15, 5.37 

Score cloud center alignment 0.3, -13.68, 0.13, 0.93 -0.91, -21.63, -0.14, 5.4 

Sample standard deviation of 
score cloud center alignment 

0.03, 0.03, 0.04, 0.14 0.04, 0.02, 0.02, 0.14 

43 54 65 

21.0, 0.0, 0.0, 10.0 0.0, 7.0, 0.0, 180.0 0.0, -12.0, 0.0, 90.0 

20.74, 0.58, 0.11, -87.6 0.46, 7.58, 0.22, 178.24 0.32, -11.72, 0.05, 90.64 

20.74, 0.59, 0.12, -87.53 0.45, 7.56, 0.08, 178.28 0.32, -11.72, 0.05, 90.65 

0.02, 0.07, 0.02, 0.22 0.03, 0.02, 0.19, 0.18 0.06, 0.02, 0.02, 0.3 

76 87 X 

0.0, -20.0, 0.0, 0.0 0.0, -18.0, 0.0, 0.0 X 

-0.01, -20.2, -0.28, -1.99 -1.42, -13.03, -0.13, 0.35 X 

-0.02, -20.21, -0.27, -1.96 -1.42, -13.03, -0.127, 0.35 X 

0.05, 0.03, 0.03, 0.2 NOT COMPUTED X 
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Table 5.3 Viewpoint alignment results for the indoor map building experiment. The 
corrupted a priori alignment value was used as the center of the search space. The 
dimensions of the search space were ±5 meters in x- and y-directions, ±0.625 
meters along the z-direction and ±30 degrees around the a priori heading direction. 
The results correspond to the alignment search space cell size of two centimeters 
along each of the search directions (for the φ-angle search direction, a 
corresponding angular threshold was used). Units are meters for the translation 
displacements and degrees for the rotation angle. 
 

Registration 
pair labels 

21 32 

   
Corrupted a priori 

alignment 
3.0, -14.0, 0.0, 15.0 2.0, -25.0, 0.0, -5.0 

Highest score alignment 0.31, -13.71, 0.15, 0.88 -0.92, -21.63, -0.17, 5.37 

Score cloud center alignment 0.30, -13.67, 0.13, 0.93 -0.91, -21.63, -0.14, 5.39 

Sample standard deviation of 
score cloud center alignment 

0.03, 0.03, 0.04, 0.14 0.04, 0.02, 0.02, 0.14 

43 54 65 

18.0, -2.0, 0.0, -75.0 2.0, 10.0, 0.0, 165.0 2.0, -10.0, 0.0, 105.0 

20.73, 0.61, 0.11, -87.48 0.49, 7.57, 0.09, 178.24 0.29, -11.71, 0.05, 90.53 

20.74, 0.59, 0.11, -87.52 0.43, 7.56, 0.06, 178.43 0.32, -11.72, 0.05, 90.65 

0.02, 0.06, 0.02, 0.21 0.06, 0.03, 0.04, 0.26 0.06, 0.02, 0.02, 0.3 

76 87 X 

-2.0, -17.0, 0.0, -15.0 -2.0, -20.0, 0.0, 15.0 X 

-0.01, -20.2, -0.28, -1.99 -1.33, -15.17, -0.13, 0.35 X 

-0.02,-20.21, -0.27, -1.96 -1.31,-15.16,-0.12, 0.62 X 

0.05, 0.03, 0.03, 0.2 0.02, 0.02, 0.02,0.4 X 

 
The viewpoint registration results documented in Tables 5.2 and 5.3 indicate that 
the a priori alignment values do not have an effect on the computed alignment 
values. This is, however, only partly true. The range image data used for the 
experiment was acquired in an indoor environment, which contains symmetric 
features. In another map building experiment, the a priori alignment value for the 
viewpoint pair “43” was corrupted by adding three meters to the x-coordinate. 
This caused the alignment search space to extend up to the location of the next 
pillar on the corridor. As there happened to be more overlap from the wall/ceiling 
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straight line segments part, the optimal alignment was computed at a location 
where the wrong pair of pillars in the corridor were in alignment. The result was a 
seven meter shift (the distance between the pillars) in the computed registration 
values.  
 
The results for the registration pairs “21”, “32”, “43”, “54” and “65” can be 
declared to be correct by visual inspection. During the visual inspection the wall 
planes and cylindrical pillars were both checked for alignment. The registration 
results for pair “76” seem to be in accordance with the predicted alignment despite 
the fact that no pillar objects were extracted from the “scan7” data set. 
Theoretically, it is very unreliable that the correct alignment can be computed 
along the direction of the corridor based on straight line features of the same 
orientation. When computing the optimal alignment between viewpoints “7” and 
“8”, the wrong alignment contributed to the highest registration score value. 
Between the data sets, straight line segments from different sides of the corridor 
were found to be in alignment corresponding to the optimal registration result. This 
kind of situation could be avoided by applying simple heuristics that would prevent 
the comparison of wall planes from different sides of the corridor. Also, by 
assuming that the true a priori alignment information is accurate, the search space 
could be restricted to a small span (e.g. ±0.5 meters) along the x-axis 
(perpendicular to the walls) of the previous viewpoint location. This could also 
have helped to find the correct alignment. Elevation maps and feature models, 
corresponding to the individual range scans and to the integrated models formed by 
means of a priori alignment information and computed registration values, are 
presented in Chapter 6 and Appendix D. 
 
In Figure 5.7 the evolution of score distribution as a function of the search space 
cell size is depicted. The results have been stored during the computation of the 
relative alignment for the sub-map registration pair “21” (corrupted a priori 
alignment case, Table 5.3). The size of each of the six score grid maps is 10 meters 
square. The connected score cloud has been “grown” by starting from the cell in 
the four-dimensional search space having the highest score value. Within the score 
distribution images, the x- and y-coordinates of the highest score value and the 
center of gravity of the connected score cell cloud are marked with a simple and an 
ended cross hair respectively. The lengths of the vertical and horizontal lines of the 
ended cross hair correspond to the computed sample standard deviation of the 
score cloud. As already indicated by the sample standard deviation values in Tables 
5.2 and 5.3, the sizes of the score clouds along the x- and y-directions are at the 
end of the search (corresponding to the cell size of two centimeters) very small. 
Literally, this would mean that the uncertainty of the registration result is small 
and almost equal in all cases independent of the “richness” of the feature sets used 
for registration computation. Normally this should not be the case. On the other 
hand, at the earlier stages of the search, a more visually trustworthy score 
distribution appears. Perhaps the whole history of score distribution evolution 
should be utilized to approximate the uncertainty of the final registration 
coordinate values. This remains the subject of future research.  
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Figure 5.7 Registration score distribution for the sub-map pair “21” (corrupted a 
priori alignment case, Table 5.3). Score distribution for search space cell sizes of 
0.64, 0.32, 0.16, 0.08, 0.04 and 0.02 meters are depicted in pictures starting 
from the upper left image up to the image on the right hand side in the bottom row. 
In the images, the distribution of the cumulative score values of the connected 
score cloud have been projected onto the x- and y-coordinate plane of the search 
space. The directions of the x- and y-coordinate axis are upwards and to the left 
respectively. 
 
As discussed earlier, in the registration experiment for sub-map pair “43” different 
results have been obtained depending on the values of the a priori alignment. In the 
following two figures, the evolution of the connected score cloud distributions, 
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related to the largest and second largest search space cell score peak values, is 
depicted. The size of the search space with respect to both x- and y-coordinates, 
depicted in the images, is ±5 meters around the a priori alignment coordinates. 
 
In the top row images of Figures 5.8 and 5.9, there is one large cloud of connected 
score cells, within which the x- and y-coordinates of the largest and second largest 
peaks are marked with a simple cross-hair, respectively. The sample standard 
deviation and the location of the center of gravity of the large connected score cell 
cloud are the same in both figures. In the middle row images of Figures 5.8 and 
5.9, it can be observed that the location of the maximum score cell changes place 
at the earlier stages of the search. As small cell sizes are reached, only the 
maximum score cloud survives and the others disappear. The size of search space 
cells, when the score cloud distribution condenses in the small neighborhood of the 
single highest peak, seems to be around 0.08 meters in the experiment. The effect 
of different parameters that determine the search space discretization level, when 
the search has reached a “mature” stage, should be better understood. It would 
then help to find a sensible estimate for the uncertainty of the computed score 
value. The uncertainty, computed at the finest discretization level, may not contain 
much information. 
 
 
5.5 Conclusions 
 
In Chapter 5, the registration, i.e. the relative location computation between two 
perception positions, was discussed. A method that is able to find the globally 
optimal alignment coordinates within the four-dimensional search space was 
implemented. The convergence properties of the method were studied through 
experiments. The problems related to the assessment of the precision of the 
registration result were adduced. 
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Figure 5.8 Distribution of the cell score cloud corresponding to the largest peak in 
the registration experiment for sub-map pair “43”. Score distribution for search 
space cell sizes of 0.64, 0.32, 0.16, 0.08, 0.04 and 0.02 meters are depicted in the 
pictures starting from the upper left image up to the image on the right hand side 
in the bottom row. In the images, the distribution of the cumulative score values of 
the connected score cloud, corresponding to the largest peak score cell, have been 
projected on the x- and y-coordinate plane of the search space. The directions of 
the x- and y-coordinate axis are upwards and to the left respectively. 
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Figure 5.9 Distribution of the cell score cloud corresponding to the second largest 
remote peak in the registration experiment for sub-map pair “43”. Score 
distribution for search space cell sizes of 0.64, 0.32, 0.16, 0.08, 0.04 and 0.02 
meters are depicted in pictures starting from the upper left image up to the image 
on the right hand side in the bottom row. In the images, the distribution of the 
cumulative score values of the connected score cloud, corresponding to the second 
largest peak score cell, have been projected onto the x- and y-coordinate plane of 
the search space. (Note that the distance of the second peak with respect to the 
largest peak must exceed the given threshold in order to be accepted as another 
valid alignment hypothesis.) The directions of the x- and y-coordinate axis are 
upwards and to the left respectively. 
 

There is no score distribution 
image for the second largest 
peak corresponding to the 
finest search resolution (two 
centimeters). This is due to 
the fact that all the score cells 
outside the cell cloud of the 
first peak have died out. The 
evolution of the first (largest) 
peak was presented in figure 
5.8 
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Chapter 6 
 

Environment modeling 
experiments 
 
 
6.1 Introduction 
 
The method for mapping large-scale environments has been tested by generating a 
metric model for three different kinds of environments. The first test site is a 
parking lot area nearby the Computer Science Building of the Helsinki University 
of Technology, depicted in Figure 6.1. The second test site covers part of the 
ground floor of the Computer Science building. The third test site, which represents 
unstructured, natural environments, is a small forest area. 
 

 

 
 

 

Figure 6.1 Two camera views into the parking lot, which serves as the first test site 
of the map building experiments. 
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6.1.1 Description of the experimental system 
 
The experimental system consists of the Riegl LMS-Z210 range imaging sensor, 
which was mounted on a manually maneuvered cart for mapping the parking lot 
area and the indoor office corridor spaces. In the forest test case, the sensor was 
mounted at the top of a tripod. In case of the cart, tilt sensors were used to 
measure the inclination angles of the sensor platform. When the tripod served as 
sensor platform, it was leveled horizontally so that the tilt angles were zero. Also, 
the operator of the sensor platform was asked to subjectively assess the translation 
displacement and heading direction change between the perception positions, where 
range data was collected. The four subjectively estimated transformation 
parameters served as a priori alignment information in the registration 
experiments. 
 
 
6.1.1.1 The Riegl LMS-Z210 sensor 
 
The LMS-Z210 is a sensor designed for the acquisition of 3D range images. A 
rotating mirror directs the internal laser range finder's transmit beam over a 
precise angular pattern. Based on the time-of-flight of the received beam, the 
distance to the nearest target in the direction determined by the scanning angles of 
the beam is measured. Dimensional drawings of the LMS-Z210 sensor are 
presented in Figure 6.2. 
 

 
 
Figure 6.2 Dimensional drawings of the 3D measurement sensor used in the map 
building experiments. (For more information refer to: http://www.riegl.co.at/lms-
z210/e_lms-z210.htm). 
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From a map building experiment point of view, the most important parameters of 
the Riegl range imaging sensor are given in Table 6.1. In order to make the device 
eye safe, the laser beam is spread so that its diameter is about four centimeters 
when it leaves the sensor housing. Then the diameter of the beam increases about 3 
centimeters per 10 meters of measured distance. Due to this fact, it is somewhat 
difficult to measure through the clutter, especially in forest environments. Also, the 
wide beam complicates the measurement of small objects. 
 
Table 6.1 Main technical data of the Riegl LMS-Z210 range scanner 
 

Parameter name Value Parameter name Value 
    

Maximum 
measurement range 

(typical) 
350 meters 

Fast scan angle 
readout resolution 0.036 degrees 

Basic measurement 
accuracy (standard 

deviation) 
±0.025 meters 

Slow (frame) scan 
angle readout 

resolution 
0.018 degrees 

Laser beam diameter 
when it leaves the 
scanner housing 

0.042 meters 
Measurement 

principle 
Time-of-flight 

(first returned pulse) 

Laser beam 
divergence 

3 mrad Maximum 
measurement rate 

10kHz 

 
The readout resolution (0.036 degrees) of the scanner corresponds, in terms of 
spatial resolution, to an error of 2 centimeters at a distance of 30 meters from the 
sensor. At 30 meters’ distance the beam diameter is 13 centimeters, which causes 
another source of error because the exact beam hit location can only be guaranteed 
to be within the 13-centimeter diameter beam pattern. In the feature object model 
computation experiments, described in Chapter 4, the distance measurement 
uncertainty (i.e. 2.5 centimeters) was used to represent the standard deviation of a 
single measured beam hit location. Obviously, this underestimates somewhat the 
true uncertainty, but due to the large number of measurement points, which were 
used to generate the environment models, the significance of knowing the 
uncertainty of a single measurement point accurately, becomes less important. The 
range images taken with the scanner are presented in Appendix A.  
 
 
6.1.2 Description of the mapping method 
 
The applied mapping method consists of three main phases. First, feature object 
models are computed by means of the range image data. In the test cases, when 
considering the parking lot area and the indoor office corridor environment, models 
for both the cylindrical nearly vertical objects and for the border lines between the 
wall/ceiling planes were extracted. In the forest mapping experiment, only the tree 
trunks were modeled. The extracted feature objects were described with respect to 
the reference frame of the corresponding range image, forming in this way a local 
feature map. In every experiment, a grid map containing the highest/lowest 
measured elevation value at the location of each grid element was also formed. The 
elevation data was used to augment the appearance of the models for subjective 
assessment of the results.  
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In the second phase of the method, an estimate for the relative alignment between 
relevant pairs of local feature maps was computed. In the parking lot and indoor 
environment experiments only consecutive pairs of sub-maps were registered with 
each other. In the forest mapping experiment, all possible registration pairs 
between the six sub-maps (altogether 15 pairs) were considered. However, for the 
forest mapping results, presented in Chapter 6.4, only 10 sub-map pairs were used 
to compute the optimal environment model. For these 10 sub-map pairs the 
chances that there would be enough features originating from the same physical 
objects were considered to be good enough. This kind of manual selection of sub-
map pairs violates the autonomy requirement of the mapping method. In Chapters 
6.4 and 7.1, possibilities to detect erroneous registration results, enabling thus 
fully autonomous map construction, will be discussed.  
 
In the third mapping phase, an integrated map was formed by transporting the sub-
map model data into a global reference frame. Two different techniques were used 
to compute the global coordinates for each sub-map. In the simplest technique, 
applied in the parking lot and indoor environment test cases, the global location of 
each sub-map is computed by incrementally connecting relative coordinate 
transformations between pairs of feature maps. In the second, statistically more 
sound technique, a linearized system of equations connecting the unknown global 
location estimates with the previously computed relative transformation 
parameters, is formed. By solving the linearized system of equations, optimal (in 
the least squares sense) global sub-map coordinates can be computed. The optimal 
method was applied in the forest mapping experiment.  
 
Note, that, in the mapping experiments, the a-priori alignment estimate was not 
used to weight the perception based relative alignment observations. This was due 
to the very large uncertainty related to the subjectively assessed a-priori 
displacement estimates for the consecutive perception positions. In the 
experiments, the a-priori alignment information was utilized only to determine the 
location and size of the search space for the divide-and-conquer registration 
computation method. In Figure 6.3, a schematic diagram of the developed mapping 
method is presented.  
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Figure 6.3 A schematic diagram of the environment mapping method. In the 
diagram, solid and dashed line arrows indicate data access and flow of control, 
respectively. 
 
The detailed description of the three mapping phases can be found in Chapters 4.6 
and 4.7 for the feature extraction phase and in Chapters 5.3.3 and 3.2.2 for the 
map registration and optimal map estimation phases respectively. 
 
Within the experiments presented in this work, the computational complexity of the 
feature extraction and the sub-map registration phases was approximately equal. 
Both of the phases took, for mapping a particular test environment, in total tens of 
minutes or even multiple hours to complete. The third mapping phase, related to 
the construction of an integrated map, required only a few seconds of processing 
time. For example, in the forest mapping experiment, described in Chapter 6.4, the 
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extraction of the cylinder segments corresponding to the visible sections of the tree 
trunks took, altogether, about three hours for the six range images. In contrast, the 
computation of the relative alignment coordinates for the 10 sub-map pairs took 
about four hours. The computations were carried out on a 1.3 GHz pc-computer. 
 
In the feature extraction phase the range images, each of 3000x720 data points, 
were processed systematically measurement by measurement. A computationally 
more efficient strategy would be the one where, for example, every fifth horizontal 
scan line was first segmented and the corresponding circle models estimated from 
the segment data. Then the initially ignored locations in the range image, situated 
in between the sparsely distributed valid segments, would be processed. With the 
new, coarse to fine processing principle considerable savings in computation time, 
without sacrificing performance too much, could be achieved. Similarly, if a more 
accurate a priori alignment estimate for each of the sub-map pairs would be 
available, the registration computation time could be easily dropped, even by a 
factor of 10. Nevertheless, the presented 3D simultaneous localization and map 
building method is, with these data quantities and dimensions of the space covered, 
clearly an off-line method. 
 
 
6.2 Construction of an integrated map for the parking lot area 
 
The main goal of the parking lot experiment is to demonstrate the general 
applicability of the method for large-scale semi-structured outdoor environments 
and also to give an example of how the non-Gaussian nature of the uncertainty, 
related to the computed relative alignments, affects the precision of the integrated 
model. The computed relative alignment values, corresponding to the alignment 
search space cell size of 0.156 meters for the five consecutive sub-map pairs, are 
given in Table 6.2. To compute the results for sub-map pair “FE”, tree trunks 
served as the major set of common feature objects, whereas horizontal edge line 
segments, corresponding to the upper corners of building walls, dominated in the 
computation of the alignment estimate for the other sub-map pairs. This can also 
be seen in the uncertainty of the translation degrees of freedom, computed as the 
sample standard deviation of the connected registration search space cell cloud 
around the maximum score cell. For sub-map pair “FE”, the largest uncertainty is 
along the z-axis whereas, for the other sub-map pairs, the uncertainty along the x- 
and y-axis is roughly 10 times larges than along the z-axis. 
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Table 6.2 Viewpoint point alignment results for the five consecutive registration 
pairs of the parking lot map building experiment. The size of the search space 
along x- and y- coordinate directions was ±10 meters, along the z-axis ±1.25 
meters and around the a priori heading direction ±100 degrees. The dimensions of 
a cell in the discrete alignment search space corresponded to 0.156 meters when 
the results in the table were recorded. Units are meters for the x-, y- and z-
translation displacement coordinates and degrees for the z-rotation displacement 
angle. 
 

Registration 
pair labels 

FE GF 

   

A priori alignment 11.0, 0.0, 0.0, -90.0 30.0, 0.0, 0.0, 0.0 

Highest score alignment 12.33, 0.08, 0.08,-87.85 33.05,-0.55, 0.39,-0.98 

Score cloud center alignment 12.39, 0.13,0.07, -87.23 33.79, 0.73, 0.39,-2.66 

Sample standard deviation of 
score cloud center alignment 

0.22, 0.54, 0.62, 3.15 2.29, 2.91, 0.16, 3.95 

HG IH JI 

32.0, 2.0, 0.0, 0.0 0.0, 15.0, 0.0, 0.0 0.0, 20.0, 0.0, 0.0 

36.61, 0.36, 0.23,-2.54 0.70, 16.17,-0.08, 5.27 1.33, 20.70,-0.39,-3.71 

37.35, 1.09, 0.21,-1.48 0.56, 15.38,-0.14, 8.49 0.61, 21.19, -0.42, -3.09 

3.38, 2.50, 0.15, 3.46 1.07, 2.36, 0.63, 10.83 2.79, 1.79, 0.18, 3.57 

 
The locations of sub-maps “F”, “G”, “H”, “I” and “J” with respect to the global 
frame of reference (i.e. reference frame of sub-map “E”) are computed by 
incrementally concatenating the relative coordinate transformations between 
consecutive sub-map pairs. Before the relative registration coordinate values can 
be summed up, they have to be transformed to the common (global) frame of 
reference: 
 

( ) ( ) rtotrtotg yxx φφ sincos −=  

( ) ( ) rtotrtotg yxy φφ cossin +=                                           (6.1) 

rg zz =  

rg φφ =  

 
where totφ  is the total, accumulated z-rotation (heading) angle of the second sub-
map in the sub-map pair described with respect to the global reference frame. The 
subscript “r” indicates relative displacement coordinates referenced with respect to 
the second sub-map in the sub-map pair. The subscript “g” corresponds to the 
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relative displacement coordinates, transformed to the global reference frame of the 
integrated environment model.  
 
Similarly, the transformed covariance matrix of the resulting global location 
parameters can be approximated by first taking the partial derivatives of the non-
linear coordinate transformation equations, given by Equation 6.1, with respect to 
the relative location parameters and with respect to the global heading angle. The 
Jacobian matrix, consisting of the partial derivatives, can then be used to 
transform the covariance matrix of the registration parameters to the global 
reference frame: 
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where J  is the Jacobian matrix: 
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                                                                                                      (6.3)  
 
Now, the globally referenced 4x4 covariance matrix gC  is given by the upper left, 

4x4 sub-matrix of *
gC . The variance of the global sub-map coordinate values can 

be approximated by summing the globally referenced variance parameters of each 
of the concatenated sub-map pairs, given by the diagonal elements of gC . The 

globally referenced registration parameters are given in Table 6.3. (The 
corresponding locally referenced registration parameters were given in Table 6.2.)  
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Table 6.3 Viewpoint point alignment results for the five consecutive registration 
pairs of the parking lot map building experiment. The presented values correspond 
to the registration parameters, given in Table 6.2, after projecting them into the 
global reference frame. Units are meters for the x-, y- and z-translation 
displacement coordinates and degrees for the z-rotation displacement angle. 
 

Registration 
pair labels 

FE GF 

   

A priori alignment 11.0, 0.0, 0.0, -90.0 0.0, -30.0, 0.0, 0.0 

Highest score alignment 12.33, 0.08, 0.08, -87.85 0.69, -33.04, 0.39, -0.98 

Score cloud center alignment 12.39, 0.13,0.07, -87.23 2.37, -33.71, 0.39,-2.66 

Sample standard deviation of 
score cloud center alignment 

0.22, 0.54, 0.62, 3.15 2.91, 2.28, 0.16, 3.95 

HG IH JI 

2.0, -32.0, 0.0, 0.0 15.0, 0.0, 0.0, 0.0 20.0, 0.0, 0.0, 0.0 

1.11, -36.59, 0.23, -2.53 16.15, -1.09, -0.08, 5.27 20.74, 0.08, -0.39, -3.71 

1.16, -37.35, 0.21,-1.48 15.36, -0.93, -0.14, 8.49 21.11, 2.02, -0.42, -3.08 

2.49, 3.38, 0.15, 3.46 2.34, 1.12, 0.63, 10.83 1.73, 2.82, 0.18, 3.57 

 
And finally, the global coordinates and related uncertainties of the five sub-maps, 
computed by summing the individual registration coordinate and variance terms 
respectively, are given in Table 6.4. 
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Table 6.4 Global locations of sub-maps “F”, “G”, “H”, “I” and “J” described 
with respect to the reference frame of sub-map “E”. The global location estimates 
were computed by incrementally concatenating the relative alignment values, given 
in Table 6.3. Units are meters for the x-, y- and z-translation displacement 
coordinates and degrees for the z-rotation displacement angle. 
 

Sub-map label F G 

   
Global, a priori alignment 
based sub-map location 

11.0, 0.0, 0.0, -90.0 11.0, -30.0, 0.0, -90.0 

Global, maximum score 
value-based sub-map location 12.33, 0.08, 0.08, -87.85 13.02, -32.97, 0.47, -88.82 

Global, score cloud center 
based sub-map location 

12.39, 0.13, 0.07, -87.23 14.75, -33.58, 0.46, -89.89 

Standard deviation of the 
score cloud center based 

location estimate 
0.22, 0.54, 0.62, 3.15 2.92, 2.35, 0.64, 5.05 

H I J 

13.0, -62.0, 0.0, -90.0 28.0, -62.0, 0.0, -90.0 48.0, -62.0, 0.0 -90.0 

14.13, -69.56, 0.70, -91.36 30.2, -70.65, 0.62, -86.09 51.02, -70.56, 0.23, -89.80 

15.91, -70.93, 0.67, -91.37 31.27, -71.86, 0.54, -82.88 52.38, -69.84, 0.12, -85.96 

3.84, 4.11, 0.66, 6.12 4.50, 4.26, 0.91, 12.44 4.82, 5.11, 0.92, 12.94 

 
To illustrate the quality of the integrated global model, two different metric 
representations are constructed. First, a rectangular grid over the mapped area is 
formed and for each grid cell the maximum elevation value, recorded at the 
location, is stored. The incrementally constructed elevation map of the parking lot 
area is shown in Figure 6.4. For computing the global sub-map coordinates for the 
integrated model, the “maximum score location” values from Table 6.2 were used. 
These estimates corresponds to the coordinates of the center of the cell in the 
registration search space having the highest score value. 
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Figure 6.4 The size of the grid map is 900x900 pixels corresponding to an area of 
180 meters square. White color corresponds to no measured elevation value. 
Otherwise, the darker the color, the higher the elevation. 
 
In addition to the elevation map, visible sections of the tree trunks and other 
elongated cylindrical objects as well as the straight line segments corresponding to 
the upper end corners of large wall planes are modeled on a feature map. The 
feature map, formed by integrating the data from the six sub-maps corresponding 
to the parking lot area, is shown in Figure 6.5. 
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Figure 6.5 Feature map of the parking lot area near the Computer Science 
Building. The profile of the building and small groups of trees can be identified in 
the figure. Also, a number of outlier features are present in the figure. 
 
The outlier, cylinder segment features, extracted from the wall of the building in 
the upper middle part of Figure 6.5 are due to the more relaxed circle segment 
computation parameters. The “error symmetry threshold” parameter in particular, 
given in Table 4.2, which is used to classify narrow elongated objects as either 
circular or more rectangular has great impact on the sensitivity of the method. In 
the parking lot and forest mapping experiments, more asymmetry in the 
distribution of the measurement points around the fitted circle model was allowed. 
In this way the chances of being able to model true cylindrical objects from a larger 
distance increases, as does the risk for faulty detections. The best values for the 
computation configuration parameters depend on the preferences of the user. In 
practice, they are determined empirically. In Figure 6.5, a significant spread of the 
wall/ceiling corner lines along the vertical, z-direction can be identified. This is, 
probably, due to the small error in the measured tilt angles of the sensor platform. 
Even a small angular error causes significant translation displacements when the 
measured features are distant from the perception sensor. 
 
Corresponding model illustrations for the situations where the integrated maps 
were constructed based on a priori alignment data and the center of connected 
score cloud alignment estimates are presented in Appendix D, Figures D.1 to D.4. 
Moreover, in Figures D.7 to D.18, the model data for the individual sub-maps is 
shown. 
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6.3 Modeling the interior of a building 
 
As the second test case study, an integrated model was incrementally built for an 
office corridor environment. Both an elevation and a feature map were constructed 
to demonstrate the applicability of the method. The computed, locally referenced 
relative alignment coordinates between consecutive sub-maps were already 
presented in Chapter 5.4.1, Table 5.3. The global coordinates and related 
uncertainties of the seven sub-maps are given in Table 6.5.  
 
Table 6.5 Global locations of sub-maps “2”, “3”, “4”, “5”, “6”, “7” and “8” 
described with respect to the reference frame of sub-map “1”. The global location 
estimates were computed by incrementally concatenating the relative alignment 
values computed for the consecutive sub-map pairs “21”, “32”, “43”, “54”, 
“65”, “76” and “87”. The size of a cell in the registration search space, when the 
search was stopped, corresponds to two centimeters. Units are meters for the x-, y- 
and z-translation displacement coordinates and degrees for the z-rotation 
displacement angle. 
 

Sub-map label 2 3 

   
Global, a priori alignment 
based sub-map location 3.0, -14.0, 0.0, 15.0 11.4, -37.6, 0.0, 10.0 

Global, maximum score 
value-based sub-map location 

0.31, -13.72, 0.15, 0.88 -0.27, -35.36, -0.02, 6.25 

Global, score cloud center-
based sub-map location 

0.30, -13.67, 0.13, 0.93 -0.27, -35.32, -0.01, 6.32 

Standard deviation of the 
score cloud center-based 

location estimate 
0.03, 0.03, 0.04, 0.13 0.05, 0.04, 0.05, 0.20 

4 5 6 

29.5, -36.5, 0.0, -65.0 39.4, -34.1, 0.0, 100.0 48.9, -30.4, 0.0, 205.0 

20.26, -32.50, 0.09, -81.23 27.81, -31.83, 0.17, 97.01 39.40, -30.11, 0.22, 187.54 

20.28, -32.45, 0.10, -81.20 27.81, -31.72, 0.16, 97.22 39.40, -29.92, 0.21, 187.87 

0.05, 0.08, 0.05, 0.29 0.06, 0.10, 0.07, 0.39 0.06, 0.11, 0.07, 0.49 

7 8 X 

43.5, -14.1, 0.0, 190.0 42.0, 5.9, 0.0, 205.0 X 

36.76, -10.08, -0.06, 185.54 36.61, 5.15, -0.19, 185.90 X 

36.66, -9.90, -0.05, 185.91 36.40, 5.31, -0.18, 186.53 X 

0.08, 0.12, 0.07, 0.53 0.08, 0.12, 0.08, 0.66 X 
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It should be noted, that the relative alignment estimates, presented in Tables 5.3 
and 6.5, were computed by using corrupted a priori alignment estimates. As 
already discussed in Chapter 5.4.1, the sub-map registration method should be able 
to find practically the same alignment coordinates irrespective of the a priori 
alignment estimate. The only requirement is that the correct solution resides within 
the alignment search space. The search space, on the other hand, is centered 
around the a priori alignment coordinates. In connection with the indoor mapping 
demonstration, two problem examples, often encountered in practical modeling 
implementations, are presented. 
 
The difference between the global sub-map coordinates, computed by using the two 
alternative registration data sets, is much smaller than in the parking lot mapping 
case. This is primarily due to the fact that the registration computation was 
continued up to a more fine-grained level (0.02 versus 0.156 meters) within the 
discrete registration search space than in the parking lot mapping experiment. At 
fine-grained cell sizes, the cell cloud concentrates at a very small neighborhood of 
the corresponding maximum score cell, which means that the two estimates, 
inevitably, are very closely located.  
 
To better illustrate the computed feature map, the wall/ceiling corner lines were 
extended up to the zero height elevation level, thus forming rectangular wall 
planes. A view into the 3D model objects, extracted from the range image “scan1”, 
seen against a camera image taken about 30 centimeters above the range image 
acquisition position, can be seen in Figure 6.6. 
 

 
 

Figure 6.6 A partial, mixed reality view of a 3D feature model. The wall plane 
objects and the cylinder models for the pillars have been extracted from the range 
image labeled “scan1”. The complete set of feature objects extracted from the 
range image can be seen in Figure D.19. 
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The incrementally constructed elevation map and two images of the integrated 
feature map of the office corridor environment are shown in Figures 6.7, 6.8 and 
6.9 respectively. In the elevation map, the lowest measured elevation value is 
recorded (in the parking lot experiment, the highest elevation value was stored 
instead). The integrated maps were generated from eight range images labeled 
“1”, “2”, “3”, “4”, “5”, “6”, “7” and “8”. 
 

 
 
Figure 6.7 Elevation map of the office corridor environment. The size of the grid 
map is 600x600 pixels corresponding to an area of 60 meters square. In the 
elevation map white color means no recorded elevation value, otherwise the darker 
the color the higher the elevation. 
 
The erroneous registration computed between the sub-maps “8” and “7” can be 
clearly seen in the upper left part of the elevation map. The false registration was 
due to the fact that only parallel wall planes were compared with each other. Also, 
the size of the search space was large enough, enabling the confusion of the left 
wall with the right one. 
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Figure 6.8 A feature map of a ground floor corridor at the Computer Science 
Building of HUT. The cylindrical supporting pillars of 0.38 meters in diameter and 
the wall planes of a height of about 2.3 meters can be seen in the figure. Also, the 
model of a mobile robot at the location, where the first range image was measured, 
can be identified. 
 

 
 
Figure 6.9 Another view into the feature map of the ground floor corridor at the 
Computer Science Building of HUT.  
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As can be seen in the images, only parts of the wall planes are modeled. This is due 
to the relatively large distances between the measurement positions and occlusion 
(due to other architectural objects and people). Also, the range images labeled “9” 
and “A” were not used to construct the integrated model due to the lack of 
common features to facilitate correct registration. The dismissed range images, 
which can be seen in appendix A Figures A.19 and A.20, were acquired in an open 
hall. Successful computation of relative alignment estimates for the range image 
pairs “98”, “A9” and “1A” would have been required to close the loop of 
mutually connected sub-maps. On the whole, the mapping method and the utilized 
sensor technology are not at their best in this kind of structured indoor 
environment. In the next chapter, the utilization of the method to map a natural 
forest environment will be discussed.  
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6.4 Generating a globally optimal model for the forest terrain 
 
In the last experiment, a small forest area was mapped. The range images 
“scanT”, “scanS”, “scanR”, “scanQ”, “scanO” and “scanN” served as 
measurement data for model building. A metric-topological layout of the “forest” 
test area is illustrated in Figure 6.10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10 A rough metric topological map of the forest area. The viewpoint 
locations are marked with the coordinate frames and the sub-map pairs, for which 
relative alignment parameters were computed, are indicated with the arrows. 
In the figure, the range image acquisition positions are indicated with xy-
coordinate frames along with the corresponding range image label. The 10 sub-
map pairs for which a relative alignment was computed are indicated with the 
arrows. The manually-drawn rough map was used to determine the a priori 
alignment relations between the sub-maps. No measuring devices were used to 
determine distances within the map. The operator of the Riegl range-imaging 
sensor subjectively assessed the rough relative displacements between the 
measuring locations while maneuvering the sensor.  
 
The relative alignment coordinates and the corresponding uncertainties computed 
in the forest mapping test case are given in Table 6.6.  
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Table 6.6 Viewpoint alignment results for the forest map building experiment. In 
the table, the a priori alignment values as well as the registration coordinates and 
the related uncertainties are given. Units are meters for the x-, y- and z-translation 
displacement coordinates and degrees for the z-rotation displacement angle. 
 

Registration 
pair labels 

ST RS 

   

A priori alignment 3.0, -1.0, 1.0, -30.0 4.0, -2.0, 1.0, 180.0 

Highest score alignment 4.42, -1.46, 0.76, -38.79 4.09, -3.69, 0.29, 161.37 

Score cloud center alignment 4.43, -1.46, 0.68, -38.71 4.08, -3.69, 0.14, 161.30 

Sample standard deviation of 
score cloud center alignment 

0.03, 0.03, 0.29, 0.27 0.04, 0.03, 0.15, 0.24 

RT QR QS 

5.0, -5.0, 1.5, 140.0 1.0, -5.0, 0.0, 30.0 5.0, 2.0, 1.0, 180.0 

5.30, -6.90, 0.71, 122.77 -0.34, -5.97, 0.63, 5.57 6.36, 1.83, 0.56, 166.58 

5.29, -6.90, 0.74, 122.61 -0.35, -5.96, 0.65, 5.41 6.34, 1.83, 0.55, 166.54 

0.08, 0.03, 0.29, 0.48 0.04, 0.02, 0.05,0.20 0.04, 0.03, 0.04, 0.25 

QT OQ OR 

8.0, -2.0, 2.0, 160.0 -3.0, 1.0, 1.0, 140.0 -2.0, -6.0, 1.0, 140.0 

10.53, -3.94, 1.25, 128.07 -3.36, -3.48, 0.21, 136.78 -3.34, -9.76, 0.80, 142.40 

10.52, -3.97, 1.27, 127.99 -3.36, -3.48, 0.21, 136.77 -3.35, -9.77, 0.71, 142.35 

0.03, 0.05, 0.04, 0.31 0.02, 0.02, 0.03, 0.15 0.03, 0.03, 0.04, 0.19 

OS NO X 

7.0, 3.0, 1.5, 320.0 5.0, 1.0, 1.0, 30.0 X 

10.41, 4.44, 1.20, 303.42 4.97, 1.73, 0.72, 38.14 X 

10.39, 4.46, 1.26, 303.45 4.97, 1.74, 0.74, 38.18 X 

0.03, 0.04, 0.04, 0.17 0.02, 0.02, 0.03, 0.32 X 

 
Before using the measured relative map coordinates and the related uncertainties 
to solve the optimal map, they have to be transformed to the global reference frame 
(i.e. reference frame of sub-map “T”). The transformed values can then be 
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assigned to the d -vector and C -matrix to solve the Equations 3.20 and 3.21. The 
projection of the relative registration coordinates and the related uncertainties to 
the global reference frame was discussed in Chapter 6.2.  
 
In the table, the a priori alignment values are also given. The dimensions of the 
search space around the a priori alignment coordinates were ±5.0 meters in x- and 
y-directions, ±1.25 meters along the z-direction and ±60.0 degrees around the a 
priori heading direction. The size of a cell in the four-dimensional registration 
space, when the search was stopped, was 0.02 meters. 
 
In the table, the uncertainty related to the x- and y- alignment coordinates is small 
in all cases. The uncertainty of the z-coordinate is relative large in the registration 
pairs “ST”, “RS” and “RT”. This can be explained by the characteristics of the 
features, i.e. tree trunks, used for registration computation. As they are more or 
less vertically oriented, the registration score will also be more widely distributed 
along the vertical, z-coordinate direction. According to Table 6.6, the a priori 
estimates of the relative translation displacements between the scanning positions 
deviate from the computed values from a few centimeters up to 4.5 meters, while 
the difference between the a priori and computed heading angles deviates from a 
few degrees up to 32 degrees. In all cases, the computed values seem to be within 
the boundaries of the divide and conquer search space.  
 
A check whether all the computed registration values are really correct can be done 
by studying the residual values of the optimal map. The residual values are 
computed by subtracting registered relative alignment coordinates from the relative 
alignment values derived from the optimal global coordinates of the corresponding 
sub-maps in the sub-map pair under consideration. The residual value for the sub-
map pair (i, j), corresponding to the absolute value of the difference between 
measured and computed relative sub-map coordinates, is given as 
 

( ) ( )jiijjie xxd −−=,              (6.4) 

 
where ijd  corresponds to the observation of the thi  sub-map location with respect 

to the thj  sub-map location and ix  and jx  are the estimates of the global sub-map 

locations. Now, if all the residual values are about the same order of magnitude as 
the uncertainty of the corresponding observation, the integrated optimal map can 
be presumed to be correct within the given precision. 
 
As mentioned before, the locally referenced relative alignment values have to be 
transformed to the global reference frame before the optimal map can be 
computed. For the transformation, or projection, of the relative alignment data, 
the global heading angle of the second sub-map in each sub-map pair, 
corresponding to the optimal sub-map locations, is used. Indeed, the map-building 
task is carried out in phases, where one new sub-map is added to the sub-map data 
pool at each phase. To project the locally referenced relative alignment 
observations to the global reference frame, the optimal sub-map locations, 
computed during the previous phase, are utilized. In Table 6.7, the observations of 
the relative alignment coordinates given in Table 6.6 are presented with respect to 
the global frame of reference. In the table, the estimates, computed from the 
registration score cell cloud, are given. The relative alignment values and the 
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related covariance information were projected to the global reference frame by 
utilizing the global heading angle information computed in the second last map 
building phase.  
 
Table 6.7 Globally referenced score cloud center alignment values for the forest 
test site. The accumulated, global heading angles used to project the locally 
referenced data to the global reference frame correspond to the optimal global map 
computed by means of the five sub-maps, “T, S, R, Q and O”. Units are meters for 
the x-, y- and z-translation displacement coordinates and degrees for the z-rotation 
displacement angle. 
 

 
The computation of the global map of the forest area was carried out gradually by 
starting with the sub-maps “T” and “S” for which the first integrated map was 
computed. Then the sub-map “R” was added to the sub-map data set and the 
second map building phase was started. The relative observation coordinates 
linking sub-map “R” to sub-map “S” were projected to the global reference frame 
by using the optimal global heading angle of sub-map “S” computed during the 
first map building phase. In the third phase, sub-map “Q” was added to the sub-
map data set and the observation coordinates linking it to sub-maps “R”, “S” and 
“T” as well as other locally referenced relative observation coordinates within the 

Registration 
pair labels ST RS 

   

Score cloud center alignment 4.43, -1.46, 0.68, -38.71 0.83, -5.44, 0.14, 161.30 

Sample standard deviation of 
score cloud center alignment 

0.03, 0.03, 0.29, 0.27 0.04, 0.03, 0.15, 0.24 

RT QR QS 

5.29, -6.90, 0.74, 122.61 5.21, 2.92, 0.65, 5.41 6.08, -2.58, 0.55, 166.54 

0.08, 0.03, 0.29, 0.47 0.03, 0.03, 0.05, 0.19 0.03, 0.04, 0.04, 0.25 

QT OQ OR 

10.52, -3.97, 1.27, 127.99 4.81, -0.52, 0.21, 136.77 10.03, 2.45, 0.71, 142.34 

0.03, 0.05, 0.04, 0.31 0.02, 0.02, 0.03, 0.15 0.02, 0.03, 0.04, 0.19 

OS NO X 

10.88, -3.09, 1.26, 303.45 1.26, -5.11, 0.74, 38.18 X 

0.02, 0.04, 0.04, 0.17 0.02, 0.02, 0.03, 0.32 X 
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map (i.e. “RS”) were projected to the global reference frame by using the global 
heading angle estimates of sub-maps “S” and “R”, computed during the second 
phase of the map building process. This process was repeated altogether five times 
until all the six sub-maps were included into the computation of the global map. In 
Table 6.8, the global locations of the sub-maps, included in the environment model 
at each of the five mapping phases, are presented.  
 
Table 6.8 Optimal sub-map locations with respect to the global frame of reference. 
In the table, the global locations of the sub-maps, which were considered for the 
computation of the optimal integrated map at the given mapping phase, are 
presented. The mapping phases correspond to the situations where a new sub-map 
data set was acquired and the optimal map was recomputed. Altogether, the results 
of five optimal map computation iterations are presented. They correspond to the 
sub-map sets “T,S”, “T,S,R”, “T,S,R, Q”, “T,S,R,Q,O” and “T,S,R,Q,O,N”. 
Units are meters for the translation degrees of freedom (x, y, z) and degrees for the 
z-rotation angle φ. 
 

Sub-map label S R 

   
Optimal sub-map coordinates 
corresponding to the sub-map 

set “T, S” 
4.43, -1.46, 0.68, -38.71 X 

Optimal sub-map coordinates 
corresponding to the sub-map 

set “T, S, R” 
4.42, -1.46, 0.64, -38.68 5.29, -6.90, 0.78, 122.62 

Optimal sub-map coordinates 
corresponding to the sub-map 

set “T, S, R, Q” 
4.42, -1.46, 0.71, -38.66 5.30, -6.90, 0.65, 122.61 

Optimal sub-map coordinates 
corresponding to the sub-map 

set “T, S, R, Q, O” 
4.42, -1.46, 0.50, -38.66 5.30, -6.90, 0.74, 122.61 

Optimal sub-map coordinates 
corresponding to the sub-map 

set “T, S, R, Q, O, N” 
4.42, -1.46, 0.50, -38.66 5.30, -6.90, 0.74, 122.61 

Q O N 

X X X 

X X X 

10.52, -3.98, 1.27, 127.96 X X 

10.52, -3.98, 1.28, 128.01 15.33, -4.49, 1.55, 264.76 X 

10.52, -3.98, 1.28, 128.01 15.33, -4.49, 1.55, 264.76 16.61, -9.60, 2.30, 302.94 

 
The corresponding uncertainty information is given in Table 6.9. In Appendix D, 
Figures D.23 to D.28, the gradual evolution of the feature-based 3D model 
representation of the forest map is depicted. 
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Table 6.9 Uncertainties in the optimal, global sub-map locations given in Table 
6.8. The values correspond to the standard deviation of the sub-map coordinates. 
Units are meters for the uncertainty of the translation degrees of freedom (x, y, z) 
and degrees for the uncertainty of the z-rotation angle φ. 
 

Sub-map label S R 

   

Sub-maps “T, S” 0.03, 0.03, 0.29, 0.27 X 

Sub-maps “T, S, R” 0.02, 0.02, 0.22, 0.18 0.04, 0.02, 0.22, 0.24 

Sub-maps “T, S, R, Q” 0.02, 0.02, 0.06, 0.14 0.02, 0.02, 0.06, 0.13 

Sub-maps “T, S, R, Q, O” 0.02, 0.02, 0.05, 0.13 0.02, 0.02, 0.05, 0.13 

Sub-maps “T, S, R, Q, O, N” 0.02, 0.02, 0.05, 0.13 0.02, 0.02, 0.05, 0.13 

Q O N 

X X X 

X X X 

0.02, 0.02, 0.04, 0.17 X X 

0.02, 0.02, 0.04, 0.15 0.02, 0.02, 0.05, 0.15 X 

0.02, 0.02, 0.04, 0.15 0.02, 0.02, 0.05, 0.15 0.03, 0.03, 0.06 0.36 

 
Now, the residual values can be computed by using the relative observation 
coordinates from Table 6.7 and the global sub map coordinates given in Table 6.8 
for the fifth mapping phase. The residual values along with the uncertainties of the 
relative observation coordinates are presented in Table 6.10. 
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Table 6.10 Comparison of the residual values of the optimal map solution with the 
uncertainties of the measured relative sub-map alignment coordinates. Units are 
meters and degrees for the values corresponding to the translation displacement 
coordinates and the heading angle, respectively. Due to the small size of the 
residual value, a third decimal is given. 
 

 
The residual values in Table 6.10 are well within the three times standard deviation 
uncertainty bounds determined during the sub-map registration phase, except in the 
case of the z-coordinate direction for the sub-map pairs “QS” and “OS”. This is a 
consequence of the characteristics of the feature sets used for registration 
computation. Tree trunks are usually nearly vertically oriented, which naturally 
increases the uncertainty of the computed relative alignment values along the z-
axis direction. The large variation of the uncertainty in the observation data 
allows, correspondingly, large adjustments along the z-axis during the optimal map 
computation. Nevertheless, it is claimed that the constructed optimal map can be 
declared the correct one. The possibility of automatically detecting false 
registration parameters, when they are to be added to the global map building 
process, will be discussed in Chapter 7.1. 
 

Registration 
pair labels 

ST RS 

   

Residual values 0.003, 0.003, 0.186, 0.048 0.000, 0.004, 0.101, 0.024 

Sample standard deviation of 
observed values 

0.03, 0.03, 0.29, 0.27 0.04, 0.03, 0.15, 0.24 

RT QR QS 

0.010, 0.004, 0.002, 0.005 0.007, 0.001, 0.113, 0.014 0.006, 0.019, 0.231, 0.121 

0.08, 0.03, 0.29, 0.47 0.03, 0.03, 0.05, 0.19 0.03, 0.04, 0.04, 0.25 

QT OQ OR 

0.007, 0.002, 0.004, 0.016 0.003, 0.008, 0.069, 0.0164 0.005, 0.030, 0.106, 0.194 

0.03, 0.05, 0.04, 0.31 0.02, 0.02, 0.03, 0.15 0.02, 0.03, 0.04, 0.19 

OS NO X 

0.004, 0.017, 0.209, 0.028 0.000, 0.000, 0.000, 0.000 X 

0.02, 0.04, 0.04, 0.17 0.02, 0.02, 0.03, 0.32 X 
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In Figure 6.11, an elevation map, corresponding to the globally optimal sub-map 
locations, is shown. The elevation map was formed by first recording the lowest 
beam hit value at each grid location within each of the six sub-maps and then 
transporting the elevation values into the global frame of reference.  
 

 
 
Figure 6.11 The size of the grid map is 600x600 pixels corresponding to an area 
of 60 meters square. In the image, black indicates no registered elevation value. 
Otherwise, the lighter the color, the higher the elevation. For each x- and y-grid cell 
location the lowest measured elevation value was stored. The first measurement 
position, corresponding to the global frame of reference of the integrated map, is 
indicated by the larger xy-coordinate axis symbol. The other five scanning positions 
are marked with smaller symbols. The z-axis of the coordinate frames is pointing 
from the paper upwards. 
 
In Figure 6.12, a bird’s-eye view into the 3D realization of the combined 
elevation/feature map is shown.  
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Figure 6.12 A bird’s-eye view into the combined 3D elevation/feature model of the 
small forest area. The size of a single grid element in the elevation map is 0.6 
meters. A model of a mobile robot (not used in the experiments) is placed at the 
position where the range image “scanT” was acquired. That location, where the 
coordinate frame is illustrated as well, corresponds to the origin of the global 
coordinate system of the model. 
 
In the model, cylinder segment approximations are used to model the visible 
sections of the tree trunks. The radius of each cylinder segment within a sub-map 
was determined as the average of the computed circle model radius values for the 
particular section of the tree trunk. For the 3D elevation map representation, a 
grid cell size of 0.6 meters was used. The elevation value of the larger grid cell was 
computed as the average of the five smallest elevation values of the grid cells 
within the corresponding area patch of the original grid map with a 0.1-meter cell 
size. The cylinder segments and elevation values were then moved to the global 
map to their corresponding global locations. No smoothing or merging operations 
were carried out to “clean” the model appearance of the tree trunks. 
 
In Figure 6.13, a top down look to the neighborhood of the vehicle model is 
depicted. In Figure 6.14 a view from behind the model of the mobile robot is 
shown. And finally, two closer views into the 3D model and corresponding real 
views into the forest environment are presented in Figures 6.15 to 6.18.  
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Figure 6.13 A closer top down view into the combined 3D elevation/feature map. 
The size of a single grid element in the elevation map is 0.6 meters. 
 

 
 

Figure 6.14 A view from behind the model of the mobile robot. 



 

 124

 
 
Figure 6.15 A close look into the combined 3D elevation/feature map. The virtual 
camera view is taken roughly towards the x-axis direction from above the origin of 
the global frame (i.e. scanning position “T”).  
 

 
 
Figure 6.16 A camera image taken from above scanning location “T” into the 
same scene corresponding to the model view, shown in Figure 6.15. 
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Figure 6.17 The virtual camera view is taken from above scanning position “T” 
into a direction about 45 degrees to the right with respect to the optical axis of the 
view, shown in Figures 6.15 and 6.16. 
 

 
 

Figure 6.18 A camera image taken from above scanning location “T” into the 
same scene corresponding to the model view, shown in Figure 6.17. 
 
In Figures 6.15 and 6.17, the cylinder segments, extracted from individual range 
images, have been moved to the global frame and overlap each other in the images. 
In most cases, the overlapping cylinder segments seem to be of about the same size 
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and are approximately aligned with each other. However, some clearly too thin 
cylinder segments are found at nearly the same location as the actual size tree 
trunk model as well. This is due to noisy and incomplete range data from the tree 
trunk objects, thus “misleading” the feature extraction process.  
 
The generated 3D model for the forest environment consists of the original feature 
data mapped into a common reference frame. For an end-user application, such as 
high level, cognitive communication between human and mobile robot, it would be 
desirable to merge the overlapping feature data originating from the same physical 
object. In this way, for example, a single model object would be assigned for a 
single tree yielding a “cleaner” virtual representation of the operation 
environment. Alternatively, for another application, the original range image data 
could first be transformed into a polygonal mesh model and then mapped into the 
global reference frame, thereby modeling the outer contour of the visible objects. 
 
 
6.5 Conclusions 
 
The developed simultaneous localization and map building (SLAM) method was 
tested by mapping three different kinds of test environments. Integrated models for 
the parking lot environment and the indoor office corridor environment were 
constructed by using a simple incremental method. The results indicate that the 
method can be applied to construct a 3D-model representation for semi-structured 
and structured environments. However, it was recognized that the method might 
not be the ideal solution for mapping structured indoor environments.  
 
The principal mapping experiment, to demonstrate the capability of the method, 
was carried out in a forest environment. In the experiment, an, in the least squares 
sense, optimal integrated map was built from six range images, acquired at 
different positions within the test site. The generated environment model seems to 
be sufficient, for example, to serve as a common representation of the 
corresponding real environment, conceivable by both man and his machine. 
Consequently, such an abstracted, feature-based model representation might offer 
the basis for high level dialog between people and robots. 
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Chapter 7 
 

Key problems in automatic map 
construction 
 
 
7.1 Evaluation of the correctness of the map 
 
It would be desired to be able to evaluate the correctness of the individual sub-map 
registration results. Olson proposed that the share of score mass concentrated in 
the local neighborhood of the selected registration peak value should be over a 
certain percentage of the total score mass to indicate a correct registration [Olson, 
2000]. The total score mass would be computed as the sum of the score masses of 
the pruned and remaining score cells. However, it seems that the share of score 
mass concentrated around a particular peak depends on the initial size of the 
search space and the distribution and amount of feature points in the maps to be 
aligned. Also, the share of features, for which no correct pair in the other map 
exists (i.e. outliers), affects the score distribution during the divide and conquer 
search. 
 
As demonstrated in the forest mapping experiment, a bigger number of parallel 
registration dependencies can be utilized to gain information about the correctness 
of the entire set of registration dependencies of the global map as a whole. By 
studying the residual values, computed by means of the estimated global sub-map 
locations and the corresponding observations of the relative map alignment 
coordinates, a measure for the correctness of the map can be formed. According to 
the measure, the constructed integrated map for the forest terrain, discussed in 
Chapter 6.4, was declared to be correct within given levels of precision. Now, let us 
add four new hypothesis of a correct observation to the relative alignment data set 
presented in Chapter 6.4, Table 6.6. The residual values after testing the four new 
alignment hypotheses, one at a time, are presented in Table 7.1.  
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Table 7.1 Residual values recomputed for the sub-map pairs, presented in Chapter 
6.4, Table 6.10. The sub-map pair labels of the added relative alignment 
observation hypothesis are given in the leftmost column after the “Residual values” 
text. Units are meters and degrees for the translation displacement coordinates and 
the heading angle, respectively. 
 

 
The computed relative alignment coordinates for the sub-map pairs “NQ”, “NR” 
and “NS” are known to be incorrect due to the fact that there was simply not 
enough common tree trunk objects visible in the corresponding range images to 
enable correct relative alignment computation. The suspicion of the faultiness of 
the new registration hypothesis can be confirmed by comparing the recomputed 

Registration 
pair labels 

ST RS 

Residual values, “NQ” 0.164, 0.042, 0.265, 0.565 0.081, 0.052, 0.001, 0.650 

Residual values, “NR” 0.284, 0.208, 0.542, 3.413 0.993, 0.424, 0.410, 2.599 

Residual values, “NS” 0.301, 0.363, 0.210, 2.812 0.757, 0.520, 0.443, 5.079 

Residual values, “OT” 0.015, 0.006, 0.162, 0.000 0.003, 0.006, 0.098, 0.035 

Std of observed values 0.03, 0.03, 0.29, 0.27 0.04, 0.03, 0.15, 0.24 

RT QR QS 

0.232, 0.083, 0.178, 0.105 0.570, 0.151, 0.090, 2.508 0.477, 0.180, 0.334, 2.999 

0.722, 0.205, 0.045, 0.793 1.140, 1.252, 0.075, 7.263 0.159, 0.851, 0.578, 4.822 

0.443, 0.168, 0.146, 2.286 0.248, 0.204, 0.019, 0.658 0.521, 0.339, 0.180, 4.261 

0.004, 0.001, 0.023, 0.055 0.010, 0.003, 0.116, 0.024 0.005, 0.014, 0.226, 0.098 

0.08, 0.03, 0.29, 0.47 0.03, 0.03, 0.05, 0.19 0.03, 0.04, 0.04, 0.25 

QT OQ OR 

0.314, 0.241, 0.027, 2.588 0.916, 0.112, 0.214, 2.878 0.361, 0.286, 0.026, 0.207 

0.441, 1.041, 0.005, 8.082 0.379, 0.749, 0.107, 3.986 1.534, 1.979, 0.182, 11.087 

0.219, 0.042, 0.012, 1.602 0.579, 0.461, 0.151, 3.623 0.346, 0.234, 0.018, 3.127 

0.018, 0.010, 0.022, 0.055 0.006, 0.013, 0.076, 0.044 0.011, 0.039, 0.110, 0.232 

0.03, 0.05, 0.04, 0.31 0.02, 0.02, 0.03, 0.15 0.02, 0.03, 0.04, 0.19 

OS NO X 

0.432, 0.320, 0.389, 0.254 4.187, 2.563, 0.991, 58.927 X 

0.531, 1.573, 0.177, 8.676 7.013, 1.529, 0.848, 90.626 X 

1.093, 0.772, 0.840, 8.017 5.015,8.079,0.692, 145.120 X 

0.005, 0.027, 0.207, 0.078 0.000, 0.000, 0.000, 0.000 X 

0.02, 0.04, 0.04, 0.17 0.02, 0.02, 0.03, 0.32 X 
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residual values of the other sub-map pair registration results with the 
corresponding observation uncertainties. For all the sub-map pairs at least one of 
the components of the four-dimensional residual value considerably exceeds the 
three times standard deviation threshold computed from the observation 
uncertainty.  
 
The fourth new relative alignment observation, between sub-maps “0” and “T” 
was, in Chapter 6.4, left out of the input data set for computing the optimal map 
for the forest terrain. This was due to the fact that it was assumed that there would 
not be enough common feature objects to enable the computation of correct 
registration parameters. Now, if we look at the residual values, after adding the 
alignment observation of the sub-map pair “OT” into the integrated map, we can 
see that the residual values appear to be about the same size as in Table 6.10. The 
results indicate that the computed relative alignment coordinates are indeed 
correct within the precision of the corresponding observations. This was also 
confirmed by manual inspection of the aligned feature sets. 
 
It should be noted, however, that the technique, described above, works only in case 
there are already parallel observation link paths in the map with the new 
observation link path. For example it would not have been possible to test the 
correctness of the observation for the sub-map pair “NO” when it was added to the 
integrated environment model. This is due to the fact that sub-map “N” had, at the 
time of residual computation, no other registration link paths established with the 
other sub-maps. 
 
 
7.2 Treatment of multiple map hypotheses 
 
In the registration experiments it was demonstrated how the location of the relative 
alignment of the maximum score alignment may “jump” between different 
alignment hypotheses until it settles down at one of them (compare Figure 5.8 in 
Chapter 5.4.1). Such kind of a phenomenon may reflect the existence of ambiguous 
features in the environment. For more robust and error tolerant mapping, a map 
administration method should be adopted to be able to keep the multiple map 
alignment hypotheses until more data is acquired at a later stage of the mapping.  
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Chapter 8 
 

Summary and conclusions 
 
 
In this work a method for 3D localization and mapping of large-scale environments 
was presented. Both structured (indoor) environments and natural outdoor 
environments were considered. The measurement data was collected with a new 
type of two axes range imaging sensor. The achieved results are partly specific to 
this category of perception systems, especially with respect to the feature 
extraction phase of the method. On the other hand, computation of the relative 
alignment (i.e. registration) between a pair of sub-maps is a generic technique 
applicable to models constructed by means of other mapping approaches and 
perception systems. 
 
The discussed mapping method consists of three main phases: first, cylinder 
segment objects and straight-line objects are extracted from the range image data. 
The extracted feature objects are presented with respect to the corresponding local 
frame of reference situated at the location where the range image was acquired. 
The features represented with respect to the perception position frame form a sub-
map. Second, the relative coordinate transformation between the sub-maps is 
determined by means of 3D point data sampled from the geometry of the feature 
objects. In probabilistic terms, the sub-map registration computation corresponds 
to the measurement update step of a mobile robot localization method. And, lastly, 
the parallel network of relative alignment coordinates between sub-maps was used 
to compute an optimal integrated model. 
 
In the experimental part of the work, three different test environments were 
mapped. In the parking lot and office corridor environments the relative alignment 
coordinates between consecutive sub-map frames were incrementally connected to 
construct an integrated global model. For the forest environment, 10 relative 
alignment links were computed among the six sub-map frames, which enabled the 
computation of an optimal global map. Relatively accurate results were achieved 
although room for improvements and warrants for future research remain. In 
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particular, a better understanding of the actual uncertainty, related to the estimate 
of relative alignment coordinates between two sub-maps, could further improve the 
precision of the integrated map. Also, the relative alignment coordinates could be 
recomputed by means of the original 3D point coordinates of the range 
measurements or, for example, by means of the elevation map data. In that case, 
the relative alignments, computed by means of the feature maps, would serve as an 
initial, approximate solution. In fact, commercial software packages are available 
for implementing the raw measurement data-based registration computation. 
 
There are two main applications planned for the utilization of the constructed 
maps. First, the large-scale integrated map can serve as the basic navigational 
reference of an autonomous mobile robot. With the map the robot can reset the 
accumulated error in its location estimate while maneuvering in the environment. 
For this purpose, a 2D profile of the 3D map is formed. The second application is 
related to the development of a high-level communication interface for future 
service robots. Cognitive communication between people and robots requires 
common understanding of the operation environment. The models, constructed with 
the presented method can offer the basic media for the human-machine dialog. 
Beyond the robotics field of science, the developed simultaneous localization and 
map building method could be applied elsewhere such as in forest inventory. 
However, at the present stage of the method and with the applied range sensor, the 
precision requirements of tree trunk models might be difficult to meet. 
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Parking lot test environment (called “outdoor”) 
 
Illustrations of the six pseudo-colored range images for constructing an 
environment model for the parking lot area next to the Computer Science Building 
at the Helsinki University of Technology are presented in the following images. The 
range images have been measured by means of the Riegl LMS-Z210 range scanner. 
 

 
 
Figure A.1 An illustration of the range image “scanE”. Ranges between 2.0 and 
40.0 meters have been pseudo-colored from red to blue, respectively. 
 

 
 
Figure A.2 An illustration of the range image “scanF”. Ranges between 2.0 and 
60.0 meters have been pseudo-colored from red to blue, respectively. 
 

 
 
Figure A.3 An illustration of the range image “scanG”. Ranges between 2.0 and 
60.0 meters have been pseudo-colored from red to blue, respectively. 
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Figure A.4 An illustration of the range image “scanH”. Ranges between 2.0 and 
60.0 meters have been pseudo-colored from red to blue, respectively. 
 

 
 
Figure A.5 An illustration of the range image “scanI”. Ranges between 2.0 and 
80.0 meters have been pseudo-colored from red to blue, respectively. 
 

 
 
Figure A.6 An illustration of the range image “scanJ”. Ranges between 2.0 and 
80.0 meters have been pseudo-colored from red to blue, respectively. 
 
 
 
In order to get a better understanding of the data and the environment to be 
modeled, camera images, taken from the same environment, are presented in the 
following four figures.  
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Figure A.7 A camera image taken from the origin of the coordinate frame of 
“scanE” towards the location where the range data set, labeled F, was measured. 
 

 
 

Figure A.8 A camera image taken from the origin of the coordinate frame of 
“scanF”. 
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Figure A.9 A camera image taken from the origin of the coordinate frame of 
“scanF” along the driveway on which the range images “scanG” and “scanH” 
were measured. 
 

 
 
Figure A.10 A camera image taken from the origin of the coordinate frame of 
“scanJ” across the parking lot towards the location (near the building) where the 
range image “scanG” was measured. 
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Office corridor test environment (called “indoor”) 
 
Illustrations of the 10 (originally pseudo-colored) range images for constructing an 
environment model for a part of the ground floor of the Computer Science Building 
at the Helsinki University of Technology are presented in the following images. The 
range images have been measured by means of the Riegl LMS-Z210 range scanner. 
 
 

 
 

Figure A.11 An illustration of the range image “scan1”. Ranges between 1.0 and 
20.0 meters have been pseudo-colored from red to blue, respectively.  
 

 
 

Figure A.12 An illustration of the range image “scan2”. Ranges between 1.0 and 
20.0meters have been pseudo-colored from red to blue, respectively.  
 

 
 

Figure A.13 An illustration of the range image “scan3”. Ranges between 1.0 and 
20.0 meters have been pseudo-colored from red to blue, respectively.  
 

 
 

Figure A.14 An illustration of the range image “scan4”. Ranges between 1.0 and 
20.0 meters have been pseudo-colored from red to blue, respectively.  
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Figure A.15 An illustration of the range image “scan5”. Ranges between 1.0 and 
20.0 meters have been pseudo-colored from red to blue, respectively.  
 

 
 
Figure A.16 An illustration of the range image “scan6”. Ranges between 1.0 and 
20.0 meters have been pseudo-colored from red to blue, respectively.  
 

 
 
Figure A.17 An illustration of the range image “scan7”. Ranges between 1.0 and 
20.0 meters have been pseudo-colored from red to blue, respectively. 
 

 
 
Figure A.18 An illustration of the range image “scan8”. Ranges between 1.0 and 
20.0 meters have been pseudo-colored from red to blue, respectively. 
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Figure A.19 An illustration of the range image “scan9”. Ranges between 1.0 and 
20.0 meters have been pseudo-colored from red to blue, respectively. 
 

 
 
Figure A.20 An illustration of the range image “scanA”. Ranges between 1.0 and 
20.0 meters have been pseudo-colored from red to blue, respectively. 
 
And then three camera images taken from the same location as “scan6”, presented 
in Figure 16, are shown on the next page. The camera images shown in the Figures 
20, 21 and 22 are taken against the corridors on the left, center and right 
respectively, visible in Figure 16. 
 

 
 
Figure A.21 A camera image taken from the origin of the coordinate frame of 
“scan6” against the leftmost corridor visible in the range image. 
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Figure A.22 A camera image taken from the origin of the coordinate frame of 
“scan6” against the center corridor visible in the range image. 
 

 
 
Figure A.23 A camera image taken from the origin of the coordinate frame of 
“scan6” against the rightmost corridor visible in the range image. 
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Forest test environment (called “forest”) 
 
Pseudo-colored illustrations of the six range images for constructing an 
environment model for a small forest area are presented in the following figures. 
The range images have been measured by means of the Riegl LMS-Z210 range 
scanner. 
 

 
 
Figure A.24 An illustration of the range image “scanT”. Ranges between 0.5 and 
10.0 meters have been pseudo-colored from red to blue, respectively. 
 

 
 
Figure A.25 An illustration of the range image “scanS”. Ranges between 0.5 and 
10.0 meters have been pseudo-colored from red to blue, respectively.  
 

 
 
Figure A.26 An illustration of the range image “scanR”. Ranges between 0.5 and 
10.0 meters have been pseudo-colored from red to blue, respectively.  
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Figure A.27 An illustration of the range image “scanQ”. Ranges between 1.0 and 
15.0 meters have been pseudo-colored from red to blue, respectively.  
 

 
 
Figure A.28 An illustration of the range image “scanO”. Ranges between 1.0 and 
15.0 meters have been pseudo-colored from red to blue, respectively.  
 

 
 
Figure A.29 An illustration of the range image “scanN”. Ranges between 1.0 and 
15.0 meters have been pseudo-colored from red to blue, respectively.  
 



Appendix B          Feature extraction from range images;     1/13 

 

Extraction of cylinder segments (or more generally truncated cone segments) from 
range images 
 
In the results, the 3000x720 binary images, corresponding to the initial 
segmentation of the range data and to the estimates of valid circle segment models, 
are presented. In the circle segment images, the width of each horizontal white 
line, corresponding to a valid circle segment, has been determined from the radius 
of the estimated circle. The corresponding range images have been illustrated in 
Appendix A. 
 

 
 

 
 
Figure B.1 Initial segmentation of the range profile data “scan1” in the upper 
image. In the lower image, the valid circle models, computed from the segments in 
the upper image, are shown. 
 

 
 

 
 

Figure B.2 Initial segmentation of the range profile data “scan2” in the upper 
image. In the lower image, the valid circle models, computed from the segments in 
the upper image, are shown. 
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Figure B.3 Initial segmentation of the range profile data “scanT” in the upper 
image. In the lower image, the valid circle models, computed from the segments in 
the upper image, are shown. 
 

 
 

 
 
Figure B.4 Initial segmentation of the range profile data “scanS” in the upper 
image. In the lower image, the valid circle models, computed from the segments in 
the upper image, are shown. 



Appendix B          Feature extraction from range images;     3/13 

 

 
 

 
 
Figure B.5 Initial segmentation of the range profile data “scanR” in the upper 
image. In the lower image, the valid circle models, computed from the segments in 
the upper image, are shown. 
 

 
 

 
 
Figure B.6 Initial segmentation of the range profile data “scanQ” in the upper 
image. In the lower image, the valid circle models, computed from the segments in 
the upper image, are shown. 
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Figure B.7 Initial segmentation of the range profile data “scanO” in the upper 
image. In the lower image, the valid circle models, computed from the segments in 
the upper image, are shown. 
 

 
 

 
 

Figure B.8 Initial segmentation of the range profile data “scanN” in the upper 
image. In the lower image, the valid circle models, computed from the segments in 
the upper image, are shown. 
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Figure B.9 A closer look of the pillar object at about 3.7 meters’ distance from the 
range scanner. 
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Figure B.12. Estimated circle model and the projected measurement data points 
corresponding to the initial estimation phase. The pillar object to be modeled was 
located at about 14.5 meters’ distance from the sensor. For the results the 
projection plane was tilted 30 degrees sideways with respect to the measurement 
direction. The estimated radius of the circle is 0.157 meters. Data points, classified 
as valid are marked with a cross and data points classified as outlier with a dot. 
 



Appendix B          Feature extraction from range images;     8/13 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Projection plane x-coordinate [meters]

P
ro

je
ct

io
n 

pl
an

e 
z-

co
or

di
na

te
 [m

et
er

s]

 
 
Figure B.13. Estimated circle model and the projected measurement data points 
corresponding to the initial estimation phase. The pillar object to be modeled was 
located at about 14.5 meters’ distance from the sensor. For the results the 
projection plane was tilted 30 degrees along the measurement direction. The 
estimated radius of the circle is 0.170 meters. Data points, classified as valid are 
marked with a cross and data points classified as outlier with a dot. 
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Figure B.14. Estimated circle model and the projected measurement data points 
corresponding to the final estimation phase of the test case shown in Figure B.12. 
The estimated radius of the circle is 0.190 meters. Altogether 154 (inlier) data 
points were used to estimate the circle model parameters, which is about two times 
more points than in the initial estimation phase, depicted in Figure B.12. Data 
points, classified as valid are marked with a cross and data points classified as 
outlier with a dot. 
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Figure B.15. Estimated circle model and the projected measurement data points 
corresponding to the initial estimation phase. The target object corresponds to a 
thin tree at about 5.3 meters’ distance from the sensor. Measurement points within 
the segment under consideration and two neighboring segments, both above and 
below the current segment, were used to compute the circle model parameters. The 
estimated radius of the circle is 0.062 meters. Data points, classified as valid are 
marked with a cross and data points classified as outlier with a dot. 
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Figure B.16. Estimated circle model and the projected measurement data points 
corresponding to the final estimation phase of the test case shown in Figure B.15. 
The estimated radius of the circle is 0.053 meters, which is quite close to the 
ground truth measured value of 0.055 meters. Altogether 213 (inlier) data points 
were used to estimate the circle model parameters, which is about three times more 
points than in the initial estimation phase, depicted in Figure B.15. Data points, 
classified as valid are marked with a cross and data points classified as outlier with 
a dot. 
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Extraction of straight line segments, corresponding to the upper end of vertical 
walls 
 
In the following figures, the output of the first phase of the straight-line segment 
extraction method in the parking lot mapping experiment, are presented. A 3D 
virtual model presentation of the straight line segments, computed from the free 
space to unknown/occupied space borderline data, can be seen in Appendix D, 
Figures D.7 to D.12. 
 

 
 

 
 

Figure B.17 A 2D projection of the free space to unknown/occupied space border 
computed from the 3D occupancy grid. The darker the shade of gray, the higher the 
highest location where a laser beam hit was recorded. In the image on the left hand 
side are results for sub-map “E”, and on the right for sub-map “F”.  
 

 
 

 

Figure B.18 A 2D projection of the free space to unknown/occupied space border 
computed from the 3D occupancy grid. The darker the shade of gray, the higher the 
highest location where a laser beam hit was recorded. In the image on the left hand 
side are results for sub-map “G”, and on the right for sub-map “H”. 
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Figure B.19 A 2D projection of the free space to unknown/occupied space border 
computed from the 3D occupancy grid. The darker the shade of gray, the higher the 
highest location where a laser beam hit was recorded. In the image on the left hand 
side are results for sub-map “I”, and on the right for sub-map “J”. 
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In Figure C.1 the evolution of score distribution as a function of the search space 
cell size is depicted. The results have been stored during the computation of the 
relative alignment for sub-map registration pair “ST” in the forest mapping test 
case. The dimensions of the score grid are 10 meters square. Within the score 
distribution images, also the x- and y-coordinates of the highest score value and the 
center of gravity of the connected score cell cloud are marked with a simple and an 
ended cross hair respectively. The lengths of the vertical and horizontal lines of the 
ended cross hair correspond to the computed sample standard deviation of the 
score cloud. In Figure C.2, the evolution of score distribution as a function of the 
search space cell size is depicted for sub-map registration pair “RS”. Note that 
only cylinder segment features were used for registration computation in the forest 
mapping test case. 
 
For the generation of the score distribution images for the sub-map pair “ST” 
different a priori alignment coordinates than those given in Chapter 6.4, Table 6.6 
were used to determine the center of the search space. The coordinates for the 
expected relative displacement along the x-, y- and z-coordinate axis directions 
were 4.0, 0.0 and 1.0 meters (instead of 3.0, -1.0 and 1.0, given in Table 6.6). 
For the heading direction of the sub-map frame “S” with respect to the reference 
frame of the sub-map “T” no change was predicted. We can now compare the 
computed x- and y-coordinates, given in Table 6.6, with the a priori values. The 
difference between the computed and the a priori values is 0.43 and –1.46 meters 
along the x- and y- axis of the sub-map frame “T”, respectively. The result can be 
confirmed by considering the score distribution images in Figure C.1. In the images 
it is shown how the search for the most probable, relative alignment value 
converges to the middle-right part of the search space. This means that the 
computed alignment coordinate for the x-axis should be roughly equal to the 
predicted displacement whereas for the y-axis direction the difference should be 
about 1.5 meters in the negative direction. This is in accordance with the numeric 
values (0.43, -1.46).  
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Figure C.1 Score distribution for search space cell sizes of 0.64, 0.32, 0.16, 0.08, 
0.04 and 0.02 meters is depicted for registration pair “ST” in pictures starting 
from the upper left image up to the image on the right hand side of the bottom row. 
In the images, the distribution of the cumulative score values of the connected 
score cloud have been projected onto the x- and y-coordinate plane of the search 
space. Note that in the uppermost left image corresponding to the coarsest search 
level, the score distribution is almost even across the search space. This is probably 
due to the cluttered, outlier rich data sets corresponding to the sub-maps “S” and 
“T”. The directions of the x- and y-coordinate axis are upwards and to the left 
respectively. 
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Figure C.2 Score distribution for search space cell sizes of 0.64, 0.32, 0.16, 0.08, 
0.04 and 0.02 meters is depicted for the registration pair “RS” in pictures starting 
from the upper left image up to the image on the right hand side of the bottom row. 
In the images, the distribution of the cumulative score values of the connected 
score cloud have been projected onto the x- and y-coordinate plane of the search 
space. Note that in the uppermost left image corresponding to the coarsest search 
level, the score distribution is almost even across the search space. This is probably 
due to the cluttered, outlier rich data sets corresponding to the sub-maps “R” and 
“S”. The directions of the x- and y-coordinate axis are upwards and to the left 
respectively. 
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In the following six figures, integrated model data for the parking lot area is 
illustrated. The models have been built by incrementally adding new sub-map data 
to the global model. Both a 3D view into the integrated feature model as well as 
the integrated elevation map are presented. The results are given with respect to 
three different viewpoint registration (i.e. alignment) results: a priori alignment, 
center of registration score cloud alignment and the alignment corresponding to the 
maximum score value when the final discretization threshold was reached. After 
presenting the integrated model images, the model data corresponding to each of 
the sub-maps, labeled E,F,G,H,I and J, are presented. By inspecting the 
illustrations of the integrated maps it can be concluded, that the best quality map is 
acquired, when the relative alignment value, corresponding to the highest score 
peak, is used to transport the sub-map model data into the common reference 
frame (Figures D5 and D6). This is mainly due to the fact that the search for the 
maximum score alignment was stopped when the dimensions of a cell in the 
discrete registration search space was 0.156 meters. At such a coarse search level 
a large number of cells “survive” yielding large and non-normal registration error 
distributions. In such a case, however, the maximum score cell is already located 
relatively close to the actual maximum score alignment value. 
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Figure D.1 An illustration of the incrementally constructed feature model of the 
parking lot area. Registration values corresponding to a priori alignment 
coordinates were used to compute the global locations of the sub-maps. 
 

 
 
Figure D.2 An illustration of the incrementally constructed elevation map of the 
parking lot area. White corresponds to no measured elevation value, otherwise, the 
darker the color, the higher the underlying elevation. Registration values 
corresponding to a priori alignment coordinates were used to compute the global 
locations of the sub-maps. The size of the elevation grid map is 180 meters square, 
represented by 900x900 pixels. 
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Figure D.3 An illustration of the incrementally constructed feature model of the 
parking lot area. Registration coordinates corresponding to the center of gravity of 
the connected registration score cells around the maximum score value were used 
to compute the global locations of the sub-maps. The size of the cell in the 
registration space was 0.156 meters, at the time the results were recorded. 
 

 
 

Figure D.4 An illustration of the incrementally constructed elevation map of the 
parking lot area. White corresponds to no measured elevation value, otherwise, the 
darker the color, the higher the underlying elevation. Registration coordinates 
corresponding to the center of gravity of the connected registration score cells 
around the maximum score value were used to compute the global locations of the 
sub-maps. The size of the cell in the registration space was 0.156 meters, at the 
time the results were recorded. The size of the elevation grid map is 180 meters 
square, represented by 900x900 pixels. 
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Figure D.5 An illustration of the incrementally constructed feature model of the 
parking lot area. Registration coordinates corresponding to the maximum score 
value were used to compute the global locations of the sub-maps. The size of the 
cell in the registration space was 0.156 meters, when the results were recorded. 
 

 
 
Figure D.6 An illustration of the incrementally constructed elevation map of the 
parking lot area. White color corresponds to no measured elevation value, 
otherwise the darker the color the higher the underlying elevation. Registration 
coordinates corresponding to the maximum score value were used to compute the 
global locations of the sub-maps. The size of the cell in the registration space was 
0.156 meters, at the time the results were recorded. The size of the elevation grid 
map is 180 meters square, represented by 900x900 pixels. 



Appendix D          Integrated environment model data;     5/16 

 

The local feature maps, corresponding to single range images, are presented in the 
following six figures. The corresponding range images can be seen in Appendix A. 
The model of a mobile robot is shown for reference at the location where the 
particular range image was measured. (To be precise, the back axle of the robot is 
located at the perception position.) 
 

 
 

Figure D.7 An illustration of the feature model of the parking lot area 
corresponding to the range image labeled “scanE”.  
 

 
 

Figure D.8 An illustration of the feature model of the parking lot area 
corresponding to the range image labeled “scanF”.  
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Figure D.9 An illustration of the feature model of the parking lot area 
corresponding to the range image labeled “scanG”.  
 

 
 
Figure D.10 An illustration of the feature model of the parking lot area 
corresponding to the range image labeled “scanH”.  
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Figure D.11 An illustration of the feature model of the parking lot area 
corresponding to the range image labeled “scanI”.  
 

 
 
Figure D.12 An illustration of the feature model of the parking lot area 
corresponding to the range image labeled “scanJ”.  
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The local elevation maps corresponding to single range images are presented in the 
following six figures. The size of the elevation grid maps is 120 meters square, 
represented by 600x600 pixels. 
 

 
 

Figure D.13 An illustration of the elevation map of the parking lot area 
corresponding to the range image “scanE”. White corresponds to no measured 
elevation value, otherwise, the darker the color, the higher the underlying elevation. 
 

 
 

Figure D.14 An illustration of the elevation map of the parking lot area 
corresponding to the range image “scanF”. White corresponds to no measured 
elevation value, otherwise, the darker the color, the higher the underlying elevation. 
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Figure D.15 An illustration of the elevation map of the parking lot area 
corresponding to the range image “scanG”. White corresponds to no measured 
elevation value, otherwise, the darker the color, the higher the underlying elevation. 
 

 
 

Figure D.16 An illustration of the elevation map of the parking lot area 
corresponding to the range image “scanH”. White corresponds to no measured 
elevation value, otherwise, the darker the color, the higher the underlying elevation. 
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Figure D.17 An illustration of the elevation map of the parking lot area 
corresponding to the range image “scanI”. White corresponds to no measured 
elevation value, otherwise, the darker the color, the higher the underlying elevation. 
 

 
 
Figure D.18 An illustration of the elevation map of the parking lot area 
corresponding to the range image “scanJ”. White corresponds to no measured 
elevation value, otherwise, the darker the color, the higher the underlying elevation. 
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For the “indoor” map building experiment, the feature sub-maps labeled “1”, “2”, 
“3” and “4” are illustrated in Figures D.19-D.22. These feature sets were involved 
in the computation of the evolution of the registration score distribution in Chapter 
5.4.1. The model of a mobile robot is shown for reference at the location where the 
particular range image was measured. (To be precise, the back axle of the robot is 
located at the perception position.) 
 

 
 

Figure D.19 An illustration of the feature model of the indoor environment 
corresponding to the range image labeled “scan1”.  
 

 
 
Figure D.20 An illustration of the feature model of the indoor environment 
corresponding to the range image labeled “scan2”.  
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Figure D.21 An illustration of the feature model of the indoor environment 
corresponding to the range image labeled “scan3”.  
 

 
 

Figure D.22 An illustration of the feature model of the indoor environment 
corresponding to the range image labeled “scan4”. 
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The evolution of the combined map of the forest environment, consisting of the 
ground elevation information and the cylinder approximations of the visible section 
of tree trunks, is depicted in Figures D.23 to D.28. The images correspond to the 
integrated, optimal map constructed from the sub-map sets “T”, “T,S”, “T,S,R”, 
“T,S,R,Q”, “T,S,R,Q,O” and “T,S,R,Q,O,N” respectively. In the images, the size 
of a grid cell in the elevation map is 0.6 meters. (Note also, that each grid cell 
consists of two triangles.) The location parameters of the viewpoint to the virtual 
model, with respect to the global reference frame, are 17.24, 9.44 and 5.61 meters 
for the x-, y- and z-coordinates, respectively, and –140.505 and –11.667 degrees 
for the pan and tilt angles, respectively. The field of view of the virtual camera is 
61 degrees. The position, which also corresponds to the origin of the integrated 
environment model, is indicated by the coordinate frame in the figure. The CAD 
model of a mobile robot (not used in the experiments) is also drawn at the same 
location. 
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Figure D.23 A view into the 3D representation of the environment model for the 
forest test site. The model corresponds to the data acquired from the origin of the 
measurement position “T”. The peaks in the elevation map, due to multiple hits to 
the trees at the corresponding location, can also be seen in the figure. 
 

 
 

Figure D.24 A view into the 3D representation of the environment model for the 
forest test site. The model has been constructed from the sub-maps “T” and “S”. 
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Figure D.25 A view into the 3D representation of the environment model for the 
forest test site. The model has been constructed from the sub-maps “T”, “S” and 
“R”. 
 

 
 
Figure D.26 A view into the 3D representation of the environment model for the 
forest test site. The model has been constructed from the sub-maps “T”, “S”, “R” 
and “Q”. 
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Figure D.27 A view into the 3D representation of the environment model for the 
forest test site. The model has been constructed from the sub-maps “T”, “S”, “R”, 
“Q” and “O”. 
 

 
 
Figure D.28 A view into the 3D representation of the environment model for the 
forest test site. The model has been constructed from the sub-maps “T”, “S”, “R”, 
“Q”, “O” and “N”. 
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The Kalman filter is the basic method for maintaining and updating dynamic, 
stochastic systems with linear state prediction and observation models. Now, let us 
assume that the system dynamics can be modeled with the following linear 
equation, which transforms the state from the (time) instant k to k+1,  
 

( ) ( ) ( ) ( ) ( )kkkkkk vuGxFx ++=+ )(1                                    (E.1) 
 
where the control input )(ku  and the matrices ( )kF  and ( )kG  are assumed to be 
known [Maybeck, 1979] and [Bar-Shalom and Fortmann, 1988]. The process 
noise is modeled as a zero-mean, white, random sequence with a known covariance 
matrix, ( )kQ . Similarly, assume that the measurements of the state can be 
modeled as a linear function of the state as described by the measurement 
equation, 
 

( ) ( ) ( ) ( )kkkk wxHz +=                                                          (E.2) 
 
where ( )kw  is again assumed to be a zero-mean, independent, random noise 

sequence with a known covariance matrix, ( )kR . An estimate of the state vector 

( )kx  given the measurement data up to the time index k can be expressed as 
 

( ) ( ){ }kZkEkk xx
∆
=ˆ                                                            (E.3) 

 
which is the conditional mean of the state given the measurements 
 

( ){ }kjjZ k ,,1, �==
∆
z                                                        (E.4) 

 
The associated conditional state error covariance matrix is 
 

( ) ( ) ( )[ ] ( ) ( )[ ]{ }kT ZkkkkkkEkk xxxxP ˆˆ −−=
∆

                    (E.5) 

 
The recursive Kalman filter, which propagates the estimate ( )kkx̂  and the 

associated covariance matrix ( )kkP̂  to the corresponding variables at the next 

instant of time ( )11ˆ ++ kkx  and ( )11ˆ ++ kkP , is given by the following equations 

[Bar-Shalom and Fortmann, 1988]. The equation for the one step prediction of the 
state can be acquired by applying the operator of expectation to the linear model of 
system dynamics, Equation E.1, conditioned on kZ , which gives 
 

( ) ( ) ( ) ( ) )(ˆ1ˆ kkkkkkk uGxFx +=+                                            (E.6) 

 
The uncertainty in the state estimate after prediction is acquired by subtracting the 
state estimate after prediction (E.6) from the system dynamics equation (E.1)  
 

( ) ( ) ( ) ( ) ( ) ( )kkkkkkkkk vxFxxx +=+−+=+
∆ ~1ˆ11~                        (E.7) 
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The covariance of the predicted estimate is given as the expected value of the 
second power of the prediction error conditioned on all the accumulated data up to 
the time index k, 
 

( ) ( ) ( ){ } ( ) ( ) ( ) ( )kkkkkZkkkkEkk TkT QFPFxxP +=++=+
∆

1~1~1          (E.8) 

 
An estimate for the predicted measurement is computed by taking the expected 
value of the linear measurement equation (E.2) at time k+1, conditioned on the 
measurement data up to time index k, 
 

( ) ( ) ( )kkkkk 1ˆ11ˆ ++=+ xHz                                           (E.9) 

 
Subtracting the estimate of the predicted measurement, Equation E.9, from the 
true measurement value, Equation E.2, at discrete time k+1, conditioned on kZ , 
yields the error in the predicted measurement, 
 

( ) ( ) ( ) ( ) ( ) ( )11~11ˆ11~ ++++=+−+=+
∆

kkkkkkkkk wxHzzz          (E.10) 

 
The covariance of the predicted measurement can now be computed, 
 

( ) ( ) ( ){ }kT ZkkkkEk 1~1~1 ++=+=
∆

zzSPzz  

     ( ) ( ) ( ) ( )1111 +++++= kkkkk T RHPH                          (E.11) 

 
The cross-covariance between the predicted state and the predicted measurement, 
Equations E.7 and E.10 respectively, at time k+1 given the measurements up to 
time k is,  
 

( ) ( ){ }kT ZkkkkE 1~1~ ++= zxPxz  

     ( ) ( ) ( ) ( )[ ]{ }kT ZkkkkkkE 11~11~ +++++= wxHx  

     ( ) ( )Tkkk 11 ++= HP                                                           (E.12) 

 
The filter gain for the measurement update equation can now be given as a function 
of the covariance matrix of the predicted measurement, Equation E.11, and the 
covariance matrix between the predicted state and the predicted measurement, 
Equation E.12,  
 

( ) ( ) ( ) ( )1111 11 +++==+ −− kkkkk T SHPPPW zzxz                  (E.13) 

 
The measurement update equations can now be written as, 
 

( ) ( ) ( ) )1(11ˆ11ˆ ++++=++ kkkkkk νWxx                                (E.14) 
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where ( )1+kν , called the innovation, is the difference between the actual and the 
predicted measurement, 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )kkkkkkkkkk 1ˆ111ˆ11~1 ++−+=+−+=+=+
∆∆

xHzzzzν     (E.15) 

 
The measurement update equation above can be derived, for example, by applying 
the Principle of Orthogonality to the error in the state estimate [Bar-Shalom and 
Fortmann, 1988]. The covariance matrix for the state estimate conditioned on the 
data up to and including the discrete time k+1 can now be computed, 
 

( ) ( ) ( ){ }111~11~11 +
∆

++++=++ kT ZkkkkEkk xxP  

( ) ( ) ( ) ( ) ( ) ( )kkkkkkkkk T 111111 1 +++++−+= − PHSHPP  

( ) ( ) ( ) ( ) zxzzxzxx PPPPWSWP 11111 −−=+++−+= Tkkkkk            (E.16) 

 
At every discrete instant of time, denoted by k, all the information acquired in the 
past is summarized by the sufficient statistic ( )kkx  and its associated covariance 

matrix. This follows from the whiteness property of the process noise, which allows 
preservation of the state’s Markov property. 
 
The Kalman filter yields the best linear estimate given zero-mean, statistically 
independent noise sequences. The best linear estimator is that which minimizes the 
mean-square error. If the noises obey a Gaussian distribution, the estimate will also 
be optimal. 
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In what follows, the extended Kalman filter (EKF), for the estimation of non-linear 
stochastic systems, is described [Bar-Shalom and Fortmann, 1988]. (The Kalman 
filter for the estimation of linear stochastic systems was outlined in Appendix E.) 
The simultaneous localization and map building formulation, discussed in Chapter 
3.2.1.1, is utilized as the case example. 
 
In order to be able to apply the techniques of linear estimation for the non-linear 
motion model of the sensor platform, Equation 3.7, it will be expanded in the 
Taylor series around the approximate conditional mean given the measurements up 
to and including the (time) instant k, ( )kkrx̂ . Higher order terms than the first 

derivate are neglected, 
 

( ) ( )( ) ( ) ( )kkkkkkkk rrr r
vfxfuxfx vx ∇+∇+=+ ~,0),(,ˆ1               (F.1) 

 
where ( )kkrx~  is the uncertainty in the state estimate before carrying out the 

displacement of the sensor and ( )kv  corresponds to the uncertainty in the process 

model itself. In the equation 
rx
f∇  is the Jacobian of ( )⋅f  with respect to rx  and 

vf∇ is the Jacobian of ( )⋅f  with respect to v  both evaluated at the current estimate 

of the state, ( )kkrx̂ . By taking the expected value of F.1, an equation for the 

estimate of the predicted state can be formed, 
 

( ) ( ){ }krr ZkEkk xx
∆
=+ 1ˆ  

    ( )( ) ( ) ( ){ }kkkkkkkE rr r
vfxfuxf vx ∇+∇+≈ ~,0),(,ˆ             (F.2) 

 
As the uncertainties ( )kkrx~  and ( )kv  are assumed to correspond to zero mean 

random variables and so their expected values are zeroes, Equation F.2 becomes 
 

( ) ( )( )kkkkkk rr ,0),(,ˆ1ˆ uxfx =+                                             (F.3) 

 
The uncertainty of the estimate after prediction is given by subtracting Equation 
F.3 from F.1 and, again, assuming that the expected values of the higher order 
terms of the Taylor expansion are negligible, 
 

( ) ( ) ( )kkkkk rrr 1ˆ11~ +−+=+ xxx  

     ( ) ( )kkkrr
vfxf vx ∇+∇≈ ~                                         (F.4) 

 
And the covariance (or rather mean square error) associated with the predicted 
state is given by, 
 

( ) ( ) ( ){ }kT ZkkkkEkk 1~1~1 ++=+
∆

xxP  

     ( ) ( ) TT
rr kkk

rr vvxx fQffPf ∇∇+∇∇≈                                     (F.5) 
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where ( )
rr

kkP  is the covariance of the state estimate of the mobile sensor platform 

before it was moved to another location between the (time) instants k an k+1 and 
( )kQ  is the known covariance of the uncertainty related to the state prediction 

(motion) model.  
 
Similarly, the non-linear measurement Equation 3.8 can be expanded in the Taylor 
series around the state estimate of the stochastic map ( )kk 1ˆ +x , composed of the 

predicted state estimate of the mobile (robot) platform, ( )kkr 1ˆ +x , and the state 

estimates of the static map objects, ( ) ( )kkkk Nxx ˆˆ 1 � ,  

 
( ) ( )( ) ( ) ( )11~,0,1ˆ1 +∇++∇++=+ kkkkkkk whxhxhz wx + higher order terms (F.6) 

 
where ( )kk 1~ +x  and ( )1+kw  are assumed to be small and zero mean random 

variables. If it is further assumed that the higher order terms in the Taylor series 
are negligible, an equation for the predicted measurement at the (time) instant k+1 
can be given by, 
 

( ) ( )( ) ( ) ( ){ }11~,0,1ˆ1ˆ +∇++∇++≈+ kkkkkkEkk whxhxhz wx  

   ( )( )kkk ,0,1ˆ += xh                                                        (F.7) 

 
where xh∇  is the Jacobian of ( )⋅h  with respect to x  and wh∇ is the Jacobian of 

( )⋅h  with respect to w , both evaluated at the predicted estimate of the state, 

( )kk 1ˆ +x . 

By subtracting F.7 form F.6, the uncertainty related to the predicted observation 
becomes,  
 

( ) ( ) ( )kkkkk 1ˆ11~ +−+=+=
∆

zzzν  

  ( ) ( )11~ +∇++∇≈ kkk whxh wx                                                   (F.8) 

 
where ν  corresponds to the innovation, which is  the difference between the actual 
and the predicted observations. The corresponding covariance matrix of the 
predicted estimate is given by, 
 

( ) ( ){ }kT ZkkkkE 1~1~ ++=
∆

zzPzz  

  ( ) ( ) TT kkk wwxx hRhhPh ∇+∇+∇+∇≈ 11                          (F.9) 

 
where ( )kk 1+P  is the covariance of the stochastic map state estimate before 

incorporating the new observation information and ( )kR  is the known covariance 
of the uncertainty related to the observation model. The cross-covariance between 
the predicted state and the predicted measurement at the (time) instant k+1 given 
the measurements up to the (time) instant k can be computed as: 
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( ) ( ){ }kT ZkkkkE 1~1~ ++= zxPxz  

     ( ) ( ) ( )[ ]{ }kT ZkkkkkE 11~1~ +∇++∇+= whxhx wx  

     ( ) Tkk xhP ∇+= 1                                                  (F.10) 

 
An update for the state estimate can now be computed as, 
 

( ) ( ) ( ) )1(11ˆ11ˆ ++++=++ kkkkkk νWxx                     (F.11) 

 
where ( )1+kν  is given by Equation F.8, and ( )1+kW  is the filter gain,  
 

( ) ( ) ( ) ( )( ) 11 1111
−− ∇+∇+∇+∇∇+==+ TTT kkkkkk wwxxxzzxz hRhhPhhPPPW  

(F.12) 
 
In order to justify the application of the first order extended Kalman filter (EKF) 
for the estimation of non-linear systems, it must be assumed that the errors due to 
the truncated second and higher order terms of the Taylor expansion, (Equation 
F.1), are negligible. If this is not the case, more terms in the Taylor series 
expansion can be retained. For example, by including the first and second order 
derivatives from the Taylor series, the Gaussian second order filter can be attained 
[Maybeck, 1982]. Applying the EKF to the estimation of non-linear systems 
requires the evaluation of the Jacobian matrices of the state prediction and 
observation models. For the Gaussian second order filter the Hessian matrices need 
to be evaluated in addition to the Jacobian matrices. In both cases, the 
implementation of the filters may be difficult in practice, especially if the system is 
composed of many states and is highly non-linear [Julier, 1997]. In Appendix G, 
an alternative filtering method for nonlinear stochastic systems, is discussed. 
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The difference between the distribution approximation filter algorithm and the 
extended Kalman filter is related to the propagation of the information about the 
random state variables through the non-linear state prediction and measurement 
equations. With the extended Kalman filter, discussed in Appendix F, the 
propagation of the state estimate and the associated covariance matrix are 
described by Equations F.3 and F.5. The computation of the predicted 
measurement and the associated covariance matrix are given by Equations F.7 and 
F.9 respectively. The application of these formulae requires the computation of 
Jacobians of the non-linear process model and observation model equations. The 
derivation and evaluation of the Jacobian matrices can be a difficult task in 
practice [Julier and Uhlmann, 1997b]. Moreover, in case of highly non-linear 
models ( )⋅f  and/or ( )⋅h , successful application of the EKF algorithm would require 
very small time steps between the linearizations increasing the computational load. 
 
Indeed, the intuition behind the distribution approximation filter (DAF) is that “it 
is easier to approximate a (Gaussian) probability distribution than it is to 
approximate an arbitrary non-linear function or transformation” [Julier, 1997] 
and [Julier et al., 2000]. As an example, let us consider the propagation of the 
mean ( )kkrx̂  and the covariance ( )kkrrP  of the state of the mobile robot through 

the non-linear process model ( ) ( )( )kkkkr ,),(, vuxf . First an augmented state vector 

composed of the n-dimensional original state vector ( )krx  and the q-dimensional 

vector of the noise terms ( )kv is formed, 
 

( ) ( )
( ) ��

�
�
�

�=
k
k

k ra

v
x

x                                                                (G.1) 

 
The process model, Equation 3.7, can now be rewritten, 
 

( ) ( )( )kkkk a
r ),(,1 uxfx =+                                             (G.2) 

 
The propagation of information is based on the computation of the so-called sigma 
points, which are drawn deterministically from, 
 

( ) ( )
�
�
�

�
�
�
�

�
=

1

ˆ
ˆ

qx

ra kk
kk

0
x

x                                                            (G.3) 

 

( ) ( ) ( )
( ) ( ) �

�

�
�
�

�
=

kkk
kkkk

kk
vx

vxrra

r

r

QP
PP

P                                              (G.4) 

 
where the qx1 vector of zeroes is due to the assumption of zero mean process noise, 
the covariance matrix of which is ( )kQ . With the off-diagonal terms ( )kkvxrP , 
correlations between the state errors and process noises can be incorporated as 
required. To approximate the n+q-dimensional random variable ( )kax  with mean 

( )kkax̂  and covariance ( )kkaP  a number of 2(n+q)+1 sigma point vectors are 

drawn by the following equations, 
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( ) aa kk xχ ˆ

0
=         ( )κκ ++= qnW /0  

( ) ( ) ( )( )
i

aaa kkqnkk
i

Pxχ κ+++= ˆ   ( )( )κ++= qnWi 2/1  

( ) ( ) ( )( )
i

aaa kkqnkk
ni

Pxχ κ++−=
+

ˆ   ( )( )κ++=+ qnW ni 2/1    (G.5) 

 

where ℜ∈κ , ( ) ( )( )
i

a kkqn Pκ++  is the thi  row or column of the square root of 

the (n+q)x(n+q) matrix ( ) ( )kkqn aPκ++  and iW  is the weight that is associated 

with the thi  sigma point. The transformation of the mean ( )kkax̂  and the 

associated covariance matrix ( )kkaP  through the non-linear transformation ( )⋅f  is 

carried out by first instantiating each sigma point through the process model, 
 

( ) ( ) ( )( )kkkkkk aa
ii

,,1 uχfχ =+                                        (G.6) 

 
The mean of the predicted robot state can now be computed as a weighted sum of 
the transformed sigma points, 
 

( ) ( )�
+

=

+=+
)(2

11ˆ
qn

oi

a
i

a kkWkk
i

χx                                             (G.7) 

 
And the associated covariance is computed as follows, 
 

( ) ( ) ( )[ ]( )
( ) ( )[ ]Taa

qn

i

aa
i

a kkkkkkkkWkk
ii

1ˆ11ˆ11
2

0
+−++−+=+ �

+

=

xχxχP    (G.8) 

 
Note that from the transformed augmented state and the associated covariance 
matrices, the parts related to the actual system state ( )krx  are of interest. These 
parts correspond to the n uppermost terms in the augmented state vector 

( )kka 1ˆ +x  and to the nxn upper left corner sub-matrix of ( )kka 1+P . 

 
Similarly, in order to compute the predicted observation, the transformed sigma 
points are instantiated through the observation model, 
 

( ) ( )( )kkkkk a
i i

,11 +=+ χhΖ                                                    (G.9) 

 
The mean of predicted observations can now be computed as the weighted sum of 
the transformed sigma points,  
 

( ) ( )�
+

=

+=+
)(2

11ˆ
qn

oi
ii kkWkk Ζz                                                         (G.10) 

 
In the case of additive and independent observation noise with covariance ( )1+kR , 
the predicted innovation covariance can be computed as, 
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( ) ( ) ( ) ( )[ ]
( )

( ) ( )[ ]Ti

qn

i
iizz kkkkkkkkWkkk 1ˆ11ˆ111

2

0
+−++−+++=+ �

+

=

zΖzΖRP   

                 (G.11) 
 
In Equation G.9 the observation noise is left outside function ( )⋅h  due to its 
additive nature. However, if the observation is introduced in a non-linear fashion, 
or is correlated with uncertainty of the system state, then the augmented state 
vector, G.1, and the associated covariance matrix, G.4, can be further expanded to 
include the observation noise terms and the noise covariance and correlation terms 
respectively. And finally, the cross correlation matrix between the uncertainties of 
the predicted state and the predicted measurement is given by, 
 

( ) ( ) ( )[ ]( )
( ) ( )[ ]Ti

qn

i

aa
ixz kkkkkkkkWkk

i
1ˆ11ˆ11

2

0
+−++−+=+ �

+

=

zΖxχP        (G.12) 

 
To update the predicted state with the observation the same update formulae as 
used with the extended Kalman filter, given by Equations F.11 and F.12, can now 
be exploited. 
 
In order to guarantee that the uncertainty of the estimates propagated through the 
non-linear transformations will be positive semi-definite, the algorithm can be 
modified such that the covariances are evaluated about ( )kka

0
χ  and ( )kk 10 +Ζ  

instead of ( )kka 1ˆ +x  and ( )kk 1ˆ +z . With this modification, the prediction is the 

same as that of the truncated second order filter [Julier et al., 2000]. However, to 
obtain a significant advance over the Kalman filter, it is necessary to work with 
non-Gaussian distributions [Julier, 1997]. Methods that employ a numerical 
approximation of the probability distributions are a possible alternative. These 
methods are discussed in Chapter 3.3. 
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