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Keywords: Verification, Petri nets, logic programs, deadlock checking, reachability

∗This work is an extended version of [10].
†Address for correspondence: Laboratory for Theoretical Computer Science, Helsinki University of Technology,

P.O. Box 5400, 02015 HUT, Finland

c© 1999/2002 IOS Press Amsterdam. Reprinted, with permission, from

Fundamenta Informaticae 37 (1999), pp. 247–268, 1999.



248 K. Heljanko / Logic Programs for Deadlock and Reachability

1. Introduction

Petri nets are a widely used model for analyzing concurrent and distributed systems. Often such

a system must exhibit reactive, non-terminating behavior, and one of the key analysis problems

is that of deadlock-freedom: Do all reachable global states of the system (markings of the net)

enable some action (net transition)? In this work we study this problem for a subclass of Petri

nets, the 1-safe Petri nets, which are capable of modelling finite state systems. For 1-safe Petri

nets the deadlock detection problem is PSPACE-complete in the size of the net [4], however,

restricted subclasses of 1-safe Petri nets exist for which this problem is NP-complete [12, 13].

McMillan has presented a deadlock detection method for Petri nets based on finite complete

prefixes (i.e. net unfoldings) [12, 13]. The basic idea is to transform the PSPACE-complete

deadlock detection problem for a 1-safe Petri net into a potentially exponentially larger NP-

complete problem. This translation creates a finite complete prefix, which is an acyclic 1-safe

Petri net of a restricted form. Experimental results show that the blowup of the transformation

can in many cases be avoided [5, 12, 13, 14].

In this work we address the NP-complete deadlock detection problem for finite complete

prefixes. McMillan originally suggested a branch-and-bound algorithm for solving this problem.

Recently, Melzer and Römer have presented another algorithm which is based on solving mixed

integer programming problems generated from prefixes [14]. Their approach seems to be faster

than McMillan’s on examples in which a large percentage of the events of the prefix are so called

cut-off events. However, if this assumption does not hold, the run times are generally slower

than those of the McMillan’s algorithm [14].

In this work we study an approach that is similar to that of Melzer and Römer in the

way of being capable of handling cases with a large percentage of cut-off events but with more

competitive performance. Instead of mixed integer programming our approach is based on a

constraint-based logic programming framework [15, 16, 17]. We translate the deadlock detection

problem into the problem of finding a stable model of a logic program. As a side result we also

obtain such a translation for checking the reachability problem, which is also NP-complete in the

size of the prefix [4]. The main contribution of this work also includes the detailed correctness

proofs of the translations. For the deadlock detection problem we present experimental results,

and find our approach competitive with the two previous approaches.

The rest of the paper is divided as follows. First we present Petri net notations used in the

paper. In Sect. 3 we will introduce the rule-based constraint programming framework. Section

4 contains the main results of this work, linear-size translations from deadlock and reachability

property checking into the problem of finding a stable model of a logic program, and their

correctness proofs. In Sect. 5 we present experimental results from our implementation. In

Sect. 6 we conclude and discuss directions for future research.
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2. Petri Net Definitions

First we define basic Petri net notations. Next we introduce occurrence nets, which are 1-safe

Petri nets of a restricted form. Then branching processes are given as a way of describing partial

order semantics for Petri nets. Last but not least we define finite complete prefixes as a way of

giving a finite representation of this partial order behavior. We follow mainly the notation of

[5, 14].

2.1. Petri Nets

A triple 〈S, T, F 〉 is a net if S ∩ T = ∅ and F ⊆ (S × T ) ∪ (T × S). The elements of S are

called places, and the elements of T transitions. Places and transitions are also called nodes.

We identify F with its characteristic function on the set (S×T )∪ (T ×S). The preset of a node

x, denoted by •x, is the set {y ∈ S ∪T |F (y, x) = 1}. The postset of a node x, denoted by x•, is

the set {y ∈ S ∪ T |F (x, y) = 1}. Their generalizations on sets of nodes X ⊆ S ∪ T are defined

as •X =
⋃

x∈X
•x, and X• =

⋃
x∈X x• respectively.

A marking of a net 〈S, T, F 〉 is a mapping S 7→ IN. A marking M is identified with the

multi-set which contains M(s) copies of s for every s ∈ S. A 4-tuple Σ = 〈S, T, F,M0〉 is a net

system if 〈S, T, F 〉 is a net and M0 is a marking of 〈S, T, F 〉. A marking M enables a transition

t if ∀s ∈ S : F (s, t) ≤ M(s). If t is enabled, it can occur leading to a new marking (denoted

M
t
→ M ′), where M ′ is defined by ∀s ∈ S : M ′(s) = M(s) − F (s, t) + F (t, s). A marking M

is a deadlock marking iff no transition t is enabled by M . A marking Mn is reachable in Σ iff

there exist a sequence of transitions t1, t2, . . . , tn and markings M1,M2, . . . ,Mn−1 such that:

M0
t1→ M1

t2→ . . . Mn−1
tn→ Mn. A reachable marking is 1-safe if ∀s ∈ S : M(s) ≤ 1. A net

system Σ is 1-safe if all its reachable markings are 1-safe. In this work we will restrict ourselves

to the set of net systems which are 1-safe, have a finite number of places and transitions, and

also in which each transition t ∈ T has both nonempty pre- and postsets.

2.2. Occurrence Nets

We use ≤F to denote the reflexive transitive closure of F . Let 〈S, T, F 〉 be a net and let

x1, x2 ∈ S ∪ T . The nodes x1 and x2 are in conflict, denoted by x1#x2, if there exist t1, t2 ∈ T

such that t1 6= t2,
•t1∩

•t2 6= ∅, t1 ≤F x1, and t2 ≤F x2. An occurrence net is a net N = 〈B,E, F 〉

such that:

• ∀b ∈ B : |•b| ≤ 1,
• F is acyclic, i.e. the irreflexive transitive closure of F is a partial order,
• N is finitely preceded, i.e. for any node x of the net, the set of nodes y such that y ≤F x

is finite, and
• ∀x ∈ S ∪ T : ¬(x#x).

The elements of B and E are called conditions and events, respectively. The set Min(N) denotes

the set of minimal elements of the transitive closure of F . A configuration C of an occurrence

net is a set of events satisfying:
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• If e ∈ C then ∀e′ ∈ E : e′ ≤F e implies e′ ∈ C (C is causally closed),

• ∀e, e′ ∈ C : ¬(e#e′) (C is conflict-free).

The co-set of a configuration is called a cut: Cut(C) = (Min(N) ∪C •) \ •C. A configuration C

is a deadlock configuration iff the set Cut(C) does not enable any event e ∈ E.

2.3. Branching Processes

Branching processes are “unfoldings” of net systems and were introduced by Engelfriet [3].

Let N1 = 〈S1, T1, F1〉 and N2 = 〈S2, T2, F2〉 be two nets. A homomorphism is a mapping

S1 ∪ T1 7→ S2 ∪ T2 such that: h(S1) ⊆ S2 ∧ h(T1) ⊆ T2, and for all t ∈ T1, the restriction of h

to •t is a bijection between •t and •h(t), and similarly for t• and h(t)•. A branching process of

a net system Σ is a tuple β = 〈N ′, h〉, where N ′ is a occurrence net, and h is a homomorphism

from N ′ to 〈S, T, F 〉 such that: the restriction of h to Min(N ′) is a bijection between Min(N ′)

and M0, and ∀e1, e2 ∈ E, if •e1 = •e2 ∧ h(e1) = h(e2) then e1 = e2. The set of places associated

with a configuration C of β is denoted by Mark(C) = h(Cut(C)).

2.4. Finite Complete Prefixes

A finite branching process β is a finite complete prefix of a net system Σ iff for each reachable

marking M of Σ there exists a configuration C of β such that:

• Mark(C) = M , and

• for every transition t enabled in M there exists a configuration C ∪ {e} such that e 6∈ C

and h(e) = t.

Algorithms to obtain a finite complete prefix β given a 1-safe net system Σ are presented in

e.g. [5, 12, 13]. The algorithms will mark some events of the prefix β as special cut-off events,

which we denote by the set CutOffs(β) ⊆ E. The intuition behind cutoff events is that for each

cut-off event e there already exists another event e′ in the prefix. The markings reachable after

executing e can also be reached after executing e′, and thus the markings after e need not to be

considered any further. We direct the reader interested in the approach to [5, 12, 13, 14].

3. Rule-Based Constraint Programming

We will use normal logic programs with stable model semantics [7] as the underlying formalism

into which the deadlock and reachability problems for 1-safe Petri nets are translated. This

section is to a large extent based on [17].

The stable model semantics is one of the main declarative semantics for normal logic pro-

grams. However, here we use logic programming in a way that is different from the typical

PROLOG style paradigm, which is based on the idea of evaluating a given query. Instead, we

employ logic programs as a constraint programming framework [15], where stable models are
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the solutions of the program rules seen as constraints. We consider normal logic programs that

consist of rules of the form

h← a1, . . . , an,not (b1), . . . ,not (bm) (1)

where a1, . . . , an, b1, . . . , bm and h are propositional atoms. Such a rule can be seen as a con-

straint saying that if atoms a1, . . . , an are in a model and atoms b1, . . . , bm are not in a model,

then the atom h is in a model. The stable model semantics also enforces minimality and ground-

edness of models. This makes many combinatorial problems easily and succinctly describable

using logic programming with stable model semantics.

We will demonstrate the basic behavior of the semantics using programs P1-P4:

P1: a← not (b) P2: a← a P3: a← not (a) P4: a← c,not (b)

b← not (a) b← not (a)

Program P1 has two stable models: {a} and {b}. The property of this program is that we

may freely make negative assumptions as long as we do not bump into any contradictions. For

example, we may assume not (b) in order to deduce the stable model {a}. Program P2 has

the empty set as its unique stable model. This exposes the fact that we can’t use positive

assumptions to deduce what is to be included in a model. Program P3 is an example of a

program which has no stable models. If we assume not (a), then we will deduce a, which will

contradict with our assumption not (a). Program P4 has one stable model {b}. If we assume

not (a) then we will deduce b. If we assume not (b) then we can’t deduce a, because c can’t be

deduced from our assumptions.

The stable model semantics for a normal logic program P is defined as follows [7]. The

reduct P A of P with respect to the set of atoms A is obtained (i) by deleting each rule in P

that has a not-atom not (x) in its body such that x ∈ A and (ii) by deleting all not-atoms in

the remaining rules. A set of atoms A is a stable model of P if and only if A is the deductive

closure of P A when the rules in P A are seen as inference rules.

A non-deterministic way of constructing stable models is to guess which assumptions (not-

atoms of the program) to use, and then check using the deductive closure (in linear time) whether

the resulting model agrees with the assumptions. The problem of determining the existence of

a stable model is in fact NP-complete [11].

Next we give rest of the stable model semantics definitions, which are needed in the proofs.

Definition 3.1. Let A be a set of atoms, we define not (A) = {not (a) | a ∈ A}.

For a set of atoms and not-atoms B we denote the atoms in B by B+ and the set of not-atoms

by B−. Atoms and not-atoms are also called literals. We denote with Atoms(P ) the set of all

propositional atoms which appear in the logic program P as literals. We use the notation ∆ to

denote the set Atoms(P ) \∆.

Definition 3.2. The deductive closure of a set of rules P and a set of literals B is denoted by

Dcl (P,B), where Dcl (P,B) is the smallest set of atoms that contains B+ and is closed under
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R (P,B) when

R (P,B) = {h← a1, . . . , an,not (b1), . . . ,not (bm) ∈ P and not (bi) ∈ B−, for i = 1, . . . ,m}

is seen as a set of inference rules.

The deductive closure gives us a fixpoint characterization of the stable models.

Proposition 3.1. The set ∆ is a stable model of a set of rules P iff ∆ = Dcl (P,not (∆)).

Proof:

Note that the reduct P ∆ = R (P,not (∆)). ut

3.1. The tool smodels

There is a tool, the smodels system [16, 17], which provides an implementation of logic programs

as a rule-based constraint programming framework. It finds stable models of a logic program,

and can also tell when the program has no stable models. The implementation is based on

backtracking search techninique similar to the Davis Putnam method (see e.g. [6]), and it uses

a generalization of the well-founded semantics [20] to approximate the stable models and to

prune the search space. The smodels implementation needs space linear in the size of the input

program [17]. The smodels seems to be the most efficient implementation of the stable model

semantics currently available and it has been applied successfully in a number of areas including

planning and propositional satisfiability checking, see, e.g. [17].

The stable model semantics is defined using rules of the form (1). The smodels 2 handles

extended rule types [18], which can be seen as succinct encodings of sets of basic rules. One of

the rule types is a rule of the form: h ← 2{a1, . . . , an}. The semantics of this rule is that if

two or more atoms from the set a1, . . . , an belong to the model, then also the atom h will be

in the model. It is easy to see that this rule can be encoded by using N2−N
2

basic rules of the

form: h← ai, aj. Using an extended rule instead of the corresponding basic rule encoding was

necessary to achieve a linear-size translation of the two problems at hand.

We also use the so called integrity rules in the programs. They are rules with no head,

i.e. of the form: ← a1, . . . , an,not (b1), . . . ,not (bm). The semantics is given by the follow-

ing: A new atom f is introduced to the program, and the integrity rule is replaced by: f ←

a1, . . . , an,not (b1), . . . ,not (bm),not (f). It is easy to see that any set of atoms, such that

a1, . . . , an are in a model and atoms b1, . . . , bm are not in a model, is not a stable model. It is

also easy to see that adding one integrity rule doesn’t create any new stable models, and neither

does adding any set of integrity rules. The last extended rule we use is of the form: {h} ←

a1, . . . , an. The semantics is the following: A new atom h′ is introduced to the program, and

the rule is replaced by two rules: h ← a1, . . . , an,not (h′), and h′ ← not (h). The atom h′ is

removed from any stable models it appears in, and the rest of the model gives the semantics for

the extended rule.
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4. Translating Deadlock and Reachability Property Checking

into Logic Programs

In this section we present the translations of deadlock and reachability properties into logic

programs with stable model semantics. For the deadlock property the main result can be seen

as a rephrasing of the Theorem 4 of [14], where mixed integer programming has been replaced

by the rule-based constraint programming framework. For the reachability property we give

another translation. In this work we assume that the set of events of a finite complete prefix is

non-empty. If it is empty, the corresponding net system would have no events enabled in the

initial state, and then the deadlock and reachability properties can be trivially solved by looking

at the initial state only.

Now we are ready to define our translation from the finite complete prefixes into logic pro-

grams with stable model semantics. The basic part of our translation is given next. It translates

the notion of a configuration of a finite complete prefix into the problem of finding a stable

model of a logic program. The definitions will be followed by an example translation given in

Fig. 1.

First we define some additional notation. We assume a unique numbering of the events (and

conditions) of the finite complete prefix. We use the notation ei (bi) to refer to the event (con-

dition) number i. In the logic programs ei, (bi) is an atom of the logic program corresponding

to the event ei (condition bi). In the logic program definitions we use the convention that a part

of a rule will be omitted, if the corresponding set evaluates to the empty set. For example rule

of type 1 of Def. 4.1 below for an event ei, such that •(•ei) = ∅, would become: ei ← not (bei).

Definition 4.1. Let β = 〈N,h〉 with N = 〈B,E, F 〉 be a finite complete prefix of a given 1-safe

net system Σ. Let PB(β) be a logic program containing the following rules:

1. For all ei ∈ E \ CutOffs(β) a rule:

ei ← ep1 , . . . , epn , not (bei),

such that {ep1
, . . . , epn} = •(•ei).

2. For all ei ∈ E \ CutOffs(β) a rule:

bei ← not (ei).

3. For all bi ∈ B such that |bi
• \ CutOffs(β)| ≥ 2 a rule:

← 2{ep1 , . . . , epn},

such that {ep1
, . . . , epn} = bi

• \ CutOffs(β).

The intuition behind the rules of the program PB(β) are the following. Rules of the type 1 give

the preconditions under which an atom corresponding to each event can exist in a configuration.

Rules of the type 2 enable an event not to be included in a configuration even if its preconditions

are present. Rules of the type 3 disallow all sets of events which contain events in a conflict. Note

that because in prefixes each condition has only one event in its preset, the program above does
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not need atoms corresponding to the conditions of the prefix. The translation above could be

trivially extended to also include the cut-off events, but they are not needed by the applications

in this work.

We define a mapping from a set of events of the prefix to a set of atoms of a logic program

and vice versa.

Definition 4.2. The set of atoms of a logic program P corresponding to a set of events C ⊆

E \ Cutoffs(β) of a finite complete prefix β is Model(C) = {ei | ei ∈ C} ∪ {bej | ej ∈ E \ {C ∪

Cutoffs(β)}}.

Definition 4.3. The set of events corresponding to a stable model ∆ of a logic program P is

Events(∆) = {ei ∈ E | ei ∈ ∆}.

Now we are ready to state the correspondence between the finite complete prefix and the basic

part of our translation.

Theorem 4.1. Let β be a finite complete prefix of a 1-safe net system Σ, let PB(β) be the logic

program translation by Def. 4.1, and let C be a configuration of β, such that C∩Cutoffs(β) = ∅.

Then the set of atoms ∆ = Model(C) is a stable model of PB(β). Additionally, the mapping

Events(∆) is a bijective mapping from the stable models of PB(β) to the configurations of β

which contain no cut-off events.

Proof:

See Appendix A. ut

Next we move to the deadlock translation. We add a set of rules to the program which place

additional constraints on the stable models of the program PB(β). We add integrity rules to the

program, which remove all stable models of the basic program which are not deadlocks. To do

this we model the the enabling of each event (cut-off or not) of the prefix in the logic program.

Definition 4.4. Let β be a finite complete prefix of a given 1-safe net system Σ. Let PD(β) be

a logic program containing all the rules of the program PB(β) of Def. 4.1, and also the following

rules:

1. For all bi ∈ {bj ∈ B | bj
• 6= ∅} a rule:

bi ← el, not (ep1), . . . , not (epn),

such that {el} = •bi, and {ep1
, . . . , epn} = bi

• \ CutOffs(β).

2. For all ei ∈ E a rule:

← bp1 , . . . , bpn ,

such that {bp1
, . . . , bpn} = •ei.

Theorem 4.2. Let β be a finite complete prefix of a 1-safe net system Σ, and let PD(β) be

the logic program translation by Def. 4.4. There exists a stable model of PD(β) iff Σ has a

reachable deadlock marking. Additionally, for any stable model ∆ of PD(β), the set of events

C = Events(∆) is a deadlock configuration of β, such that Mark(C) is a reachable deadlock

marking of Σ.
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s1 s2

b1(s1) b2(s2)

b11(s1)

b3(s3)

e4(t1) e5(t4)

b5(s4)b4(s4)

e6(t4)

b7(s2) b10(s2)

e8(t5)e7(t3)

b8(s5)b9(s4)

e3(t5)

b6(s5)

e1(t2) e2(t3)

N2:

s3

t3 t4

s4

t5

s5

t1 t2

N1:
PD(N2) :

e1 ← not (be1)

be1 ← not (e1)

e2 ← not (be2)

be2 ← not (e2)

e3 ← not (be3)

be3 ← not (e3)

e5 ← e1, not (be5)

be5 ← not (e5)

e8 ← e5, not (be8)

be8 ← not (e8)

← 2{e1, e2, e3}

b1 ← not (e1)

b2 ← not (e1), not (e2), not (e3)

b3 ← e1

b4 ← e1, not (e5)

b5 ← e2

b7 ← e5, not (e8)

← b1, b2

← b2

← b3

← b4

← b5

← b7

Figure 1. Deadlock translation example.

Proof:

See Appendix A. ut

In Fig. 1 an example of the deadlock translation is given. The prefix N2 is a finite complete

prefix of the 1-safe nets system N1. The cut-off events of N2 are marked with crosses. The

translated program PD(N2) has only one stable model ∆ = {be1, be2, e3, be5, be8, b1}, and the

set Events(∆) = {e3} is a deadlock configuration of N2.

Next we will present a way of translating reachability problems. First we need a way of

making statements about an individual marking.

Definition 4.5. An assertion on a marking of a 1-safe net system Σ = 〈S, T, F,M0〉 is a tuple

〈S+, S−〉, where S+, S− ⊆ S, and S+ ∩ S− = ∅. The assertion 〈S+, S−〉 agrees with a marking

M of Σ iff:

S+ ⊆ {s ∈ S |M(s) = 1} ∧ S− ⊆ {s ∈ S |M(s) = 0}.

With assertions we can easily formulate both the reachability and submarking reachability

problems. The idea is again to add some integrity rules to the program which remove all stable
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models of PB(β) which do not agree with the assertion. The basic structure is the same as for

deadlocks, only a set of atoms which represent the marking of the original net are added.

Definition 4.6. Let β be a finite complete prefix of a given 1-safe net system Σ = 〈S, T, F,M0〉,

and let φ = 〈S+, S−〉 be an assertion on the places of Σ. Let PR(β, φ) be a logic program

containing all the rules of the program PB(β) of Def. 4.1, and also the following rules:

1. For all bi ∈ {bj ∈ B |h(bj) ∈ S+ ∪ S− ∧ •bj ∈ E \ Cutoffs(β)} a rule:

bi ← el, not (ep1), . . . , not (epn),

such that {el} = •bi, and {ep1
, . . . , epn} = bi

• \ CutOffs(β).

2. For all bi ∈ {bj ∈ B |h(bj) ∈ S+ ∪ S− ∧ •bj ∈ E \ Cutoffs(β)} a rule:

si ← bi,

such that si = h(bi).

3. For all si ∈ S+ a rule:

← not (si).

4. For all si ∈ S− a rule:

← si.

Note that only conditions of the prefix β and places of Σ which can affect the assertion φ are

translated. Also cut-off postset conditions are not translated, because cut-offs will not be fired.

Theorem 4.3. Let β be a finite complete prefix of a 1-safe net system Σ, and let PR(β, φ) be

a logic program translation by Def. 4.6. The logic program PR(β, φ) has a stable model iff there

exists a reachable marking of Σ which agrees with φ. Additionally, for any stable model ∆ of

PR(β, φ), the configuration C = Events(∆) is a configuration of β, such that Mark(C) is a

reachable marking of Σ which agrees with φ.

Proof:

See Appendix A. ut

It is easy to see that the sizes of all the translations presented are linear in the size of the

prefix β, i.e. O(|B| + |E| + |F |). Because the rule-based constraint programming system we

use needs linear space in the size of the input program, deadlock and reachability property

checking exploiting these translations can be made using linear space in the size of the prefix.

The translations are also local, which makes them straightforward to implement using linear

time in the size of the prefix.

5. Deadlock Property Checking Implementation

We have implemented the deadlock property checking translation, and we plan on implementing

the reachability translation in the near future. The translation reads a file containing the
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description of a finite complete prefix generated by the PEP-tool [8]. It generates a logic program

using the deadlock translation, which is then through an internal interface given to the smodels

stable model generator. The translation performs the following optimizations:

1. Not generating the program iff the number of cut-off events is zero.

2. Removal of blocking of “stubborn” transitions: If we find an event ei such that (•ei)
• \

Cutoffs(β) = {ei}, the corresponding rule of type 1 of the program PB(β) is replaced by

a rule of the form: ei ← ep1 , . . . , epn , and the rule 2 of the form: bei ← not (ei) is not

created. Also the corresponding liveness rule of type 2 of the program PD(β) of the form:

← bp1 , . . . , bpn does not need to be created as far as the event ei is concerned.

3. Removal of redundant condition rules: The rule of type 1 of the program PD(β) corre-

sponding to condition bi is removed if the atom bi is does not appear elsewhere in the

program.

4. Removal of redundant atoms: If a rule of the form: a1 ← a2 would be generated, and this

is the only rule in which a1 appears as a head, then all instances of a1 are replaced by a2,

and the rule is discarded.

5. Duplicate rule removal: Only one copy of each rule is generated.

For the optimization 1 it is easy to see that the net system Σ will deadlock, because the finite

complete prefix is finite and does not contain any cut-offs. Thus the net system Σ can fire only

a finite number of transitions. It also is straightforward to prove that the optimizations 3-5 do

not alter the number of stable models the program has. The optimization 2 is motivated by

stubborn sets [19]. The intuition is that whenever ei is enabled, it must be disabled in order to

reach a deadlock. However the only way of disabling ei is to fire it. Therefore we can discard

all configurations in which ei is enabled as not being deadlock configurations.

We argue that optimization 2 is correct, i.e. the stable models of the program PD(β) are

not affected by it (modulo the possible removal of the atom bei from the set of atoms of the

optimized program). Consider the original program, and an optimized one in which an event

ei has been optimized using optimization 2. If we look only at the two programs without the

deadlock detection parts added by Def. 4.4, their only difference is that in the original program

it is possible to leave the event ei enabled but not fired, while this is not possible in the optimized

program. Thus clearly the set of stable models of the optimized program is a subset of the stable

models of the original one. If we have any configuration in which the event ei is enabled but is

not fired, then the set of atoms corresponding to this configuration is not a stable model of the

original program. This is the case because the integrity rule of type 2 of Def. 4.4 corresponding

to the event ei eliminates such a potential stable model. Therefore the optimized program will

have the same number of stable models as the original one.

We do quite an extensive set of optimizations. The optimizations 1 and 2 are deadlock

detection specific. The optimizations 3-5 can be seen as general logic program optimizations

based on static analysis, and could in principle be done in the stable model generator after the

translation. The optimizations 1-4 are implemented using linear time and space in the size of

the prefix. The duplicate rule removal is implemented with hashing.
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We use succinct rule encodings with extended rules when possible. The two rules ei ←

ep1 , . . . , epn , not (bei), and bei ← not (ei) can be more succinctly encoded by an extended rule

of the form: {ei} ← ep1 , . . . , epn . Also ← 2{a1, a2} is replaced by: ← a1, a2. We also sort the

rules after the translation. In our experiments the sorting seems to have only a minimal effect

on the total running time, but produces nicer looking logic program (debugging) output.

After the translation has been created, the smodels computational engine is used to check

whether a stable model of the program exists. If one exists, the deadlock checker outputs an

example deadlock configuration using the found stable model. Otherwise the program tells that

the net is deadlock free.

5.1. Experimental Results

We have made experiments with our approach using examples by Corbett [2], McMillan [12, 13],

and Melzer and Römer [14]. They were previously used by Melzer and Römer in [14] and by

Best and Römer in [1], where additional information about them can be found. We compare

our approach with two other finite complete prefix based deadlock checking methods. The first

method is the branch-and-bound deadlock detection algorithm by McMillan [12, 13, 14], and

the other is the mixed integer programming approach by Melzer and Römer [14].

The Figures 2-4 present the running times in seconds for the various algorithms used in this

work, and for the mixed integer programming approach those presented in [14]. The running

times have been measured using a Pentium 166MHz, 64MB RAM, 128MB swap, Linux 2.0.29,

g++ 2.7.2.1, smodels pre-2.0.30, McMillan’s algorithm version 2.1.0 by Stefan Römer, and PEP

1.6g. The experiments with the mixed integer programming approach by Melzer and Römer used

a commercial MIP-solver CPLEX, and were conducted on a Sparcstation 20/712, 96MB RAM.

The rows of the tables correspond to different problems. The columns represent: sum of user

and system times measured by /usr/bin/time command, or times reported in [14], depending

on the column:

• Unf = time for unfolding (creation of the finite complete prefix) (PEP).

• DCMIP = time for Mixed integer programming approach in [14].

• DCMcM = time for McMillan’s algorithm, average of 4 runs.

• DCsmo = time for smodels based deadlock checker, average of 4 runs.

The marking vm(n) notes that the program ran out of virtual memory after n seconds. The

other fields of the figures are as follows: |B|: number of conditions, |E|: number of events,

#c: number of cut-off events, DL: Y - the net system has a deadlock, CP: choice points i.e.

the number of nondeterministic guesses smodels did during the run. The DCsmo column also

includes the logic program translation time, which was always under 10 seconds for the examples.

The logic programming approach using the smodels system was able to produce an answer

for all the examples presented here, while the McMillan’s algorithm implementation ran out of

virtual memory on some of the larger examples. Our approach was sometimes much faster, see
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Problem(size) |B| |E| #c DL CP Unf1 DC2

MIP DC1

McM DC1

smo

DPD(5) 1582 790 211 N 0 0.6 17.3 1.6 1.0

DPD(6) 3786 1892 499 N 0 3.2 82.8 12.3 6.1

DPD(7) 8630 4314 1129 N 0 17.4 652.6 128.9 31.4

DPH(5) 2712 1351 547 N 0 1.3 42.9 6.5 1.8

DPH(6) 14474 7231 3377 N 0 33.7 1472.8 1063.7 32.9

DPH(7) 81358 40672 21427 N 0 929.3 - vm(1690.2) 760.6

ELEVATOR(2) 1562 827 331 Y 2 0.6 2.3 0.5 0.7

ELEVATOR(3) 7398 3895 1629 Y 3 10.3 14.5 10.1 15.0

ELEVATOR(4) 32354 16935 7337 Y 4 186.1 387.8 268.8 231.7

FURNACE(1) 535 326 189 N 0 0.1 0.3 0.2 0.0

FURNACE(2) 5139 3111 1990 N 0 3.2 18.1 11.1 0.6

FURNACE(3) 34505 20770 13837 N 0 134.7 1112.5 vm(392.5) 7.1

RING(7) 813 403 79 N 0 0.2 17.1 0.2 0.4

RING(9) 1599 795 137 N 0 0.7 71.2 0.7 2.2

RW(9) 9272 4627 4106 N 0 2.0 58.5 68.2 0.4

RW(12) 98378 49177 45069 N 0 137.5 24599.9 vm(3050.5) 4.2

Figure 2 Measured running times in seconds:
1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.
2 = Sparcstation 20/712, 96MB RAM [14].

e.g. FURNACE(3), RW(12), SYNC(3), BDS(1), GASQ(4), and Q(1). The McMillan’s algorithm

was faster than our approach on the following problem classes: RING, HART, SENT and SPD.

These problems are quite easy for both methods, running times for the first three were a few

seconds, and for the fourth still well under 30 seconds. On the DME and KEY examples

our approach is scaling better as the problem sizes increase. McMillan’s algorithm is most

competitive when the number of cut-off events is relatively small.

We do not have access to the MIP-solver used in [14], and also our experiments in [9] seem

to indicate that the computer we made our experiments on is faster than theirs. This makes it

difficult to comment on the absolute running times between different machines. However our

approach is scaling better on most examples, see e.g. RW, DME, and SYNC examples.

An observation that should be made is that the number of choice points for smodels in these

examples is very low, with a maximum of 9 choice points in the example SPD(1). This means

that on this example set the search space pruning techniques were very effective in minimizing

the number of nondeterministic choices that were needed to solve the examples.

The example nets and C++ source code for our translation including smodels are available

from the author.
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Problem(size) |B| |E| #c DL CP Unf1 DC2

MIP DC1

McM DC1

smo

DME(4) 2381 652 16 N 0 1.1 216.1 1.4 3.9

DME(5) 4096 1145 25 N 0 3.2 1968.3 5.5 13.7

DME(6) 6451 1830 36 N 0 8.5 13678.3 20.1 38.0

DME(7) 9542 2737 49 N 0 18.1 - 66.1 86.7

DME(8) 13465 3896 64 N 0 37.0 - 196.0 182.3

DME(9) 18316 5337 81 N 0 70.0 - 542.2 366.6

DME(10) 24191 7090 100 N 0 124.0 - 1268.4 646.1

DME(11) 31186 9185 121 N 0 207.0 - 3070.9 1134.8

SYNC(2) 4007 2162 490 N 0 4.6 171.6 37.0 1.8

SYNC(3) 29132 15974 5381 N 0 218.6 11985.0 14073.3 66.5

Figure 3 Measured running times in seconds:
1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.
2 = Sparcstation 20/712, 96MB RAM [14].

6. Conclusions

Our main contribution is a method to transform the deadlock and reachability problems for 1-

safe Petri nets into the problem of finding a stable model of a logic program and its correctness

proof. We do the translation in two steps: (i) Existing methods and tools are used to generate

a finite complete prefix of the 1-safe Petri net [5, 8, 12, 13]. (ii) The deadlock and reachability

problems for the finite complete prefix are translated into the problem of finding a stable model

of a logic program. This step uses the two new translations presented in this work, both of

which are linear in the size of the prefix.

Correctness proofs of are done in two steps. First a program is constructed whose stable

models are proved to have a one-to-one correspondence with the configurations of the finite

complete prefix which contain no cut-off events. Then additional rules added by the translations

are shown to either remove all potential stable models corresponding to live configurations, or all

potential stable models which do not agree with the used assertion, depending on the translation.

We present experimental results to support the feasibility of this approach for the deadlock

detection problem. We use an existing constraint-based logic programming framework, the

smodels system, for solving the problem of finding a stable model of a logic program. Our

experiments show that the approach seems to be quite robust and competitive on the examples

available to us. More experiments are needed to evaluate the feasibility of the approach on the

reachability problem.

There are interesting topics for future research. It seems possible to extend the translations

to allow for a larger class of Petri nets to be translated, while still keeping the problem NP-

complete. McMillan’s algorithm can be seen to be more goal directed algorithm than our

approach, and an alternative translation using the basic ideas of McMillan’s algorithm could be

created. The smodels system is quite a general purpose constraint propagation based search

engine. Creating specialized algorithms for the two problems at hand could further improve the
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Problem(size) |B| |E| #c DL CP Unf1 DC1

McM DC1

smo

BDS(1) 12310 6330 3701 N 0 18.3 171.9 4.1

FTP(1) 178077 89042 35247 N 0 6470.5 vm(5413.1) 2080.0

GASN(3) 2409 1205 401 N 0 1.2 13.2 2.4

GASN(4) 15928 7965 2876 N 0 49.3 2630.4 105.5

GASN(5) 100527 50265 18751 N 0 1972.7 vm(3393.7) 3958.4

GASQ(3) 2593 1297 490 N 0 1.3 10.1 2.4

GASQ(4) 19864 9933 4060 N 0 72.9 4170.3 127.5

OVER(4) 1561 797 240 N 0 0.6 0.9 0.1

OVER(5) 7388 3761 1251 N 0 11.9 38.1 0.9

HART(50) 354 202 1 Y 5 0.1 0.0 0.2

HART(75) 529 302 1 Y 6 0.3 0.1 0.4

HART(100) 704 402 1 Y 6 0.4 0.1 0.8

KEY(2) 1304 650 201 Y 5 0.5 0.3 0.7

KEY(3) 13885 6940 2921 Y 5 41.0 38.8 68.4

KEY(4) 135556 67775 32081 Y 8 3457.8 vm(3930.9) 4418.7

MMGT(3) 11575 5841 2529 Y 0 22.6 592.4 20.0

MMGT(4) 92940 46902 20957 Y 0 1466.2 vm(3068.0) 1375.2

Q(1) 16090 8402 1173 Y 5 89.5 71.2 4.7

SENT(75) 533 266 40 Y 6 0.2 0.1 0.3

SENT(100) 608 291 40 Y 6 0.3 0.1 0.4

SPD(1) 5317 3138 1311 Y 9 6.1 8.4 21.8

Figure 4 Measured running times in seconds:
1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.

competitiveness of our approach. The subject of applying our approach to some form of model

checking is a very interesting area for future research.
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[15] I. Niemelä. Logic programs with stable model semantics as a constraint programming

paradigm. In Proceedings of the Workshop on Computational Aspects of Nonmonotonic

Reasoning, pages 72–79, Trento, Italy, May 1998. Helsinki University of Technology, Digital

Systems Laboratory, Research Report A52.



K. Heljanko / Logic Programs for Deadlock and Reachability 263
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Appendix A

Proof of Theorem 4.1

We prove the correspondence between the stable models of program PB(β) and the configurations

of β which contain no cut-off events. We proceed by first proving auxiliary Lemma 1. In Lemmas

2 and 3 one direction of the correspondence between stable models of the program PB(β) and

the configurations of β with no cut-off events is proved. The Lemma 4 shows the other direction

of the correspondence, and together with Corollary 1 shows that the mapping Events(∆) is a

bijective mapping between the two sets in question.

Lemma 1. Let ∆ be a stable model of program PB(β) obtained from the translation by Def.

4.1, and ei, bei ∈ Atoms(PB(β)). Now the following holds: ei ∈ ∆⇒ bei ∈ ∆, and ei ∈ ∆⇒

bei ∈ ∆.

Proof:

Assume that ei ∈ ∆. The only rule in which bei appears as a head is a rule of type 2 of

the form bei ← not (ei). By the definition of stable models, because ei ∈ ∆, the reduct

R (PB(β),not (∆)) does not contain this rule, and thus bei 6∈ Dcl(PB(β),not(∆)), which implies

bei ∈ ∆, because ∆ is a stable model.

Assume that ei ∈ ∆. Therefore R (PB(β),not (∆)) contains the rule bei ←, and thus

bei ∈ Dcl(PB(β),not (∆)), which implies bei ∈ ∆, because ∆ is a stable model. ut

Corollary 1. Let ∆ be any stable model of PB(β). The set of events C = Events(∆) fully

specifies ∆, i.e. the following holds: Model(Events(∆)) = ∆.

Now we do the main proof of Theorem 4.1. As the first step we use a subset of the rules of

the program PB(β) and prove that for this subset of rules the set of atoms ∆ = Model(C) is a

stable model.
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Lemma 2. Let C be a configuration of β such that C ∩ Cutoffs(β) = ∅, and let PA(β) be the

logic program containing only the rules of the types 1 and 2 of the program PB(β). The set of

atoms ∆ = Model(C) is a stable model of PA(β).

Proof:

We need to prove that Dcl(PA(β),not(∆)) = ∆. We proceed by case analysis on the pairs

of atoms {ei, bei} in Atoms(PA(β)) showing for both atoms that: For each atom a ∈ ∆ that

a ∈ Dcl(PA(β),not (∆)), and for each atom a ∈ ∆ that a 6∈ Dcl(PA(β),not (∆)).

1. Investigate the pair of atoms {ei, bei} such that ei ∈ ∆, and thus by Def. 4.2: bei ∈ ∆.

The reduct R (PA(β),not (∆)) contains a rule of the form bei ←, and also the only way of

deducing ei, the rule of type 1 of the form: ei ← ep1 , . . . , epn , is not in the reduct, which

implies bei ∈ Dcl(PA(β),not(∆)) and ei 6∈ Dcl(PA(β),not (∆)).

2. Investigate the pair of atoms {ei, bei} such that ei ∈ ∆, and thus by Def. 4.2: bei ∈ ∆.

The reduct R (PA(β),not (∆)) does not contain the rule of type 2 of the form: bei ←,

which implies bei 6∈ Dcl(PA(β),not (∆)). The reduct contains a rule of type 1 of the form:

ei ← ep1 , . . . , epn , such that {ep1
, . . . , epn} = •(•ei). We need an induction to complete

the proof for this case.

What is left to be proved is that ej ∈ Dcl(PA(β),not(∆)) for all ej ∈ ∆, and thus for all ej ∈ C.

If C = ∅ we are done. Otherwise, we prove the previous claim by induction on the index number

k of a sequence of events: e′1, . . . , e′|C|, such that {e′1, . . . , e′|C|} = C, and for all k ∈ {1, . . . , |C|}

it holds that •(•e′k) ⊆
⋃

1≤l<k{e
′
l}. Because C is a configuration, such a sequence (a causal total

order of events of a configuration) must exist. We pick one such a sequence.

• Base case k = 1: For e′1 it holds that •(•e′1) = ∅. Thus the reduct has a rule of the form

e′1 ←, which implies e′1 ∈ Dcl(PA(β),not (∆)).

• Inductive case k > 1: For all 1 ≤ j < k the claim e′j ∈ Dcl(PA(β),not (∆)) holds by the

inductive hypothesis. Because •(•e′k) ⊆
⋃

1≤l<k{e
′
l}, the reduct has a rule of the form e′k ←

ep1 , . . . , epn , such that {ep1 , . . . , epn} ⊆ Dcl(PA(β),not(∆)) by the inductive hypothesis,

which implies e′k ∈ Dcl(PA(β),not (∆)).

The union of all the pairs equals Atoms(PA(β)), which implies ∆ is a stable model of PA(β). ut

Now we continue our proof by considering the full program PB(β) in Lemma 3.

Lemma 3. Let C be a configuration of β such that C ∩ Cutoffs(β) = ∅. The set of atoms

∆ = Model(C) is a stable model of the program PB(β).

Proof:

By Lemma 2: ∆ = Model (C) is a stable model of PA(β). In the program PB(β) only integrity

rules of type 3 of Def. 4.1 have been added. Thus the set of stable models of PB(β) is always

a subset of the stable models of PA(β). Because C is a configuration, there does not exists two

non-cut-off events ei and ej , and a condition bk such that: ei 6= ej , and bk ∈
•ei ∩

•ej . Therefore

there is no integrity rule which could be used, which implies ∆ is a stable model of PB(β). ut
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Lemma 4. If ∆ is a stable model of the program PB(β), then the set of events C = Events(∆)

is a configuration of β such that C ∩ Cutoffs(β) = ∅.

Proof:

Because Corollary 1 says that any stable model is fully specified by a set of events, to get a

contradiction we need to find a set of events E ′, which is not a configuration, E ′∩Cutoffs(β) = ∅,

and ∆ = Model (E ′) is a stable model of PB(β). There are two cases:

1. Assume that E ′ is not causally closed. Thus there must exist an event ei ∈ E′, such that
•(•ei) \ E′ 6= ∅. Now by Def. 4.2 and Lemma 1: bei 6∈ Model(E ′), and thus the reduct

R (PB(β),not (∆)) contains a rule of the form ei ← ep1 , . . . , epn , which is the only rule in

which ei appears as a head. However by •(•ei) \ E′ 6= ∅ and Def. 4.2: bej ∈ Model(E ′)

for some j ∈ {p1, . . . , pn}. Thus by Lemma 1: ej 6∈ ∆, and thus ei 6∈ Dcl(PB(β),not (∆)),

which implies ∆ is not a stable model.

2. Assume that E ′ contains a conflict. Thus there exists two non-cut-off events ei and ej ,

and a condition bk such that: ei 6= ej , and bk ∈
•ei ∩

•ej . The integrity rule of type 3

of Def. 4.1 corresponding to the condition bk has the form ← 2{ep1 , . . . , epn}, such that

{ei, ej} ⊆ ∆, which eliminates the possibility that ∆ is a stable model.

ut

The Lemmas 3 and 4 prove the correspondence between the configurations of the prefix β

which contain no cut-off events, and the stable models of the program PB(β). Combined with

Corollary 1 the bijectivity between these two sets is shown. This completes the proof. ut

Proof of Theorem 4.2

First we give Lemma 5, which enables us to add rules of a restricted form into a logic program.

Lemma 5. Let P1, P2 be a logic programs such that: For each rule in P2 the head of the rule

is not in Atoms(P1), and all its body literals are in Atoms(P1). Then:

• If ∆ is a stable model of P1, then ∆′ = ∆ ∪ S(∆) is the unique stable model of P1 ∪ P2,

such that for all a ∈ Atoms(P1): a ∈ ∆′ iff a ∈ ∆, where

S(∆) = {h | h← a1, . . . , an,not (b1), . . . ,not (bm) ∈ P2, such that

ai ∈ ∆ for i = 1, . . . , n and bj 6∈ ∆ for j = 1, . . . , m}.

• P1 ∪ P2 has the same number of stable models as P1.

Proof:

Let ∆ be any stable model of P1, and r = h ← a1, . . . , an,not (b1), . . . ,not (bm) be any rule of

the program P2. If we create a program P ′
1 = P1 ∪ {r}, then clearly P ′

1 has the stable model

∆′ = ∆ ∪ {h} iff ai ∈ ∆ for i = 1, . . . , n and bj 6∈ ∆ for j = 1, . . . , m, and ∆′ = ∆ otherwise.

Also the possible addition of the atom h into the program P ′
1 does not effect the reduct i.e.

R (P ′
1,not(∆′)) = R (P ′

1,not(∆)), because h doesn’t appear as a body literal in any rule in

P1 ∪ P2. Therefore the number of stable models remains the same after the addition of r. The

claim can be now proved by induction on the number of rules added from P2. ut
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Corollary 2. Let P1 and P2 be two programs satisfying the requirements of Lemma 5. If ∆ is

a stable model of P1 ∪ P2, then ∆′ = {a ∈ ∆ |Atoms(P1)} is a stable model of P1.

Next we start using Lemma 5 to incrementally prove out translation correct.

Lemma 6. Let program PC(β) be a program made by adding rules of the type 1 of Def. 4.4 to

the program PB(β). The program PC(β) has the same number of stable models as PB(β), and

the stable models agree on the set of atoms Atoms(PB(β)).

Proof:

The proof is immediate by Lemma 5. ut

Lemma 7. For any stable model ∆ of PC(β) and any bi ∈ Atoms(PC(β)) it holds that bi ∈ ∆

iff bi ∈ Cut(Events(∆)).

Proof:

Fix any stable model ∆ of PC(β), and any atom bi of the program. Now the rule corresponding

to this atom is: bi← el, not (ep1), . . . , not (epn), such that {el} = •bi, and {ep1
, . . . , epn} = bi

•\

CutOffs(β). The corresponding rule will be in the reduct (and by Lemma 5: bi ∈ ∆) iff el ∈ ∆

and ep1 , . . . , epn ∈ ∆, and thus by Theorem 4.1 el ∈ Events(∆) and ep1
, . . . , epn 6∈ Events(∆),

which is exactly the case when bi ∈ Cut(Events(∆)). ut

Lemma 8. Let PD(β) be the logic program translation of the prefix β by Def. 4.4, and let ∆

be a stable model of PD(β). Then the set of events Events(∆) is a deadlock configuration of β.

Additionally PD(β) has the same number of stable models as there are deadlock configurations

of β, which contain no cut-off events.

Proof:

The program PD(β) is the program PC(β) with only integrity rules of the type 2 of Def. 4.4

added. Thus the set of stable models of PD(β) is a subset of the stable models of the program

PC(β), which by Lemma 6 correspond to the configurations of β which contain no cut-off events.

Fix any stable model ∆ of PC(β). There are now two cases to consider:

• Events(∆) is not a deadlock configuration of β: Thus there must exist an event ei (cut-off

or not) which is enabled by Cut(Events(∆)). Consider now the rule of type 2 corresponding

to the event ei of the form: ← bp1 , . . . , bpn , such that {bp1
, . . . , bpn} = •ei. Now by Lemma

7 each of the atoms bpj ∈ ∆ iff bpj
∈ Cut(Events(∆)). Thus the integrity rule for the event

ei will be used, which implies ∆ is not a stable model of PD(β).

• Events(∆) is a deadlock configuration of β: Thus there is no event ei (cut-off or not)

which is enabled by Cut(Events(∆)). Now by Lemma 7 each of the atoms bi ∈ ∆ iff

bi ∈ Cut(Events(∆)). Therefore none of the rules of the type 2 of Def. 4.4 can be used,

which implies ∆ is a stable model of PD(β).

We have now found a one-to-one correspondence between the the stable models of PD(β) and

the deadlock configurations of β which contain no cut-off events. ut
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Now we have all the ingredients needed to prove Theorem 4.2. The fact that β is a finite

complete prefix of a 1-safe net system Σ guarantees the following. For each reachable marking

M of Σ there exists a configuration C of β with no cut-off events, such that Mark(C) = M , and

for every transition t enabled in M there exists a configuration C ∪ {e} such that e 6∈ C and

h(e) = t. Clearly this also holds for all reachable deadlock markings. The finite complete prefix

β will thus have a configuration C with no cut-off events, which can not be extended by any

event e ∈ E, iff Σ has a reachable deadlock marking. Now Lemma 8 has shown a one-to-one

correspondence between deadlock configurations without cut-off events, and stable models of

PD(β). Therefore PD(β) will have a stable model iff Σ has a reachable deadlock marking. It

also holds by Lemma 8 that for any stable model ∆ of PD(β), C = Events(∆) is a deadlock

configuration of β, such that Mark(C) a reachable deadlock marking of Σ. ut

Proof of Theorem 4.3

We prove the Theorem 4.3 by stepwise adding rules to the base program PB(β).

Lemma 9. Let program PP (β, φ) be a program made by adding rules of the type 1 of Def. 4.6

to the program PB(β). The program PP (β, φ) has the same number of stable models as PB(β),

and the stable models agree on the set of atoms Atoms(PB(β)).

Proof:

The proof is immediate by Lemma 5. ut

Lemma 10. For any stable model ∆ of PP (β, φ) and for any bi ∈ Atoms(PP (β, φ)) it holds

that bi ∈ ∆ iff bi ∈ Cut(Events(∆)).

Proof:

Identical to the proof of Lemma 7 when PC(β) is replaced by PP (β, φ). ut

Lemma 11. Let program PQ(β, φ) be a program made by adding rules of the type 2 of Def.

4.6 to the program PP (β, φ). The program PQ(β, φ) has the same number of stable models as

PP (β, φ), and the stable models agree on the set of atoms Atoms(PP (β, φ)).

Proof:

The proof is immediate by Lemma 5. ut

Lemma 12. For any stable model ∆ of PQ(β, φ) and for any si ∈ Atoms(PQ(β, φ)) it holds

that si ∈ ∆ iff si ∈ Mark(Events(∆)).

Proof:

Fix any stable model ∆ of PQ(β, φ), and any atom si of the program. Now the rules corre-

sponding to this atom are all of the form: si ← bi, such that si = h(bi). Now clearly by Lemma

5: si ∈ ∆ iff bi ∈ ∆ for some condition bi for which si = h(bi), which combined with Lemma

10 implies the claim. ut
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We can now prove Theorem 4.3. The fact that β is a finite complete prefix of a 1-safe

net system Σ guarantees the following. For each reachable marking M of Σ there exists a

configuration C of β with no cut-off events, such that Mark(C) = M . The stable models of the

program PR(β, φ) are always a subset of the stable models of the program PQ(β, φ), because

only integrity rules of type 3 and 4 of Def. 4.6 have been added. By Lemma 11 there exists a

stable model of PQ(β, φ) corresponding to each configuration of the prefix β which contains no

cut-off events. Also Lemma 12 shows that the atoms si reflect the corresponding marking of Σ.

There are now two cases left to prove:

• If Σ has a reachable marking M which agrees with φ, then by Lemma 11 there exists a

stable model ∆ of PQ(β, φ), such that Mark(Events(∆)) = M . Because M agrees with φ,

it holds by Lemma 12 that for all {si | si ∈ S+}: si ∈ ∆, and also for all {sj | sj ∈ S−}:

sj ∈ ∆. Therefore there is no integrity rule in PR(β, φ) which can be used, which implies

∆ is also a stable model of PR(β, φ).

• If Σ has a reachable marking M which does not agree with φ, then by Lemma 11 there

exists a stable model ∆ of PQ(β, φ), such that Mark(Events(∆)) = M . Because M does

not agree with φ, it holds by Lemma 12 that either there exists a place si in S+ such that

si ∈ ∆, or there exists a place sj in S− such that sj ∈ ∆. In the first case an integrity

rule of type 3, and in the second case an integrity rule of type 4 implies that ∆ is not a

stable model of PR(β, φ).

This concludes the proof of Theorem 4.3. ut


