
Model Checking with Finite Complete Prefixes

Is PSPACE-complete?

Keijo Heljanko

Helsinki University of Technology
Laboratory for Theoretical Computer Science

P.O. Box 5400, FIN-02015 HUT, Finland
Keijo.Heljanko@hut.fi

Abstract. Unfoldings are a technique for verification of concurrent and
distributed systems introduced by McMillan. The method constructs a
finite complete prefix, which can be seen as a symbolic representation of
an interleaved reachability graph. We show that model checking a fixed
size formula of several temporal logics, including LTL, CTL, and CTL∗,
is PSPACE-complete in the size of a finite complete prefix of a 1-safe
Petri net. This proof employs a class of 1-safe Petri nets for which it is
easy to generate a finite complete prefix in polynomial time.

1 Introduction

Unfoldings are a technique for verification of concurrent and distributed systems
introduced by McMillan [19]. It can be applied to systems modeled by Petri nets,
communicating automata, or process algebras [10, 9, 18]. The method is based
on the notion of unfolding, which can be seen as the partial order version of an
(infinite) computation tree [10, 3].

The unfolding based verification methods construct a finite complete pre-

fix, which is a finite initial part of the unfolding containing all the information
about the interleaved reachability graph of the system in question. Thus a fi-
nite complete prefix can be seen as a symbolic representation of the reachability
graph. The finite complete prefix is not, however, a canonical representation of
the reachability graph in the same way as a ROBDD (reduced ordered binary
decision diagram) is when the variable ordering is fixed [11].

McMillan showed that the deadlock checking problem is NP-complete in the
size of a finite complete prefix of a 1-safe Petri net. A small variation of that proof
can be used to show that reachability is also NP-complete, see e.g. [13]. Because
reachability is PSPACE-complete in the size of a 1-safe Petri net, the prefix
generation process mapped this PSPACE-complete problem into (a potentially
exponentially larger) NP-complete problem.

? The financial support of Helsinki Graduate School in Computer Science and En-
gineering, Academy of Finland (Project 47754), Foundation for Financial Aid at
Helsinki University of Technology, Emil Aaltonen Foundation, and Nokia Founda-
tion are gratefully acknowledged.

c© 2000/2002 Springer-Verlag Berlin Heidelberg. Reprinted, with permission, from
C. Palamidessi (Ed.): CONCUR 2000, LNCS 1877, pp. 108–122, 2000.

Model Checking with Finite Complete Prefixes Is PSPACE-complete 109

We will show that model checking a fixed CTL formula containing nested
temporal modalities is PSPACE-complete in the size of a finite complete pre-
fix of a 1-safe Petri net. Because model checking a fixed CTL formula is also
PSPACE-complete in the size of a 1-safe Petri net [6], using a prefix as input to
a model checker does not change the complexity of CTL model checking. The
fixed CTL formula we use can be expressed in most temporal logics interpreted
over interleaved reachability graphs, and we obtain PSPACE-completeness re-
sults for several of them.

Our proof employs a class of 1-safe Petri nets for which it is easy to gen-
erate a finite complete prefix in deterministic polynomial time. We will show
that the prefixes generated by currently employed prefix generation algorithms
(see [10]) can sometimes be exponentially larger than what is allowed by the
semantic prefix completeness criterion. We do not know whether these prefixes
have some properties which would make model checking using them easier than
with prefixes fulfilling only the semantic prefix completeness criterion.

The rest of the paper is structured as follows. First in Sect. 2 we define the
Petri net notation used in this paper, followed by the definition of finite complete
prefixes. We show in Sect. 3 that it is possible to sometimes create exponentially
smaller prefixes than the algorithm of [10]. Next in Sect. 4 we present the main
result of this work, a proof of model checking PSPACE-completeness for several
logics in the size of a finite complete prefix. We give the conclusions in Sect. 5.

2 Petri Net Definitions

Our aim is to define finite complete prefixes as a symbolic representation of
a reachability graph of a 1-safe Petri net system. Finite complete prefixes are
branching processes fulfilling some additional constraints. To define branching
processes we introduce occurrence nets, which are Petri nets of a restricted form.
We do the definitions bottom-up, and begin with basic Petri net notation. We
follow mainly the notation of [10].

2.1 Petri Nets

A triple 〈S, T, F 〉 is a net if S ∩ T = ∅ and F ⊆ (S × T) ∪ (T × S). The
elements of S are called places, and the elements of T transitions. Places and
transitions are also called nodes. We identify F with its characteristic function
on the set (S × T) ∪ (T × S). The preset of a node x, denoted by •x, is the set
{y ∈ S ∪ T |F (y, x) = 1}. The postset of a node x, denoted by x•, is the set
{y ∈ S ∪ T |F (x, y) = 1}. Their generalizations on sets of nodes X ⊆ S ∪ T are
defined as •X =

⋃
x∈X

•x, and X• =
⋃

x∈X x•, respectively.
A marking of a net 〈S, T, F 〉 is a mapping S 7→ IN. A marking M is identified

with the multi-set which contains M(s) copies of s for every s ∈ S. A 4-tuple
Σ = 〈S, T, F,M0〉 is a net system if 〈S, T, F 〉 is a net and M0 is a marking of
〈S, T, F 〉. A marking M enables a transition t ∈ T if ∀s ∈ S : F (s, t) ≤M(s). If t

is enabled, it can occur leading to a new marking (denoted M
t
→M ′), where M ′

110 Keijo Heljanko

is defined by ∀s ∈ S : M ′(s) = M(s) − F (s, t) + F (t, s). A marking Mn is
reachable in Σ if there is an execution, i.e. a sequence of transitions t1, t2, . . . , tn

and markings M1,M2, . . . ,Mn−1 such that: M0
t1→ M1

t2→ . . .Mn−1
tn→ Mn. A

reachable marking is 1-safe if ∀s ∈ S : M(s) ≤ 1. A net system Σ is 1-safe if
all its reachable markings are 1-safe. In this work we will restrict ourselves to
net systems which are 1-safe, have a finite number of places and transitions, and
also in which each transition has both nonempty pre- and postsets.

2.2 Occurrence Nets

We use <F (≤F) to denote the (reflexive) transitive closure of F . Define Σ =
〈S, T, F 〉 to be a net and let x1, x2 ∈ S ∪T . The nodes x1 and x2 are in conflict,
denoted by x1 #x2, if there exist t1, t2 ∈ T such that t1 6= t2,

•t1 ∩ •t2 6= ∅,
t1 ≤F x1, and t2 ≤F x2.

An occurrence net is a net N = 〈B,E, F 〉 such that:

– ∀b ∈ B : |•b| ≤ 1,
– F is acyclic, i.e. the irreflexive transitive closure of F is a partial order,
– N is finitely preceded, i.e. for any node x of the net, the set of nodes y such

that y ≤F x is finite, and
– ∀x ∈ B ∪ E : ¬(x#x).

The elements of B and E are called conditions and events, respectively. The set
Min(N) denotes the set of minimal elements of <F . In this work the minimal
elements will be conditions, and thus Min(N) can be seen as an initial marking.

A configuration C of an occurrence net is a set of events satisfying:

– If e ∈ C then ∀e′ ∈ E : e′ ≤F e implies e′ ∈ C (C is causally closed), and
– ∀e, e′ ∈ C : ¬(e# e′) (C is conflict-free).

A local configuration [e] of an event e is the set of events e′, such that e′ ≤F e.
A level of an event e is the length i of the longest sequence e1, e2, . . . , ei of
events, such that ei = e, and e1 <F e2 <F . . . <F ei. Thus level (e) = 1 when
•e ⊆ Min(N).

2.3 Branching Processes

Branching processes are “unfoldings” of net systems and were introduced by
Engelfriet [4]. Let N1 = 〈S1, T1, F1〉 and N2 = 〈S2, T2, F2〉 be two nets. A homo-

morphism h is a mapping S1 ∪ T1 7→ S2 ∪ T2 such that: h(S1) ⊆ S2, h(T1) ⊆ T2,
and for all t ∈ T1, the restriction of h to •t is a bijection between •t and •h(t), and
similarly for t• and h(t)•. A branching process of a net system Σ = 〈S, T, F,M0〉
is a tuple β = 〈N ′, h〉, where N ′ = 〈B′, E′, F ′〉 is an occurrence net, and h is a
homomorphism from N ′ to 〈S, T, F 〉 such that: the restriction of h to Min(N ′)
is a bijection between Min(N ′) and M0, and ∀e1, e2 ∈ E′, if •e1 = •e2 and
h(e1) = h(e2), then e1 = e2. Thus h maps the conditions and events of an oc-
currence net to the places and transitions of the corresponding net system in a

Model Checking with Finite Complete Prefixes Is PSPACE-complete 111

way which respects the initial marking and the labeling of the transitions and
their pre- and postsets.

The marking of Σ associated with a configuration C of β is denoted by
Mark (C) = h((Min(N) ∪ C•) \ •C). A configuration of the branching process
always corresponds to a reachable marking of Σ. It is shown in [4] that a net
system has a maximal branching process up to isomorphism, called the unfolding.
If the net system has some infinite behavior, the unfolding will also be infinite.

2.4 Finite Complete Prefixes

We now define finite complete prefixes:

Definition 1. A finite branching process β of a net system Σ is a finite complete
prefix if for each reachable marking M of Σ there exists a configuration C of β,

such that:

– Mark(C) = M , and

– for every transition t enabled in M there exists a configuration C ∪{e} of β,

such that e 6∈ C and h(e) = t.

A finite complete prefix contains all the information about the interleaved reach-
ability graph of the net system. Algorithms to obtain a finite complete prefix
given a (finite state) net system are presented in [10, 9, 19]. The algorithms will
mark some events of the prefix β as special cut-off events, which we will denote
by events marked with crosses in the figures. The intuition behind cut-off events
is that they correspond to repetition of behavior found “earlier” in the prefix.
Due to space limitations we direct the interested reader to [10, 9, 19].

3 Compact Finite Complete Prefixes

It is well known that finite complete prefixes can sometimes be exponentially
more succinct than the reachability graph of the net system [19]. A simple ex-
ample of such a family of net systems (with the instance n = 4 in Fig. 1) has 2n

reachable markings, while the finite complete prefix is polynomial in the size of
the net system. In fact, the finite complete prefixes of this family of net systems
are isomorphic to the net system itself. The improved prefix generation algo-

p2

t1

p1

p4

p3

p6

p5

p8

p7

t2 t3 t4

Fig. 1. A 1-safe net system with a compact prefix.

112 Keijo Heljanko

rithm by Esparza, Römer, and Vogler [10] guarantees for 1-safe net systems that
the number of non-cut-off events of the generated prefix is never larger than the
number of reachable markings. What is not to our knowledge presented in the
literature is the fact that sometimes the prefix generation algorithm by McMil-
lan [19] (and also the improved version [10]) creates exponentially larger prefixes
than are needed to fulfill the semantic prefix completeness criterion.

For an example of such a family of 1-safe Petri net systems, see Fig. 2. This
net system is an instance of a binary counter net system with initialization to a
“random” initial state (Fig. 2 is a three bit instance, i.e. n = 3). The net system
acts like a binary counter starting from all low bits, when the initial marking
is M ′

0 = {s(c0), s(b0l), s(b1l), s(b2l)}. The contents of the binary counter are
consistent when the place s(c0) is marked, otherwise the carry propagation can
be thought to be in progress. The exact behavior of the net system is actually of
no interest to us, we are only interested in the sizes of different finite complete
prefixes generated from it.

s(ib1)

t(ib1h) t(ib1l)

t(b1lh) s(c1)s(b1l)t(b1hl)s(b1h)

s(ib0) s(ic)

t(ib0l)t(ib0h)

t(b0lh) s(c0)s(b0l)

t(ic0)

t(ic1)
t(b0hl)s(b0h)

s(ib2)

t(ib2h) t(ib2l)

t(b2lh) s(c2)s(b2l)t(b2hl)s(b2h)

t(ic2)

Fig. 2. A three bit binary counter net system.

Let us consider what happens when the initial marking is the marking in
Fig. 2. We can find the invariants: M(s(ic)) +

∑
0≤i<n M(s(ci)) = 1, and for all

0 ≤ j < n : M(s(ibj))+M(s(bjh))+M(s(bj l)) = 1. These n+1 invariants give
an upper bound of (n+1) ·3n reachable markings. This is also the exact number
of reachable markings, which can also be seen by simple static analysis. Namely,
firing one (or none) of the transitions of the set {t(ic0), . . . , t(icn−1)} can set
the first invariant to any of n + 1 values, and also firing one (or none) of the

Model Checking with Finite Complete Prefixes Is PSPACE-complete 113

transitions {t(ibjh), t(ibjl)} can set the invariant of the bit j into any of three
values. Also in the initial state these n + 1 sets of transitions are concurrently
enabled, and thus firing a transition from one set does not disable transitions
from other sets. Thus all the (n + 1) · 3n reachable markings are within one
concurrent “step” from the initial marking.

We can actually create the finite prefix of Fig. 3 from this net system, and
then verify that it fulfills the semantic prefix completeness criterion (Def. 1).
We can see that the prefix of Fig. 3 is polynomial in the size of the counter net
system of Fig. 2, and that such a “compact prefix” can be constructed for a
counter net system of any fixed amount of bits.

b(ib0)

b(ib1)

b(ic)

e(ib0l)

e(ib1h) e(ib1l)

e(ib0h)

e(b0lh)

e(b1lh)

b(c0)b(b0l)

e(ic0)

e(ic1)

b(c1)b(b1l)e(b1hl)

e(b0hl)

b(b1h)

b(b0h)

b(b0l.2) b(c1.2) b(b0h.2) b(c0.2)

b(b1l.2) b(b1h.2) b(c0.3)b(c2.2)

b(ib2)

e(ib2h) e(ib2l)

b(b2h) b(b2l)e(b2hl)

b(b2l.2) b(b2h.2) b(c0.5)b(c0.4)

e(b2lh) b(c2)

e(ic2)

Fig. 3. A finite complete prefix for the three bit counter example.

Here we give a proof sketch for the completeness of the finite prefix in Fig. 3.
The prefix is identical to the two first levels of the unfolding of the net system of
Fig. 2. The first requirement of prefix completeness is fulfilled, as all of the reach-
able markings can be reached by a configuration containing only events from the
first level of the prefix. The second prefix completeness criterion intuitively re-
quires that all the arcs of the reachability graph are present in the prefix. This
is the case, because both the first and second levels of this prefix are identical
to the unfolding, and thus they contain extensions for all the configurations (of
the first level) mentioned in the second completeness criterion.

Note that all the events on the second level are marked as cut-off events, as
they introduce no new reachable markings to the prefix. This requires allowing

114 Keijo Heljanko

that the corresponding configuration (see [10]) of a cut-off event is a non-local
configuration. Such an idea was already presented in our earlier work [14].

When we consider the sizes of finite complete prefixes generated by the cur-
rently employed prefix generation tools, the picture is quite different. We have
gathered prefix sizes for small instances of this family of net systems in Table 1.
For this family of examples, the McMillan’s algorithm [19] and the improve-
ment by Esparza et.al. [10] (implemented in the PEP tool [1]) both generate
the same prefixes. While the number of non-cut-off events (the column |E|−#c
of McMillan/ERV Prefix) grows much more slowly than the number of reach-
able markings, the growth in this column is still exponential (we get the recur-
sion xi = 2xi−1 + i + 4, with the initial value x2 = 16). Contrast this with
the compact prefix, whose size grows polynomially in the number of bits in
the counter. Thus the prefixes generated by the current prefix generation al-

Table 1. Prefix sizes for counter net systems.

System Reachability Graph McMillan/ERV Prefix Compact Prefix
Size |S| |T | Markings Arcs |B| |E| #c |E|−#c |B| |E| #c |E|−#c

2 9 10 27 66 43 23 7 16 17 10 4 6
3 13 15 108 351 105 55 16 39 25 15 6 9
4 17 20 405 1620 225 116 30 86 33 20 8 12
5 21 25 1458 6885 453 231 50 181 41 25 10 15
6 25 30 5103 27702 887 449 77 372 49 30 12 18
7 29 35 17496 107163 1721 867 112 755 57 35 14 21

gorithms [19, 10] can be exponentially larger than the compact finite complete
prefix which we generated using semantic arguments. This construction relied on
the special properties the family of net systems under discussion has. We don’t
know of a practical algorithm to always generate a polynomial prefix when it is
allowed by the semantic notion of prefix completeness.

In the rest of this work we adopt the semantic definition of prefix complete-
ness (Def. 1) as the only property a finite complete prefix has. Thus we can
use purely semantic arguments, and do not have to consider the peculiarities
of a fixed prefix generation algorithm. However, as presented by Table 1, some-
times the current algorithms will generate exponentially larger prefixes. Thus the
complexity results we will present do not automatically apply to these prefixes.

4 Complexity of Model Checking with Complete Prefixes

We can see a 1-safe Petri net system as a representation of its (finite, interleaved)
reachability graph. Thus in model checking a Petri net we actually interpret the
model checking questions on its reachability graph. Because a finite complete
prefix is a symbolic representation of the same reachability graph, we can do
model checking when a finite complete prefix is given as input. We will now
show that many model checking problems for finite complete prefixes of 1-safe

Model Checking with Finite Complete Prefixes Is PSPACE-complete 115

Petri nets are PSPACE-complete in the size of the prefix. This result has been
first published in [13], where detailed proofs can be found.

The proof is based on the PSPACE-hardness proof of the reachability prob-
lem for 1-safe Petri nets by Jones, Landweber and Lien [15]. The proof involves
simulating a Turing machine with a fixed number of tape cells with a 1-safe
Petri net. Our proof is based on the variation of this proof by Esparza [6], from
which most of the material of the following section is from. We first introduce
this proof, because our proof is built on top of it in two steps.

4.1 Reachability with 1-safe Petri nets

We use slightly nonstandard notation in this work. We consider Turing machines
with finite tape, i.e. they have both a first and a last cell on their tape. As in
the standard definition, a move to the left of the first cell results in the machine
staying on the first cell. Slightly nonstandard is the handling of the last cell. If
the program of the Turing machine tries to move right when being on the last
cell, it stays on the last cell. We define the notions of execution and acceptance
of a Turing machine in what is in the essence a standard way, see e.g. [20], with
only minor notational differences, for the details see [13].

A Turing machine is defined to be a tuple M = 〈Q,Γ, δ, q0, F 〉, where Q is
a finite set of states, Γ a finite set of tape symbols (containing a special blank

symbol #), δ : (Q×Γ) 7→ P(Q×Γ×{R,L}) is the (non-deterministic) transition
function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. We
define the size of a Turing machine to be the number of bits needed to encode
its transition relation, i.e. 2 · |Q|2 · |Γ |2.

We define a linearly bounded automaton to be a Turing machine which uses n
tape cells for a Turing machine description of size n (i.e. the amount of tape
matches the size of the transition relation). We encode the configuration of an au-
tomaton as 〈q, i, w〉, where q is the control state of the automaton, i ∈ {1, . . . , n}
is the current location of the tape head, and w ∈ Γ n is a string of length n which
gives the contents of the n tape cells of the automaton. We call a configuration
〈q, i, w〉 an initial configuration if q = q0.

Many question about the computations of linearly bounded automata are
PSPACE-hard. The first one we use is the empty-tape acceptance problem:

Definition 2. EMPTY-TAPE ACCEPTANCE:

Given a linearly bounded automaton A = 〈Q,Γ, δ, q0, F 〉, does A accept on the

empty input?

It is well known that EMPTY-TAPE ACCEPTANCE is PSPACE-complete.
Moreover, it remains PSPACE-complete even if we restrict the automaton A to
have only one accepting state qF , see e.g. [6]. We define the size of a 1-safe Petri
net system Σ = 〈S, T, F,M0〉 to be the number of bits needed to encode the
flow relation F , i.e. O(|S| · |T |). The result we use is the following theorem, first
proved by Jones, Landweber and Lien [15]:

116 Keijo Heljanko

Theorem 1. A linearly bounded automaton of size n can be simulated by a 1-

safe Petri net system of size O(n2). Moreover, there is a deterministic polynomial

time procedure in the size of the automaton which constructs this net.

We now introduce this mapping from a linearly bounded automaton to a
1-safe Petri net system N(A). See Fig. 4 for an example when |Q| = 3, n = 2
(smaller than the real n to make the figure smaller), and Γ = {#, a, b}.

Let A = 〈Q,Γ, δ, q0, F 〉 be a linearly bounded automaton of size n. We denote
the set of tape cells with C = {c1, . . . , cn}. The simulating Petri net N(A)
contains a place s(q) for each state q ∈ Q, a place s(ci) for each cell ci ∈ C,
and a place s(a, ci) for each pair a ∈ Γ, ci ∈ C. A token on place s(q) tells that
the machine is in state q, a token on s(ci) marks the current head location, and
when the place s(a, ci) is marked it means that the symbol on tape cell ci is a.

The transitions of N(A) are obtained from the transition function of A.
If s(q′, a′, R) ∈ δ(q, a), then there exists for each cell c ∈ C a corresponding
transition t(s(q, a, c)w(a′)s(q′, c′)), whose input places are s(q), s(c), and s(a, c),
and whose output places are s(q′), s(c′), and s(a′, c), where c′ is the cell to the
right of c, except when c is the last cell, in which case c′ = c. The left moves
are handled similarly, except that now the first cell is an exception, moving left
on it will leave the head on the leftmost cell. The initial marking of N(A) has
one token on s(q0), one on s(c1), and one on each of the places s(#, ci), for all
i ∈ {1, . . . , n}. The total size of the net system N(A) is O(n2) [6].

s(q0)

s(q2)

s(q1)

s(#,c2)

s(a,c2)

s(c2)s(c1)

s(#,c1)

s(a,c1)

s(b,c1)
s(b,c2)

t(s(q0,#,c1)w(a)s(q1,c2)) t(s(q0,#,c2)w(a)s(q1,c2))

Fig. 4. A part of N(A) simulating a transition (q1, a, R) ∈ δ(q0, #).

In this work we use polynomial-time many-one reductions (i.e. Karp reduc-
tions). Thus given a linearly bounded automaton A with a unique accepting
state qF , we can in deterministic polynomial time construct N(A). Now to de-
cide EMPTY-TAPE ACCEPTANCE we need to answer the following problem
on N(A): Is there a reachable marking M of N(A), such that M(s(qF)) = 1?

It is easy to see from the semantics of the branching time temporal logic
CTL [3], that the question above is equivalent to the CTL model checking ques-

Model Checking with Finite Complete Prefixes Is PSPACE-complete 117

tion: N(A) |= EF (s(qF)), i.e. does the formula EF (s(qF)) hold on the inter-
leaved reachability graph of N(A)? (We use place names as atomic propositions,
e.g. s(qF) is true in a markingM iff M(s(qF)) = 1.) Thus CTL model checking is
PSPACE-hard in the size of the net system N(A). The model checking problem
is also in PSPACE in the size of the 1-safe net system for CTL [6].

4.2 Another PSPACE-hardness Proof with 1-safe Petri Nets

We present an alternative PSPACE-hardness proof for CTL model checking with
1-safe Petri nets. This proof was created to make our proof about prefix model
checking complexity (to be presented in the next section) easier.

We use another PSPACE-complete problem for linearly bounded automata:

Definition 3. ARBITRARY-TAPE-STATE ACCEPTANCE:

Given a linearly bounded automaton A = 〈Q,Γ, δ, q0, F 〉 with unique accepting

state qF , does there exists an initial configuration on which A accepts?

In other words: Does there exist an accepting execution of A starting from
some initial configuration 〈q0, i, w〉, where i ∈ {1, . . . , n} and w ∈ Γ n?

Theorem 2. ARBITRARY-TAPE-STATE ACCEPTANCE is PSPACE-

complete.

Proof. See [13]. ut

Given a linearly bounded automaton A we will now reduce the problem
ARBITRARY-TAPE-STATE ACCEPTANCE into the problem of model check-
ing a certain fixed CTL-formula φ on a 1-safe net system C(A). The main intu-
ition behind the reduction is that C(A) is a “cheating simulation” of A, namely
it has also behaviors which do not correspond to a simulation of an execution of
A. The formula φ takes care of ignoring the cheating runs of the net system. We
construct a 1-safe Petri net, which first “randomly” initializes the system into
some initial state, and then starts to simulate the behavior of the automaton A.

We use the net system N(A) as defined in the previous section as the basis
of our mapping, add some places and transitions, and change the initial marking
to create a net system C(A) (for details, see [13]). See Fig. 5 for an example of
the initialization and simulation of the same transition as in Fig. 4. The places
s(nq), s(nc), and s(nci) for all i ∈ {1, . . . , n} are new. They are used to mark
that the control state, head location, or contents of the tape cell ci has not been
initialized yet, respectively. For each state qi ∈ Q there exists a new transition
t(nqi) whose preset is s(nq) and whose postset is s(qi). For each tape cell ci ∈ C
there exists a new transition t(nci) whose preset is s(nc) and whose postset is
s(ci). Also for each pair (a, ci), such that a ∈ Γ, ci ∈ C, there exists a new
transition t(n(a, ci)) whose preset is s(nci) and whose postset is s(a, ci). The
initial marking is changed to have a token on the new places added to C(A),
and no tokens on other places. This denotes the fact that the initialization needs
to be done for state, head location, and each tape cell.

118 Keijo Heljanko

t(nq0)

s(nc2)

t(n(b,c2))t(n(#,c1))t(nq2) t(n(b,c1))

t(nc1)

s(nc1)

s(#,c2)s(#,c1)

s(a,c2)

s(c2)

s(b,c2)

t(s(q0,#,c1)w(a)s(q1,c2)) t(s(q0,#,c2)w(a)s(q1,c2))

s(c1)

s(a,c1)

s(b,c1)

s(q0)

s(q2)

s(q1)

s(nq)

t(nq1) t(n(a,c1))

t(n(#,c2))

t(n(a,c2))

t(nc2)

s(nc)

Fig. 5. A cheating Turing machine simulator.

Note that we are even initializing the simulation initial state randomly, in-
stead of initializing it to the state q0. Thus our simulator is a cheating one. Also
note that the initialization and the beginning of the simulation are not synchro-
nized. This is needed for the prefix to be created to be a compact one, however,
it somewhat complicates the proofs in [13].

Lemma 1. The net system C(A) is 1-safe.

Proof. The net system C(A) has the following marking invariants:

– M(s(nq)) +
∑

qi∈Q M(s(qi)) = 1,
– M(s(nc)) +

∑
ci∈C M(s(ci)) = 1, and

– for all i ∈ {1, . . . , n} : M(s(nci)) +
∑

a∈Γ M(s(a, ci)) = 1.

The invariants cover all the places of the net system C(A), thus it is 1-safe. ut

Now we can show PSPACE-completeness by model checking the CTL formula
φ = EF (s(q0) ∧ EF (s(qF))) on the net system C(A).

Lemma 2. Let A be a linearly bounded automaton with a unique accepting state

qF . It holds that C(A) |= EF (s(q0) ∧ EF (s(qF))) iff A has an accepting execu-

tion starting from some initial configuration of A.

Proof. The idea of the proof in one direction is to take an accepting execution of
A, and transform it to an execution of C(A), which first fires n+2 initialization
transitions and then starts simulating the execution of A, giving a witness for
the formula φ. The other direction is a bit more involved. Whenever C(A) has
an execution which is a witness of φ, it actually also has an execution which first

Model Checking with Finite Complete Prefixes Is PSPACE-complete 119

fires n + 2 initialization transitions, and then starts simulating (an accepting
execution of) A. Proving this requires a number of lemmas about (a particular
kind of) commutativity between the initialization and simulation transitions of
C(A). For more details, see [13]. ut

Theorem 3. Model checking a fixed size CTL formula φ is PSPACE-complete

in the size of the 1-safe net Σ.

Proof. To show PSPACE-hardness we use the Lemma 2 to reduce the problem
ARBITRARY-TAPE-STATE ACCEPTANCE to the problem of CTL model
checking a fixed size formula φ = EF (s(q0) ∧ EF (s(qF))) on the net system
C(A). The size of C(A) is O(n2), i.e. polynomial in the size of A, and the
reduction can be done in deterministic polynomial time.

The problem is in PSPACE by Lemma 1, combined with the proof of CTL
model checking being in PSPACE in the size of 1-safe net system, see e.g. [6]. ut

4.3 Model Checking with Finite Complete Prefixes

We will now make use of the machinery created in the previous sections. We will
prove model checking complexity results for algorithms which are given a finite
complete prefix of a 1-safe Petri net as the input.

We use the net system C(A) as our starting point, and define the prefix
βC(A) to be identical to the first two levels of the unfolding of C(A) (see [13]
for the formal definition). For an example of the prefix, see Fig. 6, which is the
prefix of the net system in Fig. 5. The prefix βC(A) contains exactly as many

b(q0)

b(nq)

b(q2)

b(q1)

e(nq1)

e(nq0)

b(#,c2)

b(a,c2)

b(nc2)

e(n(#,c2)) e(n(b,c2))

e(n(a,c2))

b(c2)b(c1)

b(#,c1)

b(a,c1)

b(b,c1)

e(n(#,c1))e(nq2) e(n(b,c1))

e(n(a,c1))

b(nc)

e(nc1) e(nc2)

b(b,c2)

b(nc1)

e(b(q0,#,c1)w(a)b(q1,c2)) e(b(q0,#,c2)w(a)b(q1,c2))

b(q1,e(...))
b(c2,e(...))

b(a,c1,e(...)) b(q1,e(...))
b(c2,e(...))

b(a,c2,e(...))

Fig. 6. A finite complete prefix of the cheating Turing machine simulator.

120 Keijo Heljanko

events as there are transitions in C(A). Only the conditions in the postsets of the
transitions corresponding to the simulation transitions are new, and there are at
most 6 · |Q|2 · |Γ |2 of them. Therefore the size of the prefix βC(A) is polynomial
in the size of C(A) (and thus also in size of A).

Lemma 3. The prefix βC(A) is a finite complete prefix of the net system C(A).

Proof. See [13]. ut

Now we can present the main result of this work.

Theorem 4. Model checking a fixed size CTL formula φ is PSPACE-complete

in the size of a finite complete prefix β of a 1-safe net Σ.

Proof. See [13] for details. To show PSPACE-hardness we use the reduction used
in the proof of Theorem 3, and then reduce this problem further to CTL model
checking φ with βC(A) by creating βC(A) in deterministic polynomial time from
C(A). Thus by Lemma 3 we get the PSPACE-hardness result.

To show that the problem is in PSPACE in the size of the prefix we use the
fact that given a prefix β of a 1-safe net system Σ, and a formula φ, we can in
polynomial space construct a net system Σ ′ (by folding the acyclic prefix back
into a cyclic net system in the labelling respecting way). For this net system it
holds that Σ′ |= φ iff Σ |= φ. Then we CTL model check Σ ′ |= φ in PSPACE [6]
for a total complexity of PSPACE. ut

The CTL formula φ = EF (s(q0) ∧ EF (s(qF))) syntactically belongs to all
the logics UB−, UB, CTL, and CTL∗ (see [3], for the UB logics see e.g. [8]).
Therefore the PSPACE-hardness result also applies to them.

We will now require without loss of generality that all executions of the
automaton A entering the final state qF will keep on looping back to the final
state qF thus creating an infinite execution in which the final state is repeated.

We can then create the linear temporal logic LTL (see [3]) formula ψ =
2(¬(s(q0)) ∨ 2(¬(s(qF)))). Now it is easy to see from the semantics of LTL
that C(A) |= φ iff C(A) 6|= ψ. A violation of this LTL formula can be expressed
by a Büchi automaton, which can be translated into an equivalent linear-time
µ-calculus formula (see e.g. [2]). The LTL formula ψ is also a syntactic safety
formula, and thus a violation of this property can also be expressed by a de-
terministic finite automaton [17]. Thus we get a PSPACE-hardness result for
LTL model checking, Büchi emptiness checking, linear-time µ-calculus model
checking, and safety model checking.

The model checking problems mentioned above are in PSPACE in the size
of the 1-safe net system, and thus we can use the proof of Theorem 4 also with
them (see [6], for CTL∗ we create a concurrent program from a 1-safe Petri net
in deterministic polynomial time, and then use a similar result presented for
concurrent programs in e.g. [16]). Therefore these model checking problems are
PSPACE-complete in the size of a finite complete prefix of a 1-safe Petri net.

Model Checking with Finite Complete Prefixes Is PSPACE-complete 121

5 Conclusions

We have shown that model checking a fixed size formula of several temporal log-
ics, including LTL, CTL, and CTL∗, is PSPACE-complete in the size of a finite
complete prefix of a 1-safe Petri net. This is to be contrasted with the reach-
ability problem, in which a PSPACE-complete problem for 1-safe Petri nets is
transformed by the prefix generation process into (a potentially exponentially
larger) NP-complete problem, see e.g. [13]. However, such a drop in complexity
(assuming NP is easier than PSPACE) does not occur in the case of model check-
ing involving nested temporal modalities. Thus, loosely speaking, with prefixes
reachability is easier than “repeated reachability” (see [13]).

Our proof employs a class of 1-safe Petri nets for which it is easy to create a
finite complete prefix by using semantic arguments. We have shown that some-
times the prefixes created by current prefix generation algorithms [10] will be ex-
ponentially larger than allowed by the semantic completeness criterion (Def. 1).
The definition of a suitable prefix minimality criterion, and the creation of a
procedure to always obtain these compact prefixes is left for further work.

There are prefix based model checkers which handle nested temporal modal-
ities. The LTL model checker of [21] creates a certain graph, whose size can be
exponential in the size of the prefix. The construction employed by the branch-
ing time model checker of [5, 12] to handle nested temporal modalities is more
involved, and relating our work to the results of [12] is left for further study. We
would also like to know whether the prefixes generated by [10] have some prop-
erties which would allow simpler model checking algorithms than the prefixes
fulfilling only the semantic prefix completeness criterion. Finally, for LTL model
checking we can change the model checker to take both the net system, and the
LTL(-X) formula ψ as input to the prefix generation process. In this approach
also the semantic prefix completeness criterion is parameterized by the checked
formula, and the model checking can be done in polynomial time in the size of
this “product” prefix [7]. The price to pay is a larger prefix. A simpler product
method works with safety model checking.

Acknowledgements

Part of this work was done during a visit to Prof. J. Esparza’s research group
at TU München. The author would like to thank for the visit opportunity, and
for discussions about the unfolding method. The author would also like to thank
Ilkka Niemelä and Tommi Junttila for critical comments on this work.

References

1. E. Best. Partial order verification with PEP. In Proceedings of POMIV’96, Work-
shop on Partial Order Methods in Verification. American Mathematical Society,
July 1996.

2. M. Dam. Fixpoints of Büchi automata. In Proceedings of the 12th International
Conference of Foundations of Software Technology and Theoretical Computer Sci-
ence, pages 39–50, 1992. LNCS 652.

122 Keijo Heljanko

3. E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B, Formal Models and Semantics, pages 995–1072. North-Holland
Pub. Co./MIT Press, 1990.

4. J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–591,
1991.

5. J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming, 23(2):151–195, 1994.

6. J. Esparza. Decidability and complexity of Petri net problems – An introduction.
In Lectures on Petri Nets I: Basic Models, pages 374–428. Springer-Verlag, 1998.
LNCS 1491.

7. J. Esparza and K. Heljanko. A new unfolding approach to LTL model check-
ing. In Proceedings of 27th International Colloquium on Automata, Languages and
Programming (ICALP’2000), July 2000. Accepted for publication.

8. J. Esparza and M. Nielsen. Decidability issues for Petri Nets - a survey. Journal
of Information Processing and Cybernetics 30(3), pages 143–160, 1994.

9. J. Esparza and S. Römer. An unfolding algorithm for synchronous products of
transition systems. In Proceedings of the 10th International Conference on Con-
currency Theory (Concur’99), pages 2–20. Springer-Verlag, 1999. LNCS 1664.

10. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. In Proceedings of Second International Workshop on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’96), pages 87–106.
Springer-Verlag, March 1996. LNCS 1055.

11. J. Feigenbaum, S. Kannan, M. Y. Vardi, and M. Viswanathan. Complexity of prob-
lems on graphs represented as OBDDs. Chigago Journal of Theoretical Computer
Science, 1999(5):1–25, 1999.

12. B. Graves. Computing reachability properties hidden in finite net unfoldings. In
Proceedings of 17th Foundations of Software Technology and Theoretical Computer
Science Conference, pages 327–341. Springer-Verlag, 1997. LNCS 1346.

13. K. Heljanko. Deadlock and reachability checking with finite complete prefixes. Re-
search Report A56, Helsinki University of Technology, Laboratory for Theoretical
Computer Science, Espoo, Finland, December 1999. Licentiate’s Thesis. Available
at http://www.tcs.hut.fi/pub/reports/A56.ps.gz.

14. K. Heljanko. Minimizing finite complete prefixes. In Proceedings of the Workshop
Concurrency, Specification & Programming 1999, pages 83–95. Warsaw University,
Warsaw, Poland, September 1999.

15. N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some problems in
Petri nets. Theoretical Computer Science, 4:277–299, 1977.

16. O. Kupferman. Model Checking for Branching-Time Temporal Logics. PhD thesis,
Technion, Israel Institute of Technology, Haifa, Israel, June 1995.

17. O. Kupferman and M. Y. Vardi. Model checking of safety properties. In Proceeding
of 11th International Conference on Computer Aided Verification (CAV’99), pages
172–183. Springer-Verlag, 1999. LNCS 1633.

18. R. Langerak and E. Brinksma. A complete finite prefix for process algebra.
In Proceeding of 11th International Conference on Computer Aided Verification
(CAV’99), pages 184–195. Spriger-Verlag, 1999. LNCS 1633.

19. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
20. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
21. F. Wallner. Model checking techniques using net unfoldings. PhD thesis, Technis-

che Universität München, Germany, forthcoming.

