
A New Unfolding Approach

to LTL Model Checking ?

Javier Esparza1 and Keijo Heljanko2

1 Institut für Informatik, Technische Universität München, Germany
e-mail: esparza@in.tum.de

2 Lab. for Theoretical Computer Science, Helsinki University of Technology, Finland
e-mail: Keijo.Heljanko@hut.fi

Abstract A new unfolding approach to LTL model checking is pre-
sented, in which the model checking problem can be solved by direct
inspection of a certain finite prefix. The techniques presented so far re-
quired to run an elaborate algorithm on the prefix.

1 Introduction

Unfoldings are a partial order technique for the verification of concurrent and dis-
tributed systems, initially introduced by McMillan [11]. They can be understood
as the extension to communicating automata of the well-known unfolding of a
finite automaton into a (possibly infinite) tree. The unfolding technique can be
applied to systems modelled by Petri nets, communicating automata, or process
algebras [4,3,10]. It has been used to verify properties of circuits, telecommuni-
cation systems, distributed algorithms, and manufacturing systems [1].

Unfoldings have proved to be very suitable for deadlock detection and invari-
ant checking [11]. For these problems, one first constructs a so-called complete
prefix [4], a finite initial part of the unfolding containing all the reachable states.
This prefix is at most as large as the state space, and usually much smaller (often
exponentially smaller). Once the prefix has been constructed, the deadlock de-
tection problem can be easily reduced to a graph problem [11], an integer linear
programming problem [12], or to a logic programming problem [8].

In [2,7] and [17,16], unfolding-based model checking algorithms have been
proposed for a simple branching-time logic and for LTL, respectively. Although
the algorithms have been applied with success to a variety of examples, they are
not completely satisfactory: After constructing the complete prefix, the model
checking problem cannot be yet reduced to a simple problem like, say, finding
cycles in a graph. In the case of LTL the intuitive reason is that the infinite
sequences of the system are “hidden” in the finite prefix in a complicated way.
In order to make them “visible”, a certain graph has to be constructed. Unfor-
tunately, the graph can be exponentially larger than the complete prefix itself.

? Work partially supported by the Teilprojekt A3 SAM of the Sonderforschungsbereich
342 “Werkzeuge und Methoden für die Nutzung paralleler Rechnerarchitekturen”,
the Academy of Finland (Project 47754), and the Nokia Foundation.

c© 2000/2002 Springer-Verlag Berlin Heidelberg. Reprinted, with permission, from
U. Montanari et al. (Eds.): ICALP 2000, LNCS 1853, pp. 475–486, 2000.

476 J. Esparza and K. Heljanko

Niebert has observed [13] that this exponential blow-up already appears in a sys-
tem of n independent processes, each of them consisting of an endless loop with
one single action as body. The complete prefix has size O(n), which in principle
should lead to large savings in time and space with respect to an interleaving
approach, but the graph is of size O(2n), i.e. as large as the state space itself.

In this paper we present a different unfolding technique which overcomes this
problem. Instead of unrolling the system until a complete prefix has been gener-
ated, we “keep on unrolling” for a while, and stop when certain conditions are
met. There are two advantages: (i) the model checking problem can be solved by
a direct inspection of the prefix, and so we avoid the construction of the possibly
exponential graph; and, (ii) the algorithm for the construction of the new prefix
is similar to the old algorithm for the complete prefix; only the definition of a
cut-off event needs to be changed. The only disadvantage is the larger size of the
new prefix. Fortunately, we are able to provide a bound: the prefix of a system
with K reachable states contains at most O(K2) events, assuming that the sys-
tem is presented as a 1-safe Petri net or as a product of automata1. Notice that
this is an upper bound: the new prefix is usually much smaller than the state
space, and in particular for Niebert’s example it grows linearly in n.

The paper is structured as follows (for detailed definitions and proofs see
the full version [5]). Section 2 presents the automata theoretic approach to LTL
model checking. In Sect. 3 the unfolding method is introduced. Sections 4 and
5 contain the tableau systems for the two subproblems. In Sect. 6 we show how
LTL model checking can be solved with the presented tableau systems. In Sect. 7
we conclude and discuss topics for further research.

2 Automata theoretic approach to model checking LTL

Petri nets. We assume that the reader is familiar with basic notions, such as
net, preset, postset, marking, firing, firing sequence, and reachability graph. We
consider labelled nets, in which places and transitions carry labels taken from a
finite alphabet L, and labelled net systems. We denote a labelled net system by
Σ = (P, T, F, l, M0), where P and T are the sets of places and transitions, F is
the flow function F : (P × T) ∪ (T × P) → {0, 1}, l: P ∪ T → L is the labelling
function, and M0 is the initial marking.

We present how to modify the automata theoretic approach to model check-
ing LTL [15] to best suit the net unfolding approach. For technical convenience
we use an action-based temporal logic instead of a state-based one, namely the
linear temporal logic tLTL′ of Kaivola, which is immune to the stuttering of in-
visible actions [9]. With small modifications the approach can also handle state
based stuttering invariant logics such as LTL-X. Given a finite set A of actions,
and a set V ⊆ A of visible actions, the abstract syntax of tLTL′ is given by:

ϕ ::= > | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2 | ϕ1 U
a ϕ2, where a ∈ V

1 More precisely, the number of non-cut-off events is at most O(K2).

A New Unfolding Approach to LTL Model Checking 477

Formulas are interpreted over sequences of Aω. The semantics of ϕ1 U ϕ2 is
as expected. Loosely speaking, a sequence w satisfies ϕ1 Ua ϕ2 if ϕ1 holds until
the first a in w, and then ϕ2 holds2.

Given a net system Σ = (P, T, F, l, M0), where the transitions of T are la-
belled with actions from the set A, and a formula ϕ of tLTL′, the model checking
problem consists of deciding if all the infinite firing sequences of Σ satisfy ϕ.

The automata theoretic approach attacks this problem as follows. First, a
procedure similar to that of [6] converts the negation of ϕ into a Büchi automaton
A¬ϕ over the alphabet Γ = V ∪{τ}, where τ 6∈ A is a new label used to represent
all the invisible actions. Then, this automaton is synchronized with Σ on visible
actions (see [5] for details). The synchronization can be represented by a new

labelled net system Σ¬ϕ containing a transition (u, t) for every u = q
a

−−−→ q′ in
A¬ϕ and for every t ∈ T , such that l(t) = a and a ∈ V , plus other transitions for
the invisible transitions of Σ. We say that (u, t) is an infinite-trace monitor if q′

is a final state of A¬ϕ, and a livelock monitor if the automaton A¬ϕ accepts an
infinite sequence of invisible transitions (a livelock) with q′ as initial state. The
sets of infinite-trace and livelock monitors are denoted by I and L, respectively.

An illegal ω-trace of Σ¬ϕ is an infinite firing sequence M0
t1t2...

−−−−−−→ such that
ti ∈ I for infinitely many indices i. An illegal livelock of Σ¬ϕ is an infinite firing

sequence M0
t1t2...ti−−−−−−−→ M

ti+1ti+2...
−−−−−−−−−→ such that ti ∈ L, and ti+k ∈ (T \ V)

for all k ≥ 1. We have the following result:

Theorem 1. Let Σ be a labelled net system, and ϕ a tLTL′-formula. Σ |= ϕ if
and only if Σ¬ϕ has no illegal ω-traces and no illegal livelocks.

The intuition behind this theorem is as follows. Assume that Σ can execute
an infinite firing sequence corresponding to a word w ∈ (V ∪ {τ})ω violating ϕ
(where ‘corresponding’ means that the firing sequence executes the same visible
actions in the same order, and an invisible action for each τ). If w contains
infinitely many occurrences of visible actions, then Σ¬ϕ contains an illegal ω-
trace; if not, it contains an illegal livelock.

In the next sections we provide unfolding-based solutions to the problems
of detecting illegal ω-traces and illegal livelocks. We solve the problems in an
abstract setting. We fix a net system Σ = (P, T, F, M0), where T is divided into
two sets V and T \V of visible and invisible transitions, respectively. Moreover, T
contains two special subsets L and I . We assume that no reachable marking of Σ
concurrently enables a transition of V and a transition of L. We further assume
that M0 does not put more than one token on any place. In particular, when
applying the results to the model checking problem for tLTL′ and Petri nets, the
system Σ is the synchronization Σ¬ϕ of a Petri net and a Büchi automaton, and
it satisfies these conditions. We use as running example the net system of Fig. 1.
We have V = {t6}, I = {t1}, and L = {t2}. The system has illegal ω-traces (for
instance, (t1t3t4t6t7)

ω), but no illegal livelocks.

2 Kaivola’s semantics is interpreted over A
∗

∪A
ω, which is a small technical difference.

478 J. Esparza and K. Heljanko

p1 p2

p3 p4 p5

p6

t1 t2 t3

t4 t5

t6

p7

t7

LI

V

Figure 1. A net system

3 Basic definitions on unfoldings

In this section we briefly introduce the definitions we need to describe the un-
folding approach to our two problems. More details can be found in [4].

Occurrence nets. Given two nodes x and y of a net, we say that x is causally
related to y, denoted by x ≤ y, if there is a path of arrows from x to y. We say
that x and y are in conflict, denoted by x#y, if there is a place z, different from
x and y, from which one can reach x and y, exiting z by different arrows. Finally,
we say that x and y are concurrent, denoted by xco y, if neither x ≤ y nor y ≤ x
nor x#y hold. A co-set is a set of nodes X such that x co y for every x, y ∈ X .
Occurrence nets are those satisfying the following three properties: the net, seen
as a graph, has no cycles; every place has at most one input transition; and, no
node is in self-conflict, i.e., x#x holds for no x. A place of an occurrence net is
minimal if it has no input transitions. The net of Fig. 2 is an infinite occurrence
net with minimal places a, b. The default initial marking of an occurrence net
puts one token on each minimal place an none in the rest.

Branching processes. We associate to Σ a set of labelled occurrence nets, called
the branching processes of Σ. To avoid confusions, we call the places and transi-
tions of branching processes conditions and events, respectively. The conditions
and events of branching processes are labelled with places and transitions of Σ,
respectively. The conditions and events of the branching processes are subsets
from two sets B and E , inductively defined as the smallest sets satisfying:

– ⊥ ∈ E , where ⊥ is an special symbol;
– if e ∈ E , then (p, e) ∈ B for every p ∈ P ;
– if ∅ ⊂ X ⊆ B, then (t, X) ∈ E for every t ∈ T .

In our definitions we make consistent use of these names: The label of a
condition (p, e) is p, and its unique input event is e. Conditions (p,⊥) have no

A New Unfolding Approach to LTL Model Checking 479

input event, i.e., the special symbol ⊥ is used for the minimal places of the
occurrence net. Similarly, the label of an event (t, X) is t, and its set of input
conditions is X . The advantage of this scheme is that a branching process is
completely determined by its sets of conditions and events. We make use of this
and represent a branching process as a pair (B, E).

Definition 1. The set of finite branching processes of a net system Σ with the
initial marking M0 = {p1, . . . , pn} is inductively defined as follows:

– ({(p1,⊥), . . . , (pn,⊥)}, ∅) is a branching process of Σ.3

– If (B, E) is a branching process of Σ, t ∈ T , and X ⊆ B is a co-set labelled
by •t, then (B ∪{(p, e) | p ∈ t•} , E ∪{e}) is also a branching process of Σ,
where e = (t, X). If e /∈ E, then e is called a possible extension of (B, E).

The set of branching processes of Σ is obtained by declaring that the union
of any finite or infinite set of branching processes is also a branching process,
where union of branching processes is defined componentwise on conditions and
events. Since branching processes are closed under union, there is a unique max-
imal branching process, called the unfolding of Σ. The unfolding of our running
example is an infinite occurrence net. Figure 2 shows an initial part. Events and
conditions have been assigned identificators that will be used in the examples.
For instance, the event (t1, {(p1,⊥)}) is assigned the identificator 1.

p1

p1 p1

p2

p2 p2

p3

p3 p3

p4

p4 p4

p5

p5 p5

p6 p6

p6 p6p6 p6

t1

t1 t1

t2

t2 t2

t3

t3 t3

t4

t4 t4

t5

t5 t5

t6 t6

p7 p7

p7 p7p7 p7

t7 t7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 2 3

4 5

6 7 8 9

10 11 12 13 14 15

16 17 18 19

c d e

f g h i

j k l m

n o p q r s

t u v w x y z a’

a b

Figure 2. The unfolding of Σ

3 This is the point at which we use the fact that the initial marking is 1-safe.

480 J. Esparza and K. Heljanko

Configurations. A configuration of an occurrence net is a set of events C satis-
fying the two following properties: C is causally closed, i.e., if e ∈ C and e′ < e
then e′ ∈ C, and C is conflict-free, i.e., no two events of C are in conflict. Given
an event e, we call [e] = {e′ ∈ E | e′ ≤ e} the local configuration of e. Let
Min denote the set of minimal places of the branching process. A configura-
tion C of the branching process is associated with a marking of Σ denoted by
Mark (C) = l((Min ∪ C•) \ •C).

In Fig. 2, {1, 3, 4, 6} is a configuration, and {1, 4} (not causally closed) or
{1, 2} (not conflict-free) are not. A set of events is a configuration if and only
if there is one or more firing sequences of the occurrence net (from the default
initial marking) containing each event from the set exactly once, and no fur-
ther events. These firing sequences are called linearisations. The configuration
{1, 3, 4, 6} has two linearisations, namely 1 3 4 6 and 3 1 4 6. All linearisations lead
to the same reachable marking. For example, the two sequences above lead to the
marking {p1, p7}. By applying the labelling function to a linearisation we obtain
a firing sequence of Σ. Abusing of language, we also call this firing sequence a
linearisation. In our example we obtain t1t3t4t6 and t3t1t4t6 as linearisations.

Given a configuration C, we denote by ↑C the set of events e ∈ E, such that:
(1) e′ < e for some event e′ ∈ C, and (2) e is not in conflict with any event of
C. Intuitively, ↑C corresponds to the behavior of Σ from the marking reached
after executing any of the linearisations of C. We call ↑C the continuation after
C of the unfolding of Σ. If C1 and C2 are two finite configurations leading to
the same marking, i.e. Mark (C1) = M = Mark (C2), then ↑C1 and ↑C2 are
isomorphic, i.e., there is a bijection between them which preserves the labelling
of events and the causal, conflict, and concurrency relations (see [4]).

4 A tableau system for the illegal ω-trace problem

In this section we present an unfolding technique for detecting illegal ω-traces.
We introduce it using the terminology of tableau systems, the reason being that
the technique has many similarities with tableau systems as used for instance
in [18] for model-checking LTL, or in [14] for model-checking the mu-calculus.
However, no previous knowledge of tableau systems is required.

Adequate orders. We need the notion of adequate order on configurations [4]. In
fact, our tableau system will be parametric in the adequate order, i.e., we will
obtain a different system for each adequate order. Given a configuration C of the
unfolding of Σ, we denote by C⊕E the set C∪E, under the condition that C∪E
is a configuration satisfying C ∩E = ∅. We say that C ⊕E is an extension of C.
Now, let C1 and C2 be two finite configurations leading to the same marking.
Then ↑C1 and ↑C2 are isomorphic. This isomorphism, say f , induces a mapping
from the extensions of C1 onto the extensions of C2; the image of C1 ⊕E under
this mapping is C2 ⊕ f(E).

Definition 2. A partial order ≺ on the finite configurations of the unfolding of
a net system is an adequate order if:

A New Unfolding Approach to LTL Model Checking 481

– ≺ is well-founded,
– C1 ⊂ C2 implies C1 ≺ C2, and
– ≺ is preserved by finite extensions; if C1 ≺ C2 and Mark (C1) = Mark (C2),

then the isomorphism f from above satisfies C1 ⊕ E ≺ C2 ⊕ f(E) for all
finite extensions C1 ⊕E of C1.

Total adequate orders are particularly good for our tableau systems because
they lead to stronger conditions for an event to be a terminal, and so to smaller
tableaux. Total adequate orders for 1-safe Petri nets and for synchronous prod-
ucts of transition systems, have been presented in [4,3].

4.1 The tableau system

Given a configuration C of the unfolding of Σ, denote by #IC the number of
events e ∈ C labelled by transitions of I .

Definition 3. An event e of a branching process BP is a repeat (with respect
to ≺) if BP contains another event e′, called the companion of e, such that
Mark ([e′]) = Mark ([e]), and either

(I) e′ < e, or
(II) ¬(e′ < e), [e′] ≺ [e], and #I [e

′] ≥ #I [e].

A terminal is a minimal repeat with respect to the causal relation; in other words,
a repeat e is a terminal if the unfolding of Σ contains no repeat e′ < e. Repeats,
and in particular terminals, are of type I or type II, according to the condition
they satisfy.

Events labelled by I-transitions are called I-events. A repeat e with companion
e′ is successful if it is of type I, and [e] \ [e′] contains some I-event. Otherwise
it is unsuccessful.

A tableau is a branching process BP such that for every possible extension
e of BP at least one of the immediate causal predecessors of e is a terminal. A
tableau is successful if at least one of its terminals is successful.

Loosely speaking, a tableau is a branching process which cannot be extended
without adding a causal successor to a terminal. In the case of a terminal of type
I, ↑[e] need not be constructed because ↑[e′], which is isomorphic to it, will be
in the tableau. In the case of a terminal of type II, ↑[e] need not be constructed
either, because ↑[e′] will appear in the tableau. However, in order to guarantee
completeness, we need the condition #I [e

′] ≥ #I [e].
The tableau construction is straightforward. Given Σ = (N, M0), where

M0 = {p1, . . . , pn}, start from the branching process ({(p1,⊥), . . . , (pn,⊥)}, ∅).
Add events according to the inductive definition of branching process, but with
the restriction that no event having a terminal as a causal predecessor is added.
Events are added in ≺ order; more precisely, if [e] ≺ [e′], then e is added before
e′. The construction terminates when no further events can be added.

482 J. Esparza and K. Heljanko

We construct the tableau corresponding to the net system of Fig. 1 using the
total adequate order of [4].4 All we need to know about this order is that for
the events 4 and 5 in Fig. 2, [4] ≺ [5] holds. The tableau is the fragment of the
unfolding of Fig. 2 having events 16, 17, and 5 as terminals. Events 16 and 17 are
terminals of type I having event 4 as companion. Event 16 is successful because
the set [16] \ [4] = {6, 7, 10, 11, 12, 16} contains an I-event, namely 10. The
intuition behind these terminals is rather clear: a terminal of type I corresponds
to a cycle in the reachability graph. Loosely speaking, the events of [16] \ [4]
correspond to a firing sequence leading from Mark ([4]) to Mark ([16]), and these
two markings coincide. Since [16] \ [4] contains an I-event, the firing sequence
contains a transition of I , and so we have found an illegal ω-trace. The set [17]\[4]
doesn’t contains any I-event, but ↑[17] need not be constructed, because it is
isomorphic to ↑[4]. Event 5 is a terminal of type II with event 4 as companion
because Mark ([4]) = {p6, p7} = Mark ([5]), [4] ≺ [5], and 1 = #I [4] ≥ #I [5] = 0.
The intuition is that ↑[5] need not be constructed, because it is isomorphic to
↑[4]. However, this doesn’t explain why the condition #I [e

′] ≥ #I [e] is needed.
In [5] we present an example showing that after removing this condition the
tableau system is no longer complete.

Let K denote the number of reachable markings of Σ, and let B denote the
maximum number of tokens that the reachable markings of Σ put in all the
places of Σ. We have the following result:

Theorem 2. Let T be a tableau of Σ constructed according to a total adequate
order ≺.

– T is successful if and only if Σ has an illegal ω-trace.
– T contains at most K2 · B non-terminal events.
– If the transitions of I are pairwise non-concurrent, then T contains at most

K2 non-terminal events.

5 A tableau system for the illegal livelock problem

The tableau system for the illegal livelock problem is a bit more involved that
that of the illegal ω-trace problem. In a first step we compute a set CP =
{M1, . . . , Mn} of reachable markings of Σ, called the set of checkpoints. This set
has the following property: if Σ has an illegal livelock, then it also has an illegal

livelock M0
t1t2...ti−−−−−−−→M

ti+1ti+2...
−−−−−−−−−→ such that ti ∈ L and M is a checkpoint.

For the computation of CP we use the unfolding technique of [4] or [3]; the
procedure is described in Sect. 5.1.

The tableau system solves the problem whether some checkpoint enables an
infinite sequence of invisible actions. Clearly, Σ has an illegal livelock if and
only if this is indeed the case. For this, we consider the net Ninv obtained from
N by removing all the visible transitions together with their adjacent arcs. We
construct unfoldings for the net systems (Ninv , M1), . . . , (Ninv , Mn), and check

4 We can also take the order of [3], which for this example yields the same results.

A New Unfolding Approach to LTL Model Checking 483

on them if the systems exhibit some infinite behavior. The tableau system is
described in Sect. 5.2.

5.1 Computing the set of checkpoints.

We construct the complete prefix of the unfolding of Σ as defined in [4] or [3].
In the terminology of this paper, the complete prefix corresponds to a tableau
in which an event e is a terminal if there is an event e′ such that Mark ([e′]) =
Mark ([e]), and [e′] ≺ [e].

Definition 4. A marking M belongs to the set CP of checkpoints of Σ if M =
Mark ([e]) for some non-terminal event e of the complete prefix of Σ labelled by
a transition of L.

Let us compute CP for our example. The complete prefix of Σ coincides
with the tableau for the illegal ω-trace problem. The events labelled by t2, the
only transition of L, are 2 and 11. The corresponding markings are Mark ([2]) =
{p2, p4} and Mark ([11]) = {p4, p7}. So CP = { {p2, p4}, {p4, p7} }.

5.2 The tableau system

Let {M1, . . . , Mn} be the set of checkpoints obtained in the first phase. We will
use Σ1, . . . , Σn to denote the net systems (Ninv , M1), . . . , (Ninv , Mn).

Definition 5. Let BP1, . . . ,BPn be branching processes of Σ1, . . . , Σn, respec-
tively. An event e of BP i is a repeat (with respect to ≺) if there is an index
j ≤ i and an event e′ in BP j , called the companion of e, such that Mark ([e′]) =
Mark ([e]), and either

(I) j < i, or
(II) i = j and e′ < e, or

(III) i = j, ¬(e′ < e), [e′] ≺ [e], and |[e′]| ≥ |[e]|.

A repeat e of BP i is a terminal if BP i contains no repeat e′ < e. Repeats,
and in particular terminals, are of type I, II, or III, according to the condition
they satisfy. A repeat e with companion e′ is successful if it is of type II, and
unsuccessful otherwise.

A tableau is a tuple BP1, . . . ,BPn of branching processes of Σ1, . . . , Σn such
that for every 1 ≤ i ≤ n and for every possible extension e of BP i at least one
of the immediate causal predecessors of e is a terminal. Each BP i is called a
tableau component. A tableau is successful if at least one of its terminals is
successful.

Observe that an event of BP i can be a repeat because of an event that
belongs to another branching process BP j . The definition of repeat depends on
the order of the checkpoints, but the tableau system defined above is sound and
complete for any fixed order. Because the definition of the tableau component

484 J. Esparza and K. Heljanko

p2

p2

p5

p2

p4 p4

p5

p5

p6

t3

t3

t5

p7

p7

t7

t3

t7

3

5

7

12

9

15

d

e

g

h i

k

p

m

o

s

b

Figure 3. The tableau system for the illegal livelock problem

BP i depends only on the components with a smaller index, we can create the
tableau components in increasing i order. Tableau components are constructed
as for the illegal ω-trace problem, using the new definition of terminal.

The tableau for our example is shown in Fig. 3. The names of places and tran-
sitions have been chosen to match “pieces” of the unfolding in Fig. 2. The first
tableau component contains no terminals; the construction terminates because
no event labelled by an invisible transition can be added. In the second compo-
nent, event 12 is a terminal with event 3 in the first component as companion.
The intuition is that we don’t need to unfold beyond 12 in the second component,
because what we construct can be found after 3 in the first component.

Similarly to the case of the illegal ω-trace problem, a terminal of type II
corresponds to a cycle in the reachability graph. Since the transitions of Ninv

are all invisible, such a cycle always originates an illegal livelock, and so terminals
of type II are always successful. For terminals of type III, the intuition is that
↑ [e] need not be constructed, because it is isomorphic to ↑ [e′]. The condition
|[e′]| ≥ |[e]| is required for completeness (see [5]). We have the following result:

Theorem 3. Let T1, . . . , Tn be a tableau of Σ1, . . . , Σn constructed according to
a total adequate order ≺.

– T1, . . . , Tn is successful if and only if Σ contains an illegal livelock.
– T1, . . . , Tn contain together at most K2 ·B non-terminal events.

5.3 A tableau system for the 1-safe case

If Σ is 1-safe then we can modify the tableau system to obtain a bound of K2

non-terminal events. We modify the definition of the repeats of type II and III:

(II’) i = j and ¬(e′#e), or

A New Unfolding Approach to LTL Model Checking 485

(III’) i = j, e′#e, [e′] ≺ [e], and |[e′]| ≥ |[e]|.

Theorem 4. Let Σ be 1-safe. Let T1, . . . , Tn be a tableau of Σ1, . . . , Σn con-
structed according to a total adequate order ≺, and to the new definition of
repeats of type II and III.

– T1, . . . , Tn is successful if and only if Σ contains an illegal livelock.
– T1, . . . , Tn contain together at most K2 non-terminal events.

6 A tableau system for LTL model checking

Putting the tableau systems of Sections 4 and 5 together, we obtain a tableau
system for the model checking problem of tLTL′. For the sake of clarity we have
considered the illegal ω-trace problem and the illegal livelock problem separately.
However, when implementing the tableau systems there is no reason to do so.
Since all the branching processes we need to construct are “embedded” in the
unfolding of Σ¬ϕ, it suffices in fact to construct one single branching process,
namely the union of all the processes needed to solve both problems.

Clearly, this prefix contains O(K2 · B) non-terminal events. If the system
is presented as a 1-safe Petri net, then the prefix contains O(K2) non-terminal
events because the following two conditions hold: (i) None of the reachable mark-
ings of the synchronization Σ¬φ enable two I-transitions concurrently. (ii) If the
system is a 1-safe Petri net, then the synchronization Σ¬φ is also 1-safe.

7 Conclusions

We have presented a new unfolding technique for checking LTL-properties. We
first make use of the automata-theoretic approach to model checking: a combined
system is constructed as the product of the system itself and of an automaton
for the negation of the property to be checked. The model checking problem
reduces to the illegal ω-trace problem and to the illegal livelock problem for the
combined system. Both problems are solved by constructing certain prefixes of
the net unfolding of the combined system. In fact, it suffices to construct the
union of these prefixes.

The prefixes can be seen as tableau systems for the illegal ω-trace and the
illegal livelock problem. We have proved soundness and completeness of these
tableau systems, and we have given an upper bound on the size of the tableau.
For systems presented as 1-safe Petri nets or products of automata, tableaux
contain at most size O(K2) (non-terminal) events, where K is the number of
reachable states of the system. An interesting open problem is the existence of
a better tableau system such that tableaux contain at most O(K) events. We
conjecture that it doesn’t exist.

The main advantage of our approach is its simplicity. Wallner’s approach pro-
ceeds in two steps: construction of a complete prefix, and then construction of a
graph. The definition of a graph is non-trivial, and the graph itself can be expo-
nential in the size of the complete prefix. Our approach makes the construction
of the graph unnecessary. The price to pay is a larger prefix.

486 J. Esparza and K. Heljanko

References

1. Bibliography on the net unfolding method. Available on the Internet at
http://wwwbrauer.in.tum.de/gruppen/theorie/pom/pom.shtml.

2. J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming, 23:151–195, 1994.

3. J. Esparza and S. Römer. An unfolding algorithm for synchronous products of
transition systems. In Proceedings of the 10th International Conference on Con-
currency Theory (Concur’99), pages 2–20, 1999. LNCS 1055.

4. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. In Proceedings of 2nd International Workshop on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’96), pages 87–106, 1996.
LNCS 1055.

5. Javier Esparza and Keijo Heljanko. A new unfolding approach to LTL model
checking. Research Report A60, Helsinki University of Technology, Laboratory
for Theoretical Computer Science, Espoo, Finland, April 2000. Available at
http://www.tcs.hut.fi/pub/reports/A60.ps.gz.

6. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proceedings of 15th Workshop Protocol
Specification, Testing, and Verification, pages 3–18, 1995.

7. B. Graves. Computing reachability properties hidden in finite net unfoldings. In
Proceedings of 17th Foundations of Software Technology and Theoretical Computer
Science Conference, pages 327–341, 1997. LNCS 1346.

8. K. Heljanko. Using logic programs with stable model semantics to solve deadlock
and reachability problems for 1-safe Petri nets. In Proceedings of 5th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), pages 240–254, 1999. LNCS 1579.

9. R. Kaivola. Using compositional preorders in the verification of sliding window
protocol. In Proceeding of 9th International Conference on Computer Aided Veri-
fication (CAV’97), pages 48–59, 1997. LNCS 1254.

10. R. Langerak and E. Brinksma. A complete finite prefix for process algebra.
In Proceeding of 11th International Conference on Computer Aided Verification
(CAV’99), pages 184–195, 1999. LNCS 1663.

11. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
12. S. Melzer and S. Römer. Deadlock checking using net unfoldings. In Proceedings

of 9th International Conference on Computer-Aided Verification (CAV ’97), pages
352–363, 1997. LNCS 1254.

13. P. Niebert. Personal communication, 1999.
14. C. Stirling and David Walker. Local model checking in the modal mu-calculus.

Theoretical Computer Science, 89(1):161–177, 1991.
15. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics

for Concurrency: Structure versus Automata, pages 238–265, 1996. LNCS 1043.
16. F. Wallner. Model checking techniques using net unfoldings. PhD thesis, Technis-

che Universität München, Germany, forthcoming.
17. F. Wallner. Model checking LTL using net unfoldings. In Proceeding of 10th

International Conference on Computer Aided Verification (CAV’98), pages 207–
218, 1998. LNCS 1427.

18. P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1,2):72–93, 1983.

