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Abstract We report on an implementation of the unfolding approach
to model-checking LTL-X recently presented by the authors. Contrary to
that work, we consider an state-based version of LTL-X, which is more
used in practice. We improve on the checking algorithm; the new version
allows to reuse code much more efficiently. We present results on a set
of case studies.

1 Introduction

Unfoldings [14,6,5] are a partial-order approach to the automatic verification of
concurrent and distributed systems, in which partial-order semantics is used to
generate a compact representation of the state space. For systems exhibiting
a high degree of concurrency, this representation can be exponentially more
succinct than the explicit enumeration of all states or the symbolic representation
in terms of a BDD, thus providing a very good solution to the state-explosion
problem. Unfolding-based model-checking techniques for LTL without the next
operator (called LTL-X in the sequel) were first proposed in [22]. A new algorithm
with better complexity bounds was introduced in [3], in the shape of a tableau
system. The approach is based on the automata-theoretic approach to model-
checking (see for instance [20]), consisting of the following well-known three steps:
(1) translate the negation of the formula to be checked into a Büchi automaton;
(2) synchronize the system and the Büchi automaton in an adequate way to yield
a composed system, and (3) check emptiness of the language of the composed
system, where language is again defined in a suitable way.

In [3] we used an action-based version of LTL-X having an operator φ1Uaφ2

for each action a; φ1Uaφ2 holds if φ1 holds until action a occurs, and immedi-
ately after φ2 holds. Step (2) is very simple for this logic, which allowed us to
concentrate on step (3), the most novel contribution of [3]. However, the state-
based version of LTL-X is more used in practice. The first contribution of this
paper is a solution to step (2) for this case, which turns out to be quite delicate.
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The second contribution of this paper concerns step (3). In [3] we presented
a two-phase solution; the first phase requires to construct one tableau, while the
second phase requires to construct a possibly large set of tableaux. We propose
here a more elegant solution which, loosely speaking, allows to merge all the
tableaux of [3] into one while keeping the rules for the tableau construction
simple and easy to implement.

The third contribution is an implementation using the smodels NP-solver
[18], and a report on a set of case studies.

The paper is structured as follows. Section 2 contains basic definitions on
Petri nets, which we use as system model. Section 3 describes step (2) above
for the state-based version of LTL-X. Readers wishing to skip this section need
only read (and believe the proof of) Theorem 1. Section 4 presents some basic
definitions about the unfolding method. Section 5 describes the new tableau sys-
tem for (3), and shows its correctness. Section 6 discusses the tableau generation
together with some optimizations. Section 7 reports on the implementation and
case studies, and Section 8 contains conclusions.

2 Petri nets

A net is a triple (P, T, F ), where P and T are disjoint sets of places and tran-
sitions, respectively, and F is a function (P × T ) ∪ (T × P ) → {0, 1}. Places
and transitions are generically called nodes. If F (x, y) = 1 then we say that
there is an arc from x to y. The preset of a node x, denoted by •x, is the
set {y ∈ P ∪ T | F (y, x) = 1}. The postset of x, denoted by x•, is the set
{y ∈ P ∪ T | F (x, y) = 1}. In this paper we consider only nets in which every
transition has a nonempty preset and a nonempty postset. A marking of a net
(P, T, F ) is a mapping P → IN (where IN denotes the natural numbers including
0). We identify a marking M with the multiset containing M(p) copies of p for
every p ∈ P . For instance, if P = {p1, p2} and M(p1) = 1, M(p2) = 2, we write
M = {p1, p2, p2}.

A marking M enables a transition t if it marks each place p ∈ •t with a
token, i.e. if M(p) > 0 for each p ∈ •t. If t is enabled at M , then it can fire or
occur, and its occurrence leads to a new marking M ′, obtained by removing a
token from each place in the preset of t, and adding a token to each place in its
postset; formally, M ′(p) = M(p) − F (p, t) + F (t, p) for every place p. For each

transition t the relation
t

−−−→ is defined as follows: M
t

−−−→M ′ if t is enabled at
M and its occurrence leads to M ′.

A 4-tuple Σ = (P, T, F, M0) is a net system if (P, T, F ) is a net and M0 is a
marking of (P, T, F ) (called the initial marking of Σ). A sequence of transitions
σ = t1t2 . . . tn is an occurrence sequence if there exist markings M1, M2, . . . ,
Mn such that

M0
t1−−−−→M1

t2−−−−→ . . .Mn−1
tn−−−−→Mn

Mn is the marking reached by the occurrence of σ, which is also denoted by
M0

σ
−−−→Mn. A marking M is a reachable marking if there exists an occurrence

sequence σ such that M0
σ

−−−→M . An execution is an infinite occurrence se-
quence starting from the initial marking. The reachability graph of a net system
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Σ is the labelled graph having the reachable markings of Σ as nodes, and the
t

−−−→ relations (more precisely, their restriction to the set of reachable mark-
ings) as edges. In this work we only consider net systems with finite reachability
graphs.

A marking M of a net is n-safe if M(p) ≤ n for every place p. A net system
Σ is n-safe if all its reachable markings are n-safe. Fig. 1 shows a 1-safe net
system.

p1 p2

p3 p4 p5

p6

t1 t2 t3

t4 t5

t6

p7

t7

Figure 1. The net system Σ

Labelled nets. Let L be an alphabet. A labelled net is a pair (N, l) (also rep-
resented as a 4-tuple (P, T, F, l)), where N is a net and l : P ∪ T → L is a
labelling function. Notice that different nodes of the net can carry the same
label. We extend l to multisets of P ∪ T in the obvious way.

For each label a ∈ L we define the relation
a

−−−→ between markings as follows:

M
a

−−−→M ′ if M
t

−−−→M ′ for some transition t such that l(t) = a. For a finite se-

quence w = a1a2 . . . an ∈ L∗, M
w

−−−→M ′ denotes that for some reachable mark-
ings M1, M2, . . . , Mn−1 the relation M

a1−−−−→M1
a2−−−−→M2 . . . Mn−1

an−−−−→M ′

holds. For an infinite sequence w = a1a2 . . . ∈ Lω, M
w

−−−→ denotes that
M

a1−−−−→M1
a2−−−−→ M2 . . . holds for some reachable markings M1, M2, . . . .

The reachability graph of a labelled net system (N, l, M0) is obtained by
applying l to the reachability graph of (N, M0). In other words, its nodes are
the set

{l(M) | M is a reachable marking}

and its edges are the set

{l(M1)
l(t)

−−−−→ l(M2) | M1 is reachable and M1
t

−−−→M2} .
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3 Automata Theoretic Approach to Model Checking LTL

We show how to modify the automata theoretic approach to model checking
LTL [20] to best suit the net unfolding method. We restrict the logic LTL by
removing the next time operator X . We call this stuttering invariant fragment
LTL-X. Given a finite set Π of atomic propositions, the abstract syntax of LTL-X
is given by:

ϕ ::= π ∈ Π | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2

The semantics is a set of ω-words over the alphabet 2Π , defined as usual.
Given a 1-safe net system Σ with initial marking M0, we identify the atomic

propositions Π with a subset Obs ⊆ P of observable places of the net system,
while the rest of the places are called hidden. Each marking M determines a
valuation of Π = Obs in the following way: p ∈ Obs is true at M if M puts

a token in p. Now, an execution M0
t1−−−−→M1

t2−−−−→ . . . of Σ satisfies ϕ iff the
ω-word M0M1 . . . satisfies ϕ. The net system Σ satisfies ϕ, denoted Σ |= ϕ, if
every execution of Σ satisfies ϕ.

The approach. Let ϕ be a formula of LTL-X. Using well-known algorithms (see
e.g. [8]) we construct a Büchi automaton A¬ϕ over the alphabet 2Π = 2Obs

which accepts a word w iff w 6|= ϕ.
We define a 1-safe product net system Σ¬ϕ from Σ and A¬ϕ. Σ¬ϕ can be

seen as the result of placing Σ in a suitable environment, i.e., Σ¬ϕ is constructed
by connecting Σ to an environment net system through new arcs.

It is easy to construct a product net system with a distinguished set of
transitions I such that Σ violates ϕ iff some execution of the product fires
some transition of I infinitely often. We call such an execution an illegal ω-
trace. However, this product synchronizes A¬ϕ with Σ on all transitions, which
effectively disables all concurrency present in Σ. Since the unfolding approach
exploits the concurrency of Σ in order to generate a compact representation of
the state space, this product is not suitable, and so we propose a new one.

We define the set V of visible transitions of Σ as the set of transitions which
change the marking of some observable place of Σ. Only these transitions will
synchronize with the automaton. So, for instance, in order to check a property
of the form 2(p → 3q), where p and q are places, we will only synchronize with
the transitions removing or adding tokens to p and q. This approach is similar
but not identical to Valmari’s tester approach described in [19]. (In fact, a subtle
point in Valmari’s construction makes its direct implementation unsuitable for
checking state based LTL-X.)

The price to pay for this nicer synchronization is the need to check not
only for illegal ω-traces, but also for so-called illegal livelocks. The new product
contains a new distinguished set of transitions L (for livelock). An illegal livelock
is an execution of the form σ1tσ2 such that t ∈ L and σ2 does not contain
any visible transition. For convenience we use the notation M0

σ
−−−→M

τ
−−−→

to denote this, and implicitly require that σ = σ1t with t ∈ L and that τ is an
infinite sequence which only contains invisible transitions.
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In the rest of the section we define Σ¬ϕ. Readers only interested in the defi-
nition of the tableau system for LTL model-checking can safely skip it. Only the
following theorem, which is proved hand in hand with the definition, is necessary
for it. Property (b) is what we win by our new approach: The environment only
interferes with the visible transitions of Σ.

Theorem 1. Let Σ be a 1-safe net system whose reachable markings are pair-
wise incomparable with respect to set inclusion.1 Let ϕ be an LTL-X formula
over the observable places of Σ. It is possible to construct a net system Σ¬ϕ

satisfying the following properties:

(a) Σ |= ϕ iff Σ¬ϕ has neither illegal ω-traces nor illegal livelocks.
(b) The input and output places of the invisible transitions are the same in Σ

and Σ¬ϕ.

Construction of Σ¬ϕ We describe the synchronization Σ¬ϕ of Σ and A¬ϕ in a
semiformal but hopefully precise way. Let us start with two preliminaries. First,
we identify the Büchi automaton A¬ϕ with a net system having a place for each
state q, with only the initial state q0 having a token, and a net transition for each
transition (q, x, q′); the input and output places of the transition are q and q′,
respectively; we keep A¬ϕ, q and (q, x, q′) as names for the net representation,
the place and the transition. Second, we split the executions of Σ that violate ϕ
into two classes: executions of type I, which contain infinitely many occurrences
of visible transitions, and executions of type II, which only contain finitely many.
We will deal with these two types separately.

Σ¬ϕ is constructed in several steps:

(1) Put Σ and (the net representation of) A¬ϕ side by side.
(2) For each observable place p add a complementary place (see [17]) p to Σ.

p is marked iff p is not, and so checking that proposition p does not hold is
equivalent to checking that the place p̄ has a token. A set x ⊆ Π can now be
seen as a conjunction of literals, where p ∈ x is used to denote p ∈ (Π \ x).

(3) Add new arcs to each transition (q, x, q′) of A¬ϕ so that it “observes” the
places in x.
This means that for each literal p (p) in x we add an arc from p (p) to
(q, x, q′) and an arc from (q, x, q′) to p (p). The transition (q, x, q′) can only
be enabled by markings of Σ satisfying all literals in x.

(4) Add a scheduler guaranteeing that:
– Initially A¬ϕ can make a move, and all visible moves (i.e., the firings of

visible transitions) of Σ are disabled.
– After a move of A¬ϕ, only Σ can make a move.
– After Σ makes a visible move, A¬ϕ can make a move and until that

happens all visible moves of Σ are disabled.

1 This condition is purely technical. Any 1-safe net system can be easily transformed
into an equivalent one satisfying it by adding some extra places and arcs; moreover,
the condition can be removed at the price of a less nice theory.
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This is achieved by introducing two scheduler places sf and ss [22]. The
intuition behind these places is that when sf (ss) has a token it is the turn
of the Büchi automaton (the system Σ) to make a move. In particular, visible
transitions transfer a token from ss to sf , and Büchi transitions from sf to
ss. Because the Büchi automaton needs to observe the initial marking of Σ,
we initially put one token in sf and no tokens on ss.

(5) Let I be a subset of transitions defined as follows. A transition belongs to I
iff its postset contains a final state of A¬ϕ.

Observe that since only moves of A¬ϕ and visible moves of Σ are scheduled,
invisible moves can still be concurrently executed.

Let Σ′
¬ϕ be the net system we have constructed so far. The following is an

immediate consequence of the definitions:

Σ has an execution of type I if and only if Σ ′
¬ϕ has an illegal ω-trace.

We now extend the construction in order to deal with executions of type II.
Let σ be a type II execution of Σ. Take the sequence of markings reached along
the execution of σ, and project it onto the observable places. Since σ only con-
tains finitely many occurrences of visible transitions, the result is a sequence of
the form O0

0O
1
0 . . . Oj

0O
0
1O

1
1 . . . Ok

1O0
2 . . . O0

n(On)ω. (The moves from Oi to Oi+1

are caused by the firing of visible transitions.)
We can split σ into two parts: a finite prefix σ1 ending with the last occurrence

of a visible transition (σ1 is empty if there are no visible transitions), and an
infinite suffix σ2 containing only invisible transitions. Clearly, the projection onto
the observable places of the marking reached by the execution of σ1 is On

Since LTL-X is closed under stuttering, A¬ϕ has an accepting run

r = q0
O0−−−−→ q1

O1−−−−→ . . .
On−1

−−−−−−→ qn
On−−−−→ qn+1

On−−−−→ qn+2 . . .

where the notation q
O

−−−→ q′ means that a transition (q, x, q′) is taken such that
the literals of x are true at the valuation given by O. We split this run into two

parts: a finite prefix r1 = q0
O0−−−−→ q1 . . . qn−1

On−1

−−−−−−→ qn and an infinite suffix

r2 = qn
On−−−−→ qn+1

On−−−−→ qn+2 . . . .
In the net system representation of A¬ϕ, r1 and r2 correspond to occurrence

sequences. By construction, the “interleaving” of r1 and σ1 yields an occurrence
sequence τ1 of Σ′

¬ϕ.
Observe that reachable markings of Σ ′

¬ϕ are of the form (q, s, O, H), meaning
that they consist of a token on a state q of A¬ϕ, a token on one of the places
of the scheduler (i.e., s ∈ {ss, sf}), a marking O of the observable places, and
a marking H of the hidden places. Let (qn, sf , On, H) be the marking of Σ′

¬ϕ

reached after executing τ1. (We have s = sf because the last transition of σ1

is visible.) The following property holds: With qn as initial state, the Büchi
automaton A¬ϕ accepts the sequence Oω

n . We call any pair (q, O) satisfying this
property a checkpoint and define Σ¬ϕ as follows:
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(6) For each checkpoint (q, O) and for each reachable marking (q, sf , O, H) of
Σ′
¬ϕ, add a new transition having all the places marked at (q, sf , O, H) as

preset, and all the places marked at O and H as postset. Let L (for livelocks)
be this set of transitions.

The reader has possibly observed that the set L can be very large, because
there can be many hidden markings H for a given marking O (exponentially
many in the size of Σ). Apparently, this makes Σ¬ϕ unsuitable for model-
checking. In Sect. 6 we show that this is not the case, because Σ¬ϕ need not be
explicitly constructed.

Observe that after firing a L-transition no visible transition can occur any-
more, because all visible transitions need a token on ss for firing. We prove:

Σ has an execution of type II if and only if Σ¬ϕ has an illegal livelock.

For the only if direction, assume first that σ is a type II execution of Σ.
Let τ1 be the occurrence sequence of Σ¬ϕ defined above (as the “interleaving”
of the prefix σ1 of σ and the prefix r1 of r). Further, let (qn, sf , On, H) be the
marking reached after the execution of τ1, and let t be the transition added in
(6) for this marking. Define ρ1 = τ1 and ρ2 = σ2. It is easy to show that ρ1tρ2

is an execution of Σ¬ϕ and so an illegal livelock. For the if direction, let ρ1tρ2

be an illegal livelock of Σ¬ϕ, where t is an L-transition. After the firing of t
there are no tokens in the places of the scheduler, and so no visible transition
can occur again; hence, no visible transition of Σ occurs in ρ2. Let σ1 and σ2

be the projections of ρ1 and ρ2 onto the transitions of Σ. It is easy to see that
σ = σ1σ2 is an execution of Σ. Since σ2 does not contain any visible transition,
σ is an execution of type II.

4 Basic definitions on unfoldings

In this section we briefly introduce the definitions we needed to describe the
unfolding approach. More details can be found in [6].

Occurrence nets. Given two nodes x and y of a net, we say that x is causally
related to y, denoted by x ≤ y, if there is a (possibly empty) path of arrows
from x to y. We say that x and y are in conflict, denoted by x#y, if there is a
place z, different from x and y, from which one can reach x and y, exiting z by
different arrows. Finally, we say that x and y are concurrent, denoted by x co y,
if neither x < y nor y < x nor x#y hold. A co-set is a set of nodes X such
that x co y for every x, y ∈ X . Occurrence nets are those satisfying the following
three properties: the net, seen as a directed graph, has no cycles; every place has
at most one input transition; and, no node is in self-conflict, i.e., x#x holds for
no x. A place of an occurrence net is minimal if it has no input transitions. The
net of Fig. 2 is an infinite occurrence net with minimal places a, b. The default
initial marking of an occurrence net puts one token on each minimal place an
none in the rest.
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Branching processes. We associate to Σ a set of labelled occurrence nets, called
the branching processes of Σ. To avoid confusions, we call the places and transi-
tions of branching processes conditions and events, respectively. The conditions
and events of branching processes are labelled with places and transitions of Σ,
respectively. The conditions and events of the branching processes are subsets
from two sets B and E , inductively defined as the smallest sets satisfying the
following conditions:

– ⊥ ∈ E , where ⊥ is an special symbol;
– if e ∈ E , then (p, e) ∈ B for every p ∈ P ;
– if ∅ ⊂ X ⊆ B, then (t, X) ∈ E for every t ∈ T .

In our definitions of branching process (see below) we make consistent use of
these names: The label of a condition (p, e) is p, and its unique input event is
e. Conditions (p,⊥) have no input event, i.e., the special symbol ⊥ is used for
the minimal places of the occurrence net. Similarly, the label of an event (t, X)
is t, and its set of input conditions is X . The advantage of this scheme is that a
branching process is completely determined by its sets of conditions and events.
We make use of this and represent a branching process as a pair (B, E).

Definition 1. The set of finite branching processes of a net system Σ with the
initial marking M0 = {p1, . . . , pn} is inductively defined as follows:

– ({(p1,⊥), . . . , (pn,⊥)}, ∅) is a branching process of Σ.
– If (B, E) is a branching process of Σ, t ∈ T , and X ⊆ B is a co-set labelled

by •t, then ( B ∪{(p, e) | p ∈ t•} , E ∪{e} ) is also a branching process of Σ,
where e = (t, X). If e /∈ E, then e is called a possible extension of (B, E).

The set of branching processes of Σ is obtained by declaring that the union
of any finite or infinite set of branching processes is also a branching process,
where union of branching processes is defined componentwise on conditions and
events. Since branching processes are closed under union, there is a unique max-
imal branching process, called the unfolding of Σ. The unfolding of our running
example is an infinite occurrence net. Figure 2 shows an initial part. Events and
conditions have been assigned identificators that will be used in the examples.
For instance, the event (t1, {(p1,⊥)}) is assigned the identificator 1.

We take as partial order semantics of Σ its unfolding. This is justified, because
it can be easily shown the reachability graphs of Σ and of its unfolding coincide.
(Notice that the unfolding of Σ is a labelled net system, and so its reachability
graph is defined as the image under the labelling function of the reachability
graph of the unlabelled system.)

Configurations. A configuration of an occurrence net is a set of events C sat-
isfying the two following properties: C is causally closed, i.e., if e ∈ C and
e′ < e then e′ ∈ C, and C is conflict-free, i.e., no two events of C are in
conflict. Given an event e, we call [e] = {e′ ∈ E | e′ ≤ e} the local config-
uration of e. Let Min denote the set of minimal places of the branching pro-
cess. A configuration C of the branching process is associated with a marking
of Σ denoted by Mark (C) = l((Min ∪ C•) \ •C). The corresponding set of
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Figure 2. The unfolding of Σ

conditions associated with a configuration is called a cut, and it is defined as
Cut(C) = ((Min ∪ C•) \ •C).

In Fig. 2, {1, 3, 4, 6} is a configuration, and {1, 4} (not causally closed) or
{1, 2} (not conflict-free) are not. A set of events is a configuration if and only
if there is one or more firing sequences of the occurrence net (from the default
initial marking) containing each event from the set exactly once, and no fur-
ther events. These firing sequences are called linearisations. The configuration
{1, 3, 4, 6} has two linearisations, namely 1 3 4 6 and 3 1 4 6. All linearisations lead
to the same reachable marking. For example, the two sequences above lead to the
marking {p1, p7}. By applying the labelling function to a linearisation we obtain
a firing sequence of Σ. Abusing of language, we also call this firing sequence a
linearisation. In our example we obtain t1t3t4t6 and t3t1t4t6 as linearisations.

Given a configuration C, we denote by ↑C the set of events of the unfolding
{e | e 6∈ C ∧ ∀e′ ∈ C : ¬(e#e′)}. Intuitively, ↑C corresponds to the behavior of
Σ from the marking reached after executing any of the linearisations of C. We
call ↑C the continuation after C of the unfolding of Σ. If C1 and C2 are two finite
configurations leading to the same marking, i.e. Mark (C1) = M = Mark (C2),
then ↑C1 and ↑C2 are isomorphic, i.e., there is a bijection between them which
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preserves the labelling of events and the causal, conflict, and concurrency rela-
tions (see [6]).

Adequate orders. To implement a net unfolding algorithm we need the notion of
adequate order on configurations [6]. Given a configuration C of the unfolding
of Σ, we denote by C ⊕ E the set C ∪ E, under the condition that C ∪ E is a
configuration satisfying C ∩ E = ∅. We say that C ⊕ E is an extension of C.
Now, let C1 and C2 be two finite configurations leading to the same marking.
Then ↑C1 and ↑C2 are isomorphic. This isomorphism, say f , induces a mapping
from the extensions of C1 onto the extensions of C2; the image of C1 ⊕E under
this mapping is C2 ⊕ f(E).

Definition 2. A partial order ≺ on the finite configurations of the unfolding of
a net system is an adequate order if:

– ≺ is well-founded,
– C1 ⊂ C2 implies C1 ≺ C2, and
– ≺ is preserved by finite extensions; if C1 ≺ C2 and Mark (C1) = Mark (C2),

then the isomorphism f from above satisfies C1 ⊕ E ≺ C2 ⊕ f(E) for all
finite extensions C1 ⊕E of C1.

Total adequate orders for 1-safe Petri nets and for synchronous products of
transition systems have been presented in [6,5].

5 Tableau System

We showed in Section 3 that the model checking problem for LTL-X can be
solved by checking the existence of illegal ω-traces and illegal livelocks in Σ¬ϕ.
In [3] these problems are solved using tableau techniques. A branching process
can be seen as a “distributed” tableau, in which conditions are “facts” and events
represent “inferences”. For two conditions b and b′, b co b′ models that the facts
represented by b and b′ can be simultaneously true. A tableau is constructed by
adding new events (inferences) one by one following an adequate order; some
events are declared as “terminals”, and the construction of the tableau termi-
nates when no new event can be added having no terminals among its prede-
cessors. The tableau systems of [3] require to construct a possibly large set of
branching processes. Here we present a new tableau system consisting of one
single branching process.2

An Adequate Order for LTL. We simplify the implementation of the tableau
system by selecting a special adequate order. We use ≺ to denote the total
adequate order defined for 1-safe Petri nets in [6]. We call an event corresponding
to an L-transition an L-event. We define for a set of events C the function before
L-event as BL(C) = {e ∈ C | [e] \ {e} contains no L-events}. The function after
L-event is defined correspondingly as AL(C) = (C \BL(C)). We can now define
our new adequate order.
2 For the reader familiar with [3]: the L-transitions in the net system Σ¬ϕ act as glue

to connect a set of branching processes (the tableau components of [3]) together into
one larger tableau.
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Definition 3. Let C1 and C2 be two finite configurations of the unfolding of the
product net system Σ¬ϕ. C1 ≺LTL C2 holds if

– BL(C1) ≺ BL(C2), or
– BL(C1) = BL(C2) and C1 ≺ C2.

The adequate order ≺LTL is application specific in the sense that it is not an
adequate order for an arbitrary net system Σ, but needs some special properties
of the net system Σ¬ϕ. We have the following result.

Theorem 2. The order ≺LTL is a total adequate order for finite configurations
of the unfolding of Σ¬ϕ.

See [4] for the proof.

New Tableau System. We first divide the unfolding of Σ¬ϕ into two disjoint sets
of events. Intuitively, the first set is used for the ω-trace detection part, and the
second for the illegal livelock detection part. We define part-I to be the set of
events e such that [e] does not contain an L-event and part-II as the set of events
which are not in part-I.

Definition 4. An event e of the unfolding Σ¬ϕ is a terminal, if there exists
another event e′ such that Mark ([e′]) = Mark ([e]), [e′] ≺LTL [e], and one of the
following two mutually exclusive cases holds:

(I) e ∈ part-I, and either
(a) e′ < e, or
(b) ¬(e′ < e) and #I [e

′] ≥ #I [e], where #IC denotes the number of I-events
in C.

(II) e ∈ part-II, and either
(a) BL([e′]) ≺LTL BL([e]), or
(b) BL([e′]) = BL([e]) and ¬(e′#e), or
(c) BL([e′]) = BL([e]), e′#e, and |[e′]| ≥ |[e]|.

A tableau T is a branching process (B, E) of Σ¬ϕ such that for every possible
extension e of (B, E) at least one of the immediate predecessors of e is a terminal.
A terminal is successful if it is type (I)(a) and [e]\ [e′] contains an I-event, or it
is of type (II)(b). All other terminals are unsuccessful. A tableau T is successful
if it contains a successful terminal, otherwise it is unsuccessful.

Loosely speaking, a tableau is a branching process which cannot be extended
without adding a causal successor to a terminal.

We have the following result:

Theorem 3. Let T be a tableau for Σ¬ϕ.

– Σ¬ϕ has an illegal ω-trace iff T has a successful terminal of type I.
– Σ¬ϕ has an illegal livelock iff T has a successful terminal of type II.
– T contains at most K2 non-terminal events, where K is the number of reach-

able markings of Σ¬ϕ.

See [4] for the proof.
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6 Generating the Tableau

We describe an implementation of the tableau system of Sect. 5. The main goal is
to keep the tableau generation as similar as possible to a conventional prefix gen-
eration algorithm [6]. In this way any prefix generation algorithm can be easily
adapted to also perform LTL model checking. The tableau generation algorithm
(Algorithm 1) is almost identical to the main routine of a prefix generation al-
gorithm. The changes are: an additional block of code devoted to generating
the L-events dynamically; a different but easy to implement adequate order; a
new cut-off detection subroutine. The main feature of the implementation is the
efficient handling of L-transitions, which we discuss next.

Generating the L-transitions Dynamically. Recall that in the synchronization
Σ¬ϕ we can for each Büchi state q have as many L-transitions as there are
reachable markings of the form (q, sf , O, H) in the net system Σ¬ϕ. Clearly we
can not explicitly generate them all due to efficiency reasons. Instead we generate
a net system Σs

¬ϕ (s stands for static) in which this set of L-transitions (added
by step (6) of the synchronization procedure in Section 3) is replaced by:

(6’) Add for each Büchi transition t = (q, x, q′) in the net system Σ′
¬ϕ (i.e., the

synchronization after steps (1)-(5) as defined in Sect. 3) a new transition t′.
The preset of t′ is equivalent to the preset of t and the postset of t′ is empty.
Let L (for livelocks) be this set of transitions.

We can now dynamically generate any of the (enabled) L-transitions of
Σ¬ϕ. Namely, for a transition t corresponding to a reachable marking M =
(q, sf , O, H) to be enabled in Σ¬ϕ, a transition t′ (for some (q, x, q′)) must be
enabled in Σs

¬ϕ and the Büchi automaton must accept Oω when q is given as
the initial state. Loosely speaking we test the first label of the sequence using
the transition t′, and if this test succeeds we check whether O can be infinitely
stuttered. (Using this construction it is easy to implement “no-care values” for
selected atomic propositions by leaving them out of the preset of t′.) Now gen-
erating the postset of t from M is trivial.

Optimizations in Dynamic Creation. We can thus dynamically generate L-
transitions for each reachable marking M as required. However, we can do better
by using the net unfolding method. The main idea is to generate the unfolding of
Σ¬ϕ by using Σs

¬ϕ to find “candidate” L-events. Assume we have found an event
es corresponding to a transition t′ in the unfolding of Σs

¬ϕ and the stuttering
check described above passes for the marking M = Mark ([es]). Then we add an
event e into the unfolding of Σ¬ϕ corresponding to the effect of the transition t
in the marking M . If we would directly use the construction above we would also
add an event e′ to the unfolding of Σ¬ϕ for each marking M ′ = (q, sf , O, H ′)
which is reachable from M using only invisible transitions. We now show that
adding only the event e suffices: Let E be an extension of [e]. If there is an illegal
livelock starting from M ′ = Mark ([e] ⊕ E) then there is also an illegal livelock
starting from M . This can be easily seen to be the case because all extensions
E contain only invisible events and thus the set of observable places in both M
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and M ′ is O. Algorithm 1 uses the property described above to add the required
L-events dynamically. Another optimization used is the fact that only the places
in the presets of invisible transitions (denoted InvisPre) need to be added to the
postset of an L-transition.

Algorithm 2 is the cut-off detection subroutine. It handles events in part-I
and part-II differently. This is one example implementation, and it closely follows
the definition of the tableau. It sets the global boolean variable success to true
and calls the counterexample generation subroutine (Algorithm 3) if it finds a
counterexample.

The implementation of the check whether Aq
¬ϕ accepts Oω in Algorithm 1

can be done in linear time in the size of the automaton A¬ϕ as follows. First
restrict A¬ϕ to transitions satisfying O, and then use a linear time emptiness
checking algorithm (see e.g. [2]) to check whether an accepting loop can be
reached starting from q in this restricted automaton. Because A¬ϕ is usually
quite small compared to the size of the model checked system this should not be
a limiting factor. Caching of these check results can also be used if necessary.

The adequate order ≺LTL can also be quite efficiently implemented. We can
prove that if a configuration C contains an L-event e, then BL(C) = [e]. Now
it is also the case that each configuration only includes at most one L-event. By
using these two facts a simple and efficient implementation can be devised.

Each time our algorithm adds a non-terminal L-event, it first finds out
whether a livelock counterexample can be generated from its future. Only if
no counterexample is found, it continues to look for illegal ω-traces and further
L-events. Thus we use the adequate order ≺LTL to force a search order similar
to that used by Valmari in [19] which detects divergence counterexamples in
interleaved state spaces. However, our algorithm is “breadth-first style” and it
also does illegal ω-trace detection, a part which is not included in [19].

7 Experimental Results

We have implemented a prototype of the LTL model checking procedure called
unfsmodels. We use the Spin tool [12] version 3.4.3 to generate the Büchi au-
tomaton A¬ϕ and a tool by F. Wallner [22] to generate the synchronization Σ ′

¬ϕ

which is given to the prototype tool as input. The smodels tool [18] is used to
calculate the set of possible extensions of a branching process. It is a NP-solver
which uses logic programs with stable model semantics as the input language.
Calculating the possible extensions is a quite demanding combinatorial problem.
Actually a decision version of the problem can be show to be NP-complete in
the general case [10]. However if the maximum preset size of the transitions |•t|
is bounded the problem becomes polynomial [7]. (The problem is closely related
to the clique problem which has a similar characteristic, for a longer discussion
see [7].)

We chose to use smodels to solve this combinatorial problem instead of
implementing a dedicated algorithm. That choice allowed us to concentrate on
other parts of the implementation. The translation employs constructs similar
to those presented for the submarking reachability problem in [11], however it



50 J. Esparza and K. Heljanko

Algorithm 1 The tableau generation algorithm

input: The product net system Σs
¬ϕ = (P, T, F, M0), where M0 = {p1, . . . , pn}.

output: true if there is a counterexample, false otherwise.
global variables: success
begin

Fin := {(p1,⊥), . . . , (pn,⊥)};
cut-off := ∅;
pe := PE(Fin); /* Compute the set of possible extensions */
success := false;
while pe 6= ∅ and success = false do

choose an event e = (t,X) in pe such that [e] is minimal
with respect to ≺LTL;
Y := t•; /* Remember the postset of t */

/* Create the required L-events dynamically */
if t is a L-transition then

M := Mark ([e] \ {e}); /* The marking M = (q, sf , O, H) */
q := M ∩Q; /* Extract the Büchi state q */
/* (Büchi emptiness checking algorithm can be used here) */
if Aq

¬ϕ = (Γ, Q, q, ρ, F ) does not accept Oω then

continue; /* Discard e because (q, O) is not a checkpoint */
endif

X := Cut([e] \ {e}); /* Extend the preset to also remove tokens from H */
e := (t,X); /* Rename e (i.e., add arcs from all preset conditions to e) */
Y := (M ∩ InvisPre); /* Project M on invisible transition presets */

endif

if [e] ∩ cut-off = ∅ then

append to Fin the event e and a condition (p, e)
for every place p ∈ Y ;

pe := PE (Fin); /* Compute the set of possible extensions */
if is cutoff (e) then

cut-off := cut-off ∪ {e};
endif

else

pe := pe \ {e};
endif

enddo

return success ;
end
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Algorithm 2 The is cutoff subroutine

input: An event e.
output: true if e is a terminal of the tableau, false otherwise.
begin

foreach e′ such that Mark ([e′]) = Mark([e]) do /* [e′] ≺LTL [e] holds */
if e ∈ part-I then /* case (I) */

if e′ < e then

if [e] \ [e′] contains an I-event then

success := true ; /* Counterexample found! */
counterexample (e, e′);

endif

return true;
else if #I [e

′] ≥ #I [e] then

return true;
endif

else /* case (II) */
if BL([e′]) ≺LTL BL([e]) then

return true;
else if ¬(e′#e) then /* BL([e′]) = BL([e]) holds */

success := true ; /* Counterexample found! */
counterexample(e, e′);
return true;

else if |[e′]| ≥ |[e]| then /* BL([e′]) = BL([e]) holds */
return true;

endif

endif

enddo

return false;
end

Algorithm 3 The counterexample subroutine

input: A successful event e with the corresponding event e′.
begin

C1 := [e] ∩ [e′];
C2 := [e] \ C1;
/* C1 contains the prefix and C2 the accepting loop */
print linearisation(C1);
print linearisation(C2);
end

differs in several technical details. The translation is linear in the sizes of both the
net and the prefix, however we will not present it here due to space restrictions.

For benchmarks we used a set of LTL model checking examples collected
by C. Schröter. The experimental results are collected in Fig. 3. The 1-safe net
systems used in the experiments are as follows:
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– BRUIJN(2), DIJKST(2), and KNUTH(2): Mutex algorithms modeled by
S. Melzer.

– BYZA4 0B and BYZA4 0B: Byzantine agreement algorithm versions mod-
eled by S. Merkel [16].

– RW1W1R, RW1W3R and RW2W1R: Readers and writers synchronization
modeled by S. Melzer and S. Römer [15].

– PLATE(5): A production cell example from [13], modeled by M. Heiner and
P. Deussen [9].

– EBAHN: A train model by K. Schmidt.
– ELEV(3) and ELEV(4): Elevator models by J. C. Corbett [1], converted to

nets by S. Melzer and S. Römer [15].
– RRR(xx): Dining philosophers with xx philosophers, modeled by C. Schröter.

The reported running times only include unfsmodels 0.9 running times, as
the Büchi automata generation and the synchronization with the original net
system took insignificant amount of time. All the running times are reported as
the sum of system and user times as reported by the /usr/bin/time command
when run on a PC with an AMD Athlon 1GHz processor, 512MB RAM, using
gcc 2.95.2 and Linux 2.2.17. The times are all averaged over 5 runs.

The unfsmodels tool in an on-the-fly tool in the sense that it stops the pre-
fix (tableau) generation if it finds a counterexample during the unfolding. The
reported prefix sizes in this case are the partial prefix at the time the counterex-
ample was found. The tool can also be instructed to generate a conventional
prefix using the prefix generation algorithm described in [6] for comparison.

Problem BLTL ELTL #cLTL Cex BFin EFin #cFin States SecLTL SecFin

BRUIJN(2) 2874 1336 327 N 2676 1269 318 5183 13.1 11.0

DIJKST(2) 1856 968 230 N 1700 921 228 2724 4.8 3.8

KNUTH(2) 2234 1044 251 N 2117 1009 251 4483 7.1 6.1

BYZA4 0B 1642 590 82 N 1630 587 82 >2000000 7.0 6.9
BYZA4 2A 401 125 4 N 396 124 4 >2500000 0.3 0.3

RW1W1R 568 296 32 N 563 295 32 2118 0.5 0.5
RW1W3R 28143 15402 5210 N 28138 15401 5210 165272 1863.4 1862.2
RW2W1R 18280 9242 1334 N 18275 9241 1334 127132 1109.6 1108.2

PLATE(5) 1803 810 12 N 1619 768 12 1657242 14.0 11.8

EBAHN 151 62 21 Y 1419 673 383 7776 0.0 0.7

ELEV(3) 124 64 10 Y 7398 3895 1629 7276 0.1 91.7
ELEV(4) 154 80 13 Y 32354 16935 7337 48217 0.1 1706.2

RRR(10) 88 42 5 Y 85 45 19 14985 0.0 0.0
RRR(20) 167 81 8 Y 161 81 32 >10000000 0.1 0.0
RRR(30) 240 114 9 Y 230 110 41 >10000000 0.2 0.1
RRR(50) 407 201 18 Y 388 188 70 >10000000 0.7 0.5

Figure 3. Experimental results.
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In Fig. 3 the columns of the table have the following meanings:

– Problem: The name of the problem with the size of the instance.
– BLTL, ELTL, and #cLTL: The number of conditions, events, and the number

of events which are terminals in the LTL prefix, respectively.
– Cex: N - There was no counterexample, the formula holds. Y - There was a

counterexample, the formula does not hold.
– BFin, EFin, and #cFin: The size of different parts of the finite complete

prefix as above but for the original net system Σ using the conventional
prefix generation algorithm described in [6].

– States: The number of states n in the reachability graph of the original net
system Σ obtained using the PROD tool [21], or a lower bound > n.

– SecLTL: The time used by unfsmodels in seconds needed to find a coun-
terexample or to show that there is none.

– SecFin: The time used by unfsmodels in seconds needed to generate a finite
complete prefix of the original net system Σ.

At this point there are a couple of observations to be made. First of all, on
this set of example nets and formulas, the speed of computing a LTL prefix is
almost identical to the speed of computing a conventional prefix (of comparable
size). The main reason for this is that the time needed to compute the possible
extensions dominates the computation time in our prototype. Thus the (slightly)
more complicated algorithm needed for the cut-off detection do not contribute in
a major way to the running time of the tool. Secondly, on all of the experiments,
the size of the LTL prefix is of the same order of magnitude as the conventional
prefix. Thus in this set of examples the quadratic worst-case blow-up (possible
according to Theorem 3) does not materialize. We expect this to be the case also
in other examples when the used LTL formulas are short and the properties to
be checked are local, in the sense that the product net system preserves most of
the concurrency present in the original net system.

In Fig. 4 a detailed breakdown of the different components of the LTL prefix is
given. The subscripts I and II denote the part of the prefix used for ω-trace and
livelock checking, respectively (i.e., events in part-I and part-II). Column Cpt
contains the number of checkpoints, i.e. how many of the L-events are check-
points. Finally Formula type gives the type of the formula being checked.

In Fig. 4 we can also see that in the cases a counterexample was found it
was found after only a small amount of the prefix was generated. Actually in
all the experiments the counterexample was a livelock counterexample, and the
livelock was found from the first checkpoint found during the prefix generation.
This allowed the LTL model checking procedure to terminate quite early with a
counterexample in many case, see e.g. the ELEV(4) example.

The net systems used in experiments and unfsmodels 0.9 are available at
〈http://www.tcs.hut.fi/~kepa/experiments/spin2001/〉.

8 Conclusions

We have presented an implementation of the tableau system of [3]. We have been
able to merge the possibly large set of tableaux of [3] into a single one.
In this way, the algorithm for model checking LTL with unfoldings remains
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Problem BI EI #cI BII EII #cII Cpt Formula type

BRUIJN(2) 2874 1336 327 0 0 0 0 2¬(p1 ∧ p2)

DIJKST(2) 1856 968 230 0 0 0 0 2¬(p1 ∧ p2)

KNUTH(2) 2234 1044 251 0 0 0 0 2¬(p1 ∧ p2)

BYZA4 0B 1642 590 82 0 0 0 0 2(p1 → 3p2)
BYZA4 2A 401 125 4 0 0 0 0 2(p1 → 3p2)

RW1W1R 568 296 32 0 0 0 0 2(p1 → 3p2)
RW1W3R 28143 15402 5210 0 0 0 0 2(p1 → 3p2)
RW2W1R 18280 9242 1334 0 0 0 0 2(p1 → 3p2)

PLATE(5) 1803 810 12 0 0 0 0 2((p1 ∧ ¬p2 ∧ ¬p3)∨
(¬p1 ∧ p2 ∧ ¬p3)∨
(¬p1 ∧ ¬p2 ∧ p3))

EBAHN 113 48 20 38 14 1 1 2¬(p1 ∧ p2)

ELEV(3) 22 10 0 102 54 10 1 2(p1 → 3p2)
ELEV(4) 25 12 0 129 68 13 1 2(p1 → 3p2)

RRR(10) 40 14 0 48 28 5 1 2(p1 → 3p2)
RRR(20) 73 27 0 94 54 8 1 2(p1 → 3p2)
RRR(30) 104 38 0 136 76 9 1 2(p1 → 3p2)
RRR(50) 173 67 0 234 134 18 1 2(p1 → 3p2)

Figure 4. Detailed LTL tableau statistics.

conceptually similar to the algorithms used to generate prefixes of the unfolding
containing all reachable states [6,5]: We just need more sophisticated adequate
orders and cut-off events. The division of the tableau into part-I and part-II
events is the price to pay for a partial-order approach to model checking. Other
partial-order techniques, like the one introduced by Valmari [19], also require a
special treatment of divergences or livelocks. 3 We have shown that the condi-
tions for checking if part-I or part-II events are terminals remain very simple.

In our tableau system the size of a tableau may grow quadratically in the
number of reachable states of the system. We have not been able to construct an
example showing that this bound can be reached, although it probably exists. In
all experiments conducted so far the number of events of the tableau is always
smaller than the number of reachable states. In examples with a high degree of
concurrency we obtain exponential compression factors.

The prototype implementation was created mainly for investigating the sizes
of the generated tableau. Implementing this procedure in a high performance
prefix generator such as the one described in [5] is left for further work.

Acknowledgements. We would like to thank Claus Schröter for collecting the
set of LTL model checking benchmarks used in this work.

3 The idea of dynamically checking which L-transitions are checkpoints could also be
used with the approach of [19] to implement state based LTL-X model checking.
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