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Abstract

The self-organizing map (SOM) is an efficient tool for visualization of multidimensional numerical data. In this
paper, an overview and categorization of both old and new methods for the visualization of SOM is presented. The
purpose is to give an idea of what kind of information can be acquired from different presentations and how the SOM
can best be utilized in exploratory data visualization. Most of the presented methods can also be applied in the more
general case of first making a vector quantization (e.g. k-means) and then a vector projection (e.g. Sammon’s map-
ping). © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Data mining is an emerging area of new research efforts, responding to the presence of large
databases in commerce, industry and research. It is also a title for a large number of widely di-
vergent methods ranging from belief networks and relational learning to statistics and neural
networks. Data mining is part of a larger framework, knowledge discovery in databases (KDD)
[3], whose purpose is to find new knowledge from databases where dimension, complexity or
amount of data is prohibitively large for human observation alone. Data mining is an interactive
process requiring that the intuition and background knowledge of humans are coupled with the
computational efficiency of modern computer technology. For this reason, visualization is a very
important part of data mining.

The self-organizing map (SOM) [12] is a neural network algorithm based on unsupervised
learning. It is closely related to Principal Curves [S]. The SOM has proven to be a valuable tool in
data mining and KDD with applications in full-text and financial data analysis. It has also been
successfully applied in various engineering applications in pattern recognition, image analysis,
process monitoring and fault diagnosis [13,23,24]. The use of the SOM in exploratory data
analysis is studied in [2,9,17,20,25,27].
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The SOM has several beneficial features which make it a useful method in data mining. It
implements an ordered dimensionality reducing mapping of the training data. The map follows
the probability density function of the data and is robust to missing data. It is readily explainable,
simple and — perhaps most importantly — easy to visualize. Visualization of complex multidi-
mensional data is indeed one of the main application areas of the SOM.

In this paper, different visualization methods of the SOM are shortly introduced. The purpose
is to give an idea of what kind of information can be acquired from different presentations and
how the SOM can best be utilized in exploratory data visualization. Both old and new methods as
well as some new ideas are presented. The new ideas include component plane reorganization
(Fig. 5) and match-accuracy visualization using response surfaces and sample positioning (Figs.
10 and 11).

In the visualizations, a real-world data set is used. The data contain information on the pulp
and paper mills of the world [27]. The data set is a difficult one: the input space dimension is 75,
and even if there clearly are many clusters in the data, they are highly overlapping.

2. Methods
2.1. Self-organizing map

The SOM consists of neurons located on a regular low-dimensional grid, usually 1- or 2-di-
mensional (1D or 2D). Higher dimensional grids are possible, but they are not generally used since
their visualization is problematic. The lattice of the grid can be either hexagonal or rectangular. In
this paper, the former is used because it is more pleasing to the eye.

Each neuron k is represented by an n-dimensional prototype vector my = [my1, . .., mp,), where n
is the dimension of the input space. On each training step, a data sample x is selected and the
nearest unit 7, (the best-matching unit, BMU) is found from the map. The prototype vectors of
the BMU and its neighbors on the grid are moved towards the sample vector:

my := my, + o(t)h(t)(x — my),

where «(¢) is learning rate and /. (z) is a neighborhood kernel centered on the winner unit ¢. Both
learning rate and neighborhood kernel radius decrease monotonically with time.

During the iterative training, the SOM behaves like a flexible net that folds onto the ‘cloud’
formed by input data. The resulting prototype vectors can be interpreted as conditional averages
of the data. Because neighborhood on the map grid (h.) is used to determine the magnitude of
update, prototype vectors of neighboring units resemble each other. Therefore, BMUs of similar
data samples are close to each other on the map grid.

2.2. Vector quantization and projection

In general, vector quantization reduces the original data set to a smaller, but still representative,
set to work with. At the same time it suppresses noise, Some vector quantization algorithms are
listed in Table 1.

In order to visualize multidimensional vectors, a projection from the original high-dimensional
input space to at most 3-dimensional output space has to be found. The projection should roughly



J. Vesanto | Intelligent Data Analysis 3 (1999) 111-126 113

Table 1
Some vector quantization algorithms?*
Algorithm Notes
k-means [1] Only best matching (closest) cluster center of the sample vector is updated
Maximum entropy [17,21] All cluster centers are updated according to their distance to the sample vector
Neural gas [17] All cluster centers are updated according to their ranking order in distance to the sample vector
SOM The cluster centers are updated according to their distance from the BMU of the sample vector

on the map grid (/.4).

*All listed algorithms are iterative and are based on minimizing the reconstruction error of the original data set using a certain
number of cluster centers. The difference between the algorithms is the way the cluster centers are updated on each adaptation step.

preserve distances between the original vectors, or at least their topological ordering. Some vector
projection algorithms are listed in Table 2.

In this paper, the combination of these two tasks, vector quantization and vector projection, is
called vector quantization-projection (VQ-P). In VQ-P, a set of prototype vectors forms a codebook
which reflects the properties of the data. Together with the projection it forms a low-dimensional
map of the area covered by the data distribution. Each prototype vector is a unit of this map. The
aim of visualization is both to understand the mapped area, but also to enable investigation of
new data samples with respect to it. The actual visualizations consist of a number of objects — the
prototypes and possibly some data samples — and the objective is to give an idea of the properties
of the objects and of the relations between them.

Table 2
Some vector projection algorithms*
Algorithm Energy function Notes
Multi-dimensional scaling DD (@ %k Distances in the input space are approximated by distances in
(MDS) [10,20] output space (typically 2D plane). This is the metric version of
MDS
Sammon’s projection [18] DT el Y,:,v)2 /X Local distances in the input space are emphasized. Sammon’s

projection has an inherent instability: the 1/X;; term when X;
— 0. This can be corrected by using e.g. 1/ max(c, X;) in its
stead, where ¢ is a suitably selected constant

Curvilinear component S oy AAes) Local distances in the output space are emphasized. f(Yij) is a
analysis (CCA) [4] function monotonically decreasing with output space distance
SOM N DR X e W) Input space distances X are measured between prototypes (k)

and data vectors (i) rather than between all pairs of data
vectors. Similarly, input space distances are measured between
map units (¥Y)

“In the energy functions X;; denotes the distance between vectors i and j in the input space, and Y; in the output space. In the case of
SOM, X, denotes the distance between vector 7 and prototype k. The output space distance Y., is measured between the BMU of the
data sample ¢ and all other map units; /. is the neighborhood kernel. Note that in the first three algorithms input space distances X;
are fixed, but in the case of SOM they change, since the SOM training algorithm moves the prototype vectors to minimize the
quantization error. Optimization of the projection is only secondary goal. Note also that the mathematical treatment of the SOM has
proven to be very difficult. The energy function given for the SOM holds only for the case of discrete data set and fixed neighborhood
kernel, but it does give a qualitative idea of the situation in the general case.



114 J. Vesanto | Intelligent Data Analysis 3 (1999) 111-126

The SOM is an example of a method that accomplishes VQ-P. Other such methods can be
constructed by first making vector quantization and then a vector projection using, for example, the
methods listed in Tables 1 and 2. It is important to notice that most of the visualization methods in
Section 3 are not applicable only in case of the SOM, but rather in the more general case of VQ-P.

Of course, the SOM differs from a serial combination of a vector quantization and a vector
projection algorithm. In the SOM algorithm, the two tasks interact, while in a serial combination
projection is completely subordinate to quantization. Another difference is that the SOM has a
regularly shaped projection grid. The regular shape makes it easy to compare different visual-
izations. It also makes implementation of user interfaces based on the SOM straightforward. On
the other hand, the rigid grid has some disadvantages:

e The grid guides the vector quantization process. For example, when the data cloud is discontin-
uous, interpolating units are positioned between data clusters. In visualization, these may give
false cues of the data shape, and should therefore be de-emphasized.

e Although the map is typically rectangular in shape, the axes of the map grid rarely have any
clear interpretation.

e The projection implemented by the SOM alone is very crude. The projection of a data sample is
usually defined as (the location of) its BMU and it is typically very hard to tell anything about
the global shape of the data using the raw map grid alone. This deficit is usually encountered by
making a separate vector projection of the prototype vectors using e.g. Sammon’s projection
(see Section 3.1).

Ultimately, the choice of the VQ-P method depends on the needs of the application. If com-
putational cost of projection and distortion caused by noise are considered negligible, the vector
quantization step can be discarded altogether.

2.3. Multiple visualizations and linking

When visualizing data sets, one of the problems is that they usually contain so much infor-
mation that it is impossible to show it all in a single figure or visualization. The number of visual
dimensions determines how many different kinds of information can be efficiently inserted into
one visualization. Typical visual dimensions include position, size and color (or texture). Shape
and motion are other visual dimensions, but their use is more problematic. In virtual reality
environments other senses come into play as well. Information can be relayed through audio, or
through touch.

Due to the limited number of visual dimensions, one has to use multiple visualizations instead of
only one. Key issue then becomes how to link the various visualizations with each other. Which
part of each visualization correspond to the same object? Where is a specific object located in the
various visualizations? This linking is very important. The link between objects should be obvious
to the observer.

In the case of SOM, linking is usually done using position, which can be either similar or
identical. In the former case, each object is in the same position with regard to the center of in-
dividual visualizations, as in Fig. 3(a). In the latter case, visualizations are positioned on top of, or
inside, each other. In Fig. 10(b), each red circle corresponds to the map unit at which it is cen-
tered. Identical position can obviously be used for only a limited number of visualizations. Similar
position has no such limitations, but it has limited visual accuracy. An effective new technique is
to do linking using color, as in Fig. 1.
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(a) 2D projection (b) 3D projection (c) Color coding

Fig. 1. The overall shape of the data cloud can be visualized by making a projection of the prototypervectors to a lower dimension. In
this case, two projections of the SOM trained on the case data have been made: (a) one to 2D; (b) one to 3D. In (a) each dot cor-
responds to one map unit, the color of which has been taken from the color coding in (c). Each map unit has been connected to its
neighbors with lines. From (a) several clusters can be seen as concentrations of dots. It is also apparent that the 2D projection is
inadequate for the task, since the projection has folded badly on itself. On the other hand the 3D-projection in (b) performs quite well.
From both projections it can be seen that for example the bottom right and top right corners of the map are actually rather close to
each other in the input space.

3. SOM visualization

In this section, different kinds of methods for visualizing data using the SOM and other VQ-P
methods (cf. Section 2.2) are presented. The methods can be divided to three categories based on
the goal of the visualization. The first category is the task of getting an idea of the overall shape
and possible cluster structure of the data set. The second category comprises the wide field of
analyzing the prototype vectors, for example characteristics of clusters and correlations between
vector components. The third category is examination of new data samples for classification and
novelty detection purposes.

3.1. Structure and shape

The prototype vectors form a ‘data cloud’ in the input space. The structure of this cloud is very
interesting in terms of understanding the data. What, and where, are the clusters and outliers?
What is the shape of the data cloud? Data projection methods are very useful in answering these
questions (see Fig. 1). An efficient approach to show clusters on the SOM is to use distance matrix
techniques (see Fig. 2). Both approaches are discussed below.

3.1.1. Projection methods

Some projection methods are listed in Table 2, but there are many more, see for example
[14,17,22]. The various projection methods have different strengths. Linear methods, like PCA [1],
are computationally light. Iterative nonlinear methods, like Sammon’s projection and CCA, are
able to handle nonlinear structures in data, but they are computationally intensive, which is why
vector quantization is useful when they are utilized. Also, Sammon’s projection and CCA em-
phasize local distances over global ones and are therefore excellent for showing the (local) shape
of the data set. Some projection methods, e.g. linear discriminant analysis (LDA) [21], are only
applicable if the class memberships of the samples are known.

New interesting projection methods have been proposed by Modha et al. [19] and Konig
[14,15]. Modha proposes e.g. a nonlinear cluster projection algorithm which provides a way to
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(a) U-matrix (b) Distance matrix (c) Similarity coloring

Fig. 2. The cluster structure of the SOM is typically visualized using distance matrix techniques. (a) shows the U-matrix visualization.
The white dots indicate locations of map units and hexagons between them show the actual values of the U-matrix. The gray shade of
the hexagon denotes distance to the neighboring map unit. The darker the shade, the bigger the distance. Thus, clusters in the vi-
sualization can be seen as light areas with dark borders. There are several such clusters on the U-matrix. With further examination the
characteristics of these clusters can be determined. For example, the area circled on the U-matrix could be named as ‘Groundwood’
cluster (cf. Fig. 7). (b) gives essentially the same information as (a). It is an averaged version of the U-matrix: the size of each map unit
is proportional to its average distance to its neighbors. (c) illustrates the similarity visualization of the map: areas with similar hues are
close to each other in the input space.

study data sets ‘through the eyes of the k-means’. The method is very simple: two cluster centroids
are chosen and the distances to these centroids provide x- and y-coordinates for each data vector.
What makes the methods really useful is that Modha also proposes techniques to move smoothly
between such projections, thus linking several visualizations together using motion. In [14] Konig
gives a survey of existing and new unsupervised projection techniques with special attention to
their computational complexity and structure preservation.

3.1.2. Projections of the SOM

The projection implemented by the SOM is restricted to the junctions of the map grid, and
therefore it is very crude. To visualize the shape of the SOM in the input space, the prototype
vectors of the map are typically projected separately using e.g. Sammon’s projection. A problem is
how to link the projected map to other visualizations: SOM visualizations are usually linked using
position, but obviously this cannot be used here. The problem can be resolved using color coding
of the map grid as in Fig. 1.

Projection visualizations can be further enhanced by connecting some selected objects to each
other with lines. In principle objects near each other in the projection are also close to each
other in the input space. Due to the low output dimension, this does not always hold, not even
the other way around. Therefore, it is advantageous to complement the position information by
connecting objects that are, for example, close to each other in the input space. Particularly
useful this is in 3D if proper depth-cues cannot be shown: lines connecting the objects can give
the visualization a shape that single objects hanging in space fail to convey. Visualizing the
SOM by projecting the prototype vectors to a low dimension and connecting each unit to its
neighbors gives the map its characteristic net-like look and makes it very easy to grasp its
shape.
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3.1.3. Projections in 3D

In projection tasks 3D gives a huge advantage when compared to conventional 2D-projec-
tions. This is easy to understand since position in 3D is much more flexible, and thus more
powerful, indicator than position in 2D. For the SOM, additional benefits may result from the
fact that the SOM initially projects the data on a 2D grid: the ability to position the map units in
3D may allow correction of some of the errors induced by the rigid grid structure (cf. Figs. 1(a)
and (b)).

Unfortunately, to be even of slightest value, 3D visualizations must be viewed from multiple
viewpoints, or be totally interactive so that they can be rotated at will. Of course, this interactivity
is a demanding requirement. However, most mathematical software packages, like Matlab and
Mathematica, provide efficient and easy to use 3D visualization. Using Virtual Reality Modeling
Language (VRML) enables a much wider audience to access such visualizations.

3.1.4. Distance matrices

While projections give a rough idea of clusters in the data, a different technique is typically used
to show the clusters on SOM: distance matrices. The most widely used is the U-matrix [26]:
distances of each map unit to each of its immediate neighbors are calculated and visualized using
gray shade [8]. An example of a U-matrix is shown in Fig. 2(a). Alternatively, the distances can be
visualized using the shape and size of each map unit [4], or the appearance of the lines connecting
the map units [18]. A simplified approach is to calculate a single value for each map unit —
minimum, median or maximum of the distances to neighbors — and use them to control size or
color [16]. See for example Figs. 2(b) and 6(b).

Distance matrix methods show borders between clusters. Another approach is to visualize the
similarity of map units. This can be done by giving a color to each map unit so that similar map
units get similar hues [10]. An example of this, using the approach in [6], is shown in Fig. 2(c). The
hues have been selected by spreading a smooth color map on the 2D projection of the map in
Fig. 1(a).

The advantage of these methods over vector projections is that they do not use position to
indicate clusters. Thus, the position can be used for linking the figures to other visualizations, and
some other visual dimension can be used to show the cluster information. For example in Fig.
6(b), hexagon position indicates the individual map unit, size gives distance matrix information
and color gives the color coding.

3.2. Properties of the prototype vector set

After getting an idea of the overall cluster characteristics of the data, the actual prototype
vectors can be studied more closely. In this, component planes play the key role. Each component
plane consists of the values of a single vector component in all map units. Examples of component
planes are shown in Figs. 3(a) and 5. Note that while in these the grid coordinates are used to
position the map units, coordinates originating from some projection (cf. Section 3.1) could be
used as well. In that case, however, the advantage of the regular shape of the SOM grid is lost.

3.2.1. Spread of values {

Simple inspection of a component plane provides an idea of the spread of values of that
component. In Fig. 3(a), two component planes (total annual paper and pulp productions on a
mill) are shown. Corresponding histograms calculated from the original data and from the
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Fig. 3. In (a) there are two component planes: total annual paper (on the left) and pulp production (on the right) on a mill. Both
components have mainly low values and increasingly smaller number of high values. It can be seen that for annual pulp production,
high values correspond to two different clusters: on bottom middle, and on bottom left corner. These clusters can also be seen from the
U-matrix visualization in Fig. 2(a). (b) shows histograms of the components in the training data (top two) and in the prototype vector
set (bottom two). The values in the prototype vector set cover the typical values of the original data set, but not the rarely occurring
extremely high values, which can be considered outliers.

prototype set are shown in Fig. 3(b) (top and bottom, respectively). It can be seen that the
prototype vectors cover well the typical data values. They do not cover the very high values, but
this is because for these components the extremely high values are very rare and can be considered
outliers: for both components less than 3% of the values in the original data are bigger than the
maximum value in the prototype set. What is more is that from the component plane visualiza-
tions, one can see that for the total pulp production the high values correspond to two different
clusters. This kind of information cannot be inferred from the component histogram.

3.2.2. Cluster properties

A very interesting property of a cluster is, of course, what makes it a cluster. Methods for
visualizing the contribution of the original variables to the cluster structure have been developed
by Kaski et al. [11]. The importance can be simply measured as the contribution of the observed
component (k) to the total distance between two map units:

Imi — m|/||m; — my]],

where 7 and j are two neighboring map units, m; a prototype vector and m;; the observed com-
ponent. One such contribution, averaged over the neighborhood of each unit, is shown in Fig. 4.
A measure of the component importance to a particular cluster can be acquired e.g. by observing
a chosen cluster and its immediate surroundings. The importance is indicated by the correlation
between cluster structure in that area revealed by all variables together (i.e. some distance matrix)
and by each component alone.

3.2.3. Correlations

The component planes can also be used for correlation hunting. Correlations between com-
ponent pairs are revealed as similar patterns in identical positions of the component planes.
Pattern matching is something that the human eye is very good at, and it is further enhanced by
the regular shape of the map grid, see for example Fig. 5(a).
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Contribution of NEWS

Fig. 4. Contribution of news paper production capacity on the cluster structure of the map. It can be seen that the component has
greatest effect on the bottom left corner, which can then be named as the ‘Newspaper’ cluster.

The hunting can be made even easier if the component planes are reorganized so that possibly
correlated ones are presented near each other as in Fig. 5(b). To do this, the covariance matrix
between all component planes is calculated. Each row of this matrix is a data vector corre-
sponding to one component plane. This data is used to train a SOM with a rectangular lattice.
Each component plane is then assigned a place corresponding to the BMU of the respective row
of the covariance matrix. To prevent several components from being assigned to the same place, a
simple procedure is applied: for any unit with multiple components, the worst matching of them is
moved to its next-best-matching unit. This is repeated until no two component planes are in the
same location.

Using component planes in correlation hunting is easy, but also rather vague. However, it is
easy to select interesting component combinations for further investigation. A more detailed study
of interesting combinations can be done using e.g. scatter plots as proposed by Himberg [6]. Since

(a) Component planes (b) Reorganized planes

Fig. 5. Correlations between components can be hunted from the component planes visualization in (a) (only the first 35 components
of the data set are shown). The task is easier if the planes are reorganized so that component planes which seem to have high cor-
relation are placed near each other, as in (b). For example, this reorganization shows nicely a connection between high total paper
production, newspaper production and thermomechanical pulp. These components have been indicated in (a) and (b) by framing them.
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correlations may differ in different areas of the map, it is useful to link such plots to other vi-
sualizations using color. This makes it possible to identify partial correlations with clusters on the
map. From the plot in Fig. 6, one can easily see how two vector components behave as a function
of each other in different parts of the map.

However, it is important to realize that VQ-P algorithms are designed to detect clusters, not
correlations between components. The perceived (partial) correlations may actually be artifacts
induced by the cluster structure of the map, incorrect folds on the map or by the limited visual
accuracy of the linking method (similar position).

3.3. Examining new data with the map

After the properties of the prototype vectors have been examined, new data can be considered.
The term ‘data’ can refer to whole data sets as well as to single data samples. This third visual-
ization category tries to answer questions like:

e Which part of the mapped distribution best corresponds to given data? Or, where on the map
are the data samples located?

e How accurate is that correspondence/localization? Does the data belong to the mapped distri-
bution at all?

e How similar are two data vectors (or data sets) in terms of the map?

To answer these questions, the response of the prototype set to the data sample has to be
quantified and visualized.

3.3.1. Data histograms

The responses are typically based on (Euclidean) distances between data sample and each
prototype vector. The nearest prototype vector is the BMU of that sample. The traditional way to
show the response has been to simply show the BMU on the map. For multiple vectors, a data

® ' “n
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(a) Scatter plot (b) Color map

Fig. 6. Correlations between vector components can be efficiently visualized using scatter plots. In (a) each dot corresponds to one
map unit. The x- and y-coordinates of the dots have been taken from two components of the prototype vectors: total annual paper and
pulp production, respectively. To link the scatter plot to other visualizations, each dot is given a color according to the color coding of
the map units shown in (b). In addition to color coding, (b) also uses size to indicate clusters on the map: small units correspond to
cluster borders. It can be seen that for most units, especially those with yellow color coding, the two components are linearly correlated
(indicating that the mills produce their own pulp), but that there are distinct exceptions. There are a number of units for which pulp
production is zero. Conversely, the units with orange color have low paper production compared to their pulp production. These mills
sell most of their pulp to other mills.
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Fig. 7. Different ways to visualize data histograms. In (a) the size of the black hexagon is proportional to the value of the data
histogram in the corresponding unit. In (b) the height of the bar tells the same. Notice that the 3D-representation is much less in-
formative because things in the front hide things in the back. In (c) each dot represents one data sample. The sample marker has been
placed on top of the corresponding BMU with a small random offset to make individual samples distinguishable. All histograms were
calculated using the whole training data. It can be seen that there are a number of empty, or interpolating units. There are also a
number of concentrations indicating that there are some mills that are very similar to each other. For example the concentration of
mills indicated by a circle in (a) contains only mills that produce pulp from groundwood. This cluster is also apparent from the distance
matrices in Figs. 2(a) and (b).

histogram is obtained. There are several ways to visualize this histogram, for example those in
Fig. 7. The histograms can be used to compare data sets with respect to each other and the
mapped area. See for example Fig. 8, where two data histograms, corresponding to the pulp and
paper mills in the whole world and in Scandinavia, are shown.

The problem with simply pointing out the BMU is that this gives no information of the ac-
curacy of the match. Typically there are several units with almost as good match as the BMU. If
the map folds heavily these matches may be located at different parts of the map. Also, no in-
formation is given whether the sample is close to the mapped distribution or very far from it.

(a) All mills (b) Scandinavian mills

Fig. 8. (a) Shows the data histogram for all the pulp and paper mills of the world. It is markedly different from the data histogram in
(b), which shows the data histogram for Scandinavian mills. Perhaps the most important distinguishing factor of Scandinavian mills is
their size: the histogram in (b) corresponds pretty well to the total pulp and paper production component planes (see Fig. 3(a)).
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(a) Good match (b) Poor match (c) Average match for
a set of data

Fig. 9. Response surfaces. In each figure black corresponds to the best response and white to the worst. In a poor match, there are wide
areas on the map which correspond to the data vector almost as well as the BMU (large dark areas). (a) and (b) show good and poor
matches, respectively. From (a) a clear cluster can also be seen, corresponding to mills producing cartonboard. (c) shows the average
response of the data vectors whose BMU is the unit on top left corner of the map. From this figure it can be seen that there is a fold on
the map, as the cartonboard area of (a) has a higher response to the set of data vectors than the immediate surroundings of the corner.

3.3.2. Response surface

Instead of simply pointing out the BMU, the response of all vectors can be shown. The re-
sponse surface shows the relative goodness of each map unit in representing the data. A simple
approach is to use the quantization error g, = |x — my| as the indicator of goodness:

glqe) = 1/(1 + q3).

Notice that this goodness function has several beneficial properties: g(0) = 1, g(¢ — oo) =0, and
g'(g) is monotonically decreasing. The result of the last property is that good and poor matches
are easy to distinguish: good matches produce sharp spots on the map, while poor matches
produce an even response over the whole map. Examples of response surfaces are shown in Fig. 9.

To remove the effect of scale the responses should be examined in the context of the accuracy of
the quantization. The accuracy can be measured e.g. as the average quantization error (average
distance between each sample and its BMU). If a data independent measure is desirable, the
accuracy can be defined as the average distance of each prototype vector from its neighbors. The
accuracy a is taken into account by scaling the quantization errors with the accuracy g(gx/a). This
way the responses are comparable even between different maps.

It is tempting to interpret the fuzzy responses as probabilities for a data vector to belong to a
certain map unit. However, if this is desired, it is better to use the SOM as a basis for an additive
mixture model, and estimate the probabilities through a kernel density estimate, see for example

[7].

3.3.3. Information from position

Another approach is to position the samples in the visualization so that the accuracy is ap-
parent from either the size or the position of the sample marker. The former approach is used in
Fig. 10 and the latter in Fig. 11.

In Fig. 10, the position of the sample marker shows the BMU and its size (height or diameter)
the quantization error. The size of the marker has been scaled so that it has a meaningful in-
terpretation. In Fig. 10(a), a kernel density estimator has been implemented based on the map.
The upper grid marks the 50% probability boundary of the Gaussian kernel associated with each
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(a) Bar (b) Circle

Fig. 10. Quantization error plots. The BMUs of a set of data vectors are indicated by the markers: (a) the point of the bar; (b) the
center of the circle. The size of the markers is inversely proportional to the accuracy of the match. The bottom texture in both figures is
the distance matrix of the map. It can be seen that while most of the samples in the set fit relatively well to the map, there is one that is
clearly an anomaly.

(a) CCA (b) Grid

Fig. 11. Three data samples (with low, medium and very high quantization errors) have been positioned in 3D on the 2D-projection of
the map. The samples are denoted by red crosses and map units by blue dots. In (a) CCA has been used for the initial 2D-projection. In
(b) the map grid has been used. The position of the samples has been optimized using an iterative CCA-like projection procedure using
the 2D-positions of the three BMUs of each data sample. The projected samples have been connected to the their BMUs with lines.
Further analysis reveals what makes the third sample so strange (in terms of the map): it is one of the four mills (out of over 4000)
producing semibleached sulfite pulp, and the only one that concentrates only on that kind of pulp. It can well be considered an outlier.

of the map units. Each bar represents one data sample, and the higher the bar, the less probable
such a sample is. In Fig. 10(b), the interpretation is more straightforward: the diameter of the
circle is scaled by the average distance of each map unit to its neighbors (i.e. by distance matrix
value at that map unit). If the circle is smaller than the hexagon, the BMU is closer to the data
sample than to its neighbors (on the average).
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In Fig. 11, the position of the sample marker shows the match accuracy: the closer the sample
marker is to the map, the more accurate is the match. First, a 2D position for each of the pro-
totype vectors has been designated: CCA-projection in Fig. 11(a), unit coordinates on the map
grid in Fig. 11(b). Then, the position of the marker has been optimized relative to its three best-
matching prototype vectors using a CCA-like projection algorithm:

repeat
dx' = = Y (llx = my|/||¥ — m}]| = 1)(x' — m})
k=123
x =2+ 0dde

while steps < maxsteps AND ||dx/|| > e,

where x is the data vector, m; the prototype vectors and x’, m) are their projections in the output
space.

4. Conclusion

The major point of this paper is to bring together the many visualization methods for the Self-
Organizing Map and thus bring forth the power of the SOM, and VQ-P methods in general, in
visualization of multidimensional numerical data. The SOM combines vector quantization and
projection which together provide a map of the data giving a visual insight to the properties of the
data: the shape of the data cloud, clusters, their properties and correlations between vector
components. Comparing new data with the map helps in classifying the data and gives an indi-
cation of whether the new data belongs to the same data distribution as the map was trained with.
In the general framework of knowledge discovery, the methods presented in this paper are es-
pecially useful in the exploratory phase of knowledge discovery task.

4.1. Software

The existence of all these visualization methods does little good without a good implementation
in a flexible and user-friendly data mining environment. Most of the visualization methods dis-
cussed in this paper have been implemented in SOM Toolbox, a software package for Matlab 5
computing environment by Mathworks, (http : //www.mathworks.com/). SOM Toolbox is
available for free from http : //www.cis.hut.fi/projects/somtoolbox/. SOM Toolbox
was primarily constructed as an efficient implementation of the SOM algorithm in Matlab en-
vironment, but special attention has been given to its visualization. All figures in this paper have
been done using Matlab and the SOM Toolbox.

4.2. Future work

Vector quantization divides the data space into subareas corresponding to clusters, special
cases and outliers. Using the qualitative information given by visualizations one can select
subareas and subspaces from the data and perform quantitative analysis on these rather than
blindly on the whole data. Some areas may be discarded as outliers, some variables may be
left out or preprocessed in a more appropriate manner. Thus filtered, the data can be rean-
alyzed.
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To make this cycle as efficient as possible, one needs automatic postprocessing methods which
provide relevant and easily comprehensible information about the map and its subareas. Exam-
ples of such postprocessing methods include quantifying the importance of different variables in
each subarea [11], linguistic interpretation of the vector quantization [20], as well as simple sta-
tistical descriptors. However, the foremost among such methods would be a (semi)automated
cluster analysis to help with selecting the subareas themselves.

Ideally, one would feed in a data set and the data mining application would tell what is in it.
Using the information given by the application — qualitative as well as quantitative — one could
select interesting variables or subareas, preprocess them appropriately and re-enter the analysis
stage. This cyclic process would enable the knowledge engineer to ‘play’ with the data and gain
ever keener insights about its properties.
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Table1
Some vector quantization algorithms ®
Algorithm Notes
k—means [1] Only best matching (closest) cluster center of the sample vector is updated
maximum entropy [29, 30]  All cluster centers are updated according to their distance to the sample vector
neural gas[29] All cluster centers are updated according to their ranking order in distance to the sample
vector
SOM The cluster centers are updated according to their distance from the BMU of the sample

vector on the map grid (he)

2All listed algorithms are iterative and are based on minimizing the reconstruction error of the original data set using a
certain number of cluster centers. The difference between the algorithms is the way the cluster centers are updated on each

adaptation step.

Table 2

Some vector projection algorithms ®

Algorithm Energy function Notes

Multi-Dimensional Scaling % 5 (X;; — Y;)?
(MDS) [9, 21]

Sammon’sprojection [31] % 5 (X;— Y;)? / X;;

Curvilinear Component % e (X = )2 F(Yh)
Analysis (CCA) [28]

SOM PIDIY % N Ye)

Distances in the input space are approximated by distances in output
space (typically 2D plane). Thisisthe metric version of MDS

Local distances in the input space are emphasized. Sammon’s
projection has an inherent instability: the 1/X; term when X; — O.
This can be corrected by using e.g. /max(c, X;) in its stead, where
c isasuitably selected constant

Local distances in the output space are emphasized. f(Y;) is a
function monotonically decreasing with output space distance

Input space distances Xix are measured between prototypes (k) and
data vectors (i) rather than between all pairs of data vectors.
Similarly input space distances are measured between map units
(Yoo

2 1n the energy functions X;; denotes the distance between vectorsi and j in the input space, and Y in the output space.
In the case of SOM, X« denotes the distance between vector i and prototype k. The output space distance Y is measured
between the BMU of the data sample ¢ and all other map units; hy is the neighborhood kernel. Note that in the first three
algorithms input space distances X;; are fixed, but in the case of SOM they change, since the SOM training algorithm
moves the prototype vectors to minimize the quantization error. Optimization of the projection is only secondary goal.
Note also that the mathematical treatment of the SOM has proven to be very difficult. The energy function given for the
SOM holds only for the case of discrete data set and fixed neighborhood kernel, but it does give a qualitative idea of the

situation in the general case.
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