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Abstract

The Self-Organizing Map (SOM) is an e�cient tool for

visualization of multidimensional numerical data. One

of the tasks it is used for is correlation hunting. In this

paper we present a simple method to enhance correla-

tion hunting in the case of a large number of variables.

Di�erent variations of the method - component plane re-

organization - are evaluated on a complex test data. The

purpose is to somewhat validate the use of SOM in cor-

relation hunting and to evaluate the strengths and weak-

nesses of di�erent reorganization procedures. A case with

a real world data is also presented to show the usefulness

of the method.

1 Introduction

Data mining is an emerging area of new research ef-
forts, responding to the presence of large databases
in commerce, industry, and research. It is also a title
for a large number of widely divergent methods rang-
ing from relational learning to neural networks and
is, as such, part of a larger framework, Knowledge
Discovery in Databases (KDD) [3]. Data mining is
an interactive process requiring that the intuition
and background knowledge of humans are coupled
with the computational e�ciency of modern com-
puter technology. For this reason visualization is a
very important part of data mining.

The Self-Organizing Map (SOM) [6] is a neural net-
work algorithm based on unsupervised learning.
The SOM implements an ordered dimensionality-
reducing mapping of the training data. It has several
bene�cial features which make it a useful method
in data mining. The map follows the probability
density function of the data, is readily explainable,
simple and - perhaps most importantly - easy to
visualize. The SOM has proven to be a valuable tool
in data mining and KDD [2, 5, 8].

In this paper one aspect of the use of SOM in data
mining is inspected: correlation hunting. The term
�correlation� does not encompass only linear cor-
relations, but also nonlinear and local or partial
correlations between variables. The term �hunting�
is used because visualization is used as the primary
tool, and the �nal assessment of a connection be-
tween variables is done by the human rather than by
the algorithm.

Correlations are hunted from the component planes
visualization of the SOM: similar patterns in identi-
cal positions indicate correlation between the respec-
tive components (variables). This kind of pattern
matching is something that the human eye is very
good at. However, when the number of variables
is large (a few dozen or more), the pattern match-
ing becomes a rather tedious process. To aid it, the
component planes can be organized so that possi-
bly correlated components are close to each other.
In the subsequent sections several variations of this
basic scheme are considered and tested on a com-
plex test data set. A case of a real-world data set is
also presented to demonstrate the usefulness of the
method.

2 Methods

2.1 Self-Organizing Map

The SOM is formed of neurons located on a regular
low-dimensional grid (usually 1D or 2D). Higher di-
mensional grids are also possible, but they are not
generally used since their visualization is problem-
atic. The lattice of the grid can be either hexagonal
or rectangular. Each neuron i of the SOM is an n-
dimensional prototype vector mi = [mi1; : : : ;min],
where n is equal to the dimension of the input space.
On each training step, a data sample x is selected



and the unitmc closest to it (the best-matching unit,
BMU) is located from the map. The prototype vec-
tors of the BMU and its neighbors on the grid are
moved towards the sample vector:

mi =mi + �(t)hci(t)(x�mi);

where �(t) is learning rate and hci(t) is a neighbor-
hood kernel centered on the winner unit c. Both
learning rate and neighborhood kernel radius de-
crease monotonically with time. During the itera-
tive training, the SOM behaves like a �exible net
that folds onto the �cloud� formed by input data.

2.2 Component planes

The fact that the prototype vectors are organized on
a low-dimensional grid makes their visual inspection
easy. One way of doing this is component plane
representaion. Each component plane of the SOM
consists of the values of the same component in each
prototype vector. Thus, they can be thought of as a
�sliced� version of the map. The component planes
are typically visualized by giving each map neuron a
color according to the relative value of the respective
component in that neuron. By plotting all compo-
nent planes and comparing them with each other,
correlations between variables can be seen.

The order of the component planes is usually that
of the order of the variables in the vector. However,
when the number of components is large, the sheer
number of component planes makes it di�cult to dis-
cern which planes resemble each other (Figure 4(a)).
The task can be made easier if the component planes
are reorganized so that the correlating ones are pre-
sented near each other (Figure 4(b)). To do this, the
component planes, or some representation of them,
is projected on a plane. The projection could be
done using, e.g., Sammon's mapping [7] or another
SOM.

If the SOM is used, the projection of each component
plane is the location of its BMU. To prevent several
component planes from being assigned to the same
place a simple procedure is applied: for any unit
with multiple component planes, the worst match-
ing of them is moved to its next-best-matching unit.
This is repeated until no two component planes are
in the same location. The use of a SOM for the com-
ponet plane projection gives an important bene�t
thatw the placements of the component planes can
be shown on a regular grid. However, as these place-
ments are limited due to the grid, they may not be
as �correct� as in Sammon's mapping or PCA. One

of the goals of this paper is to investigate whether
this is a serious problem.

The choice of the component plane representation al-
lows several variations to this basic procedure. There
are two possibilities for the initial representation of
the component planes:

� the component plane itself is transformed into
a vector and normalized to unit length to ig-
nore di�erent scalings of components (CP)

� the average di�erence in component values
(distance) of each unit with respect to its
neighbors is calculated and processed as above
(DtN). The motivation of this is that large co-
occuring changes (positive or negative) in two
components imply that they are connected.

The vectors thus gained can either be used as such,
or they can be further processed by calculating the
covariance matrix of the representation vectors, tak-
ing the absolute value, and using these as data
(|cov(CP)|, |cov(DtN)|). By taking the absolute
value components having strong inverse correlation
are also projected near each other, which is desirable.

3 Experiments

The variations of the proposed method obviously
highlight di�erent features and therefore produce
di�erent results. The purpose of the experiments
was to compare them with each other and to deter-
mine their sensitivity to noise in the input data.

The data set used in the tests contained 1000 data
vectors with 17 components. The �rst three com-
ponents (x; y; z) were independent variables with
uniform distribution between [0; 1]. The other vari-
ables were di�erent functions of one, two, or all of
them. In some variables the �rst 500 samples had
a di�erent dependence than the last 500. The de-
pendent variables are presented in Figure 1. Some
noise was also added to the data (signal to noise
ratio (SNR) of 1, 10, 2 and 1).

Three map sizes were used: 6�4; 18�12, and 36�24

units. Two di�erent representations of the compo-
nent planes was used: |cov(CP)| and |cov(DtN)|,
introduced inthe previous section. These represen-
tations were then projected on a plane using three
projection algorithms: Principal Component Analy-
sis (PCA) [1], Sammon's mapping and the SOM.
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Figure 1: The dependent variables as a function of
the primary variables (x, y, z): �2x (a), x + y (b),
x+y+z (as a function of x and y only)(c), (x+0:01)�1

(d), 4y2 (e), tanh(10x�5) (f), cos(10x) (g), zsin(3x)
(h), xy (i), z=(x + 0:1) (j), (x � y)3 (k), [x; y] (l),

[x;x � 1] (m), [x; 1� x] (n).

For reference also a random placement of compo-
nents and placement using values of the component
planes as such (CP) for the representation were con-
sidered.

Reaching the objective of positioning components
with a connection near each other was tested with
a heuristic test: for each of the 14 derived variables,
the distance between the placement of the dependent
variable and each of the three primary variables was
calculated. Based on relations between the three dis-
tances it was determined whether the placement was
�correct�, �acceptable� or �wrong� (ranking values 2,

1 and 0 respectively). In a �correct� placement the
distance to the variables of which the component de-
pends on must be smaller (by a certain amount) than
to the other primary variables. In a �wrong� place-
ment, the distances are in opposite order. For exam-
ple, in Figure 2 (c) in the upper left corner variable
4y2 clearly is much closer to y than x or z, so its
ranking would be �correct�. However, even though
the variable [x;x � 1] in the lower right corner is
closer to x than y or z, the fact that the distance
between the variable and x is not small enough com-
pared to distance between the variable and z gives
it ranking �acceptable�. On the other hand, since
the variable cos(10x) up in the middle of the �gure
is closer to z and y than x, its ranking would be
�poor�. The ranking values were averaged over ten
test runs. This test shows us how the methods could
indicate dependencies between variables. Note, how-
ever, that the test results should not be taken as the
absolute truth. The test method is very heuristic,
and furthermore using distances as the indicator of
correctness is not exactly proper since our primary
interest is on visual impression.

4 Results

The average rankings using di�erent approaches are
shown in Figure 3. When calculating the e�ect of a
certain parameter, the rankings were averaged over
all other parameters (e.g. when the e�ect of the
map size was studied, the results were averaged over
noise, representation type and projection algorithm).
Furthermore, random placement and CP represen-
tation were excluded in the averaging, since were
only included in the tests for reference. As seen from
Figure 3(d), the average for random positioning is
about 0.4. Thus, results higher than 0.6 can be con-
sidered adequate, and results over 1 good.

From Figure 3(a) it can be seen that while noise
degraded the results, the average rankings were still
pretty good for a number of variables even with SNR
of 1.

The e�ects of di�erent map sizes can be seen from
Figure 3(b). The results show two tendencies: some
variables fare best with smaller maps but the rest,
especially non-monotonic functions [x; 1 � x] and
cos(10x) have best results with the middle sized map.
Presumably the small map averages too much, and
the biggest map is e�ected too much by the noise.
Corresponding tendencies can be seen from Fig-
ure 3(c): for the non-monotonic variables |cov(CP)|
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Figure 2: Examples of typical projection results for
di�erent projection algorithms. In PCA and Sam-
mon's mapping the variables can move freely which
may cause overlapping. The SOM, on the other hand,
enables the direct visualization of the component
planes themselves, since they will not overlap.

fails, but |cov(DtN)| still works.

The choice of the projection algorithm (SOM,
PCA or Sammon) had very little importance (Fig-
ure 3(d)). This is nice because it shows that the SOM
can be used as the second-level projection algorithm.
This is convenient because of the straightforward vi-
sualization of the SOM.

5 Discussion

When compared with a simple correlation analy-
sis by calculating the covariance matrix from the
data (results not shown in this paper), the proposed
method had both advantages and disadvantages. In
some cases, when the covariance matrix correctly in-
dicated dependency between variables, the proposed
method fared poorly. However, the covariance ma-
trix is much more sensitive to noise, and fares poorly
in non-monotonic cases, e.g., cos(10x). Therefore,
the proposed method should be used in addition to
normal correlation analysis.

Visual examination of the maps brought up some
issues that our heuristic evaluation method missed.
One such is that we ignored correlations between
derived variables: for example variables (x+0:01)�1

and z=(x+0:1) seemed to be very close to each other
in the projections.

Another way of looking for dependencies or corre-
lations from the data would be to use scatter plot
for each pair of variables in a �Grand Tour�. Since,
in the proposed method each variable need only be
visualized once, the number of plots is reduced from
n(n � 1)=2 to n. From this kind of visualization it
is easy to select interesting component combinations
to be investigated further. Furthermore, using color
to link the map and scatter plots of component pairs
together makes it possible to identify partial corre-
lations with clusters on the map [4].

6 Case: Hot strip mill data

The proposed method was also tested for a real
world data. The data set used was collected from
Rautaruukki's hot strip mill in Raahe. It included
information about chemical content, casting ma-
chines, re-heating furnaces, process conditions, and
end product quality of about 4000 hot rolled micro-
alloyed strips. The data was analysed in order to �nd
out dependencies between the variables.
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Figure 3: The results of the experiments. Each bar chart shows the results averaged over all other parameters,
except the one under observation. Each bar shows the average result for one variable (the order is the same as
in Figure 1). Note that average ranking of about 0.4 corresponds to the result of random positioning, as seen
from bottom right �gure. Results higher than 0.6 can be considered adequate, and results over 1 good. For
example, in the upper left �gure in the �rst group of bars (where there was no noise in signals) the leftmost
(black) bar represents variable �2x averaged over map size, representation type (excluding CP) and projection
algorithm (excluding random placement). It can be seen that its ranking value is about 2, so the placement
of the variable was good, regardless of the other parameters used. On the other hand, in the same group the
third (light gray) bar from the left, representing variable [x; y], shows ranking value of only about 0.2. So, the
placement of the variable was poor throughout.
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Figure 4: Correlations between components can be searched from the component planes visualization in Figure
(a). The task is easier if the planes are reorganized so that component planes which seem to be correlated are
placed near each other, as in Figure (b).

In the study component plane reorganization was
used together with traditional correlation analy-
sis. Both of the representation types (|cov(CP)|,
|cov(DtN)|) were used. Only the SOM was used
as a second level projection method because of its
quick and easy visualization. In Figure 4 the compo-
nent planes are reorganized illustrating the bene�t
of using the method.

As a result several global linear correlations, most
of which were already known or otherwise unin-
teresting, were found. However, some of them, in
addition to a few local correlations turned out to
have some valuable information. No nonlinear corre-
lations could be found, but that was probably more
due to the nature of the data than incapability of
the methods.

Summa summarum, component plane reorganization
proved to be a very useful method in �nding both
global and local correlations. Its biggest contribution
for the analysis was the detection of the local correla-
tions since traditional correlation analysis could not
�nd them. Furthermore, in this case they were the
most interesting ones, since in further analysis they
revealed some detailed information about, e.g., the
problems with di�erent products under di�erent pro-
cess conditions.
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