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Abstract  
 

The purpose of this work was to study the rectangular dielectric waveguide and its 

transitions to metal waveguide at millimeter wavelengths. The thesis reviews different 

dielectric waveguiding structures, their analysis methods and their transitions to the 

metal waveguide. In this thesis work the analysis methods and transitions are further 

developed. The main results of this work are: 

1. It was shown that, after modifications, the Marcatili and Goell methods can be 

applied for calculating propagation constants of rectangular dielectric waveguide 

made of uniaxial anisotropic material with the optical axis oriented along the 

dielectric waveguide. 

2. Several tapering shapes were studied. It was shown that symmetrical E-tapering 

gives lower insertion losses and smaller reflections compared with the H-

tapering. 

3. Different cross-sections and geometry of tapering were studied using Agilent 

HFSS program. The most appropriate dimensions were found. 

4. In the case of unsymmetrical tapering it was shown that better results are 

achieved when the axes of metal and dielectric waveguides do not coincide but 

differ by half of the tapering angle. 

5. Low insertion loss and small reflections were obtained with sapphire waveguide 

section. For a 100 mm sapphire waveguide section lower losses were obtained 

than for a 100 mm standard metal waveguide section. 

6. Characteristics of a dielectric rod antenna were measured. 
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1. Introduction 
 
1.1. General 

Dielectric materials are increasingly  used at frequencies above 100 GHz. There 

are dielectric waveguides, directional couplers, phase shifters, multistate reflectometers, 

etc., which are based on them. Dielectric rod waveguides (DRW) have lower losses, 

wider tolerances and lower cost in comparison with the standard metal waveguides. 

DRW being an open transmission line allows affecting its characteristics with light, 

magnetic field and other means. Therefore controllable devices like attenuators, 

multiplexers and phase shifters, etc. can be designed based on DRWs. These devices 

have been intensively investigated, see e.g. [1, 2, P1]. Particularly in [3] there is a review 

about different types of DRWs and other transmission lines. In comparison with the 

standard metal waveguides DRWs have much broader operating frequency bandwidths 

in which only two fundamental modes propagate. Moreover, an isolated DRW has no 

cut-off frequency for two fundamental modes differing by the x and y polarization. The 

frequency band allowing only these two fundamental modes could be even wider if a 

graded index guide similar to the optical fiber was used in the millimeter wave 

frequency band [3]. It has been shown that by varying the thickness or height of DRW in 

the transversal direction one can achieve the desired effective refraction index profile 

and obtain single mode operation even if the cross dimensions of such a DRW are 

several wavelengths [3]. Also, at frequencies beyond 300 GHz the use of standard metal 

waveguides becomes difficult, i.e. only multimode regime is applicable, because the 

dimensions and losses of a single mode waveguide become unacceptable at these 

frequencies. So the use of DRWs becomes important for mm- and submm-wave devices. 

 
1.2. Scope and contents of this thesis 

The purpose of this work is investigation of rectangular dielectric waveguides 

made of materials of high permittivity such as semi-insulating semiconductors and 

sapphire, and also investigation of transitions from a dielectric waveguide to a metal one 

and to design a simple and effective transition structure. 

The dielectric waveguide section is supposed to be used in a mm-wave power 

standard as an isolation section. Therefore the desired results are: construction of a 

simple dielectric waveguide section with low insertion loss and small reflections, and 

capability to design and analyze it accurately. 

In the second chapter of this work a review of dielectric waveguiding structures 

and transitions to the metal waveguide is presented. In the third chapter, a review of 

existing numerical and approximation methods for dielectric waveguiding structures is 



 12

presented. In the fourth chapter two simple and effective methods for calculating 

anisotropic dielectric waveguides are developed and verified experimentally. They are 

based on the methods by Marcatili and Goell developed originally for isotropic dielectric 

waveguides. Some attention is paid to the influence of anisotropy to the dispersion 

characteristics. 

In chapters 5 and 6 simulation and experimental results, respectively, are 

described. In this work rectangular dielectric waveguides made of materials of high 

relative permittivity (above 10) are investigated. The main attention is paid to the 

transition from a metal waveguide to a dielectric one. Experimental measurements have 

been carried out with HP 8510TM network analyzer. Agilent High frequency simulator 

HFSSTM simulations with finite element method have also been carried out in order to 

find the optimal dimensions of the dielectric waveguide and its matching section. 

Displacements of the dielectric waveguide relative to the metal ones are also studied in 

simulations and experiments. 



2. Dielectric waveguides (literature review) 

2.1. Dielectric waveguides 

The main types of dielectric waveguides are shown in Fig. 2.1. A review of 

different transmission lines and devices based on them can be found, for example, in [2]. 

The use of dielectric waveguide gives a possibility to decrease the cost of devices for the 

millimeter wave region. Based on dielectric waveguide, different devices can be 

designed, such as attenuators, phase shifters and antennas with a tunable radiation 

pattern. Mirror dielectric waveguide (Fig.2.1b) differs from the basic open dielectric 

waveguide only by having a ground plane. In addition to its low cost, simplicity in 

construction and low attenuation, it has a relatively wide operating bandwidth of the 

single mode operation. Metallization makes it suitable for MMIC (microwave 

monolithic integrated circuit) devices, like receiving modules for the mm-wave region. 

In [4] a boron-nitride waveguide with losses of the order of 10  per wavelength at 

frequency 94 GHz is reported. 

3−

 

a) b)

c) d)

εr1

εr1εr1

εr2<εr1 εr2<εr1
εr1

Ground plane

εr1
εr2<εr1

εr1

εr2<εr1

e) f)  

Figure 2.1. Main types of dielectric waveguide 

a) dielectric waveguide, b) mirror dielectric waveguide, c) isolated mirror dielectric waveguide, 

d) layered ribbon dielectric waveguide, e),f) other types. 

 

Isolated dielectric mirror waveguide differs from the previous waveguide by an 

additional dielectric layer with a permittivity smaller than the permittivity of the strip 

(Fig.2.1c). It is shown that if the surrounding medium has a smaller dielectric 

permittivity than that of the dielectric strip, power will mainly propagate within the core. 

Therefore, if a layer is added with a smaller permittivity between the strip and the 
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ground plate, one can decrease the metal losses by more than 50% [4]. This becomes 

rather important at frequencies above 100 GHz. 

In general, there is an opinion that at millimeter and submillimeter wavelengths the 

less of metal present the better, as metal introduces extra losses compared with the 

dielectric ones [5]. 

As the dielectric material may be any semi-insulating semiconductor, different 

semiconductor devices can be designed directly in the waveguide by means of ion 

implantation and multilayer epitaxy.  

As the semiconductor and ferrite materials have rather high dielectric permittivity, 

the sizes of the waveguides can be made very small without loss of waveguiding 

properties. A phase shifter made of ferrite with εr=13.8 for the frequency range 53-78 

GHz has transversal dimensions  

0.8 mm × 1.4 mm which are less than half of the wavelength [6]. At higher frequencies 

these dimensions will be certainly smaller, as they scale in wavelength. 

Dielectric waveguides on dielectric substrates are the basis of so-called integral 

optics [7,8]. Mainly, the integral optics is used in optical integrated circuits, where the 

dimensions of the waveguides allow applying thin-film technology. However, there are 

also mm-wave and submm-wave applications. 

The field distribution in a dielectric waveguide is shown schematically in Fig. 2.2. 

In such a waveguide different modes  and  can propagate. The indices of modes 

show how many extremes the field distribution has along each axis. The upper index  

shows that the largest component of the electrical field is in the y-direction. Thus, in Fig. 

2.2 the field distribution of mode  is shown. In Fig. 2.3 dispersion characteristics and 

attenuation factor vs. the wave number in vacuum are shown. 

x
pqE y

pqE

y

yE12

 

 

Figure 2.2. Field distribution  of the dielectric waveguide in case of propagating mode . xH yE
12
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Figure 2.3. Schematic dispersion characteristic and dependence of the loss factor 
0

α
α

 vs. frequency in a 

dielectric waveguide. k  is the wave number in vacuum, 0 δα tan
2
1

0 kn=  is the attenuation constant of 

infinite medium filled with the same dielectric, n is the refractive index of the DRW. 

 
It was shown by different authors that the lowest modes  and  do not have 

any cut-off frequency in contrast to the higher order modes [9,10]. Therefore, in 

principle, lower losses can be obtained by simply reducing the size. The smaller is the 

size, the smaller fraction of power propagates within the dielectric core. However, in that 

case the electromagnetic wave will experience radiation due to even very small 

discontinuities. 

xE11
yE11

If we look again at Fig. 2.3 we can see that at a very high frequency the properties 

of such waveguides approach the properties of the infinite medium filled with the same 

dielectric. The second observation is that after some frequency the loss parameter 
0α

α  

becomes larger than unity and then asymptotically decreases to one [11]. 
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2.2. Transitions from standard metal waveguide to dielectric rod waveguide 

Excitation of DRW is somewhat problematic, because in DRW the propagating 

field is partially outside the rod as shown in Fig. 2.2. Previously, DRWs were made of 

such materials as polyethylene and teflon, which have a low dielectric constant. 

Therefore the dimensions of such waveguides coincided with the cross section of the 

standard metal waveguide. In order to decrease losses in the transitions, the authors 

usually designed a tapering section followed by a small horn, see e.g. [12] (Fig. 2.4), so 

that a contact between metal and DRW was not avoided, but was rather desired due to 

mechanical reasons. 

 

 

Figure 2.4. Transition from metal to dielectric waveguide with the same cross section. 

 

In the case of DRW made of, for example, a semiconductor or a dielectric with a 

high permittivity, the dimensions for a single-mode operation become smaller. 

Therefore, different constructions for DRW mode launchers are used [5, 13-14], see 

Figs. 2.5 and 2.6. 

 

 

Figure 2.5. Transition from metal to silicon waveguide [12]. 
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Figure 2.6. Transition from metal to boron nitride waveguide [5]. 

 

All such constructions consist of the following parts: a transition from the standard 

metal waveguide to the waveguide filled with dielectric, followed by a transition to the 

dielectric waveguide itself. In the structure presented in Fig. 2.6 [1,5,14] there is no horn 

neither a contact between the metal waveguide and DRW. 

Surprisingly low transition loss is found for a mode launcher for phase shifters [1], 

where no horn is used. The dielectric waveguide as the main part of this phase shifter is 

simply a rectangular ferrite rod tapered at the ends and placed on a substrate. The area of 

the cross section of this rod in the optimal configuration is smaller than a quarter of that 

of the standard waveguide (1.3x2.6 mm2 vs. 7.2x3.6mm2). 

 

2.3. Low loss dielectric materials for DRW 

If a dielectric material has loss tangent of about 10  and a relative permittivity of 

10-15, losses can be expected to be in the order of 5 dB/m at 150 GHz while 10-12 dB/m 

is typical for the standard metal waveguide at this frequency. The properties of some 

dielectric materials which appear to be appropriate for DRWs are summarized in Table 

2.1. There are some differences in data taken from different sources [15-28], because all 

the parameters depend on the material growth conditions, the method of its doping, etc. 

4−

Also wide band gap semiconductors AlN and GaN are now popular and are 

being investigated by many scientists [20-25]. These materials can have a very high 

resistivity and perhaps a very low loss tangent. However, there are no experimental data 

for monocrystal samples of these materials because of difficulties in growing them. 

The most important parameters are the loss tangent measured at frequencies 120-

170 GHz and the thermal conductivity. Looking at Si in [1], it is possible to calculate 

that its resistivity 10  corresponds to  compared with  

measured in [1]. In comparison, it can be seen that in spite of that GaAs has a higher DC 

resistivity than Si, its loss tangent is higher than that of Si [1]. This means that high DC 

resistivity does not necessarily predict low losses at millimeter wavelengths. In [15] the 

properties of different dielectric materials can be found including GaAs and Si with DC 

4 cmΩ ⋅ 3tan 0.07 10δ −≈ ⋅ 0 08 10 3. ⋅ −
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resistivity ≈8000 Ω⋅cm. This resistivity of the silicon sample does not differ much from 

the resistivity of 11000 Ω⋅cm for the silicon sample in [16], but the values of the loss 

tangents are very different. Other materials reviewed in [15] have either low permittivity 

or high loss tangent and are not suitable for use in dielectric waveguide. However, Si 

may have a very low loss tangent. Si doped with boron with the loss tangent 4⋅10-5 

described in [16] can be appropriate for our purpose. Also in [17] the possibility of 

silicon having the loss tangent as low as 3±2⋅10-6 at 145 GHz is discussed. Moreover an 

interesting effect was described in [17] that the dielectric loss behavior of silicon does 

not degrade after electron or neutron irradiation but is even improving. Another way to 

improve the dielectric properties of silicon is traditional, that is to compensate the 

conductivity by doping of acceptors. In [17] gold was used as an acceptor and also the 

effect of electron and neutron irradiation was investigated. The loss tangent for all the 

samples is shown graphically, and it drops nearly inversely proportional to the 

frequency. Therefore, one can expect that the dielectric properties of such silicon will be 

even more attractive at frequencies above 145 GHz. Thus, one can conclude that 

materials with a relatively high dielectric constant and a low loss tangent exist. 

 

2.4. Conclusions 

According to the author’s opinion, there are three types of transitions from a 

standard metal waveguide to DRW (Fig. 2.7), which are most promising for open DRWs 

with relatively high dielectric permittivity (εr = 9-12). It will be interesting to investigate 

these types in more detail both experimentally and theoretically including high 

frequency field simulations. 

 

 

Figure 2.7. The most interesting transitions from standard metal waveguide to DRW. 
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3. Mathematical methods for rectangular dielectric waveguide structures 

3.1. Introduction 

The problem of calculating the propagation characteristics of a circular dielectric waveguide 

can be solved rigorously relatively easily by using Bessel functions. However, in the case of 

rectangular dielectric rod waveguide (DRW) the problem becomes rather complicated especially 

when the ratios of the permittivities of the core and the “cladding” regions are high. The reasons for 

those complications are described e.g. in [29]. The main reason for slow convergence of any 

numerical method is the presence of sharp corners of DRW. For example, if we consider the x-

component of the field in a rectangular dielectric waveguide, this component at x=a/2 must be 

continuous for |y|>b/2 and discontinuous for |y|<b/2 (Fig. 3.1), as the permittivity is discontinuous 

here. 

 

 

Figure 3.1. Cross-section of a rectangular DRW. 

 

A series expansion of such field distribution suffers from the so-called “Gibbs” phenomenon. 

Also the transverse electric field components diverge at the corner roughly by power from 0 to -1/3 

of r, where r is the distance from the corner. The field behavior near the corner was a subject of 

investigation for over 30 years, that for itself says something about difficulty of the problem [29]. 

For example, it was shown that it is impossible to expand such a field distribution in increasing 

powers of r times a function of the angle [30]. 

 20



A good exposition of numerical methods for calculating general millimeter wave structures 

can be found e.g. in [31]. Many methods from there can be applied to the problem of rectangular 

DRW structures and particularly to open rectangular DRWs. 

 

3.2. Finite difference method 

In the simplest case this method can be explained for a two-dimensional problem with the 

Laplacian operator as follows: we divide the region of interest by a mesh (for example a rectangular 

grid with a small enough spacing h); then for each intersection point we make a Taylor expansion 

and express the quantities of the scalar potential for the adjacent points, add these relations and 

combine them with the differential equation to be solved. In that way we get a discretized version of 

the differential equation and write it for each point. Thus we get a matrix equation that can be 

solved. The main disadvantage of that method is that the matrices obtained are usually very large 

and much computer resources are consumed. 

A realization of the finite difference method can be found e.g. in [32]. One variation of the 

finite difference method is the finite difference time domain method (FDTD), where Maxwell’s 

equations in time domain are discretized. The finite difference method is very flexible in the sense 

that it allows to analyze arbitrary refractive index profiles and even anisotropic DRWs [33]. 

 

3.3. Finite element method 

The method of finite elements is somewhat similar to the previous one (finite differences). 

The first step in this method is to divide the region of interest by a number of triangles (elements) 

(see e.g. [34,35]). A so-called shape function for each element is introduced as a polynomial: 

 

( ) ( )
1

,
M

n
n

, nx y a x y φ
=

Φ =∑ ,     (3.1) 

 

which is a sum of the basis functions with weight coefficients depending on the coordinates (see 

e.g. [35]). Then the shape function can be expressed in terms of the nodal values of the field 

components. The further action depends on the particular formulation of the problem. It is 

impossible to describe briefly all the variants of the finite elements method. More details can be 

found in [31,34,35]. A comparison of different formulations is made in [36]. The general feature of 

this method is that a matrix equation has to be solved as the last step (an eigenvalue problem). 
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3.4. Variational methods 

One realization of this method can be found e.g. in [37] for the simplest case of a dielectric 

slab waveguide. One must start with the Helmholtz equation 

 

( ) ( ) ( )
2

2 2
02 0r

d x
x k x

dx
φ

ε β φ + −  = ,    (3.2) 

 

multiply it by ( )xφ  and integrate it from minus infinity to plus infinity. After some transformations 

the following relation can be obtained for the propagation constant β: 

 

( ) ( ) ( ) ( )

( )

2
2 2
02

2

2

r
d x

x dx k x x dx
dx

x dx

φφ ε
β

φ

+∞ +∞

−∞ −∞
+∞

−∞

+
=
∫ ∫

∫

φ
.   (3.3) 

 

This is the so-called variational or stationary expression for the propagation constant. If we know 

the true field distribution, we can calculate the exact value of the propagation constant. Moreover, if 

we substitute some reasonable estimate of the field distribution, it can be shown, that the error in the 

estimate of β  will be relatively small.  

The variational expression can be different depending on how it is derived. For example, in 

[38] the variational expression is given as 

 

( )( )
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* *
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EE E Ek k E E
x y x y
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x x y y

ε

ε

 ∂∂ ∂ ∂− + + + + −
∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂− − − + −  ∂ ∂ ∂ ∂ 

∫∫∫ −

=

     (3.4) 

 

Then the field distribution is approximated with Marcatili’s method, which is described below. 

More information can be found in [31]. Variational methods are used also in the finite element 

method [31,34], and can also be used in the mode matching method [39]. A method of calculation 

of a lossy DRW is proposed in [40], and calculation of a lossy anisotropic waveguide in [41]. 
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3.5. Integral equation method 

For example, in the case of a waveguide consisting of homogeneous regions, the propagation 

characteristics can be found in terms of the transverse magnetic fields [42,43]. For each 

homogeneous section one can write: 

 

( ) ( ) ( ) ( ) ( ), ' , '1 ' ' , '
2 С C

G
H H d G

∂ ∂
= −

∂ ∂∫ ∫
r r r r

r r r r r
n n� '

H
dr ,   (3.5) 

 

where H denotes Hx or Hy, and G is the two-dimensional Green’s function. The first integral in the 

right-hand side of the equation denotes the Couchy principal value integral. This equation can be 

then solved numerically. Another integral equation method is proposed in [44]. 

 

3.6. Mode matching 

In this method the field is presented as a sum of harmonics. For example, in [45] the problem 

of two coupled image DRWs can be reduced to that shown in Fig. 3.2. 

 

Figure 3.2. Cross-section calculated in [45]. 

 

 

The potential functions are represented as follows: 

Region I 

( ) ( )( ) ( )(1
1

0
exp cos

n
y

xE x wν ν ν
ν

β
=

Π = +∑ )1
y yβ

)1
y yµβ%

    (3.6) 

( ) ( )( ) ( )(1
1

0

exp cos
n

y
xF x wµ µ

µ
β

=

Λ = +∑ %     (3.7) 
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Region II 

( )( ) ( )( ){ } ( ) ((2 2 2'
2

1

sin cos cos
m

y
x x yA x A x yν ν ν ν ν

ν
β β β

=

Π = + −∑ ))d    (3.8) 

( )( ) ( )( ){ } ( ) ((2 2 2'
2

1

cos sin sin
n

y
x x y ))B x B x y dµ µ ν ν µ

µ
β β β

=

Λ = + −∑ % % % ,   (3.9) 

 

and so on. In other words, sinusoidal or exponential dependence is according to the situation (region 

number). Then we can write the boundary conditions for the tangential components of the fields to 

obtain the proper system of equations. A similar approach was used in [46, 53]. 

 

3.7. Method of lines 

In this method the discretization is made only in two of the three dimensions or in one of the 

two of them. For the remaining dimension, an analytical solution has to be found. More details can 

be found e.g. in [31]. Many publications can be found on application of the method of lines to the 

isotropic dielectric waveguide problem, e.g. [47,48]. 

 

3.8. Iterative eigenfunction expansion method 

The basics of the iterative eigenfunction method can be explained as follows [49,50]. Let us 

assume that we have an eigenvalue problem: , where T is an operator that can be 

presented as the difference between a self-adjoint operator L with the known set of eigenvalues 

(Λ

0u uλ− =T

i), eigenfunctions (ff

k
if

) and a perturbation operator F, i.e. . The iteration loop is then 

organized as [49]: 

= −T L F

A) Initial approximation of u0, λ0. 

B) Expansion of the k-th approximation into series of the eigenfunctions of L: 

( ) ( )k
i

i

u c=∑% , where ( )
( )

( )

1

1

,k
ik

i k
i

u f
c

λ

−

−=
Λ −

F
.    (3.10) 

C) Normalization: 

( ) ( )k
i

i

u d=∑ k
if , where ( )

( )

( ) 2

k
k i

i
k

i
i

cd
c

=
∑

.    (3.11) 

D) Determination of the k-th approximation of the eigenvalue λ: 

( ) ( ) ( ) ( )2 * ,k k k
i i i i

i i

d d uλ = Λ −∑ ∑ F k f .    (3.12) 
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Steps B, C, D can be repeated until the desired accuracy is reached. Authors in [49] report that their 

method is faster and takes less memory compared with the matrix oriented methods above. 

 

3.9. Fourier decomposition 

This method was first proposed in [51]. The start is at the Helmholtz eigenvalue problem: 

 

( ) ( )
2 2

2 2 2
2 2 , ,k n x y E x y

x y
β ∂ ∂+ + − = ∂ ∂ 

0
 ,    (3.13) 

 

where the region of interest is limited by a box with the dimensions Lx and Ly. The field distribution 

is expanded in sinusoidal basic functions: 

 

( ) 2, sin sini
x yx y

m x n yx y
L LL L
πφ

  
=      

π
 .    (3.14) 

 

 Expanding the field in these functions, substituting them in the Helmholtz equation, multiplying by 

iφ  and integrating over the entire region we get the following matrix equation: 

2v vβ=A ,      (3.15) 

where v is the coefficient vector of the field expansion, and the matrix elements Aij are: 

 

( ) ( ) ( )
2 2 2 2

2 2
2 2 , , ,ij ij i j
x y

m nA k x y n x
L L
π π δ φ φ

 
= − + +  

 
y x y .  (3.16) 

 

Thus, we get an eigenvalue problem that can be solved numerically. However, to obtain a good 

accuracy especially for waveguides made of materials with high permittivity, we have to take a 

large number of harmonics, which takes a lot of computing resources. The matrix, however, can be 

reduced by the Lanczos reduction scheme [52]. Another improvement can be found in [53], where 

the infinite cross section is transformed to a box with dimensions 1x1 using the following 

transformation functions: 

 

1tan
2xx a uπ = 
−    

    (3.17) 
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1tan
2yy a vπ = 
−    

,    (3.18) 

 

where parameters ax and ay are arbitrary, however convergence depends on them. The Helmholtz 

equation is then properly transformed and then again expansion in sinusoidal functions is applied. 

The following steps are similar to those in [51,52], but the elements of the matrix obtained are 

different. 

 

3.10. Circular harmonic method (point matching, Goell’s method) 

Instead of expanding the field distribution in sinusoidal functions, Goell [10] proposed to use 

the following: he expanded the longitudinal components of the electric and magnetic field as: 

 

( ) ( ) ( )1
0

sin expz n n n z
n

E a J hr n i k zθ ϕ ω
∞

=

= + ∑ t− 
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   (3.19) 

( ) ( ) ( )1
0

sin expz n n n z
n

H b J hr n i k zθ ψ ω
∞

=

= + ∑    (3.20) 

inside the core of the dielectric waveguide and outside: 

( ) ( ) ( )0
0

sin expz n n n z
n

E c K pr n i k zθ ϕ ω
∞

=

= + ∑    (3.21) 

( ) ( ) ( )0
0

sin expz n n n z
n

H d K pr n i k zθ ψ ω
∞

=

= +   ∑    (3.22) 

Here ( )
1

2 2 2
1 zh k k= − , ( )

1
2 2 2

0zp k k= − , J and K are the Bessel functions and the modified Bessel 

functions, respectively. 

The sums are truncated at some number of modes N. Then the tangential field components are 

expressed and “tailored” at several points on the boundary. Symmetry simplifies the analysis [10] 

because one can consider only the first quadrant (0 < θ < 
2
π ) and select only odd or even numbers n 

corresponding to the harmonics. For example for the odd harmonic case Goell chose matching 

points like 1
2 2m m

N
πθ  = − 

 
 with respect to the angle , where N is the number of harmonics, 

and θ is the angle in the polar coordinates. As a result of this “tailoring” a system of equations is 

obtained, for which the determinant of its matrix should be equal to zero, otherwise no non-zero 

solution can exist.  

0θ =
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This method is rather fast, converges rather well and is considered classical. A more rigorous 

solution without the limitation of matching only at the particular points is proposed in [54]. The 

same expansion of the longitudinal field components is used except that instead of sine (cosine) 

functions complex exponents are taken. Then the strict boundary conditions are written in terms of 

the longitudinal field components and their derivatives both in the tangential and normal directions. 

As a result, an infinite system of equations are obtained and the determinant of the matrix was 

equalized to zero. The solution there was much more complicated but more rigorous. 

Some other numerical methods are also described in [55]. 

 

3.11. Approximation methods 

The first numerical results were obtained by Schlösser [9] and Goell [10]. However, these 

methods are rather complicated, therefore approximate methods are also of interest. 

 

Figure 3.3. The geometry of the dielectric waveguide in Marcatili’s method and the distributions of some field 
components. 

 

The first approximation method was proposed by Marcatili [56]. It consists of the following 

assumptions: the field distributions of the strongest components are sinusoidal (cosinusoidal) within 

dielectric and decaying exponentially outside the dielectric medium, as shown in Fig. 3.3. 

Moreover, it is assumed that the dominant components are the transversal ones (but not all of them). 

Although this method was proposed for waveguides made of dielectrics with a small permittivity, 
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for high enough frequencies it gives a good result also for dielectric waveguides even made of such 

materials as silicon, gallium arsenide or ferrite, which have relative permittivity between 10 and 14 

[57]. The basic assumption is that one can neglect the fields in shaded regions (Fig. 3.3). The 

equations are obtained by matching the z-components, taking one component, say Hy=0, and then 

matching the dominant transversal components.  

The propagation constant in the simplest case of a dielectric rod waveguide can be calculated 

according to this method using the following formulas: 

 

222
01 yxz kkkk −−= ε ,    (3.23) 

 

where 1ε  is the relative permittivity of the rod,  is the wave number in vacuum.  and  one 

finds from transcendental equations for  modes: 

0k xk yk

y
pqE

 

ξ
π x

x
k

pak arctan2−= ,    (3.24) 

ηε
π

1

arctan2 y
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qbk −= ,    (3.25) 

 

where ( ) 2
1

2
0 1 xkk −−= εξ , ( ) 2

1
2
0 1 ykk −−= εη

x
pqE

,  and  are the width and height of the 

waveguide, respectively. In the case of  mode indices 

a b

x  and  in these equations interchange. 

However at lower frequencies this assumption does not work and the dispersion characteristics do 

not agree well with the experiment.  

y

Knox and Toulios [57] recognized that equations (3.24) and (3.25) correspond to the 

equations for two dielectric slab waveguides, vertical and horizontal, with corresponding 

thicknesses. For the dielectric rod waveguide these equations were modified introducing effective 

dielectric constant by  
2 2 2

1 0eff x zslabk k kε ε= − = ,    (3.26) 

 

 that can be substituted in (3.25) instead of . Here k1ε x is calculated from (3.24). 

Then one can substitute  in equation (3.25) and find the propagation constant as effε

 

2
0z effk kε= − 2

yk .     (3.27) 
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This method is interesting because it predicts that the lower modes of the rod dielectric 

waveguide do not experience cutoff at lower frequencies. This method can be applied also for more 

general waveguide structures. 

The two methods above are the main approximation methods. There are different 

modifications of them. Marcatili’s method was modified e.g. in [58] and [P3]. The main difference 

is that no field component is assumed to be zero. As in Marcatili’s method the longitudinal 

components Hz and Ez are introduced with sinusoidal end exponential distribution, then the other 

field components are expressed through them. The equations are obtained by matching components 

Ey and Ex , then Hy and Hx, and excluding in both cases the ratio between amplitudes of Hz and Ez. 

The effective dielectric constant method was modified by Marcatili and Hardy in [59]. 

Instead of substituting the original rectangular DRW with two dielectric slabs, two circular 

waveguides are used. One of them is circularly symmetric with some radial refractive index 

distribution while the other one has variation only in angular direction. 

Interesting modification is described in [37]. An iterative technique can be applied, if the 

value ky from (3.25) is again substituted to find the effective dielectric constant and then from (3.24) 

find another value of kx. This process can be repeated iteratively and has rather good convergence. 

As to calculation of the attenuation constant, numerical methods giving electrical field 

distribution can be used by applying the formula: 

 

P
Pa

2
1=α ,       (3.28) 

 

where  is the power absorbed per unit length by the dielectric due to its losses, andaP P  is the 

propagating power. 

Another approach is proposed in [57] and reviewed in [55]. This method proposes to solve 

equations (3.24) and (3.25) assuming that all the propagation constants ηξ ,,,, zyx kk

( )

k  are complex 

because the dielectric permittivity of the material of the rod δεε tanj11 r −=  becomes complex. 

There are almost no experimental reports about dependence of the attenuation loss of the dielectric 

waveguide on the frequency separately from the excitation loss, only theoretical predictions are 

available in the literature. Another problem is that in most of the articles the authors considered 

dielectric waveguides made of materials with a relatively small dielectric constant (less than 3). 
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3.12. Conclusions 

The main known methods for calculation of rectangular DRW structures have been reviewed. 

Unfortunately, the lack of experimental data does not allow to conclude which method is the most 

suitable. Usually authors give the calculated results for DRWs made of materials with a low relative 

permittivity (around 2.5) because DRW structures were mainly required for optical communication 

systems. 

Nowadays dielectric materials with a high permittivity ( rε  around 10) become of more 

interest for millimeter wave applications. However, existing methods require a lot of computational 

resources for their calculations. Moreover, different methods still give different results at 

frequencies near the cut-off because of different convergence of different methods.  

Therefore both experimental and theoretical investigations are needed for DRW structures 

with high permittivity. From our point of view two methods deserve more attention: Marcatili’s 

method because of its simplicity and Goell’s method because of its efficiency.  

Unfortunately, there are no publications on calculating anisotropic DRWs using the methods 

above with experimental verification, therefore this is one of the subjects of this thesis. 

 30



4. Methods of calculating anisotropic rectangular dielectric waveguides 

4.1. Introduction 

The uniaxial anisotropic DRW is nowadays of increasing interest. A simple theoretical 

approximation and/or numerical model for calculation of the propagation constant is required 

besides of complicated but powerful and accurate ones (see e.g. [33]). The most popular 

approximation method for a rectangular DRW is the well-known Marcatili’s method [56] while the 

numerical one is the point-matching Goell’s method [10]. However, these methods were developed 

for the case of isotropic materials. In this chapter simple approximation and numerical methods for 

the case of a rectangular DRW oriented along the optical axis were developed [P3, P4]. 

 

4.2. Extension of Marcatili’s method 

The case of the main interest is when the optical axis of the material coincides with the axis of 

DRW in order to avoid excitation of an orthogonal mode and/or rotation of the polarization plane. 

The  fundamental mode of the rectangular DRW with cross section a × b has been chosen, and 

using its symmetry one can formulate the problem as shown in Fig. 4.1. 

11
yE

It was said in [57] that Marcatili’s method for a rectangular DRW with cross section a × b 

consists of solving two dielectric slabs: a horizontal slab with thickness b and a vertical slab with 

thickness a for the same polarization. In this work we will derive, using the averaging method [60], 

the dispersion equation for a rectangular uniaxial anisotropic DRW in the most interesting case 

when the optical axis coincides with the z axis of the DRW. This method allows to derive the 

dispersion equations without guessing the field distribution. 

 

 

Figure 4.1. Cross-section of the waveguide problem. 
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One can show that there is no longitudinal component Ez, only Hz in the case of the vertical 

dielectric slab for  mode, owing to 1
yE 0

y
∂ =
∂

 and Hy=0 [55]. Thus only Ey component is present, 

therefore the corresponding equation in Marcatili’s method does not need to be changed. 

Let us solve the dielectric slab problem shown in Fig. 4.2, when the dielectric permittivity is 

determined by matrix: 

 

||

0 0
0
0 0

ε
ε ε

ε

⊥

⊥= 0 ,     (4.1) 

 

where  denotes the permittivity in the direction normal to the optical axis, and  

denotes that in the direction parallel to the optical axis. 

0rε ε ε⊥ ⊥= || || 0rε ε ε=

 

d=b/2

d’ electric walls

 

Figure 4.2. Anisotropic dielectric slab waveguide problem. 

 
The main equations derived from [60] are: 
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The transversal propagation constant yβ  will be determined later. Subscript indexes t+ and t- 

denote the tangential components of the corresponding vector on upper and lower side of the slab, 

respectively. In our case E  because of the presence of an electric wall. 0t− =

The Helmholtz equations in uniaxial anisotropic medium for Ez and Hz components are [61]: 
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Substituting ( ), zjk z
z zE E x y e−=  and 0

x
∂ =
∂

 one obtains: 
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Therefore for yβ : 
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Substituting into Eq. (4.2) t jk− z∇ =  and rewriting these equations for x- and z- components 

separately one obtains: 
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z-components 

( ) (x
z z y

E j H H f d
d

ωµ β+
+ −− = − + )      (4.9) 

(||
x x

z y
H H j E f d

d
ωε β+ −

+
−− = ) .     (4.10). 

One can notice that in Eqs. (4.7) and (4.10) only Hx and Ez are present while in Eqs. (4.8) and (4.9) 

we can find only Hz and Ex components. Let us choose equations corresponding to  polarization, 

i.e. E

1
yE

x and Hz equal to zero (Eqs. (4.7) and (4.10)). 

Excluding Hx- one obtains: 
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For the air layer in Fig. 4.2 we can write similarly: 
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where . 2 2 2
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When  tends to infinity Eq. (4.12) becomes [60]: 'd
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Combining these two equations we get: 
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Introducing y yk β= , 2
y
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j

β′
= ,  and using relation 2b = d ( )

1 tan
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x
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 , an equation 

similar to “Marcatili’s equation” [55,56] can be obtained: 
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where n =0,1,2,3 …, ( )|| 2 2
0y rk k

ε
ε

ε ⊥
⊥

= − zk , 2 2
2y zk k= − 0 0n =k .  corresponds to the  

fundamental mode. To get the rest of the possible modes (E

1
yE

z is even with respect to y = 0 plane) one 

can put the slab onto a magnetic wall. The second “Marcatili’s equation” is [56]: 
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2arctan x
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kk a q
k

π  
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where 2
3 0 ( 1)x rε ⊥= − − 2

xkk k , q =1,2,3 … . 

Thus the solution procedure can be as follows. Using Eq. (4.15) one can find kz, then solve Eq. 

(4.16) for kx, and eventually correct kz with: 

 

2 2
finalz zk k= − 2

xk .      (4.17) 

 

Experiments were carried out in order to verify the calculated numerical results. Sapphire was 

chosen as the material for DRW because it is a typical example of a uniaxial anisotropic dielectric. 

S-parameter measurements of a sapphire DRW were carried out with VNA HP 8510 using the 

direct connection of the input and output as a reference. The monocrystalline Sapphire DRW 

oriented along the optical axis with dimensions: cross section of 1.0 × 0.5 mm2, total length of 112 

mm and tapering section length of 6 mm (Fig. 4.3), was used for the vector measurements [62]. 

 

 
Figure 4.3. Schematic setup of DRW vector measurements. 

 

The numerical results are summarized in Fig. 4.4. Eqs. (4.15)-(4.17) were used to obtain the 

propagation constant for uniaxial anisotropic waveguides for four combinations of εr⊥  and εr||: 11.56 
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and 11.56; 11.56 and 9.39; 9.39 and 11.56 (which corresponds to Sapphire [26]); 9.39 and 9.39, 

respectively. 

The wavelength was measured directly at the frequency of 75 GHz by using a movable 

discontinuity (a metal rectangular “ring”) in order to obtain a reference point. The phase values 

were corrected (  correction) to obtain continuous dependence of phase vs. frequency. 

Assuming a constant dielectric waveguide length L we can write: 

2 nπ−

k
L
φ∆∆ = , where φ∆

k

 is the phase 

shift change when the frequency changes by a small step to the next point, and  is a change in 

the propagation constant in the dielectric waveguide. After obtaining the wavelength at one point by 

using the phase data, one can calculate the propagation constants at other frequencies (Fig. 4.4, 

curve 3). For comparison the normalized propagation constant measurements were repeated at 80, 

85, 90 and 94 GHz; the results are shown in Fig. 4.4 [P3]. 

∆
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Figure 4.4. 
0

zk
k

 of DRW made of uniaxial anisotropic materials with cross dimensions of 1.0 x 0.5 mm2. Marcatili’s 

method. Curves 1,2,4 and 5 calculated using the modified Marcatili’s method. 

(1) =11.56, =11.56; (2) =11.56, =9.39; (3) curve calculated using experimental phase measurement 

results and measured k

rε ⊥ ||rε rε ⊥ ||rε

⊥z at 75GHz; (4) =9.39, =11.56; (5) =9.39, =9.39; ♦  – directly measured 

experimental points. 
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One can see in Fig. 4.4 (curves 3 and 4) that the modified Marcatili’s method for the sapphire 

DRW show good agreement with the experimental data. The fact that the theoretical curve lies 

below the experimental one can be explained by the approximative nature of the Marcatili’s 

method. 

Comparing curves 1 with 2 and 4 with 5 one can see that the anisotropy changes the 

propagation characteristic considerably. Dispersion is stronger, as for curve 2, when ε|| is smaller 

than ε⊥ , or weaker, when ε|| is larger than ε⊥ , as for curve 4. The latter could be explained as 

follows. When the frequency is very high, there is almost no longitudinal electric field component, 

and the propagation constant is mainly determined by ε⊥ . When the frequency drops, the 

longitudinal component of the electric field becomes larger; therefore the effect of larger ε|| 

becomes stronger and thus 
0

zk
k

 increases. Similarly one can explain why the dispersion seen in 

curve 2 is stronger. 

However, Marcatili’s method does not give a good accuracy at lower frequencies. For better 

accuracy many powerful numerical methods have been developed such as the finite element or the 

finite difference methods that were described in the previous chapter. The main disadvantage of 

these methods is that they are so-called matrix-oriented methods, which are computing resources 

consuming. Many authors compare their calculating results with the classical Goell’s method [10]. 

This method is rather effective, fast and can be relatively easily implemented in MatLabTM using its 

matrix routines. We will modify it to calculate also uniaxial anisotropic DRWs. 

 

4.3. Modification of Goell’s method for anisotropic DRWs 

The  fundamental mode of the waveguide has been chosen, and using its symmetry, one 

can formulate the problem as shown in Fig. 4.5. 

11
yE

The case when the optical axis of the dielectric material coincides with the axis of the DRW 

is of interest. Therefore let us introduce again the permittivity matrix as: 

 

1

||

0 0
0
0 0

ε
ε ε

ε

⊥

⊥= 0 ,      (4.18) 

 

where the axis z is directed along the waveguide. 
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Figure 4.5. Dimensions of the dielectric waveguide and the coordinate system [10]. 

Similarly to [10] we assume that the longitudinal components of the electric and magnetic 

fields are distributed as: 

 

 

( ) ( ) ( )1
0

sin expz n n E n z
n

E a J h r n i k zθ ϕ ω
∞

=

= + ∑ t− 

t−

   (4.19) 

( ) ( ) ( )1
0

sin expz n n M n z
n

H b J h r n i k zθ ψ ω
∞

=

= +   ∑    (4.20) 

 

inside the core and 

 

( ) ( ) ( )0
0

sin expz n n n z
n

E c K pr n i k zθ ϕ ω
∞

=

= + ∑ t− 

t−

   (4.21) 

( ) ( ) ( )0
0

sin expz n n n z
n

H d K pr n i k zθ ψ ω
∞

=

= +   ∑ ,   (4.22) 

 

where kz is the propagation constant, Jn and Kn are nth order Bessel and modified Bessel of second 

kind functions respectively, nϕ  and nψ  are some arbitrary phase constants, and 2 2
0z
2p k k= − . 

The main difference of these equations from [10] is in the transversal propagation constants hE 

and hM, which are [61]: 

 
2 2

0
2

M zh k kε⊥= −      (4.23) 

|| ||2 2 2 2
0 ||E zh k k h

ε ε
ε

ε ε⊥ ⊥

= − = M .    (4.24) 
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We will calculate the symmetric  fundamental mode. Therefore, using the symmetry, we write: 11
yE

0nϕ = , 
2n
πψ =  (see [10]) and consider  lying only between 0 and θ

2
π . 

It can be shown using [61] that the equations for the transverse components of the fields have 

not to be changed: 

 

0
2 2

z z
r

z z

ik E HE
k k r k r

µ ω
θ

  ∂= +  − ∂ ∂  
z∂
     (4.25) 

0
2 2

1z z

z z

ik E HE
k k r k rθ

µ ω
θ

  ∂= +  − ∂ ∂  
z∂
     (4.26) 

2

2 2
0

z
r

z z

ik k E HH
k k k r rµ ω θ

z z
   ∂ ∂= − +  − ∂  ∂ 

   (4.27) 

2

2 2
0

1z z

z z

ik k E HH
k k k r rθ

z

µ ω θ
   ∂ ∂= − +  − ∂  

∂

θ

.   (4.28) 

 

The tangential components of the electric field are similarly given by  

 

( ) ( )sin cost rE E Eθθ θ= + , if <     (4.29) θ cθ

( ) ( )cos sint rE E Eθθ= − + ,    (4.30) 

 

where  is explained in Fig. 4.5. cθ

The next step is to match the longitudinal field components. The matching points have been 
chosen to be  

 

1
2

2m

m

N

π
θ

 − 
 = ,     (4.31) 

 

m=1,2,…N is the number of the point for the fields to be matched at, where N  is the number of 

harmonics. Moreover, we choose only odd n in equations (4.19-4.22). After matching, a similar 

matrix can be obtained like in [10], but with the components changed: 

 
LA
mn Ee J= S      (4.32) 
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LC
mne K= S

C

C

     (4.33) 

LB
mn Mh J=      (4.34) 

LD
mnh K=      (4.35) 

'TA
mn z E Ee k SR CT = + J J      (4.36) 

'
0 0

TB
mn M Me k z SR CT = + J J      (4.37) 

'TC
mn ze k SR CT = + K K       (4.38) 

'
0

TD
mn ze k Z SR CT = − + K K      (4.39) 

'
0 /TA

mn E Eh k CR STε⊥ = −J J 0Z

T 

0Z



     (4.40) 

'TB
mn z M Mh k CR S= − −J J      (4.41) 

'
0 /TC

mnh k CR ST= − −K K      (4.42) 

'TD
mn zh k CR ST= −K K ,     (4.43) 

 

i.e., used Bessel functions are separated to “electric” (E subscript) and “magnetic”  

(M subscript) kinds, and: 

 

0
0

0

Z µ
ε

=      (4.44) 

( )(sin 2 1 mS n θ )ϕ= − +

)

    (4.45) 

( )(cos 2 1 mC n θ ϕ= − +     (4.46) 

0ϕ =  

 

( )2 1E n EJ J h r−= m , ( )2 1M n M mJ J h r−= ,     (4.47) (2 1nK K pr−= )m

)( ) (2 1
2

2 1 n E m
E

M m

n J h r
h r

−−
=J  (4.48),   ( ) ( )2 1

2

2 1 n M m
M

M m

n J h r
h r

−−
=J  (4.49) 

( )'
||' 2 1n E m

E
E

J h r
h

ε
ε

−

⊥

=J   (4.50),  ( )'
' 2 1n M m
M

M

J h r
h

−=J  (4.51) 

 

sin ,
cos ,

m

m c

R
θ θ θ
θ θ θ

<
= − >

c c (4.52),   (4.53) 
cos ,
sin ,

m

m c

T
θ θ θ
θ θ θ

<
=  >
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,
2cos

,
2sin

c
m

m

c
m

a

r
b

θ θ
θ

θ θ
θ

 <= 
 >


 (4.54),  

1
2

2m

m

N
θ

−
= π  (4.55),  arctanc

b
a

θ = . (4.56) 

 

Finally, the following matrix leads to the determinant which has to be equalized to zero: 

 

0 0
0 0

LA LC

LB LD

TA TB TC TD

TA TB TC TD

E E
H

E E E E
H H H H

−
−

− −
− −

H
=0.    (4.57) 

 

In Fig. 4.6 the calculated results are presented. The difference from Fig. 4.4 is that the 

theoretical results are now computed using the modified Goell’s method [P4]. 
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Figure 4.6. 
0

zk
k

 of DRWs made of uniaxial anisotropic materials with cross dimensions of 1.0 x 0.5 mm2. Curves 1,2,4 

and 5 are calculated using the modified Goell’s method. 

(1) =11.56, =11.56; (2) =11.56, =9.39; (3) curve calculated using experimental phase measurement 

results and measured k

rε ⊥ ||rε rε ⊥ ||rε

⊥z at 75GHz; (4) =9.39, =11.56; (5) =9.39, =9.39; ♦  – directly measured 

experimental points. 
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One can see in Fig. 4.6 (curves 3 and 4) that the modified Goell’s method applied for the 

sapphire DRW gives good agreement with the experimental data, better than the previous 

Marcatili’s method.  

 

4.4. Is it possible to have a negative slope of the 
0

zk
k

 characteristic? 

It was mentioned above that larger “longitudinal permittivity” could decrease the dispersion. 

The question here is whether it can happen so that the effective refractive index decreases when the 

frequency increases? To answer this question let us consider a uniaxial dielectric slab with the 

thickness d. Let us rewrite Eq. (4.15): 

 

( )
||

'

1
tan

r

y yy

j
d

ε
β ββ

=      (4.58) 

( ) 2
||tan y

y r
y

k
k d

k
ε= , where 2d=b    (4.59) 

||2
|| 0

r
y r

r

k k
ε

ε
ε ⊥

= − 2
zk      (4.60) 

2
2y zk k= − 2

0k      (4.61) 

 

|| '
|| 0

'

r
r z

r
y

y

k k
k

k

ε
ε

ε ⊥

−
=

zk
      (4.62) 

'
' 0

2
2

z z
y

y

k k kk
k

−=       (4.63) 

 

Differentiating (4.59) with respect to k0 and using equation ( ) ( )'tan 1 tan2x x= +  one can write: 

 
2 '

2 22 '
|| ||21 y y y

r y r
y y

k k k
k d

k k
ε ε

  −
+ =  

 

'
2

2
y yk k

, or   (4.65) 

( )' 2 2 2 '
|| 2 || 2 2 ||y y r y r y y r yk k k d k k kε ε + + =  ε .    (4.66) 

 

Introducing  and substituting (4.62) and (4.63) for the derivatives one can 

obtain: 

( )2 2 2
|| 0 || 2y r r yk k d kξ ε ε= + +
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|| '
|| 0 '

0
||

2

r
r z z

z zr
r

y y

k k k
k k k k

k k

ε
ε

εξ ε⊥

−
−= y ,    (4.66) 

 

which can be rearranged as 

 

'
0

2 2

1 y y
z z

y y y r y

k k
k k k

k k k k
ξ

ε ⊥

  
+ = +    

  

1ξ




,    (4.67) 

then 

( ) ( )2 ' 2
0 2 2

1
y y z z r y y

r

k k k k k k kξ ε ξ
ε⊥

⊥

+ = + ,    (4.68) 

2
2'

0 2
2

1 r y y
z z

r y y

k k
k k k

k k
ε ξ

ε ξ
⊥

⊥

+
=

+
.    (4.69) 

As 

( )2 2 2
2 || 0 2y y r y rk k k d k kξ ε= + ⋅ + 2

|| 2yε ,    (4.70) 

therefore 

( )2 2 2 2
|| 2' ' 0 0

0 2 2
|| 2

11 1
11

r y r y r
z z z z

r y r y r
z

r

k k k kk k k k k
k k

k

ε ε ε
ε ε ε

ε

⊥ ⊥

⊥ ⊥

⊥

+ −
< =

+  
− 

 

'

zk
=   (4.71) 

and       . '
0z zk k k>

Thus, 

0
2

0 0

0z z zk k k k
k k

′ ′  −= 
 

> .    (4.72) 

 

Moreover, this derivative equals zero only at zero and infinite frequencies. 

 

4.5. Expressing the critical frequencies for higher modes 

We can define the critical frequency as the frequency at which the propagation constant 

becomes equal to that in the environment, i.e. . In the case of a rectangular DRW there is no 

analytical expression for the critical frequency for higher modes. However, in case of a dielectric 

slab, which is much simpler, it is possible to derive such an expression. 

0zk k=

Let us rewrite eq. (4.16) for y-polarization and (4.17) for x-polarization: 
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12arctan y
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r y

k
k b p

k
π

ε
 

= − 
 

 ,     (4.73) 

(||2 2
0

r
y r

r

k k
ε

ε
ε ⊥

⊥

= )2
zk−

2
zk

,     (4.74) 

2 2
2 0yk k= − ;     (4.75) 

3

2arctan x
x

x

kk a q
k

π  
= − 

 


2
z

2
zk

,     (4.76) 

2 2
0x rk k kε ⊥= − ,      (4.77) 

2 2
3 0xk k= − .      (4.78) 

 

When kz = k0, instead of arctan() in both (4.15) and (4.16) we can write 
2
π , therefore  

 

( 1yk b pπ= − )

)

     (4.79) 

( 1xk a qπ= − .     (4.80) 

 

Using that 2 2 2 2
0 0

||

r
z r

r

k k k k εε
ε

⊥
⊥= = − y

2
x for y-polarization and k k k  for x-

polarization we can find the critical wave number k

2 2 2
0 0z r kε ⊥= = −

0: 

 

( ) ( )
2

2
0cr

||

1 1 r
r

r

k p
b
πε

ε
⊥

⊥
 − = −  

ε     (4.81) 

and 

( ) ( )
2

2
0cr 1rk

a
πε ⊥ 1q − = −  

    (4.82) 

 

respectively. One can see that the two fundamental modes (p = 1 or q = 1) both have zero cut-off 

frequency. 

 

4.6. Comparison of Marcatili’s and Goell’s methods for anisotropic DRWs 

In Fig. 4.7 a comparison of calculated results are shown for both Marcatili’s and Goells’s 

methods. A wider frequency range has been considered. A rectangular sapphire DRW with 1.0 x 0.5 

mm2 cross-section was again taken as a sample. Experimental data are also shown. Here red lines 
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present the results given by Marcatili’s method while the blue lines correspond to Goell’s method. 

One can see that for both fundamental modes, namely  and , both methods give results close 

to each other. However, Marcatili’s method “predicts” a cut-off for  mode at approximately 90 

GHz, which is not true.  

11
yE 11

xE

11
xE

Looking at the experimental results one can see that Goell’s method gives more accurate 

results, but the much simpler Marcatili’s method works quite well when the effective refractive 

index 
0

zk
k

 is larger than 1.6. Also, Goell’s method becomes rather problematic near cut-off 

frequencies. 
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Figure 4.7. Comparison of 
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zk
k

 calculated by Marcatili’s and Goell’s methods and experimental results [P4]. 

 

As to higher modes, the first of them is the  mode, which is also calculated. One can see 

that in W-band (75-110 GHz) this mode can also exist and corrupt transmission characteristics of 

the DRW section. Therefore it would be useful to move it to higher frequencies while keeping the 

good properties of the transitions. 

12
yE
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4.7. Calculation of the propagation loss 

It was shown above that at high enough frequencies “Marcatili’s” method works quite well in 

spite of its simplicity. Therefore it is attractive to calculate also the attenuation loss using this 

method. It turnes out that it is possible to calculate them at least for a dielectric slab waveguide.  

For the rectangular cross section, let us, like in calculating the propagation characteristics, 

consider two dielectric slabs, horizontal and vertical ones, with corresponding thicknesses. 

Equations (4.15) and (4.16) can be solved also assuming that both the permittivities and kz are 

complex and introduce functions and  from (4.16) and (4.15) as: ( ),x z rF k ε ⊥ ( ||, ,y z r rF k ε ε⊥ )

( )
3

, 2arctan 0x
x z r x

x

kF k k a
k

ε π⊥
 

= − + = 
 

,    (4.83) 

( )||
|| 2

1, , 2arctan y
y z r r y

r y

k
F k k b

k
ε ε π

ε⊥

 
= − + =  

 
0 .   (4.84) 

 

For the case of a very low loss tangent, as is usually the case, we can write: 
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ε
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∂ ∂ ∂
∆ + ∆ + ∆ =
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δ δ

,    (4.86) 

 

where , , and  are the “transversal” and 

“longitudinal” loss tangents, respectively. The derivatives have to be taken at pure “real” solution 

points, found preliminarily. 

tanr rjε ε⊥ ⊥∆ = − ⊥ || || ||tanr rjε ε∆ = − tan δ⊥ ||tan δ

Dividing both  and , found from (4.85) and (4.86), by the loss constant in an 

infinite media filled with the same dielectric, i.e. by 

,z xk∆ ,z yk∆

0 0
1 tan
2 rkα ε ⊥= δ⊥ , we can find the loss 

factors 

,

0 0

z xx kα
α α

∆ 
= 

 
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0 0

y kα
α α

∆ 
=

 
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  , and as the last step, multiply them: 
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yx αα α
α α α
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= ⋅    
     0



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     (4.87) 

 

to get the final result. 
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5. HFSS simulation of different ways of DRW excitation 

5.1. Introduction 

There are three types of DRW tapering sections usually used for electromagnetic wave 

excitation in DRW: symmetrical (a), pyramidal (b), and nonsymmetrical (c) tapering (Fig. 5.1). In 

[62] a tapering section nonsymmetrical relative to the optical axis of a sapphire DRW was 

successfully employed. In this work these types of tapering sections were simulated by Agilent 

HFSSTM (high frequency structure simulator). We investigate them to find the most suitable of them 

from viewpoint of simplicity and transmission characteristics of the DRW section with such 

transitions [P5]. 

 

Tapering section
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b)
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Pyramidal

Symmetric

X

Z

Y

 

Figure 5.1. Three types of tapering sections: a) symmetrical; b) pyramidal and c) nonsymmetrical. 

 

5.2. Simulations setup 

Two polarizations can propagate in DRWs, which results in a possibility to transform from 

one polarization to another. One way to decrease this effect is to design the waveguide so that 

different polarizations have different propagation constants. Therefore the rectangular cross section 

was chosen rather than square. Ratio of a : b = 2:1 seems to be suitable [14]. The other problem is 

that if we increase the horizontal and/or vertical dimension of the dielectric waveguide, we can have 

multimode propagation, which is not desirable.  

The field in the vertical (E) direction in the metal waveguide is concentrated stronger than in 

the horizontal (H) direction. It is well known that, in order to have a good matching, we should 

have the field distribution in the dielectric waveguide as close as possible to that in the metal 

waveguide. In DRW the larger the dimension of the dielectric waveguide is, the stronger the field is 

concentrated in that direction. Moreover, the  mode has a larger propagation constant (i.e. 

stronger field concentration) than that of the  mode. Therefore the vertical dimension of the 

11
yE

11
xE
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dielectric waveguide is chosen to be larger and the wider wall to be perpendicular to that of the 

metal waveguide. 

The rectangular cross section for the frequency range of 75-110 GHz was chosen according to 

recomendations in [14] (k0b = 1.7 - 1.9, a/b = 0.5). 

Finite Element Method (FEM) with HFSSTM was used to simulate S-parameters of the 

different ways of excitations of rectangular DRW with high permittivity and a low loss tangent. The 

types of tapers, simulated with HFSS, are shown in Fig. 5.2. Standard WR10 (2.54x1.27 mm2) 

metal waveguides were used for the input and output. The frequency range was 75-110 GHz (W 

band). The material used in simulation was isotropic and had the refractive index n = 3. 

 

Airbox

Tapering
 section

Metal
 waveguide

DRW

Symmetric
 -planeE

Symmetric
 -planeH

 

Figure 5.2. HFSS simulation structure. 

 

5.3 Simulation of different tapering sections and cross-sections 

 
5.3.1 Simulation of tapering in H and E planes 

Tapers in E and H plane both symmetrical and nonsymmetrical were simulated (Fig. 5.3) in 

order to understand which type of the tapers (Fig. 5.1) is the most preferable from the viewpoint of 

transmission characteristics. One can see in Fig. 5.3 that there is no significant difference between 

symmetrical and nonsymmetrical taperings in H- planes, and that there is a small difference in 

transmission characteristics between the taperings in H- and E- planes. However, the reflections for 

H-tapering are higher. Also one can see that the transmission coefficient at the lower end of the 

frequency range is rather low, possibly because the field in the dielectric waveguide spreads out too 

much.  
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To improve the S21 parameter we can increase a little the cross section dimensions of DRW, to 

0.55 × 1.1 mm2 (Fig. 5.4). The difference in transmission for E- and H- tapering characteristics 

becomes more significant. Therefore tapering section in E-plane is more preferable, and further 

only E-plane tapering section will be simulated. 

 

5.3.2 Simulation of the cross section of DRW 

DRWs with the same symmetrical 6 mm tapering but with cross sections of 0.9 × 0.45 mm2, 

0.95 × 0.475 mm2, 1.0 × 0.5 mm2, 1.05 × 0.525 mm2, 1.1 × 0.55 mm2, 1.15 × 0.575 mm2 and 1.2 × 

0.6 mm2 were simulated (Fig. 5.5). One can see that increasing the cross section improves the 

characteristics at the lower frequency end, but too much increasing results in undesirable dips in S21 

characteristic, possibly due to excitation of a higher order mode. Moreover, the central frequency of 

the dip goes to a lower frequency with increasing the cross section. The cross sections of 1.0 × 0.5 

mm2, 1.05 × 0.525 mm2 and 1.1 × 0.55 mm2 produce the most suitable S21 and S11 characteristics 

and further only 1.0 × 0.5 mm2 and 1.1 × 0.55 mm2 cross-sections will be investigated. 

 

5.3.3. The pyramidal tapering of DRW  

The pyramidal type of tapering with different edge width of the tip d was simulated in HFSS 

(Fig. 5.6). One can see in Fig. 5.6 that there is no significant difference between the pyramidal type 

and the symmetrical type of tapering but technologically the symmetric tapering is easier, especially 

if DRW is made of a fragile material. 
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Figure 5.3. Simulations of symmetrical tapering in H and E planes for DRW with dimensions 1.0 × 0.5 mm2. 
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Figure 5.4. Simulations of symmetrical tapering in H and E planes for DRW with dimensions 1.1 × 0.55 mm2. 
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Figure 5.5. Simulations of different DRW cross-sections with 6 mm symmetrical tapering. 
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Figure 5.6. Simulation results of two-plane type of tapering for DRW with 1.0 × 0.5 mm2 cross section. 

d = 0 corresponds to the pyramidal tapering, d = 0.5 mm – to the E-tapering (l = 6 mm). 
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5.3.4. Symmetrical tapering of DRW 

The results of simulations of DRWs with dimensions 1.0x0.5 mm2 and 1.1x0.55 mm2, 

symmetrical E- tapering but different tapering lengths of 1-8 mm, simulated in HFSS, are shown in 

Fig. 5.7 and 5.8. One can see, that the tapering length less than 2 mm has a relatively high reflection 

and higher transition losses but 2 mm tapering is already acceptable. It even gives a better 

transmission coefficient at lower frequencies with the maximum approximately at 88 GHz. 

Increasing the tapering length only slightly improves transmission at higher frequencies and at large 

lengths this improvement is very small. Moreover, at 8 mm an undesirable dip appears. Technically 

a long tapering section is more difficult if the material is fragile, and it turns out to be unnecessary. 

5.3.5. Nonsymmetrical tapering of DRW 

Two types of nonsymmetrical excitation were simulated: 1) when the axis of the DRW is 

parallel to the axis of the metal waveguide, and 2) when this axis makes an angle of about 4.5° (the 

angle of tapering is about 9°) (Fig. 5.9). It seems that in the second case the transmission coefficient 

is better than in the first case because in the latter, the mode launcher (edge of the tapering) is too 

close to the metal wall. It can be explained. When the dielectric wedge is symmetrical, the field 

excited is distributed symmetrically and the wave transforms to the symmetrical E  mode with 

approximately the same distribution. In the case of nonsymmetrical tapering a nonsymmetrical 

mode is excited in the wedge, that is, much more different field distribution and thus the 

transformation becomes more difficult. 

11
y

The effect of different nonsymmetrical tapering lengths of 1 - 8 mm is shown in Fig. 5.10.  
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Figure 5.7. Simulations of symmetrically tapered DRWs of dimensions 1.0 × 0.5 mm2 with different tapering lengths. 
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Figure 5.8. Simulations of symmetrically tapered DRW of 1.1 × 0.55 mm2 with different tapering lengths. 
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Figure 5.9. Simulations of nonsymmetrical tapering of a DRW with dimensions 1.1 × 0.55 mm2, l = 6 mm. 
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Figure 5.10. Simulations of DRWs with 1.0 × 0.5 mm2 cross-section tapered nonsymmetrically with different lengths. 
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5.4. Simulation of different displacements of DRW relative to metal waveguides 

Different displacement of symmetrically and nonsymmetrically tapered DRWs with cross-

sections of 1.0 × 0.5 mm2 and 1.1 × 0.55 mm2 were simulated in order to understand the optimal 

position of a DRW inside the metal waveguide in terms of better transmission characteristics. The 

metal waveguide can have three possible displacements with respect to the DRW: along x-, y- and 

z- axes (Fig. 5.11). 

 

Tapering  section
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 waveguide

DRW

E-plane Z

Y

X

 

Figure 5.11. Displacements of a DRW. 

 
Symmetrically tapered DRW with cross-section of 1.1 × 0.55 mm2 was moved with respect to 

the metal waveguides first along the x axis and the results of the simulation are shown in Fig. 5.12. 

One can see that a small displacement (0.2 mm) can be acceptable, but further displacement drops 

the S21 characteristic at the higher frequency end (Fig. 5.12). 

In the case of y-displacement one can see that even a small displacement (0.02 mm) can 

results in the appearance of undesirable drops of S21 characteristic at the low frequency end (Fig. 

5.13), in contrast to x-displacement. Further displacement results in increasing of the drop depth and 

reflections, however, the reflections do not change much for displacements in either direction, thus, 

the main effect is an increased radiation loss. 

Displacement in the z-direction is the most uncritical parameter, as one can see in the results 

in Fig. 5.14, however, the dips, that are probably due to higher order mode excitation, change their 

position in the frequency range. 
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Figure 5.12. Simulations of x-displacement of a symmetrically tapered DRW with dimensions 1.1 × 0.55 mm2 (l = 6 
mm). 
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Figure 5.13. Simulations of y-displacement of a symmetrically tapered DRW with dimensions 1.1 × 0.55 mm2  
(l = 6 mm). 
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Figure 5.14. Simulations of z-displacement (longitudinal) of a symmetrically tapered DRW with dimensions  
1.1 × 0.55 mm2 (l = 6 mm). 
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5.5. Influence of the anisotropy of sapphire on the simulation results 

 

An interesting effect is found when anisotropy of material is introduced in the simulation (Fig. 

5.15). In that case a dip approximately at 105 GHz can be found that was observed also at the 

experiment (Chapter 6). Also, one can see that a nonsymmetrical excitation does not corrupt the 

characteristics significantly. Therefore we will further investigate the reasons for dips in more 

details in the symmetrical tapering case.  
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Figure 5.15. Influence of the anisotropy on the simulation results (l = 6 mm). 
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5.6. What happens in the dielectric wedge? 

Let us look in more detail at the field distribution in the dielectric wedge, for example, of the 

sapphire dielectric waveguide. In Fig. 5.15 dependencies of insertion losses and reflections on 

frequency are shown for a symmetrically tapered sapphire waveguide with the cross-section of 

1.0×0.5 mm2 and the tapering length of 6 mm. 

As one can see, there is a decrease of the S21 parameter with decreasing frequency and a dip 

with the center approximately at 101 GHz. 

The E field distribution at 75 GHz is shown in Figs. 5.16 and 5.17. According to the field 

distribution in the vertical (E) plane one can conclude that in the dielectric wedge two waves are 

present, “internal” and “external” ones, with different propagation constants (Fig. 5.17). One can 

also see that the field on the surface grows up due to concentration of the ”external wave”. On the 

other hand, this wave couples to the “internal wave”, therefore a maximum can be observed, there 

may be even several maxima, if the coupling between two waves is small. Moreover, at 75 GHz the 

field is weak in a rather large part of the wedge (Fig. 5.17). Thus, at lower frequencies the 

“external” wave is not converting to the ”internal” one fast enough. 

In Fig. 5.18 one can see that several maxima are present on the surface of the wedge. One of 

them is at the end of the metal waveguide. That results in additional radiation to the environment. 

As one can see in Fig. 5.15 the best characteristics for a sapphire waveguide section are 

obtained approximately at 90 GHz, therefore let us look at the field distribution at this frequency. In 

Fig. 5.19 one can see, that the field is concentrated stronger due to the higher frequency. Also one 

can find a maximum at the surface of the wedge. 

In Fig. 5.20 the electrical field distribution at some moment of time is shown. 

 

 

 

Figure 5.16. Electrical field in a sapphire wedge at a particular time instance at 75 GHz. Horizontal (H). 
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Figure 5.17. Electrical field in a sapphire wedge at a particular time instance. Vertical (E) plane, frequency 75 GHz. 

 
Figure 5.18. Amplitude distribution of the electrical field in a sapphire wedge. Vertical (E) plane, frequency 75 GHz. 

 

 

Figure 5.19. Amplitude distribution of the electrical field in a sapphire wedge. Vertical (E) plane, frequency 90 GHz. 

 

 
Figure 5.20. Electrical field distribution in a sapphire wedge at a particular time instance. Vertical (E) plane, frequency 

90 GHz. 
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The case of 101 GHz is more interesting. At 101 GHz (Figs. 5.21-5.23) one can see the 

following. The “external” wave is gradually converting to the ”internal” one, but the phase 

difference between these waves increases. As a result at a particular place the converted wave will 

be in counterphase with the ”internal” wave, that is, the “internal” wave is converting to the 

“external” one (Fig. 5.21) and radiating to the environment. Thus, at 101 GHz one can see a dip in 

the S21 characteristic. 

 

 

 

Figure 5.21. Electrical field distribution in a sapphire wedge at a particular time instance. Vertical (E) plane, frequency 

101 GHz. 

 

 

Figure 5.22. Amplitude distribution of the electrical field in a sapphire wedge. Vertical (E) plane, frequency 101 GHz. 

 
 

 

 
Figure 5.23. Electrical field distribution in a sapphire wedge at a particular time instance. Horizontal (H) plane, 

frequency 101 GHz. 
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Thus, at 101 GHz the main mechanism of losses is the convertion of the ”internal” wave to 

the ”external” one followed by the radiation to the environment. That is, the phase difference 

between the ”internal” and ”external” waves should not change very much.  
 

5.7. Influence of the quality of the tapering tip 

Two sapphire waveguide sections with 6 mm tapers (Fig. 5.24) were simulated and the results 

are shown in Fig. 5.25.  

 

6 mm

 
Figure 5.24. Two tapers simulated (with and without cleaving). 

 
As one can see, the 1 mm cleaving increases strongly the reflection but does not change 

considerably the S21 characteristic. 
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Figure 5.25. Simulation results of simulation of a tapered sapphire waveguide with and without 1 mm cleaving. 
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5.8. Conclusions 

 
Different types of transitions from a metal waveguide to DRW and ways of excitation were 

simulated with HFSS. It was found that: 

• The tapering has to be in the E- plane. 

• The cross-section of DRW determines the frequency range. The most suitable cross-sections 

for 75-110 GHz, n = 3.0 are 1.0 × 0.5 mm2, 1.05 × 0.525 mm2 and 1.1 × 0.55 mm2. 

• There is no reason to use the pyramidal tapering as it is much more complicated to 

manufacture. 

• The length of the tapering section has to be longer than 2 mm, but too long taperings are 

complicated to manufacture and are unnecessary. 

• A nonsymmetrical tapered DRW should be excited so that the tip is positioned in the middle 

of the metal waveguide. 

• The optimal position of a symmetrical DRW is where the axes of both the DRW and the 

metal waveguide coincide. 

The DRW is not very sensitive to the position with respect to the metal one, except in the vertical 

direction. 
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6. Low loss sapphire and GaAs DRW for 75-110 GHz frequency band 

6.1. Introduction 

High resistivity Si (> 10 kΩ), semi-insulated GaAs (n ~ 108), fused sapphire, BN, ferrites and 

other materials with tanδ ≤ 10-4 are widely used as materials for DRWs. Rectangular DRWs have 

lower propagation losses if made of e.g. monocrystalline material with a small loss. They have a 

broader operation frequency bandwidth in comparison with the standard single mode metal 

waveguides, but matching of a DRW to a metal waveguide (i.e. transition) is a remaining problem 

[P5]. 

 

6.2. Experiment 

The sapphire DRWs were made of monocrystalline sapphire cut along the optical axis. Cross-

section of 1.0 × 0.5 mm2 and 6 mm tapered length were chosen for the frequency range of 75-110 

GHz according to the HFSS simulation. The tapering section was chosen to be nonsymmetrical 

because of easier and less expensive fabrication. The length of the tapered section was 6 mm so that 

the angle of the tapering was about 9°. Four samples with 47 mm length and four samples with 110 

mm length were measured, all with a 1.0 × 0.5 mm2 cross-section. 

GaAs DRWs oriented along the [110] direction were cut from semi-insulating (100) GaAs 

wafer with electron concentration n ~ 108 cm-3, tanδ ~ 3⋅10-4 and ε ~ 13.3. The DRWs were only cut 

without polishing, therefore the tapered sections are not perfect and may have small defects in 

shape. The GaAs DRW samples are described in Table 6.1. 

 

Table 6.1. GaAs DRW sample description 

 Cross-section Total length of DRW Tapering 

GaAs DRW 1 1.04 × 0.51 mm2 45 mm 6 mm symmetrical 

GaAs DRW 2 1.01 × 0.51 mm2 45 mm 6 mm nonsymmetrical 

GaAs DRW 3 1.43 × 0.51 mm2 49 mm 8 mm symmetrical 

GaAs DRW 4 1.43 × 0.51 mm2 48 mm 8 mm nonsymmetrical 
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The plane of tapering was chosen to be in the E-plane of the metal waveguide according to 

HFSS simulations. The DRW was supported by a styrofoam holder. The transition from the 

standard metal waveguide to the dielectric one and vice versa is shown in Fig. 6.1. A Vector 

Network Analyzer HP 8510 was used to measure the S-parameter characteristics. 

 

Tapering  section
Metal

 waveguide

DRW

E-plane Z

Y

X

Styrofoam
holder

 
a) 

 
b) 

 
Figure 6.1. Experimental set-up of the transition from a metal waveguide to DRW: a) a symmetrical case, b) a 

nonsymmetrical case. The metal waveguides are connected to VNA. 

Sapphire DRW measurements 

The insertion losses of four 47 mm and four 110 mm sapphire waveguides (nonsymmetrical 

tapering in both cases, see Fig. 6.1b) are presented in Figs. 6.2 and 6.3, respectively. It can be seen 

that the 47 mm sapphire DRW has an insertion loss of 0.1-0.3 dB at frequencies 77-98 GHz 

(samples 1, 2). One can see that from the frequency 98 GHz upwards the losses increase and reach 

the maximum at 105 GHz. Such undesirable corruption of the characteristics can be explained by 

difficulties of the excitation occurring due to nonidealities in the tapering sections and due to a 

possible excitation of higher order modes. The differences in S21 and S11 curves (Figs. 6.2 and 6.3) 

of sapphire DRWs are due to the dissimilarities of the DRWs. 

A typical voltage standing wave ratio (VSWR) for 47 mm and 110 mm sapphire DRWs with 

two transitions is shown in Fig. 6.4. The maximum value of VSWR for two transitions is 1.23 (1.13 
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for one transition), which corresponds to 0.07 dB loss. At the lower frequency end the insertion 

losses are higher, and by analyzing Figs. 6.2 and 6.3 one can say that the radiation loss is the 

dominant factor at the lower frequency end. In the middle band, however, absorption loss is the 

main factor. The ripple of the VSWR characteristics is caused by the interference between the two 

ends of the DRW. 

An interesting effect was observed when the reflection was measured with one end of the 

DRW free (Fig. 6.5). Removing the receiving metal waveguide results in an increase of the 

reflection coefficient approximately by 10 dB. This means that while such a structure results in a 

well matched dielectric rod antenna, the antenna is not as well matched to free space as DRW is 

matched to another metal waveguide. 
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Figure 6.2. Measurements of 47 mm sapphire DRWs. 
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Figure 6.3. Measurements of 110 mm sapphire DRW. DirCon means a direct connection between the two metal 

waveguides. 
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Figure 6.4. VSWR of a) a 47 mm and b)a 110 mm sapphire DRW.  
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Figure 6.5. Measurement of DRW with one end free. 

 

GaAs DRW measurements 

Four different GaAs DRW samples of length 45-49 mm were measured (Fig. 6.6). The 

typical value of S21 is approximately 0.4-0.5 dB, while S11 is mainly below 30 dB. One can see that 

nonsymmetrical tapered DRWs have worse characteristics at both ends of the frequency range. 

DRWs with larger vertical dimensions (~1.5 × 0.5 mm2 and 8 mm tapering) have also suitable 

characteristics. The reflections are lower than for sapphire DRW. The characteristics at frequencies 

above 100 GHz are corrupted similarly to those of the sapphire DRW.  
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Figure 6.6. GaAs DRW measurement results. DirCon means a direct connection between the two metal waveguides. 
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x-displacement of a Sapphire DRW 

A nonsymmetrically tapered 110 mm Sapphire DRW was moved along the x axis and 

measured (Fig. 6.7). One can see that the x-position is quite uncritical and a 0.5 mm displacement is 

acceptable (blue and red lines almost coincide). Further movement of the DRW along the x axis 

results in corruption of the transmission characteristics. Furthermore, both S21 and S11 parameters 

change more strongly at higher frequencies, while at the lower frequency end they are quite stable 

(yellow line). This is confirmed by HFSS simulations (Fig. 5.12). 

 

6.3. Dielectric waveguide antenna 

An interesting effect was found when one end of the DRW was left free [P7]. It caused an 

increase of the reflection by about 10 dB (Fig. 6.8). That means that while such a structure is still a 

well matched antenna, the tapering can be better matched with a standard metal waveguide than 

with the open space. 

A sapphire DRW with 47 mm length and 1.0 х 0.5 mm2 cross-section was used as an antenna. 

Experimental setup is shown in Fig. 6.9. A sapphire waveguide was inserted into a Styrofoam 

holder that was attached to a standard metal waveguide using the flange pins. Preliminarily some 

reflection measurements were carried out. The results are shown in Figs. 6.10 and 6.11. 
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Figure 6.7. Measured effects of sapphire DRW displacement. 
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Figure 6.8. Measurement results of a DRW with one end free. 
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Figure 6.9. Schematical structure of a dielectric waveguide antenna. 
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Figure 6.10. Reflection vs. frequency of a dielectric waveguide antenna. 
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Figure 6.11. Reflection vs. frequency of a dielectric waveguide section (both ends are matched). 
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As one can see the effect of removing the receiving waveguide is weaker compared with the 

112 mm DRW case. Perhaps it is because of better quality of the tapering of the 112 mm DRW. 

Nevertheless, the reflections remain low.  

The antenna measurements were carried out with a AB Millimetre 8-350TM Network 

Analyzer. The radiation pattern in E-plane and H-plane is shown in Fig. 6.12. 
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Figure 6.12. Radiation  pattern of a sapphire waveguide antenna at 95 GHz. 

 
6.4. Conclusions 

The experimental results indicate that the monocrystalline sapphire and GaAs DRWs can be 

well matched with a single-mode metal waveguide and have low insertion loss in the 75-110 GHz 

frequency range. The insertion loss of the sapphire waveguide is very low at frequencies 77-98 

GHz. 

Excitation of sapphire DRWs with a nonsymmetrical tapering section (nonsymmetrical 

relative to the optical axis) and excitation of GaAs DRWs with both symmetrical and 

nonsymmetrical tapering sections were experimentally studied. The taperings were made in the E-

plane of the metal waveguide. The insertion losses are mainly caused by the transition from metal 

waveguide to sapphire and vice-versa (radiation) at the lower frequency end and by absorption in 

the DRW itself in the middle of the frequency range. Thus one can conclude that the materials with 

relatively high dielectric constant and low loss tangent, like fused sapphire, Si, GaAs etc. may be 

successfully employed as dielectric waveguides at frequencies above 75 GHz. 
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7. Summary of publications 
 
In [P1] various devices based on rectangular dielectric waveguides were investigated. Such devices 

as longitudinally magnetized ferrite phase shifter, silicon attenuator and other devices are described. 

The measurements were carried out using a panoramic analyzer. A panoramic analyzer is a device 

consisting of the following components: microwave power source (backward wave oscillator) with 

a metal waveguide output, receiving waveguide with a diode detector, control and indication units. 

The output frequency of the power source is swept by voltage generated by a control unit and 

amplitude modulated at 100 kHz. The 100 kHz signal from the diode is then received, amplified, 

detected and the direct current voltage is displayed on an oscilloscope. Thus one can see the 

amplitude-frequency characteristics of the device under test on the screen of the oscilloscope. A 

panoramic analyzer may be also called a scalar network analyzer. 

 

In [P2] a simple and effective structure that allows a good matching between a standard metal 

waveguide and dielectric waveguide, without any additional element like a horn, etc. A 47 mm 

sapphire waveguide section was investigated. The ends of that section were tapered 

nonsymmetrically because of easier fabrication. Simulation data was presented on choosing the 

plane of tapering of the dielectric waveguide. According to this simulation the dielectric waveguide 

was tapered in E- plane as it results in lower reflections and excitation loss. As a result a dielectric 

waveguide section was developed, in which the axes of the dielectric and metal waveguides do not 

coincide. A low insertion loss (0.05-0.35 dB) and low VSWR (<1.25) were achieved. 

 

In [P3] the authors developed a method of calculating the propagation constant in anisotropic 

dielectric waveguides with the optical axis coinciding with the axis of the waveguide. This method 

is based on the well-known Marcatili method, but the equations were derived from the averaging 

method. A good agreement between simulation and experiment was achieved with a sapphire 

waveguide section. 

 

In [P4] another method of calculating the propagation constant in anisotropic dielectric waveguides 

was developed based on the Goell method. Propagation constants of a sapphire waveguide were 

calculated and measured. The results show better agreement over a wider operating frequency band 

than those obtained with the previous method. 

 

In [P5] the shape and the dimensions of dielectric waveguide section were optimized using the 

HFSS simulations. Also, two cases were simulated where the tapering of the dielectric waveguides 

was not symmetric. It was shown that when the axes of the waveguides coincide, high losses and 
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reflections occur. Therefore, the tip of the tapering should be in the middle of the metal waveguide, 

even if the axes do not coincide. At last, the influence of displacement of the dielectric waveguide 

with respect to the metal one was investigated, and it was shown, that the position of it is not very 

critical except in the y-direction. 

 

In [P6] the possibility of matching of a dielectric rod waveguide and a metal waveguide was 

demonstrated when the relative permittivity of the dielectric is high (about 10). Simulation of a 

silicon waveguide was shown as a dramatic example. The measurement results of available sapphire 

waveguides are also shown. 

 
In [P7] the output metal waveguide was removed from the dielectric waveguide section to obtain a 

sapphire rod waveguide antenna. Reflections and radiation patterns are presented here. A 

comparison of reflections was made when both ends of the dielectric waveguide were matched or 

one end was free. It was shown that in the latter case the reflections slightly grow up. 
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8. Summary and conclusion 
 

Simple numerical and approximate methods for calculations of the propagation constant and 

propagation loss of an anisotropic dielectric waveguide were developed and successfully employed 

for a sapphire DRW. These methods are based on the methods by Marcatili and Goell originally 

developed for isotropic dielectric waveguides. Good agreement with experimental measurements 

was achieved. 

In this work three types of DRW tapering sections were studied for electromagnetic wave 

excitation in the DRW at 75-110 GHz: symmetrical, pyramidal and nonsymmetrical tapering. The 

rectangular cross section for the frequency range of 75-110 GHz was chosen according to empirical 

evaluations: k0b = 1.7 - 1.9, a/b = 0.5. 

Finite Element Method (FEM) simulations with Agilent HFSSTM software were carried out in 

order to investigate the preferable shape and orientation of the tapering sections, optimal cross-

sections and positions of the mode launcher. Tapering in the E-plane was found to be preferable. 

HFSS simulations show that there is no significant difference between pyramidal, symmetrical and 

nonsymmetrical types of tapering, but technically symmetrical and nonsymmetrical type of tapering 

are easier to manufacture than the pyramidal type, especially if the DRW is made of a fragile 

material. 

Different cross-sections and tapering lengths (1-8 mm) of DRWs were simulated with HFSS 

as well. The cross sections of 1.0 × 0.5 mm2, 1.05 × 0.525 mm2 and 1.1 × 0.55 mm2 result in 

suitable S21 and S11 characteristics. The tapering length less than 2 mm has relatively high reflection 

and bigger transition losses but tapering of 2 mm is already acceptable. It even gives better 

transmission coefficient at lower frequencies with the maximum approximately at 88 GHz. 

Increasing the tapering length only slightly improves the transmission at higher frequencies and 

with large lengths this improvement is very small. Moreover, at 8 mm an undesirable dip appears. 

Technically long tapering section is more difficult to realize if the material is fragile. 

Two ways of nonsymmetrical excitation were studied: i) when the axes of the DRW and metal 

waveguide coincide, and ii) when there is an angle (e.g. 4.5° in case of a 9° tapering angle) between 

them. It turns out that when the DRW axis orientation differs by 4.5° from the z axis of the metal 

waveguide, the transmission coefficient is higher than in the case when the DRW and the metal 

waveguide axes coincide, because then the mode launcher (edge of the tapering) is too close to the 

metal wall and results in a nonsymmetrical field distribution that is more difficult to convert to the 

symmetrical open DRW mode. 

Also the effect of the position of the tapered end of DRW in the transition from a metal 

waveguide to DRW in the symmetrical case was simulated. It was found that DRW is not very 
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sensitive to the x, y, and z positions, but the best results are achieved when the axes of the DRW and 

the metal waveguide coincide. Most critical is the y direction. 

S-parameter characteristics of a sapphire DRW with a 6 mm nonsymmetrical tapering and 

with a cross-section of 1.0 × 0.5 mm2 and a GaAs DRW with symmetrical 6 mm and 8 mm 

taperings and with cross-sections of 1.0 × 0.5 mm2 and 1.5 × 0.5 mm2 were measured with Hewlett 

Packard Vector Network Analyzer HP 8510TM. 

Transitions from a standard WR-10 metal waveguide to a dielectric waveguide were 

investigated. A simple and effective structure without a horn structure and/or additional components 

was designed. Experimental results show good transmission characteristics of the dielectric 

waveguide section made of monocrystalline sapphire waveguide. 

Looking at Figs. 6.2 and 6.3 one can see that additional 60 mm (approximately) of the 

dielectric waveguide adds extra loss from 0.05 dB at 75 GHz to 0.15 dB at 98 GHz to the total 

insertion loss. That means that the propagation loss in the sapphire DRW section varies 

approximately from 1 dB/m at 75 GHz to 3 dB/m at 98 GHz. The theoretical propagation loss in a 

standard WR-10 copper metal waveguides varies from 3.4 dB/m at 75 GHz to 2.4 dB/m at 110 

GHz. 
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