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Abstract.

We analyse some Taylor and Runge–Kutta type methods for computing one-dimen-
sional integral manifolds, i.e. solutions to ODEs and DAEs. The distribution defining
the solutions is taken to be defined only on the relevant manifold and hence all the
intermediate points occuring in the computations are projected orthogonally to the
manifold. We analyse the order of such methods, and somewhat surprisingly there does
not appear any new order conditions for the Runge–Kutta methods in our context,
at least up to order 4. The analysis shows that some terms appearing in the error
expansions can be quite naturally expressed in terms of standard notions of Riemannian
geometry. The numerical examples show that the methods work reliably and moreover
produce qualitatively correct results for Hamiltonian systems although the methods are
not symplectic.
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1 Introduction.

We continue the work started in [13] where we formulated differential systems
(ODEs, DAEs, etc) using jet bundles and showed that this approach was useful
and interesting also from the numerical point of view. Here we shall pursue this
topic further by studying Runge–Kutta and Taylor type methods which are rele-
vant in this context. Formulating the problem in jet bundles leads to computing
one-dimensional integral manifolds (or curves) of a distribution (or a vector field)
on a manifold which is embedded in some Euclidean space. Note that one may
quite naturally arrive at this formulation also without using jets: for instance in
Hamiltonian problems the relevant vector field restricts to the manifold where
the Hamiltonian is constant. Hence the results obtained below can be interesting
also in some numerical problems where the jets are not explicitly used.
We shall start by analysing some Taylor type methods and compute explic-

itly the terms needed to get methods of orders up to three. It is seen that the
∗Received June 1999. Revised January 2001. Communicated by Gustaf Söderlind.
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information required can quite naturally be expressed in terms of standard con-
cepts of Riemannian geometry. Since we expect that Runge–Kutta methods are
more useful in practice we devote more time to them. Now there are many ways
one could try to formulate Runge–Kutta methods in the present context. We
take the point of view that the vector field or distribution is given only on the
manifold, and hence all the intermediate results have to be projected back to
the manifold. Moreover the projection is required to be orthogonal. Then the
vectors are combined in ordinary fashion, interpreting them to be vectors in the
ambient space. Proceeding in this fashion in the construction of the methods, we
find somewhat surprisingly that there are no new order conditions, at least for
methods of order up to four. The question naturally arises if this property holds
in general. Unfortunately the proofs do not admit an immediate generalisation
which is required in this general question.
Another way to implement Runge–Kutta methods would be to use parallel

translation in the addition of vectors. This would be quite difficult from the
practical point of view, because in that case one would have to construct ex-
plicitly coordinates for the manifold and then solve (numerically) the differential
equations which give the parallel translation. Although this appears numerically
unattractive, it might still be of theoretical interest to analyse this situation more
carefully.
One could also try to analyse multistep methods in a similar fashion, and the

computation of the order conditions would proceed much in the same way as for
Runge–Kutta methods. However, the stability analysis would be quite difficult
and would require considerations that are beyond the scope of the present paper.
Perhaps more importantly, linear multistep methods may appear a bit dubious
at the outset: when the computations are done on manifolds, one may wonder if
the past information is as useful as it is in the linear spaces.
In [13] the background and motivations for using jets was explained in great

detail with extensive references to relevant literature. Hence in the present article
we simply recall the notations and refer to [13] for more details in order to
minimize repetitions.
Since there are no new conditions for Runge–Kutta methods (at least for meth-

ods of order up to four), and the ambient space is used in the combination of
vectors, the implementation of these methods is quite straightforward, at least
in principle. However, trying to produce an efficient code is a non-trivial task;
this, together with comparisons to other methods dealing with DAEs, will be
considered elsewhere. The purpose of the present article is to demonstrate that
it is possible to have high order methods in our context and that such methods
work reliably. In particular it is seen that overdetermined systems are not in-
trinsically harder than determined ones. Note also that the methods used in the
computations are explicit, contrary to other existing methods for these kind of
systems.
In the final section we then present some numerical results obtained. The

computations lend some support to the conjecture that there would not be any
new order conditions even for methods of order greater than four. In the case of
Hamiltonian systems it is seen that the results are qualitatively correct over quite
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long time intervals although our method is not symplectic. Moreover, symplectic
methods usually perform better when a fixed step-size is used. In our method
changing the step-size has no such effect. In the final example we also show
how it is possible to use ideal theory to remove constraint singularities from the
system.
This article is based on reports [12] and [14] where some tedious computations

can be found which are suppressed here.

2 Basic tools.

We recall briefly the main notions that are needed. For more details on standard
differential geometry we refer to [11] and on jets to [9]. All maps and manifolds
are assumed to be smooth, i.e. infinitely differentiable. All analysis is local,
hence various maps and manifolds need to be smooth or defined only in some
appropriate subsets. To simplify the notation these subsets are not indicated.
Moreover, if M is a submanifold of M̃ , then objects defined on M can be taken
to be defined on M̃ without writing explicitly the inclusion map.

2.1 Riemannian geometry.

The jth differential of a map f : Rm �→ Rk is denoted by djf and its value at
p by djfp. LetM be a manifold. The set of mapsM → R is denoted by C∞(M),
the tangent bundle of M by TM , and the tangent space at p ∈ M by TMp. A
distribution D is a map that associates to each point p ∈ M a subspace Dp of
TMp. IfD is one-dimensional in some open set Ω and p ∈ Ω, then in a sufficiently
small neighborhood of p there exists a vector field (actually two of them) V such
that |Vp| = 1 and Vp ∈ Dp. Such V is said to be associated to D. If E is a bundle,
then the set of its (local) sections is denoted by Γ(E). Tangent vectors can be
identified with differential operators, thus if f ∈ C∞(M) and X ∈ Γ(TM), then
X(f) ∈ C∞(M).
Let M be a submanifold of Rm for some m with standard Riemannian metric.

We give M the Riemannian metric induced by this embedding. Recall that
Riemannian metric is a positive definite bilinear map on the tangent space TMp

which varies differentiably with p. It is denoted by 〈·, ·〉 and the same notation
is used for the standard inner product in Rm. The normal bundle of M with
respect to R

m is denoted by NM and the normal space at p by NMp. Since
(TRm)p = TMp⊕NMp we have the orthogonal projections πt : (TRm)p �→ TMp

and πn : (TRm)p �→ NMp. Recall that sections of TM and NM can locally be
extended to sections of TRm. These extensions will be denoted by the same
symbol as the original sections.
The unique symmetric connection on M compatible with metric is denoted by

∇. There are many equivalent definitions of a connection; for our purposes it
is convenient to regard ∇ as a map Γ(TM) × Γ(TM) → Γ(TM), denoted by
(X,Y ) �→ ∇XY , which satisfies the following conditions:

• ∇XY is R-linear in Y ,

• ∇XY is C∞(M)-linear in X ,
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• ∇X(fY ) = f ∇XY +X(f)Y (Leibniz rule).

Fixing X ∈ Γ(TM) we may define a map ∇X : Γ(TM) → Γ(TM) by Y �→
∇XY ; this is called the covariant derivative of Y with respect to X . In standard
Euclidean space it is just the directional derivative. Let us further recall that
the bracket is a map [·, ·] : Γ(TM)× Γ(TM) → Γ(TM), defined by [X,Y ](f) =
X(Y (f)) − Y (X(f)), where f ∈ C∞(M). The same notation is used when the
bracket is interpreted in Rm. In terms of the bracket, the symmetry of the
connection means that

∇XY −∇YX = [X,Y ].(2.1)

The compatibility of the connection with the metric is equivalent to

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉.(2.2)

Let us finally recall the following basic property. Let p ∈M and X ,Y ∈ Γ(TM).
Then

dY (Xp) = πt

(
dY (Xp)

)
+ πn

(
dY (Xp)

)
= ∇XpY + S(Xp, Yp),(2.3)

where S is a symmetric tensor, called the second fundamental tensor.

2.2 Differential systems in jet spaces.

Here we simply give the basic definitions and refer to [13] for a discussion and
motivation of these concepts. Let π : E → B be a bundle and let Jq(E) be the
bundle of q-jets of E .
Definition 2.1. A (partial) differential system (or equation) of order q on E

is a submanifold Rq of Jq(E).
Let E = R × Rn and let us denote the coordinates of Jq(E) by (x, y1, . . . , yn,

y1
1 , . . . , y

n
q ). Let us define the one forms

αi
j = dyi

j−1 − yi
jdx, i = 1, . . . , n, j = 1, . . . , q.(2.4)

Let p ∈ Jq(E) and vp ∈ (TJq(E))p and let us further set

Cp =
{
vp ∈ (TJq(E))p

∣∣αi
j(vp) = 0

}
,

Dp =(TRq)p ∩ Cp.
(2.5)

Now we can define the solutions as follows.
Definition 2.2. Let Rq ⊂ Jq(E) be involutive and suppose that the distri-

bution D defined in (2.5) is one-dimensional. A solution of Rq is an integral
manifold of D.
We must refer to [13] for an extensive discussion and further references on

involutivity. Intuitively a system is involutive if we cannot get new equations
of order q or less by differentiating the equations and eliminating the higher
derivatives.
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Suppose that we are given a system of k ordinary differential equations of qth
order

f(x, y, y1, . . . , yq) = 0.(2.6)

In terms of coordinates f can be taken to be a map R(n+1)q+1 → Rk and so
the zero set of the above equation defines a certain submanifold of Jq(E) which
we denote by Rq. Let us assume that Rq is involutive and the corresponding
distribution D one-dimensional. Since one-dimensional distributions always have
integral manifolds, there always exists a solution to our problem in these circum-
stances. In the following sections we discuss how to compute these solutions.
All the methods discussed are one-step methods. Let us recall the following

basic property of these methods [3, 7]: if the local error is O(hr+1) then the
global error is O(hr) for sufficiently small h.

3 Taylor type methods.

Let k < m and f : Rm �→ Rk and M := f−1(0) ⊂ Rm. Let D be a smooth
one-dimensional distribution on M and V a smooth vector field associated to it,
at a given point p ∈ M . We would like to compute the integral manifold that
passes through p.
Let p ∈ M be the current point and c : R �→ M be the integral curve of the

associated vector field with c(0) = p and c′(0) = Vp. Note that c is parametrized
by arclength. Let w ∈ (TRm)p; then an approximation to c(h) is obtained by
computing the solution q of the following system:{

q + (dfq)tµ = p+ hw,
f(q) = 0,

(3.1)

where µ ∈ Rk. Note that the solution exists for h sufficiently small. It will be
convenient to define a curve c̃(s) = solution q of (3.1) with h = s. Evidently
c(0) = c̃(0) = p, and we would like to measure the difference c(h)− c̃(h) for small
h and to choose w in such a way that this difference is as small as possible. Let
us start with simple
Lemma 3.1. Let c̃ and c be as above; if c̃(k)(0) = c(k)(0) for 1 ≤ k < n, then

c̃(n)(0)− c(n)(0) ∈ TMp.
Proof. The curve c satisfies identically f ◦ c = 0. Hence

dn

dsn
(
f ◦ c

)
= df c(n) + terms with lower order derivatives of c = 0.

The same holds for c̃, so the hypothesis implies that dfp

(
c̃(n)(0) − c(n)(0)

)
= 0.

We then use expansions to determine ‘good’ directions. Let us consider the
system {

q + (dfq)tµ = p+
∑n

k=1 w
khk,

f(q) = 0.
(3.2)
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We would like to find wk ∈ (TR
m)p in such a way that c(h)− q = O(hn+1). The

next result shows that good directions of arbitrary order exist, even if wk are
restricted to TMp.
Theorem 3.2. For any n there are vectors wk ∈ TMp, 1 ≤ k ≤ n, such that

if q is a solution of (3.2), then c(h)− q = O(hn+1).
Proof. The case n = 1 follows by choosing w1 = Vp. Let us suppose there

are wk ∈ TMp, 1 ≤ k < n, such that c(h)− p∗ = O(hn), where{
p∗ + (dfp∗)tµ = p+

∑n−1
k=1 w

khk,

f(p∗) = 0.

Let p∗ = p + p1h + p2h2 + · · · ; then by Lemma 3.1 1
n!c

(n)(0) − pn ∈ TMp.
Put wn = 1

n!c
(n)(0) − pn and let q be a solution of (3.2) with this wn. Let

q = p + q1h + q2h2 + · · · ; evidently pk = qk for 1 ≤ k < n, so we have to show
that qn = 1

n!c
(n)(0).

Now expanding the second equation in (3.2) we get dfp(qn − pn) = 0. Hence
πn(qn) = πn(pn) = πn( 1

n!c
(n)(0)). Then expanding the first equation we get

qn + (dfp)tµn + bn = wn,

where bn contains the terms with µk, k < n. Note that bn does not contain qn

(since µ = O(h2)), and consequently bn is the same for p∗ and q. Now

πt(qn) = πt(wn)− πt(bn) = πt

(
1
n!c

(n)(0)− pn
)
+ πt(pn) = πt

(
1
n!c

(n)(0)
)
.

Let us compute the second order terms in (3.2) with w1 = Vp and w2 = 0. We
get the system {

q2 + (df)tµ2 = 0,
df q2 + 1

2 d
2f(Vp, Vp) = 0.

To proceed in the computation let us introduce some convenient notations. Let
B = df(df)t and let SV (resp. S∇) denote the section of the normal bundle
defined by S(V, V ) (resp. S(V,∇V V )). From now on we shall also drop the
subscript p in formulas like ∇VpV when the meaning is clear from the context.
We shall need the following lemma:
Lemma 3.3. Let V , Y ∈ Γ(TM); then

S(V, Y ) = −(df)tB−1d2f(V, Y ).

Proof. Let c : R �→M with c(0) = p and c′(0) = Vp. Then S(Vp, Vp) is given
by the above formula, since S(Vp, Vp) = πn(c′′(0)). The general result follows by
bilinearity and symmetry of S.
Hence using Lemma 3.3 we compute that q2 = 1

2 S(V, V ) which combined with
c′′(0) = dV V and (2.3) implies that

1
2 c

′′(0)− q2 = 1
2 ∇V V.
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Hence by the proof of the previous theorem we obtain at once
Corollary 3.4. If q is the solution of (3.2) with w1 = V and w2 = 1

2 ∇V V ,
then c(h)− q = O(h3).
Note that the correction terms w1 and w2 are just what one would expect them

to be by the classical theory. In the computations that follow the formula (2.3)
and Lemma 3.3 are used very often. Note also that πn = (df)tB−1df . Let us
then compute the next term.
Proposition 3.5. If q is the solution of (3.2) with w1 = V , w2 = 1

2 ∇V V
and

w3 = 1
6 ∇V (∇V V ) + 1

3 πt

(
(dV )tSV

)
,

then c(h)− q = O(h4).
Proof. Expanding the system (3.2) we first compute that q2 = 1

2 dV V and
Bµ2 = − 1

2 df SV . Then the third order terms are obtained from{
q3 + (df)tµ3 − 1

2 d
2f(V, · )B−1dfSV = w3,

df q3 + 1
2 d

2f(dV V, V ) + 1
6 d

3f(V, V, V ) = 0.
(3.3)

By Theorem 3.2, it is sufficient to choose w3 ∈ TMp in such a way that πt(q3) =
πt(1

6 c
′′′(0)). Hence we need not compute µ3 at all and can ignore the second

equation in (3.3). Using Lemma 8.1 we get from the first equation

πt(q3) = w3 − 1
2 πt

(
(dV )tSV

)
.

Now combining Lemmas 8.2 and 8.3 leads to the result.
There is now a non-classical correction term Xp = πt

(
(dV )tSV

)
. Let us then

give a more geometric characterization of this term.
Lemma 3.6. Let {zk} be an orthonormal basis of TMp. Then

Xp =
∑

k

〈
SV , S(V, zk)

〉
zk.(3.4)

Proof. If zk ∈ TMp, then〈
zk, (dV )tSV

〉
=
〈
dV zk, SV

〉
=
〈
S(V, zk), SV

〉
.

Note that Xp depends only on V at p. Now Theorem 3.2 says that we need
only tangential directions to get arbitrarily high order. However, it may still be
useful to consider also normal directions. Let us start with the following simple
observation:
Proposition 3.7. If q is the solution of (3.2), then

πt(w1) = Vp ⇐⇒ c(h)− q = O(h2).
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Hence the normal component of w1 has no effect for a first order method.
However, it obviously affects higher order error terms. Could we choose πn(w1)
in such a way that c(h)− q = O(h3) ? Unfortunately we have the following:
Lemma 3.8. Let q be the solution of (3.1) with w = Vp+Yp, where Yp ∈ NMp.

If dim(TMp) > dim(NMp), then in general it is impossible to choose Yp such that
c(h)− q = O(h3).
Proof. See [12].
Of course, nothing guarantees third order local error, even if dim(TMp) ≤

dim(NMp). In spite of the above result, the normal directions are useful.
Proposition 3.9. If q is the solution of (3.2) with w1 = Vp, w2 = 1

2 (∇VpV )p+
1
3 SV and w3 = 1

6

(
∇Vp(∇VpV )

)
p
, then c(h)− q = O(h4).

Proof. From

q2 + (df)tµ2 = 1
2 (∇VpV )p + 1

3 SV ,

df q2 + 1
2 d

2f(V, V ) = 0,

we get Bµ2 = − 1
6 dfSV and q2 = 1

2 dV V . Using this µ2 in (3.3) gives

πt(q3) = 1
6 ∇V (∇V V )− 1

6 πt

(
(dV )tSV

)
,

which yields the result.
Note that computing just SV is much easier than computing Xp in (3.4). It

is seen that the vectors wi for i = 1, 2, 3 admit direct interpretations in terms
of standard operations in Riemannian geometry. Characterizing higher order
terms in this way seems to be more difficult. However, our main interest is in
Runge–Kutta methods, since we expect that they are more useful in practice,
and consequently we now turn our attention to them.

4 Runge–Kutta type methods.

4.1 Explicit methods.

We have already seen that one obtains a first order method by taking an Euler
step along Vp, i.e. if q is a solution of{

q + (dfq)tµ = p+ hVp,

f(q) = 0,

then c(h)− q = O(h2). Now let us try to construct an explicit two stage Runge–
Kutta scheme whose local error is O(h3). In our context this can be formulated
in the following way:


q̃ + (dfq̃)tµ̃ = p+ ha21Vp,

f(q̃) = 0,
q + (dfq)tµ = p+ h

(
b1Vp + b2Vq̃

)
,

f(q) = 0.

(4.1)
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Here we use trivial parallel translation in the ambient space to add vectors with
different base points. Hence we have to choose a21, b1 and b2 such that c(h)−q =
O(h3).
Let us recall the classical order conditions for Runge–Kutta methods; see for ex-

ample [3]. Let A ∈ Rr×r be the matrix containing the coefficients of the (r–stage)
method. Let b = (b1, . . . , br) and 1 = (1, . . . , 1). Let us denote the component-
wise (or Schur or Hadamard) product of vectors by a�b = (a1b1, . . . , arbr). Then
the order conditions for orders up to four are given by

〈b,1〉 = 1,(4.2)
〈b, A1〉 = 1/2,(4.3) {
〈b, A21〉 = 1/6,
〈b, A1 �A1〉 = 1/3,

(4.4)



〈b, A31〉 = 1/24,
〈b, A21 �A1〉 = 1/8,
〈b, A1 �A1 �A1〉 = 1/4,
〈b, A(A1 �A1)〉 = 1/12.

(4.5)

Proposition 4.1. The scheme (4.1) is of order 2 if and only if the conditions
(4.2) and (4.3) are satisfied.
Proof. Proceeding as in the previous section we readily get

q̃ = p+ a21Vph+O(h2),

Vq̃ = Vp + a21dV V h+O(h2).
(4.6)

Then computing the expansion of q we first get

q1 + (dfp)tµ1 = (b1 + b2)Vp,

df q1 = 0.

Hence µ1 = 0 and q1 = (b1 + b2)Vp which implies b1 + b2 = 1, i.e. the condition
(4.2). Proceeding further we get

q2 + (df)tµ2 = b2a21dV V,

df q2 + 1
2 d

2f(V, V ) = 0.

For the second order method q2 = 1
2 dV V . Hence µ2 = 0 and b2a21 = 1/2, i.e.

condition (4.3) holds.
Next let us consider a scheme with 3 stages.



q̃ + (dfq̃)tµ̃ = p+ ha21Vp,

f(q̃) = 0,
q̂ + (dfq̂)tµ̂ = p+ h

(
a31Vp + a32Vq̃

)
,

f(q̂) = 0,
q + (dfq)tµ = p+ h

(
b1Vp + b2Vq̃ + b3Vq̂

)
,

f(q) = 0.

(4.7)
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Proposition 4.2. The scheme (4.7) is of order 3 if and only if the conditions
(4.2), (4.3) and (4.4) are satisfied.
Proof. We need more terms in the expansion (4.6). The second order terms

give

q̃2 + (df)tµ̃2 = 0,

df q̃2 + 1
2 a

2
21d

2f(V, V ) = 0.

Hence Bµ̃2 = − 1
2 a

2
21df SV and q̃2 = 1

2 a
2
21SV . Next we must compute the ex-

pansion q̂ = p + q̂1h + q̂2h2 + O(h3). Evidently µ̂1 = 0 and q̂1 = (a31 + a32)Vp

and for the second order terms we obtain

q̂2 + (dfp)tµ̂2 = a32a21dV V,

df q̂2 + 1
2 (a31 + a32)2d2f(V, V ) = 0.

This yields

Bµ̂2 =df
(
a32a21 − 1

2 (a31 + a32)2
)
SV ,

q̂2 =a32a21∇V V + 1
2 (a31 + a32)2SV .

(4.8)

Then we compute

Vq̃ =Vp + a21dV V h+ 1
2 a

2
21

(
[V,∇V V ] + dSV V

)
h2 +O(h3),

Vq̂ =Vp + (a31 + a32)dV V h+
(
a32a21

(
∇V (∇V V ) + S∇

)
+
(

1
2 (a31 + a32)2 − a32a21

)
[V,∇V V ]

+ 1
2 (a31 + a32)2dSV V

)
h2 +O(h3).

(4.9)

Finally we must expand q. From the equations

q1 + (dfp)tµ1 = (b1 + b2 + b3)V,

df q1 = 0.

we get µ1 = 0 and q1 = (b1+ b2+ b3)V which gives the condition b1+ b2+ b3 = 1.
Expanding further we obtain

q2 + (dfp)tµ2 =
(
b2a21 + b3(a31 + a32)

)
dV V,

df q2 + 1
2 d

2f(V, V ) = 0.

Requiring q2 = 1
2 dV V leads to µ2 = 0 and b2a21 + b3(a31 + a32) = 1/2. Finally

using (4.9) and (4.4) we get

q3 + (dfp)tµ3 =1
2

(
b2a

2
21 + b3(a31 + a32)2

)(
[V,∇V V ] + dSV V

)
+ b3a32a21

(
∇V (∇V V )− [V,∇V V ] + S∇

)
,

=1
6

(
∇V (∇V V ) + dSV V + S∇

)
.
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Comparing to Lemma 8.2 we conclude that q3 = 1
6 c

′′′(0) and µ3 = 0.
Let us then consider a scheme with 4 stages.



q̃ + (dfq̃)tµ̃ = p+ ha21Vp,

f(q̃) = 0,
q̂ + (dfq̂)tµ̂ = p+ h

(
a31Vp + a32Vq̃

)
,

f(q̂) = 0,
q̄ + (dfq̄)tµ̄ = p+ h

(
a41Vp + a42Vq̃ + a43Vq̂

)
,

f(q̄) = 0,
q + (dfq)tµ = p+ h

(
b1Vp + b2Vq̃ + b3Vq̂ + b4Vq̄

)
,

f(q) = 0.

(4.10)

Proposition 4.3. The scheme (4.10) is of order 4 if and only if the conditions
(4.2), (4.3), (4.4) and (4.5) are satisfied.
Proof. We need more terms in various expansions. First we have to solve

q̃3 + (df)tµ̃3 + a21d
2f(V, ·)µ̃2 = 0,

df q̃3 + 1
2 a

3
21d

2f(V, SV ) + 1
6 a

3
21d

3f(V, V, V ) = 0.

We obtain using Lemmas 8.1 and 8.4

Bµ̃3 = 1
6 a

3
21d

3f(V, V, V ) + 1
2 a

3
21d

2f(V, SV ) + 1
2 a

3
21dfd

2f(V, ·)B−1df SV ,

= 1
6 a

3
21df

(
2S∇ − dSV V − 3(dV )tSV

)
,

q̃3 = 1
6 a

3
21

(
3πt(dSV V ) + πn(dSV V )− 2S∇

)
.

Next we compute third order terms in the expansion of q̂.

q̂3 + (dfp)tµ̂3 + (a31 + a32)d2f(V, ·)µ̂2 = 1
2 a

2
21a32

(
[V,∇V V ] + dSV V

)
,

df q̂3 + 1
2 (a31 + a32)d2f(V, q̂2) + 1

6 (a31 + a32)3d3f(V, V, V ) = 0.

µ̂2 and q̂2 are given in (4.8). Solving this yields

Bµ̂3 =df
(
u1(dV )tSV + u2dSV V + u3S∇

)
,

q̂3 =1
2 a

2
21a32[V,∇V V ] + u4πt(dSV V )− u3S∇ + 1

6 (a31 + a32)3πn(dSV V ),

where ui’s are given by

u1 =a21a32(a31 + a32)− 1
2 (a31 + a32)3,

u2 =1
2 a

2
21a32 − 1

6 (a31 + a32)3,

u3 =1
3 (a31 + a32)3 − a21a32(a31 + a32),

u4 =a21a32(1
2 a21 − a31 − a32) + 1

2 (a31 + a32)3.

Then we move on to q̄. Obviously µ̄1 = 0 and q̄1 = u5Vp where u5 = a41 + a42 +
a43. The second order terms are solved from

q̄2 + (dfp)tµ̄2 =
(
a42a21 + a43(a31 + a32)

)
dV V,

df q̄2 + 1
2 u

2
5d

2f(V, V ) = 0.
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Putting u6 = a42a21 + a43(a31 + a32) we get

Bµ̄2 =df
(
u6dV V − 1

2 u
2
5SV

)
,

q̄2 =u6∇V V + 1
2 u

2
5SV .

Then the third order equations are

q̄3 + (dfp)tµ̄3 + u5d
2f(V, ·)µ̄2 = u7[V,∇V V ] + u8dSV V

+ a21a32a43

(
∇V (∇V V ) + S∇

)
,

df q̄3 + u5u6d
2f(V,∇V V ) + 1

2 u
3
5d

2f(V, SV ) + 1
6 u

3
5d

3f(V, V, V ) = 0,

where

u7 =1
2 a42a

2
21 +

1
2 a43(a31 + a32)2 − a21a32a43,

u8 =1
2 a42a

2
21 +

1
2 a43(a31 + a32)2.

Then

Bµ̄3 = df
(
(u5u6 − 1

2 u
3
5)(dV )tSV + (u8 − 1

6 u
3
5)dSV V

+ (a21a32a43 + 1
3 u

3
5 − u5u6)S∇

)
,

q̄3 = u7[V,∇V V ] + a21a32a43∇V (∇V V ) + (u5u6 − 1
3 u

3
5)S∇

+ (u8 + 1
2 u

3
5 − u5u6)πt(dSV V ) + 1

6 u
3
5πn(dSV V ).

We shall need third order terms in the expansions (4.9) (denoted by V 3
q̃ and V 3

q̂ )
as well as the expansion of Vq̄.

V 3
q̃ =dV q̃3 + 1

2 a
3
21d

2V (V, SV ) + 1
6 a

3
21d

3V (V, V, V ),

V 3
q̂ =dV q̂3 + a21a32(a31 + a32)d2V (V,∇V V )

+ 1
2 (a31 + a32)3d2V (V, SV ) + 1

6 (a31 + a32)3d3V (V, V, V ),

Vq̄ =Vp + u5dV V h+
(
u6

(
∇V (∇V V ) + S∇

)
+
(

1
2 u

2
5 − u6

)
[V,∇V V ] + 1

2 u
2
5dSV V

)
h2

+
(
dV q̄3 + u5u6d

2V (V,∇V V )

+ 1
2 u

3
5d

2V (V, SV ) + 1
6 u

3
5d

3V (V, V, V )
)
h3 +O(h4).

Finally we must expand q. First order terms are µ1 = 0 and q1 = (b1 + b2 + b3 +
b4)V , hence 〈b,1〉 = 1. Expanding further we obtain

q2 + (dfp)tµ2 = 〈b, A1〉dV V,
df q2 + 1

2 d
2f(V, V ) = 0.
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Requiring q2 = 1
2 dV V leads to µ2 = 0 and 〈b, A1〉 = 1/2. Then using (4.4) we

get

q3 + (dfp)tµ3 =
(

1
2 〈b, A1 �A1〉 − 〈b, A21〉

)
[V,∇V V ]

+ 1
2 〈b, A1 �A1〉dSV V + 〈b, A21〉

(
∇V (∇V V ) + S∇

)
= 1

6

(
∇V (∇V V ) + dSV V + S∇

)
.

(4.11)

Hence we conclude that q3 = 1
6 c

′′′(0) and µ3 = 0. Note that the fact that µ3 = 0
simplifies the computations in the last step. Consequently the equation for q4 is

q4 + (df)tµ4 = b2V
3
q̃ + b3V 3

q̂ + b4V 3
q̄ .(4.12)

Anyway, at this point the computations became so tedious that it was necessary
to use Mathematica [15]. Now guided by the previous steps we expect that
µ4 = 0. Indeed, using the conditions (4.5) and simplifying we find that b2V 3

q̃ +
b3V

3
q̂ + b4V 3

q̄ = 1
24 c

(4)(0), where c(4)(0) is given in Lemma 8.7.

4.2 Implicit methods.

The analysis follows the same lines as in the explicit case so we proceed here
more rapidly. Let us start by the one-stage method



q̃ + (dfq̃)tµ̃ = p+ ha11Vq̃,

f(q̃) = 0,

q + (dfq)tµ = p+ hb1Vq̃,

f(q) = 0.

(4.13)

Proposition 4.4. The scheme (4.13) is of order 1 if and only if b1 = 1
(condition (4.2)) and of order 2 if and only if in addition a11 = 1/2 (condition
(4.3)).
Proof. We easily get µ̃ = O(h2) and

q̃ =p+ a11V h+O(h2),

Vq̃ =Vp + a11dV V h+O(h2).

Hence µ1 = 0 and q1 = b1Vp = Vp. The second order terms give

q2 + (dfp)tµ2 = a11dV V,

df q2 + 1
2 d

2f(V, V ) = 0.

Hence the scheme is of second order if a11 = 1/2 in which case µ2 = 0.
Note that the amount of work would be saved if q̃ = p (a11 = 0, explicit Euler)

or q̃ = q (a11 = b1, implicit Euler), but the maximal order is obtained only with
a11 = 1/2 (midpoint rule).
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Let us then consider the general two stage method.


q̃ + (dfq̃)tµ̃ = p+ h
(
a11Vq̃ + a12Vq̂

)
,

f(q̃) = 0,

q̂ + (dfq̂)tµ̂ = p+ h
(
a21Vq̃ + a22Vq̂

)
,

f(q̂) = 0,

q + (dfq)tµ = p+ h
(
b1Vq̃ + b2Vq̂

)
,

f(q) = 0.

(4.14)

Proposition 4.5. The scheme (4.14) is of order 3 if and only if conditions
(4.2), (4.3) and (4.4) are satisfied.
Proof. The proof is entirely analoguous to the explicit case; see [12] for

details.
Here again we can save the amount of work if we choose either a11 = a12 = 0

or a21 = b1 and a22 = b2. Here it is possible to have a third order method with
these choices. In the first case we obtain a21 = a22 = 1/3, b1 = 1/4 and b2 = 3/4,
and in the second case a11 = 5/12, a12 = −1/12, a21 = 3/4 and a22 = 1/4. The
former scheme is known as RADAU I and the latter as RADAU IIA [3].
Let us then consider the general three stage method.



q̃ + (dfq̃)tµ̃ = p+ h
(
a11Vq̃ + a12Vq̂ + a13Vq̄

)
,

f(q̃) = 0,

q̂ + (dfq̂)tµ̂ = p+ h
(
a21Vq̃ + a22Vq̂ + a23Vq̄

)
,

f(q̂) = 0,

q̄ + (dfq̄)tµ̄ = p+ h
(
a31Vq̃ + a32Vq̂ + a33Vq̄

)
,

f(q̄) = 0,

q + (dfq)tµ = p+ h
(
b1Vq̃ + b2Vq̂ + b3Vq̄

)
,

f(q) = 0.

(4.15)

Proposition 4.6. The scheme (4.15) is of order 4 if and only if conditions
(4.2), (4.3), (4.4) and (4.5) are satisfied.
Proof. See [12].
Again it is possible to save the amount of work and to have order four by

RADAU type methods, i.e. by requiring that either a1j = 0 or a3j = bj. In fact
one can impose both conditions and keep order four; these kind of schemes are
known as LOBATTO IIIA. So even though in this case there are 8 conditions and
only 6 parameters, there happens to be a unique solution: a21 = 5/24, a22 = 1/3,
a23 = −1/24, a31 = 1/6, a32 = 2/3, a33 = 1/6.
To sum up, all the results in this section suggest that the following conjecture

could be true.
Conjecture 4.7. Our versions of Runge–Kutta methods have the same order

as the classical versions.
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5 Numerical implementation.

Let us consider the system (2.6). Given an initial point p ∈ Rq = f−1(0) ⊂
Jq(E) we would like to compute the integral manifold going through p. There
are three subproblems in implementing the algorithm:

1. Given a point p ∈ Rq, compute the distribution Dp which is defined
by (2.5).

2. Step size control.

3. When the (intermediate) steps give points which are outside Rq they must
be orthogonally projected back to Rq.

All of these reduce to fairly standard numerical problems. The implementation
was done on Maple V [4]. It would be more efficient to produce, e.g., Fortran
code from the Maple procedures, but this will be considered in a future paper.

5.1 Computing the distribution.

At each point the distribution can be represented as a nullspace of the following
matrix [13] :

A =
(
−v Inq 0nq×n

w A1 A2

)
,

where w = ∂f/∂x, A2 = ∂f/∂yq, A1 contains the partial derivatives of f with
respect to y, y1, . . . , yq−1 and finally v ∈ Rnq×1 contains the vectors y1, y2, . . . , yq.
The computation of the nullspace of A can further be reduced to the computation
of the nullspace of the following k × (n+ 1)-matrix:

C =
(
w +A1v A2

)
.(5.1)

Note that the dimensions of C are independent of q. For the computation of the
nullspace we used the standard singular value decomposition C = UΣV t. The
last singular value should be very close to zero, and hence the last column of V
gives a good approximation of the required direction.
Note that for an important class of systems, namely mechanical systems with

holonomic constraints, the distribution can be computed from the regular linear
system and the SVD is not needed at all; see [13].

5.2 Step size control.

Here we have used two standard techniques [7]: either take two sequential
steps with stepsize h and compare the result with one step with stepsize 2h, or
Fehlberg-like: compare two parallel steps, the other of order p and the other of
order p+ 1.
We implemented the following explicit methods: classical RK4, Fehlberg 4(5)

(denoted by RKF45) and Dormand–Prince 5(4) (denoted by dopri54). In case of
RK4 the ‘2 ∗ h compared to 2h’ was used.
The number of steps that were rejected was relatively high, typically 10–20%.

Perhaps the standard step selection strategies in [7] should be modified somewhat
in the present context. This problem will be addressed in a future work.
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5.3 Projection.

Projection was done by chord Newton iteration. The needed Jacobian was
evaluated every third step and the resulting linear system was solved using LU -
decomposition. Initial point could be selected either as{

qinit = p+ hVp,

µinit = 0,
(5.2)

or yet better as{
qinit = p+ hVp − (dfp)ta h2,

µinit = a h2 = (dfp(dfp)t)
−1
d2fp(Vp, Vp)h2/2.

(5.3)

The distance from the initial point in (5.2) to the correct value is of order O(h2)
and in (5.3) of order O(h3). In the numerical examples we use the initial point
(5.3). The iteration was continued until the difference of successive iterates in
maximum norm was smaller than some given tolerance, typically about 10−7, or
until the maximum number of iterations (30 was used) was exceeded. In the latter
case step-size was reduced and then the computation was resumed. However, the
non-convergence was extremely rare and usually only about 3 iterations was
required, hence normally the Jacobian of f was evaluated only once in each
projection. When the initial point was as in (5.2), typically one more iteration
was needed, and so it seems to be advantageous to use the more complicated
initial point (5.3). If the tolerances in the step-size control were large, then the
number of iterations naturally tended to increase.
Remark 5.1. The h2-coefficient of qinit in (5.3) has the following geometrical

interpretation:

|(dfp)ta| =
1
2
· (normal curvature at p).

Remark 5.2. When computing the distribution we need the Jacobian of f and
in the Newton iteration as well as in the computation of the initial guess (5.3) we
need in addition the second differential d2f . These were computed symbolically
and then evaluated when needed. In the moderate sized examples below this
was not a problem, but in bigger problems these computations and evaluations
are eventually quite time consuming. Fortunately there is an efficient way to
compute the required quantities using automatic differentiation [2]. However, a
discussion of this technique is outside the scope of the present article and will be
considered elsewhere.

6 Examples.

6.1 A simple example.

Let us look at a simple system in J1(R×R): y1 − 3y− 2x2 = 0, whose explicit
solution with initial point y(0) = 2 is

y(x) = −x2 − 2
3
x− 2

9
+

20
9
e3x.
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Figure 6.1: Testing the order of dopri54.

The motivation for this example is to test the order of the method dopri54.
Note that the theory is so far only up to order 4 and we would like to test
numerically the validity of Conjecture 4.7. We computed the solution for x =
0, . . . , 0.01 with constant stepsize h = 2−k where k ∈ {6, 7, . . . , 13}.
The result is encouraging, the order really seems to be 5. In Figure 6.1 the

errors are shown in log-log scale at x = 0.002 and x = 0.01. The slopes are
4.836 and 4.952, respectively. At h = 2−13 one can see the effect of round-off
errors, the computations were done with 30 decimals. Without the points where
h = 2−13 the slopes would be 5.008 and 5.011, respectively. So there is also some
numerical evidence to support Conjecture 4.7.

6.2 Hénon–Heiles system.

The equations of this famous example from astronomy are:

y1

2 + y1 + 2y1y2 = 0,

y2
2 + y2 + (y1)2 − (y2)2 = 0,

1
2 |y1|2 + 1

2 |y|2 + (y1)2y2 − 1
3 (y

2)3 − a = 0.

(6.1)

The computation is reduced [13] to:


1
2 |y1|2 + 1

2 |y|
2 + (y1)2y2 − 1

3 (y
2)3 − a = 0,

D = span(V ),

V =
(
1, y1

1, y
2
1 ,−y1 − 2y1y2,−y2 − (y1)2 + (y2)2

)
,

(6.2)

where a is the constant energy. We are interested in quasiperiodic motion, which
is achieved by the initial point (x, y, y1) = (0, 0.12, 0.12, 0.12, 0.12). We take the
Poincaré section at the hyperplane y1 = 0 and look at (y2, y2

1).
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Table 6.1: Some results of Hénon–Heiles (6.2): number of steps.

tol x=110 x=550 x=1100
dopri54 4-th order pt 5·10−5 186 920 1837
dopri54 5-th order pt 1·10−5 242 1201 2404
dopri54 4-th order pt 5·10−6 268 1373 2722

RK4 5·10−4 568 2897 5801

It is well known [10] that in case of Hamiltonian systems the symplectic Runge–
Kutta methods are better than ordinary Runge–Kutta methods, especially if the
simulation times are long. However, as seen below, our method, without being
symplectic, also produces qualitatively correct results on long time intervals.

Figure 6.2: Poincaré sections in the (y2, y2
1)-plane for the Hénon–Heiles system (6.2).

We compute ‘approximately two rounds’ in the Poincaré section, which means
taking x = 0, . . . , 1100 and hence about 340 points in the section. The point
in the section is chosen by Hermite interpolation between points pm and pm+1

which are sequential such that the sign of y1 changes.
With dopri54 we used the 4-th order point as the new starting point for the

next step. Although it was not extensively studied, it seemed like using 5-th
order point required so small a tolerance that proceeding along the solution was
actually slower than in the 4-th order case.
Dopri54 was clearly more efficient than RKF45. Surprisingly, also RK4 was

clearly better than RKF45, despite the more elementary step size control. RKF45
required very small stepsize to produce qualitatively correct solution, so it was
not reasonable to compute even one round. Compared to this dopri54 and RK4
used quite big steps. The qualitative performance of RKF45 did not depend
on choosing 4-th or 5-th order value for the continuation of the solution. Some
results of computations are in Table 6.1.
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On the left of Figure 6.2 is the result with dopri54, tol= 5 ·10−5, for which
1840 points was needed. With bigger tolerances the algorithm rejected consider-
ably more points. By looking at the figure, the result is slightly less ’uniformly
distributed’ than in the following RK4 case:
On the right of Figure 6.2 is the result with RK4, tol= 5·10−4, for which 5800

points was needed. It is interesting to compare these two figures: the points in
the sections are clearly not at same places, but the shapes of the sections are still
the same.
Remark 6.1. Note that we have not used any ideas from the symplectic

geometry. This is because the relevant flows restricted to our manifolds would
not be symplectic anymore, and hence it is not clear how to exploit the ‘remaining’
symplectic structure in the computations. However, it is quite possible that a
deeper study of the connections of the symplectic and jet geometry would turn
out to be interesting also from the numerical point of view.

6.3 Stiff pendulum.

This is a pendulum with massless, stiff spring with a spring constant 1/ε2, ε > 0
and a mass of 1 unit at the end of the spring. The rest length of the spring and
the gravitational constant are taken to be 1. The equations are:



y1
2 + y1y3 = 0,

y2
2 + y2y3 + 1 = 0,(
(y1)2 + (y2)2

)(
ε2y3 − 1

)2 − 1 = 0,

ε2y3
1 +

(
y1y1

1 + y2y2
1

)(
ε2y3 − 1

)3 = 0,(
ε2y3 − 1

)
ε2y3

2 − 3ε4(y3
1)

2,

+
(
(y1

1)2 + (y2
1)2 − y2

)(
ε2y3 − 1

)4 − y3
(
ε2y3 − 1

)2 = 0,

(6.3)

and the computation in reduced form [13]:


(
(y1)2 + (y2)2

)(
ε2y3 − 1

)2 − 1 = 0,

D = span(V ),

V =
(
1, y1

1 , y
2
1 ,−

(
y1y1

1 + y2y2
1

)(
ε2y3 − 1

)3
/ε2,−y1y3,−y2y3 − 1

)
.

(6.4)

Table 6.2: Stiff pendulum (6.4): ε = 0.01, number of steps.

toler x = 0.5 x = 1.5
dopri54 10−4 357 1141
dopri54 10−5 685 2051
RK4 10−2 643 1931
RK4 10−3 957 2857
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We investigate the cases ε ∈ {0.1, 0.01}. The ε is a stiffness parameter: the
smaller the epsilon, the stiffer the equations.
Let us choose first ε = 0.01 and use the initial point (0, 0.85, 0,−1765, 0, 0).

Note that the initial point does not have to satisfy the equations to high accuracy.
We compute the solution in the interval x = [0, 1.5].
Dopri54 is, as in previous example, clearly more efficient than RKF45. The

latter has trouble keeping the solution qualitatively correct, it suffers from dissi-
pativity (Figure 6.3) for all reasonable stepsizes. Some results of computations
are in Table 6.2.

Figure 6.3: Dissipativity of RKF45 in stiff pendulum (6.4), ε = 0.01.

Figure 6.4: Stiff pendulum (6.4) ε = 0.01, x = 0, . . . , 1.5.

Comparing dopri54 and RK4: on the left of Figure 6.4 is the result with dopri54
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tol = 10−4, we use the usual 5-th order point as the new point on solution.
1141 points was needed. With tolerances bigger than that, dopri54 lost the
qualitatively correct behaviour. With tolerances 10−6 or smaller, the propagation
along the solution was painfully slow.

Table 6.3: Stiff pendulum (6.4): ε = 0.1, number of steps.

tol x = 3.7 x = 20
dopri54 10−4 136 751
dopri54 10−5 260 1444
RK4 10−2 223 1259
RK4 10−3 371 2082

In RK4 the computed solution is of good quality even with ‘big’ tolerances.
Hence in this example RK4 easily beats RKF45. RK4 is also more reliable but
slower than dopri54. On the right of Figure 6.4 is the result with RK4 with
tolerance equal to 10−2. In dopri54 the effect of tolerance is clearly more visible
than in RK4 case.
Let us choose then ε = 0.1, the initial point p0 = (0, .85, 0, −17.65, 0, 0) and

compute the solution on the interval x = [0, 20]. The results are quite similar to
the previous case; RK4 beats RKF45 and dopri54 is clearly superior to both of
these. RKF45 is dissipative for all reasonable stepsizes.
Some results of computations are in Table 6.3. The column x = 3.7 corresponds

to the ‘one swing’ case mentioned below.
In Figure 6.5 is the result by dopri54 with tol= 10−4, on the left only one swing

to show the ‘speed’ of numerical solution, on the right the qualitative behaviour
over longer time interval.

Figure 6.5: Stiff pendulum (6.4), ε = 0.1.

Remark 6.2. The surprisingly bad performance of RKF45 in this and the
previous example is somewhat mysterious: we did not find any theoretical expla-
nation for this fact.
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6.4 Four bar system.

This is a classical example in multibody dynamics; see Figure 6.6. The links are
rigid and of negligible mass. Joints are frictionless and joints 0 and 3 are fixed.
There are point masses m1, m2 at joints 1 and 2, respectively. The effecting
forces are gravity and a constant torque T acting on the origin.

0

2

3

a

b

c

d

T

1

Figure 6.6: Four bar linkage.

The equations of motion, where (y1, y2), (y3, y4) are coordinates for joints 1
and 2 respectively, are in descriptor form:{

B(x, y, y1)y2 + f(x, y, y1) + (dg)tλ = 0,
g(y) = 0,

(6.5)

with B = diag(m1,m1,m2,m2), γ = gravitation constant and

f =




y2 T/a2

−y1 T/a2 +m1γ
0
m2γ


 , g =

1
2


 (y1)2 + (y2)2 − a2

(y3 − y1)2 + (y4 − y2)2 − b2
(d− y3)2 + (y4)2 − c2


 .(6.6)

In addition to these, the energy of the system is constant and expressed by

E =
1
2
(
m1((y1

1)
2 + (y2

1)
2) +m2((y3

1)
2 + (y4

1)
2)
)
+ (m1y

2 +m2y
4)γ(6.7)

The constraints are holonomic, hence we can use in computations the reduced
form as explained in [13]:



g(y) = 0,

dg y1 = 0,

D = span(V ),

V =
(
1, y1, y2

)
,(

B (dg)t,
dg 0

)(
y2,

λ

)
+

(
f,

d2g (y1, y1)

)
= 0.

(6.8)
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We shall consider the motion of joint 2 with different choices of a, b, c, d. Note
that augmenting the system by constant energy condition changes the qualitative
behaviour of the solution quite radically as expected since the variations in the
energy are quite big. Let us recall that in the multibody system in [13] we had
an example where a solution remained quite close to the energy surface although
it was completely different from the solution obtained by imposing the constant
energy condition.
Choose (a, b, c, d) = (1, 2, 1.5, 2) and T = 0.8, m1 = 0.2, m2 = 0.1. We look

at component y4. The initial point is (0, 0.5, 0.866, 2.4155, 1.4413 , 0, 0, 0, 0). In
Figure 6.7 is the result with the energy equation augmented (solid line) and
without it (dashed line). The change of energy in the latter case is shown in
figure 6.8.

Figure 6.7: Results of four bar system (6.6) without (dashed line) and with (solid line)
(6.7), T = 0.8.

In the constant energy case the result is beautifully oscillatory, as one might
heuristically expect, since the effecting forces (gravitation and torque T ) are
constants. In the non-constant energy case the result is likewise oscillatory but
the period of the oscillation is clearly shorter than in the ’correct’ case of constant
energy. Also, in down position the behaviour is quite different: it makes only a
small ’cup’ there.
The case where a+ b = c+d is interesting, since it produces singularities: then

the linkage is capable of reaching position where all the bars are collinear. In
such a case, the rank of dg is not maximal and the equations of motion become
singular. This is called constraint singularity. The physical interpretation for the
singularity is that there is a bifurcation: the system can move either both joints
1 and 2 down (or up) or another joint moves upwards while the other one moves
downwards.
However, if we are modelling a real mechanical device, we might expect that

it has some (non-modelled) supportive structures that eliminate the possibility
of a bifurcation. In this case, we have to modify the equations to remove the
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Figure 6.8: Evolution of energy of four bar system (6.6), T = 0.8.

singularity also from the equations. See also [1, 8] for other approaches to this
problem.
The technique for resolving this problem is ideal decomposition. We need some

definitions and results (which we state without proofs) from algebraic geome-
try [5]:
Definition 6.1. Denote by C[y1, . . . , yn] the ring of polynomials in y1, . . . , yn.

A subset I ⊂ C[y1, . . . , yn] is an ideal if it satisfies

(i) 0 ∈ I.

(ii) If f, g ∈ I, then f + g ∈ I.

(iii) If f ∈ I and h ∈ C[y1, . . . , yn], then hf ∈ I.

Definition 6.2. Let f1, . . . , fs ∈ C[y1, . . . , yn]. Then we set

〈f1, . . . , fs〉 =
{ s∑

i=1

hifi : h1, . . . , hs ∈ C[y1, . . . , yn]
}
.

We call 〈f1, . . . , fs〉 the ideal generated by f1, . . . , fs.
We skip the proof of the fact that 〈f1, . . . , fs〉 really is an ideal.
Definition 6.3. An ideal I is radical if fm ∈ I for any integer m ≥ 1 implies

that f ∈ I. An ideal I is prime if whenever f, g ∈ C[y1, . . . , yn] and fg ∈ I,
then either f ∈ I or g ∈ I.
Definition 6.4. Let I be an ideal. The radical of I, denoted by

√
I, is the

set

{f ∈ C[y1, . . . , yn] : fm ∈ I for some integer m ≥ 1}.
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Lemma 6.1. If I is an ideal, then
√
I is a radical ideal.

Finally, a strong theorem from algebraic geometry:
Theorem 6.2. Every radical ideal I in C[y1, . . . , yn] can be written uniquely

as a finite intersection of prime ideals,

I = I1 ∩ · · · ∩ Ir,

where Ii �⊂ Ij for i �= j.
In our application there is no harm in restricting our attention to radical ideals,

because we are interested in the zero sets defined by the generators and obviously
the zero set defined by an ideal is the same as the zero set of its radical. An es-
sential thing is that this decomposition can be computed algorithmically through
the use of the generators of the ideal.

Figure 6.9: The component y4 of the ‘singular’ four bar linkage.

To demonstrate, suppose (a, b, c, d) = (1, 2, 1, 2). Our g is a polynomial, hence
it generates an ideal I ∈ C[y1, y2, y3, y4] which then generates a radical ideal√
I. This decomposes to intersection of prime ideals:

√
I = I1 ∩ I2

where Ii is the prime ideal generated by gi,

g1 :=



(y3)2 + (y4)2 − 4y3 + 3,
y2 − y4,

y1 − y3 + 2,

g2 :=



(y3)2 + (y4)2 − 4y3 + 3,
4y2y3 − 3y2 + 3y4,

4y2y4 + 3y1 − 3y3 + 6.
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Figure 6.10: Some configurations of the ‘singular’ four bar linkage.

In computing these we found Singular [6] very helpful. Using these equations
actually removes the singularity! For example, if we have the parallelogram case
where both joints 1 and 2 move at the same height, we use g1 in place of g. The
situation y2 = y4 = 0 is no longer a singularity, g1 is of maximal rank everywhere.
Of course, in this simple case we can eliminate y3 and y4, a geometric fact which
is also clearly visible in g1.
Let’s look more closely at g2. The condition y2 = y4 implies y2 = y4 = 0.

Hence the parallelogram motion is not possible in this case. On the other hand
the middle equation of g2 gives y4 = y2(1 − 4

3y
3) where the multiplier of y2

is negative because the first equation implies that 1 ≤ y3 ≤ 3. That is, when
nonzero, y2 and y4 have different signs and so g2 corresponds to situations where
the joints 1 and 2 are at different sides of the d-bar, as expected.
Note that the rank of g2 is maximal everywhere and hence the singularity is

vaporized! Let us take an example using g2 in place of g: the initial point is

(0, 0.5,
√
3/2, 1.5, −

√
3/2, 0, 0, 0, 0)

and T, m1, m2 are as before. The component y4 is in Figure 6.9 and some of
the configurations of the linkage are in Figure 6.10. We use short stepsize in
computation to assure that we get close to points where y4 = 0. There is no
problem in passing through points y4 = 0 which would be singularities when
using the original g.
Remark 6.3. If we had used the Lagrange 2nd kind of equations (i.e. using a

minimal set of coordinates, e.g. an angle between bars a and d) for representing
the equations of motion, we would have less equations but they would still include
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an algebraic constraint. Moreover, this constraint would be of non-polynomial
type and the ideal decomposition could not be applied.

7 Conclusion.

We have shown that it is possible to implement explicit higher order Runge–
Kutta type schemes for computing solutions of overdetermined systems or DAEs.
As explained in more detail in [13] we do not encounter the numerical problems
usually associated to these problems. The difficulties in efficient implementation
are of different nature. The computation of the involutive form of the system
which is needed may be quite time consuming because usually some symbolic
computation is required. On the other hand for quite large and interesting class
of systems, namely mechanical systems with holonomic constraints and Hamil-
tonian systems, the involutive form is easily available. It is an interesting open
problem to study how to exploit specific structures of systems in the computation
of the involutive form, and if some kind of mixture of symbolic and numerical
computation would be sufficient, at least in certain cases, which could result in
significant speed-ups.
On the more numerical side, the implementation of the subproblems in our

code, namely computation of the distribution and projection, are not as efficient
as they could be. A careful study of these problems will be a subject of future
papers. Anyway, and perhaps most importantly, our computations show that
solutions to overdetermined systems can be computed to high accuracy in a
numerically stable way; in fact the overdetermined character of the system is
barely visible in our formulation.

8 Auxiliary lemmas.

Let f : R
m �→ Rk, B = df(df)t and M := f−1(0) ⊂ Rm as before. V will

always be a vector field on M , i.e. V ∈ Γ(TM).
Lemma 8.1. Let Y ∈ Γ(TR

m); then

d2f(V, · ) = −(dV )t(df)t,

d2f(V, Y ) = −df dV Y.

Proof. We observe that since 〈df j , V 〉 = 0

(
d2f(V, · )

)
i,j

=
∑

k

∂2f j

∂xi∂xk
vk =

∂

∂xi

∑
k

∂f j

∂xk
vk −

∑
k

∂f j

∂xk

∂vk

∂xi

= −
∑

k

∂f j

∂xk

∂vk

∂xi
.

The proof of the other statement is similar.
Lemma 8.2. Let c : R �→M and c(0) = p; then

c′′′(0) = ∇V (∇V V ) + dSV V + S∇.
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Proof. Recall that c′′(0) = dV V = ∇V V + SV . Then we get the result by
noting that c′′′(0) = d(∇V V + SV )V and using (2.3).
Lemma 8.3.

πt(dSV V ) = −πt((dV )tSV ).

Proof. Let Y ∈ Γ(TM); then using (2.2) and (2.3) we get

0 = Vp〈SV , Y 〉 = 〈dSV V, Y 〉+ 〈SV , dY V 〉 = 〈dSV V, Y 〉+ 〈SV , S(Y, V )〉.

On the other hand

〈(dV )tSV , Y 〉 = 〈SV , dV Y 〉 = 〈SV , S(Y, V )〉.

Lemma 8.4.

d3f(V, V, V ) = df
(
3dV SV − dSV V + 2S∇

)
.

Proof.

(
d3f(V, V, V )

)
i
=
∑
j,k,l

∂3f i

∂xj∂xk∂xl
vjvkvl

=
∑

l

vl ∂

∂xl

∑
j,k

∂2f i

∂xj∂xk
vjvk − 2

∑
j,k,l

∂2f i

∂xj∂xk

∂vj

∂xl
vkvl

=− d
(
df i SV

)
V − 2d2f(dV V, V ).

Hence

d3f(V, V, V ) = −df dSV V + 2df S∇ − 3d2f(SV , V ),

which combined with Lemma 8.1 gives the result.
Lemma 8.5. Let Y ∈ Γ(TM); then

d2V (V, Y ) =∇Y (∇V V )−∇V (∇Y V ) + [V,∇V Y ]− [V, [V, Y ] ]

+ dSV Y − dV S(V, Y ) + S(Y,∇V V )− S(V,∇Y V ).

In particular d2V (V, V ) = [V,∇V V ] + dSV V − dV SV .
Proof. First we compute

(
d2V (V, Y )

)
i
=
∑
j,k

∂2vi

∂xj∂xk
vjyk =

∑
k

yk ∂

∂xk

∑
j

∂vi

∂xj
vj −

∑
j,k

∂vi

∂xj

∂vj

∂xk
yk.
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From this we deduce using properties (2.1) and (2.3)

d2V (V, Y ) =d
(
dV V )Y − dV dV Y

=d
(
∇V V + SV

)
Y − dV

(
∇Y V + S(V, Y )

)
=∇Y (∇V V ) + S(Y,∇V V ) + dSV Y −∇∇Y V Y

− S(V,∇Y V )− dV S(V, Y ).

The result now follows by applying the formula (2.1).
Lemma 8.6.

d3V (V, V, V ) =2∇V (∇∇V V V )− 2∇∇V V (∇V V ) +∇[V,∇V V ]V − 2[V,∇V (∇V V ) ]

+ 3[V, [V,∇V V ] ] + 2S(V,∇V (∇V V ))− 2S(∇V V,∇V V )

− S(V, [V,∇V V ]) + 2dV S∇ + [V, [V, SV ]]− 2dSV ∇V V

+ dV [V, SV ]− 2d2V (V, SV ).

Proof. Using the identity

d3V (V, V, V ) = [V, [V, dV V ] ] + dV [V, dV V ]− 2 d2V (V, dV V ),

Lemma 8.5 and (2.3), we obtain the result.
Lemma 8.7. Let c : R �→M and c(0) = p; then

c(4)(0) =d3V (V, V, V ) + 3 d2V (dV V, V ) + dV d2V (V, V ) + dV dV dV V
=∇V (∇V (∇V V ))−∇V (∇∇V V V ) +∇∇V V ∇V V

+∇[V,∇V V ]V + 2S(V, [V,∇V V ]) + S(∇V V,∇V V )

+ d2V (V, SV ) + [V, [V, SV ] ] + 2dV dSV V − dV dV SV + dSV ∇V V.

Proof. Using (2.1) and (2.3) as usual we obtain

dV dV ∇V V =∇V (∇V (∇V V ))− [V,∇V (∇V V )]− dV [V,∇V V ]

+ dV S∇ + S(V,∇V (∇V V )).

Combining this with lemmas 8.5 and 8.6 gives the result.

Acknowledgement.

The second author wants to thank Professor E.-M. Salonen at the Mechanics
Laboratory of Helsinki University of Technology for helpful discussions concern-
ing the final numerical example.



628 J. TUOMELA AND T. ARPONEN

REFERENCES

1. U. Ascher and P. Lin, Sequential regularization methods for nonlinear higher index
DAEs, SIAM J. Sci. Comp., 18 (1997), pp. 160–181.

2. M. Berz, C. Bischof, G. Corliss, and A. Griewank, eds., Computational Differentia-
tion, SIAM, Philadelphia, PA, 1996.

3. J. Butcher, The Numerical Solution of Ordinary Differential Equations, Wiley,
Chichester, 1987.

4. B. Char, K. Geddes, G. Bonnet, B. Leong, M. Monagan, and S. Watt, Maple V
Language Reference Manual, Springer-Verlag, Berlin, 1991.

5. D. Cox, J. Little, and D. O’Shea, Ideals, Varieties and Algorithms, Springer-Verlag,
Berlin, 1992.

6. G.-M. Greuel, G. Pfister, and H. Schönemann, Singular version 1.2 User Manual,
Reports on Computer Algebra, no. 21, Centre for Computer Algebra, University of
Kaiserslautern, June 1998.

7. E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I,
Nonstiff Problems, Springer Series in Comp. Math., Vol. 8, Springer-Verlag, Berlin,
1987.

8. L. Petzold, Y. Ren, and T. Maly, Regularization of higher-index DAEs with rank-
deficient constraints, SIAM J. Sci. Comp., 18 (1997), pp. 753–774.

9. D. Saunders, The Geometry of Jet Bundles, London Math. Soc., Lecture Notes
Series, Vol. 142, Cambridge University Press, Cambridge, 1989.

10. J. M. Sanz Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman &
Hall, London, 1994.

11. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1–5, 2nd
ed., Publish or Perish, 1979.

12. J. Tuomela, On the numerical solution of involutive ordinary differential systems:
Higher order methods, Research Report A397, Helsinki University of Technology,
Finland, 1998.

13. J. Tuomela and T. Arponen, On the numerical solution of involutive ordinary differ-
ential systems: Introduction and numerical results, IMA J. Numer. Anal., 20 (2000),
pp. 561–599.

14. J. Tuomela and T. Arponen, On the numerical solution of involutive ordinary differ-
ential systems: Higher order methods 2, Research Report A409, Helsinki University
of Technology, Finland, 1999.

15. S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, 2nd ed.,
Addison-Wesley, Redwood City, CA, 1991.


