The complete form of a differential algebraic equation

Teijo Arponen
Helsinki University of Technology
Institute of Mathematics
P.O.Box 1100
FIN - 02015 HUT
Finland
Teijo.Arponen@hut.fi

5th February 2002

Abstract

We introduce a method to examine the structure of polynomial higher index
differential algebraic equations (DAE), resulting in a so called complete form of the
DAE. We argue that this approach reveals the structure of a DAE and is therefore an
essential tool for handling higher index DAEs. Relations to other methods presented
in literature are discussed.

This work is continuation to earlier work by Tuomela and the present author
[TA00], which is a geometrical approach based on the ideas of formal theory of
partial differential equations. In this paper we construct an algebraic approach to
DAESs, compatible with our geometrical one.

Keywords: higher index, overdetermined differential equations, index reduction, ideal
decomposition, jet space
Subject classification: 34A09, 58A20

1 Introduction

The differential algebraic equations (DAEs) are well known to be important in many
contexts in engineering sciences, for example multibody dynamics, robotics and electric
circuits. Their numerical solution has been extensively studied, beginning from |GeaTl].
Some surveys are [BCP89, HW91, Mir92, AP9S].

Several concepts of inder have been developed to describe the structure of a DAE.
The philosophy behind indeces is: “the higher the index, the more difficult to solve nu-
merically”. Usually the words "higher index’ refer to the probably most popular concept
of an index: the differential index. Recent surveys of different indeces are [CG95a, Sei99|.

On the other hand, the concept of an involutive form (or involutivity) of a system has
several definitions which are more or less equivalent. Some relations between different
definitions of involutiveness are studied in [Man96, Sei99|. In the formal theory of PDEs
the involutivity of a system is a key concept. The philosophy behind involutiveness is:
“all relevant information is explicitly visible”. Now involutivity is defined in a geometrical
way and a natural question arises: is there an algebraic, equivalent concept?
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The purpose of this paper is to investigate more closely the (algebraic) structure of the
DAE in the case where equations are multivariate polynomials. The structure is revealed
by an algorithm whose output, called a complete form of the DAE, defines an algebraic
counterpart for involutivity.

In case of a polynomial system it is known [Pom83, prop. 4.34] that involutivity implies
the system to be a prime differential ideal (see remark 3.3). However, it is not clear if the
converse holds, that is, is a prime differential system also involutive in the geometrical
sense?

Therefore we cannot directly give an algebraic definition of involutivity of a system.
Instead, we will construct an algebraic counterpart of “an involutive form” (and call it
“complete form”) compatible with the geometric definition presented in [TA00]. It turns
out that in this polynomial case we can loosen our restrictions on f and give more detailed
information on the structure of f.

For example, the phenomenon “index depends on the solution” (see e.g. [AP98]) is
explained by ideal decomposition and becomes “index depends on the prime ideal the
solution is in” (see example 4.6). We will also look at relations to other approaches in
literature. In [TA00| relations to the formal theory of partial differential equations were
established.

The paper is organized as follows: in section 2 we review the approach of [TA0O]
and specialize to the case where f is a set of polynomials, and see where the usual way
of finding “an involutive form” of the system under consideration needs revision because
of our definition of solution. In sections 3 and 4 we recall some necessary algebraic
preliminaries and give the new definition with an algorithm to compute it. In section 5
we briefly look at relations to other approaches. Finally in section 6 are some conclusions
and comments.

2 Background

2.1 Review of geometric approach to DAEs

We will briefly review (about the first half of) the article [TA00], to which we refer for
details and rigorous definitions. In that paper we considered ordinary differential equations
of the form

fl(tvyaylay%---ayq) =0

fQ(tJyaylayZa---;yq) =0

(1)

fk(t7y7y17y2)"-7yq) :0

where k > n, each f’ is a smooth function, y is the n-vector of variables, subscripts
denote derivatives. Especially, note that we allow & > n which is sometimes called an
overdetermined equation. Also, geometrically there is no distinction between ordinary
differential equation and differential-algebraic equation, for reasons explained in [TA00,
remark 3.6].

The locus of (1) is interpreted as a subset of J,(Rx R"), a ¢gth order jet space over R x
R™. Then, the relevant equations deduced from (1) by differentiation and/or elimination,
are those which define the locus as small as possible. Now the system (1) is defined to be
involutive (or an involutive form) if it is a complete set of relevant equations. As a trivial



example, consider

1
yy—1 =0
{é—7 =0 )

whose locus is {(¢,y',7,1,9?) € Jo(R x R?) |t,y',y? € R}. But, from y> — 7 = 0 follows
y? = 0 which appended to (2) gives the locus {(t,4%,7,1,0) € Jo(R x R?)|t,y' € R}
which is clearly smaller, hence y? = 0 is a relevant equation. Also, there are no other
relevant equations. Hence an involutive form of (2) is

yp—1 =0
y’ =7 =0 (3)
yi = 0.

In conventional DAE analysis (see e.g. [BCP89, HLRR9]), it is customary to consider only
first order equations

ft,y,y') =0.

This is because by introducing more variables one can transform a higher order equation
to a first order one. However, we find it more convenient to consider equations in the form
of (1), mainly for the following two reasons:

1. We want to keep n, the number of y-variables, as small as possible. In our article
[TA00] it is shown that this reduces the cost of computation. For, if we transformed
(1) to a first order equation the number of y-variables would be increased from n to
nq, which increases the cost of computation.

2. It is ’common folklore’ that the highest derivatives decide the behaviour of the
system, hence it is unillustrative to 'lose’ those highest derivatives by lowering the
order.

2.2 Solution of an (involutive) differential equation and its nu-
merical computation

This section is very brief since, in this paper, we are not focusing on the numerical solution.
We suppose that our equation f = 0 is involutive in the geometrical sense of [TA00|. Con-
ventionally, solution is defined as a function ¢ : I — R™ s.t. f(¢,¢(t), ¢'(t),..., 0D (t)) =
0 Vt e I, an open subset of R. However, we use a geometrical definition:

Denote M := f~'(0) C J,. On M we define a distribution

D, :=TM,NC,

where C, is the Cartan distribution at p € M and T'M, is the tangent plane at p. It is
a well known fact from differential geometry that a one-dimensional distribution has an
integral manifold, which then is a smooth curve.

Definition 2.1. if D is one-dimensional, the integral manifold of D through p € M is
the solution of f =0 at p.

If a solution function ¢ exists, the curve (¢, ¢(t), ¢'(t), ..., @ (t)) (which is also known
as the lift of ¢ to .J;) is a geometrical solution. The converse does not hold in general, as
the simple examples in [TA00, §2]| show. Hence this geometrical solution is more general
than conventional one.
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In [TAO00] an algorithm is described to solve f = 0 numerically. The algorithm is
a nonlinear (low order) Runge-Kutta method: traditional Runge-Kutta equipped with
certain orthogonal projections in the jet space to the locus f = 0. In [TAO1] the theory
of this method is extended to fourth order.

Remark 2.1. This Runge-Kutta with projections is not the same as the “projected Runge-
Kutta” mentioned in [AP98| and [HW91|. Also, the concept of “solution manifold” is
different: in [TA00] it refers to a subset of the jet space J,(€) where € is the (¢, y)—space,
while in most DAE literature it refers to a subset of £.

2.3 The polynomial case

The DAE we are considering in this paper is as in (1) but now each f*is a multivariate
polynomial. We will continue to use a shorthand notation f = 0 for (1). It is well known
that in this case the system is interpreted as a differential ideal (see remark 3.3) generated

by f1,... f°
We shall describe the Cartan-Kuranishi algorithm. First, a notation:

ygq = (tayayla .- '7yq)

Step 1, prolongation. (differentiation)

Since y = y(t) and y; = yV)(¢) for all j, we have £ = 0. On the other hand,
df -
a B(y<q)Yg+1 + f(y<q) (4)
where
B;Z(}fl 8%}3]01 %fl %fl 3;;31]01 ainfl 3y;2_1f1 yl
B - : ) f: : - .1
o rk 0 rk o rk otk 0 rk 0 rk o rk 1
Lt &t S I T A

Step 2, projection. (elimination)
Supposing ker(BT) is constant, find a basis for it, denote it by {v!,...,v”}. That is,
each v/ is a map
v (Y, ) o RE (6)

Step 3, test surjectivity.
For j € {1,...,v} multiply 3—’; from left by v7:

.df
0= L
Ut )
=0/ By, +vif (7)
— o/ f =

and check which ones, if any, of these v equations v/ = 0 are algebraically independent of
the k equations f = 0.
Step 4.

If there were no new equations to step 3, we are done. Otherwise, append the new
equations after f and repeat from step 1 with this new f. (end of CK algorithm)
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In terminology of the geometric theory of PDEs, step 1 is 'prolongation’ (from .J; to
Jy+1), step 2 is 'projection’ (from J,i to J,). In steps 3 and 4, the surjectivity of the
projection J,11 — J, is checked: surjectivity is equivalent with no new equations. In the
words of differential algebra, the differential ideal generated by f is the same as the one
generated by f, u',...,u”. The set of equations achieved as an output of this algorithm
is called an involutive form of f. However, later we shall reconsider this.

Steps 1 to 4 is known as the Cartan-Kuranishi algorithm (CK for short), or actually
a special case of it: the original algorithm is more complicated and designed for partial
differential equations. See for example [RLWO01, Pom94, Man96| for more information
about CK or other equivalent versions called e.g. Ritt-Kolchin or Janet-Spencer.

Ezample 2.1. This is example 2.3.1 in [TA00, §2.3]. Nown = ¢ =k =1 and f =
St +y*+ (y1)> — 1), so V(f) is the unit ball in .J; = R®. Now in CK algorithm we have

B=y, f=t+yn (8)
and when y; # 0, ker(BT) is trivial, hence f is in involutive form. If we continue the
algorithm in the case y; = 0 we get an extra equation f = 0 which then becomes ¢t = 0.
But this leads to a conflict:

f =0 s(y?—1) =0 ) yy =0
vy =0 = Y1 =0 = y =20 (9)
f =0 ¢ —0 1 =0

hence the “equator” y; = 0 is forbidden as far as CK algorithm is considered. However,
we know from [TAO00, §2.3] that also the “equator” y; = 0 is suitable for our definition of
solution. So, we have to reconsider the concept of an involutive form.

Remark 2.2. In other words, in the example above, y; is not in the differential ideal
generated by f, because f = 0 and y; = 0 led to a conflict. An immediate conclusion to be
drawn from this is that, when constructing an algebraic counterpart for our geometrical
approach from [TAO00|, we cannot use differential ideals! This is the motivation of the
present paper.

Remark 2.3. Tf we were using differential ideals, the natural components of the system
would be its prime differential ideals, see remark 3.3. However, since we cannot use
differential ideals, as noted in remark 2.2, we will construct a new object, denoted JgF,
to describe the structure of the system. Its definition and construction will be done by
an algorithm, and the motivation stems from the following required properties: 1) it is
defined by algebraic ideals instead of differential ones. 2) we want to avoid the constant
rank conditions present in most, perhaps all, other approaches. 3) We still need to look
at an analogue of the constant rank, for this we have chosen to use the Fitting ideals
(see section 3.1), hence we will need the JF to be a collection of quasialgebraic sets
(see definition 3.1). We will present several remarks clarifying the motivation along the
algorithm PRIMESYS.

3 Algebraic preliminaries

We recall the necessary definitions and results from commutative algebra. Proofs and
further information can be found in any textbook on abstract algebra, we recommend
[CLO92| and [Eis96]. Let F be a field and R a (nontrivial, that is, 0 # 1) polynomial
ring in m variables over F:
R = Flyi, Y2, -+ Ym)
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3.1 Rings, ideals, varieties

An ideal of R is a subset I C R satisfying (i) 0 € I, (ii) if f,g € I, then f + g € I (iii) if
f €Tl and h € R, then hf € I. Note that I =R if and only if 1 € I. An ideal generated
by f1,...,fs € R is the smallest ideal containing fi,..., fs. It is denoted by

<f17 R fs>
and every element x € (f1,..., fs) can be represented by
x=Y hif; withh; € RVi.
i=1

Note that the h; are non-unique. Every ring has at least two ideals: (0) and (1). We shall
call both of these trivial. An ideal [ is

e mazximal if there is no non-trivial ideal containing it, i.e. if J is an ideal such that
ICcJCRandI#J,then J=TR.

e prime if whenever f, g € R and fg € I, then either f € [ or g € I.
e radical if f € R and f™ € I for any integer m > 1 implies that f € I.

These properties fulfill:
maximal = prime = radical (10)

Theorem 3.1. For any ideal I, we can define in a natural way the quotient ring R/I
which inherits its ring structure from R. Properties: R/I

e is a field if and only if I is maximal
e has no zero divisors if and only if [ is prime
e has no nilpotent elements if and only if I is radical.

A convenient rule of thumb is “the bigger the ideal is, the simpler it is” (with the
exception of the trivial 0 ideal). For every ideal I there is a corresponding unique radical
ideal of I, denoted by /I, which is defined by

VI = {f €R: f™el for some integer m > 1}.

A wariety corresponding to I is “the set of common zeros of elements of 17, that is, a subset
of Fm™.
V) =A{, - ym) € F" | f(y, - ym) =0 V[ T}

If I ={(fi1,...,fs) we will also use notation V(I) = V(fi,..., fs).

Now VT D T so according to our rule of thumb above, operating with “v/ ” means
“make the ideal simpler such that its locus is unchanged”. For any variety V', there is the
radical ideal corresponding to V':

ZV):={feR|flar,...,an) =0 Y(ay,...,a,) €V}

Definition 3.1. A set A is quasialgebraic (q.a. for short) if there exist varieties V' and
W such that A =V — W where minus denotes the set-theoretic exclusion.
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Any variety V' is quasialgebraic: V' =V —V(1), since V(1) = @.
Theorem 3.2. Let I,.J be ideals and V, W varieties. Some properties of v/ , V and Z:
o VINJ=VInVJ
e V(INJ)=V{I)UV(J)
e Z(VUW)=Z(V)NIT(W)
e if V(I) is nonempty, then Z(V(I)) = V1
An important tool for us is

Theorem 3.3. Suppose [ is a radical ideal in R. Then [ can be written as a finite
intersection of prime ideals:
I=Ln---Nn1I,

Moreover, this decomposition is unique (up to the arrangement of I;’s, of course).

For any ideal I, the prime components of /T are called the associated primes of I.
Note that this decomposition depends also on F, which can be seen for example in that
the polynomial (z? — 2)(x? + 1) factorizes over Q, R or C to 2, 3 or 4 factors, respectively.

Remark 3.1. This decomposition can be done algorithmically, but is computationally
quite costly and will be the dominating part of our algorithm for finding (and defining)
the complete form.

Theorem 3.4. Every ideal I of R is finitely generated, that is, there exists a finite
collection of elements fi,..., fs € I such that I = (f1,..., fs) (the s depends on I).

Examples:

1. take R = Cly] and I = (f) where f(y) = (y — a1)**(y — a2)®*-+- (y — a,)* with
e; positive integers and all a; € C distinct. Now /7T = (frea) where frcq(y) =
(y —ay)---(y — a,). Prime decomposition:

VIi=({y—a)n({y—a)n--N{y—a)

2. take R = Rz,y, 2] and I = (zz, yz). Now V(I) = {the plane z = 0} U {the line
z =y =0} in R®. Prime decomposition:

VI=1=()n(zy)

which has a clear geometrical interpretation: V(z) = {the plane z = 0} and
V(z,y) = {the line z = y = 0}.

Suppose A is an n X k matrix, with n <k, over R. Its Fitting ideals I; are

I_,(A) =0 (11)
I;(A) := /{(n—j) -sized minors of A), Vj=0,....,n—1 (12)
I(A) = R (13)

Clearly I; C I;4, and

F" =V 1)D---DV{;) DVUj41) D---DV(,) =92 (14)



Also, V(I;) = { points where rank of A < n — j}. Especially, V(Iy) = @ < A(z) is of full
rank Vz € F™.

Let I = (f1,...,[fs) and f € R. The membership problem is to decide whether f € I.
Now there is a natural generalization of the elementary euclidean algorithm, called “the
division algorithm” in [CLO92, ch. 2|, which computes for the ordered set {fi,..., fs}
(unique) elements r € R and h; € R such that f = hy fi +--- + hs fs + r. Clearly if
r = 0 then f € I. Unfortunately, the converse is not true in general. The r above is the
remainder of  with respect to the ordered set {f1,..., fs}. In general, r (and h;) depends
on the order in which the f; are given as input to the division algorithm. That is, the
remainder w.r.t. {f, fo, f3} might be different than the remainder w.r.t. {fs, f1, f3}. The
tool to overcome these difficulties is a grobner basis, which will be introduced next.

Suppose given an ordering (see e.g. [CLO92, ch. 2|) for R. If f € R, the leading term
of f is the term of f which is highest with respect to the ordering. Let I be a nonzero
ideal. The leading terms of I, denoted LT(I), is the collection of leading terms of elements
of I. A grébner basis for I is a generating set {f1,..., fs} such that

I = <f17---afs>
(LT(1)) = (LT(f1), ..., LT(f)).

Remark 3.2. This is a bit abuse of language, since in usual mathematical terminology a
“basis” means an independent generating set. However, it is common with ideals to call
any generating set a basis. See also remark 3.4.

The reason we need grobner bases is that they solve the membership problem:

Theorem 3.5. With notations as above, the remainder of f w.r.t. a grébner basis of I
is zero if and only if f € I. Moreover, the remainder does not depend on the order the
fj’s are presented.

Remark 3.3. On differential algebra: a differential ringis a ring with a distinquished linear
mapping ¢ with property
d(ab) = (da)b + adb.

Also, differential ideal, prime differential ideal, radical differential ideal are defined as
usual, with the additional requirement that they are closed w.r.t. d, that is 61 C I.

Theorem 3.3 has its counterpart in differential algebra: a radical differential ideal has
a unique decomposition by prime differential ideals. However, in this paper we will not
use differential algebra although we mention it in few occasions. See [Pom83, Kol73| for
an introduction to differential algebra, or [Rit50, Kap57| if you want a more readable
introduction to our case.

3.2 Modules

Recall that a module is defined like a vector space except that the set of scalars is only
a ring, not necessarily a field. Note that an ideal of R is an example of an R—module.
Hence the concept of a module is a generalization of both vector spaces and ideals.

Remark 3.4. For modules, a basis is defined like for vector spaces: a generating, indepen-
dent (over R) set. Unfortunately, this does not coincide with the definition of a basis of
an ideal, see remark 3.2.



Note that while all vector spaces have a basis (by the axiom of choice), a module
usually has no basis at all. For example, a non-principal ideal has never a basis (as a
module!): if I = (a,b,c,...,d), then the set {a,b,c,...,d} is dependent over R: namely,
b-a+(—a)-b+0-c+---+0-d=0.

When a module has a basis, it is called free. All free modules are isomorphic to R*
(the direct sum) with some s. When s is a finite integer, a module isomorphic to R? is
called a finite free module. If ¢ : A — B is a homomorphism of modules, then ker(y),
im(p), coker(y) define R—modules in a natural way. Also, ker(p) is a submodule of A
and im(y) is a submodule of B.

As an example of a module without a basis, consider the matrix 4 : R* — R with
A =a,b,c] (not all zero) and set M := ker(A). It can be shown that M is generated by
the vectors u := [—b,a,0]7, v :=[c,0, —a]T and w := [0, —¢, b]T, and any two of these are
not enough to span M. However, these are linearly dependent: cu + bv + aw = 0. Note
that, if R was a field and a # 0, then a would be invertible and w € span{u,v}. But in
the ring case, a nonzero element is not invertible in general.

A consequence of the nonexistence of a basis of a module is that we cannot define
dimension of a module as in the vector space case. To define the dimension, we need to
recall the following concept: a sequence of modules M; and homomorphisms ¢; : M; —
M;—

. bit1 M, bi M, , bi—1 (15)

such that im ¢; = ker ¢; 1 Vi, is called ezact.

All modules we will consider are either submodules of R®, s € N or of the form R*/M
where M is submodule of R*. Let M be a module. Then a presentation of M is a matrix
A over R such that the sequence

R~ RE —— M — 0 (16)

is exact, i.e. cokerA ~ M. On the other hand, given a k& x n—matrix A, it defines a
module by the sequence (16). The presentation can be extended to an exact sequence of
finite free modules:

0 s B, g O MR s M s 0 (17)

which is called a (finite free) resolution of length n. Now we can define the dimension:
dim (M) = min{n € N| there exists a resolution of length n}.

For example, if M := R/I where I is an ideal I = (f!,..., f"), it is presented by the
column vector [f!,..., f] and dim(M) = 1. Any free module is of dimension zero, since

[

0 —— Fy:=R? ¢, Rs > 0

is exact. In particular, any vector space, considered as a module, is of dimension zero.

4 The new definition

Now we will define and construct the object J§F promised in remark 2.3.

Definition 4.1. Given equation f = 0 with f as in (1) such that each f* € R, the set JF
constructed in the algorithm ANYSYS of table 1 is called the complete form of f.



As a point set, it is a finite union of quasialgebraic sets, that is, of the form

N
3% =J0; -m)) (18)
j=1
where each V; and W; are varieties, the latter possibly empty and the former irreducible.
Each variety V' is presented by a finite generating set of Z(V'). We call each V; — W; a
component of J§.
Now, the numerical solution of (1) will be done to each component separately. Here one
can use the methods described in [TA00, TAO1]. Especially, an initial point is consistent
if and only if it belongs to some V; — W;.

The theory of existence and uniqueness of solutions immediately reduces to the theory
of [TA00].

4.1 An algorithm

Now F :=Q and R := F[t, y, y1, - .., yg] with y = (y',...,9"). That is, if I is an ideal
then V(I) C F"at"*L The formal derivative is the unique linear mapping § : R — R[yg+1]
such that

d(ab) = (0a)b+ adb

S(yl) = yiy Yie{l,...,n} Vjie{o,...,q}
d(r) = ' (the usual derivative w.r.t. t), if 7 independent of y;-’s

This coincides with the usual derivative in /R when jet coordinates are interpreted as
derivatives: y! <+ (y')¥) and, of course, y is a smooth enough function of ¢. The word
“formal” refers to the fact that we are not concerned whether or not y is a (smooth)
function of ¢.

Note that when f € R, then ¢ f depends on y,.; only linearly, hence it is of the form:

0f = Bygn + f (19)

where B and f might depend on Y<q, compare (4). We will use this notation.

The algorithm is presented in tables 1 and 2. Reasoning and some technical remarks
for the algorithm PRIMESYS are presented in the remarks of this section. We have used
Singular [GPS01]| (we used version 1.3.8, actually) in our test runs.

INPUT: a polynomial differential equation, that is, a finite subset f C R.
OUTPUT: a finite collection of pairs of ideal bases (A;, B;) such that
35 = (V(A) = V(B1), ..., V(Ax) — V(Bx)}
Step 1: Set J§ = O.
Step 2: make the prime decomposition for f:
fZI 21 n...N Er-
Step 3: For 1 =1 to r do J§ := JFU PRIMESYS(X,)
od

Table 1: Algorithm ANYSYS for arbitrary polynomial system

Note that, by theorem 3.4, each ¥; is presented by a finite set of generators.
Assumption. We assume that, in step 2 of PRIMESYS, all of the V; and A’ are quasial-
gebraic. The set A need not be such. Note that if A is q.a., then V}’s are also.

10



INPUT:
OUTPUT:

Step 1:
Step 2:

Step 3:
Step 4:
Step 5:

Step 6:

Step T7:

Step 8:
Step 9:

Step 10:

Step 11:

Step 12:

a finite subset f C R such that (f) is prime.
a finite collection of pairs of ideal bases (A;, B;) such that
35 ={V(4) = V(B1), ..., V(Ayx) — V(Bn)}

J§:=9, By +f:=40f and I; := [;(B"), the Fitting ideals of B”.

A = {z e Fratntl ]ﬁ(z) ¢ im B(2)} N V(f) (20)
A = {ze FMtt £(2) €im B(2)} N V() (21)
V}' = AN (V(I])—V(Ij+1)), ]:—1,,7’L—1 (22)

Case A": if dim(V(Ip) N A’) < dim(V(f)) then JF : =35 U A"
I§:=TJ§UV_,

Study A: set A := @.

For j=0ton—1do

if V; # @, choose bases A; and B; for the corresponding (radical) ideals
of the nonempty V;’s, that is, V; = V(4;) — V(B;).

Update B and f such that By, + f := 0(4;).
For m =0 ton do

I, = I,(B") (update the Fittings) (23)
Aim = A; U {generators of I,,_;} (24)
Bjm = Bj N Im (25)

make the prime decomposition for A,,,:
Ajm =i Ajmg N Ajml N---N Aj,m,njm (26)

and let
V}'mz’ = V(Ajmi) - V(Bjm) 1=0,..., Njm (27)

for i = 0 to njy, do, if Vi, # @, (steps 9 to 11)

Reduce each entry of B with respect to Aj,,; and then compute generators
{vl, ..., 0"} for the module ker(B7T).

for k=1 to v do

let u¥ := 3. vk fi where v* is the i*" component of v*. If u¥ ¢ Aj,;
then Ajmi = Ajmi U U,k.

od (end of k-loop)

if in the previous step all u* € A, then I3F := IFU (V(Ajmi), V(Bjm))
else A :==AU{(j,m,i)}

od od od (end of i-loop) (end of m-loop) (end of j-loop)

while A # @ do

pick a (j,m,i) € A

Ai=A- {(]7 m, Z)}

JF :=3FU ANYSYS(A;mi)

od

Table 2: Algorithm PRIMESYSS for prime polynomial system
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Remark 4.1. Recall that we want to avoid the constant rank conditions but still have an
analogy for that. For this, the idea is to mimic the idea “study separately each set where
rank of ker BT is constant” (steps 2 and 9), yet this is not exactly so, because BT (and B)
is a mapping of modules and one can not even define its rank as in the case of a mapping
between vector spaces. Indeed as noted in section 3.2, one can not define a dimension for
modules as for vector spaces. For this, we replace the idea of “domain of constant rank”
by the idea of “variety of a Fitting ideal”.

We consider this as a suitable way to overcome the “constant rank” assumptions which
are a severe limitation in most other DAE approaches, see section 5.1.

Remark 4.2. In step 2, the sets V; are, according to the principle in remark 4.1, point sets
describing different “ranks” of B. Note that V; NV, = @ for j # ¢ and

A= U V. (28)

j=1

Remark 4.3. Referring to example 2.1, we want to get the “vertical tangents” within. This
is what step 3 is for: A’ is designed to present the points with vertical tangents. Now
f(2) & im(B(z)) could be due to an inconsistent evaluation point z. But, if the set A’
is small enough compared to V(f), it probably is due to “vertical tangents” and is worth
accepting. Hence we choose as the criteria for accepting A’ the dimension condition in
step 3. It might be possible to consider also other choices for the criteria.

Remark 4.4. In step 6, we look at each component of V; more closely: first, we take a
prolongation of A; and look at its B and f: then Ajm and Bj,, are a further decomposition
according to the “rank” of B, in the “Fitting ideal sense” as described in remark 4.1. Note
that V(4;,,) = V(A4;) N V(I,,—1) and V(Bj,) = V(B;) UV(I,,). Especially, Ajp = A; and
Bjn == Bj.

Remark 4.5. In step 7, we take one more prime decomposition, because we want to look at
irreducible varieties: hence we need prime ideals. Now these V(A;,,;) define the analogy
for the prolonged f, which we later test against ker(B”) as in the step 3 of CK algorithm,
see (7).

Remark 4.6. Step 10 is the analogy for the projection step of the CK algorithm: construct
the (possibly) new generators for ideals; i.e. if we have a new generator u*, it means we
found a hidden equation u* = 0 for this component. In step 11, all u* € Aj,,; means no
new generators.

The remaining remarks of this section are technical ones:

Remark 4.7. A technical difficulty in step 2: the construction of A (or A’) is in general case
not immediate. This might cause a problem considering arbitrary polynomial systems:
for example, suppose that A is a variety: A = V(I) for some ideal I, whose generators are
found by inspecting B and f. Now if we fail to find all of the generators of I, say that we
generate an ideal J G I, then V(J) 2 V(I) and using V(J) as A would make J§ too big.

We expect the techniques introduced in [Sit92] to be helpful here. However, this aspect
is beyond the scope of this paper and will be postponed to future work. In the examples
of this paper we have been able to construct A and A’.

Remark 4.8. In steps 3 and 4, appending A’ or V_;, respectively, means appending a

q.a. representation of it. Note also that V_; consists of points where the rank of BT

is maximal. Now A’ or V_; might be empty (the latter is empty if A C V(1)) which

produces an empty component to J§. This is of course harmless but it would be nicer to
12



avoid such irritating sets in advance by, for example, setting step 4: “if A ¢ V(Ip), then
J% := JF U V_,". Likewise one could add to step 3 the condition “if A" # & and...”.

Remark 4.9. step 5: the construction of A; and B,’s is a side product of step 2. In step
8: it might be difficult to check the condition Vj,,; # @.

Remark 4.10. In step 6, B and f are redefined but actually just updated because genera-
tors of A; include f, because (f) is prime and because of the definition of A;. Also, there
is no need to construct corresponding sets A, A’ because we already, by the definition of
Aj;, are limited to case A. Also, if B for f was k x n, then this new B (for A;) is kxn
with k& > k.

Proof. Proof of termination of PRIMESYS: the only place that needs to be checked
is the recursive loop in step 12. But there, if the algorithm is needed for A;,,;, it means
that A 2 Ajm D Aj D f where Aj, is from (24), A; is from Step 5 and f from Step
1. Hence we have a strictly ascending chain of ideals. Now R is a notherian ring and the
process terminates in finitely many steps. O

4.2 Examples

In this section we apply the algorithm to some examples found from literature.

Ezample 4.1. The sphere (example 2.1) revisited: in step 2

A = {{(ttby,y) [P +>+)>—1=0, y #0}, {(0,4£1,0)} } (29)
A= {(t,y,0) |y =0, t+yy #0, 44"+ (y)’ —1=0} (30)
Iy = (y1), L=(1)
Voo = VE 49"+ () —1) = V()
= {(t,y,y) [ +v* + (1)* = 1 =0} = {(t,y,91) |3 = 0} (31)
Vo = {(0,£1,0)}. (32)

Step 3: dim(A’) = 1 < dim(sphere) hence 3§ := JF U A". Here A" = V(yy, t* + y* —
1) = V(y1, t). Step 4: IF := IF U V4. At this point we note that (as a point set)
JF =V(f)—{(0,£1,0)}. Now one could immediately see that the remaining components
(namely V}) are zero dimensional and therefore cannot have a 1-dimensional distribution.
Hence they could be discarded right now and we are done. But let us see anyway how the
algorithm works in this simple example: Step 5: Ay = {f, y*> — 1}, By = {1}, as can be
seen from above. Updated B and f:

o=(5) =(a0) &

Ay = Aoz{f;ZJZ—l}

step 6:

Ao = AoU{n}
By = {Zh}
By = {1}

13



deCOIIlpOSitiOIIS give: AOO = AOOO N AOOI and A01 = Aglg N AOII where

Ao = {y+1, 2+ )’}
Ajn = {y—1, ¢+ )’}
Ao = {y+1,¢t, n}
AOII — {y - ]-7 ta yl}
step 8: now Voo = Voo = {(0,—1,0)} and Vo1 = Vorr = {(0,1,0)}. Step 9 (for Vpip):

ker(BT) is generated by (9) and u' := 2y y; € Agyp hence IF := IF U Vpip. Step 9 for Vo
works likewise and J§ := J§ U Vj11. Hence we are done and the output is

W=V +v*+ )= 1) = V(n),
V2 + % — 1) = V(t),
{(07_170)}_ a,

{(07 1,0)} - @}

Here the set A’ brings in the 'formerly forbidden’ equator of the sphere.

(34)

Remark 4.11. A surprising side effect is that we found the two singularity points {(0, £1,0)},
cf. [TA0O].

Ezample 4.2. This is example 4 in the help file “overview of rifsimp package” of Maple.
Here n =1, k = ¢ = 3, and we denote y instead of y'.

y¥+y+1 = 0 (35)
Yyo—3y1 = 0 (36)
ys—2y1 = 0 (37)
The system is prime.
0\ _ [3n+mn
B = 0 f = —3y2 + Y3 (38)
1 —2y2

A'=g, V. =A=V(f, 3y*y +y1, —3y2 + y3), Vo = @ and a grébner basis of Z(A)
is {y3,%2,y1,y> +y + 1} in agreement of rifsimp (more precisely, in our notation: J§ =
{V(ys, 92, 91,y> + y + 1), @)}. Especially, one can see that the solution y is constant.

Remark 4.12. In the previous example, we can also see that the problem can be projected
from .J5 to .Jy, since ys, 4o, y1 are clearly consequences from the generator y® 4y + 1 which
says that gy is constant. However, we do not consider this aspect in this paper.

Ezample 4.3. This is example 1 in the rifsimp package of Maple. Here n = 1, k = 2, ¢ = 3.

t(y)’ (v2)> = 2ty yivoys +ty° (13)> —yyo + (11)> = 0 (39)
—n Y2 Fyys + 29 (12)? — Ay e (11)* +2(y1)* = 0 (40)

decomposition gives 3 components:

Y1 = (5 generators) (41)
(312)2 —Y1Yy3

Yo = Yr1Y2 — Y Y3 (42)
(1)* — Yy

Z:3 = <y7 y1> (43)
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Now 3, is already complete, and X3 gives: (y,y1) = (y,y1,%2) = (Y, y1, Y2, y3) and the

last form is complete. We note that as in remark 4.12, the last form is clearly equivalent

with y = 0 but we do not consider (methods to find) such reductions in this paper.
With f:= % we get:

y
—2tyy1ys + 2tyy;
B = —2ty(y1)2 + 2ty%ys (44)
=2ty (11)*y2 — 2ty*(12)° + 4ty Y1y
2ty (y1)® — 6ty*y1ys + 4ty°ys + tyys

A: now if y = 0 then B = 0, hence for A is needed also f = 0 and ANV(y) = V(y, f, f) =
V(1) = @ so we can suppose y # 0. One can also show that the other elements of B do
not vanish in V(f), hence

A = V(f) ) (45)
A" = V(f,y)-V(f) (46)
Vo o= A-1, (47)
Vo = An(y)=V(fy) (48)

so we can choose Ay = {f,y}, By = {1}. Now (f,y) 2 (f) hence dim(A’) < dimV(f) and
A’ is accepted. For Ay we get

0 ~ Y1
B=10 =1 2tyays + (y2)? (49)
0 6(y1)2y2 — Y3

hence AOO = AO = Agl and are primes, BOO = 0, BOI = {]_} %00 = J, %10 §£ g, step
9: new generators are f from (49), and now it turns out that V(Aggo, f) = @. Hence the
algorithm (for ;) stops and we get that JF for ¥; is A’ U V_; which can be shown to
simplify to V(f). Hence V(X;) contains 'vertical tangents’ but it is accepted as a whole.

Example 4.4. An ODE. Let’s look at the situation

ft,y,m) =y —g(t,y) =0 withn==% (50)

which is what most people mean by “a (non-constrained) ordinary differential equation”.
Step 2 gives B = identity matrix, f = —%g — (a%g) g. Now ker(BT) is trivial, hence step
9 gives only the zero vector. In step 10 we have u' := 0 which certainly belongs to (f),
hence we are done and (50) already is a complete form.

Ezample 4.5. In [BCP89, p. 34| is described a semiexplicit DAE:

1"1 —Fl(l’l,l‘g,t) =0 (51)
FQ(Z‘l,ZUQ,t) =0

and it has been said that this is index one if and only if %FQ is nonsingular. Let us see
how this looks like in our algorithm: first, we suppose that Fi, F; are polynomials and f
is prime. Then,

B ar P15 h _(I o) f_(—6F1>_< —0F, )
“\& B oagB)  \o o) T\ R ) T\ R)al + (g5 Fa)a + 5 P
(52)
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B is constant, hence the fittings are trivial and do not affect, and step 10 gives the new
generators 0 F5, hence the new f is

f

SF, (53)

Now again, to proceed as in [BCP89|, we have to suppose that the ideal {f, dF5) is prime.
Then, B is

I 0
0 0 (54)
sl gilh

now ker(B7) is trivial if and only if %FQ is nonsingular.

We conclude that the definition of the index in [BCP89| does not take into account
the prime structure. The following example shows a side effect of this.

Ezample 4.6. This is example 9.2 in [AP9S|:

yi—y =0 (55)
y'(1-y*) =0 (56)
v+ (1-y*) —t =0 (57)
First, decomposition gives:
<f>:<y27 y3_y%7 f3>m<y2_17y3_y%7 f3> (58)

after running the algorithm, we have

jg = (V(yfa yil)) - ]-7 y27 y3 - y%a t— y%),@)

(59)
U (V(y%J _y% + 17 y3 - y%a y2 - 1; t— y17 y%)a @)

Here one can see an explanation for the effect of the initial value (of a solution) on the
index as noted in [AP98|: any consistent initial point must belong to one (and only one,
in this case) of the varieties V(y?, y7 — 1, v*, v* — yi, t — yi) or V(yi, —yi + 1, 3* —
yi, > —1,t —y', y?). In the former case, y> = 0 and we are solving the system y? =
0,92 = 1,5 = 0,y = y!,t = y| which originally came from the component (y?, 3> —
yl, y'y® +43(1 — y?) — t) in (58). This component is in notation of [AP98| y» = 0,y3 =
vy, y1y2 + y3(1 — y2) —t = 0. In the latter case, y> = 1 and we are solving the system
y? =0,y1 = 1,9 = yi,y> = 1,t = y', 4} = 0 which originally came from the component
(=1, —yl, y'y?> + y3(1 — y?) — t) in (58). This component is in notation of [AP9S§]
yo = Liys = Y, y1y2 + y3(1 — y2) — ¢t = 0. So the explanation for the dependence of
the index on the initial value is that the index depends on the (prime) component! Any
consistent initial value belongs to a variety of some prime component.

Example 4.7. A “triangular” example. An equation of the form Ag = 0 where A is m xm
upper triangular matrix with nonzero diagonal and ¢ is an m—vector, both A and ¢ with
elements from R and the element A,,, a nonzero constant, is equivalent with ¢ = 0.
Although this seems trivial, this kind of equation is considered in examples in [KM98§]
and also in [CG95b| as examples of the difficulties with defining indeces. It also shows
that in (most of) the conventional definitions of indeces, the index depends on the chosen
representation of the equations. Hence it is not intrinsic.
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5 Relations to other approaches

In this section we compare our method to others in literature. For that, we assume that
¢ = 11in (1). Due to vast amount of articles on DAEs it is clear that we cannot do an
exhaustive survey but we have chosen few papers that, in our opinion, represent quite
well the conventional approaches.

Let us first note a recent paper [PS| which includes few pages of comparison in the
same spirit as ours, although they have not considered the paper [KM98| which contains
a generalization to nonlinear case.

5.1 Relations considering numerical solving

In this section we consider the point of view of numerics. In [KM96] the strangeness index
is defined for certain linear DAEs and the definition is generalized to nonlinear case in
[KMO98|. In these articles the system is not assumed to be a polynomial, and they present
an algorithm for transforming the system into a so called strangeness free from, but we
claim that their approach is of limited applicability. The strangeness index is not always
defined: indeed there are strong requirements (hypothesis 3.2 in [KM98|) for the rank of
B, where B refers to our notation in PRIMESYS step 1, to be constant which means that
(21) reduces to A = V; for some j. Also, A" is not considered at all.

The algorithm for converting into strangeness free form requires finding suitable co-
ordinates in intermediate steps of the algorithm. Although in many systems in practical
applications this can be done “by inspection”, this is generally not constructive. Also
checking the rank conditions is a non-trivial problem for which they do not present a
constructive solution.

In the approach of Campbell et al., e.g. [CHYZ98, CG95b, BCP89|, the derivative
array is formed. This is essentially prolongation without projection (compare to CK
algorithm in section 2.3). Prolongation is continued pu times, where p is defined to be the
global index of the system, until ¢ is uniquely determined by (¢, ). This definition is also
extended to a local version: index of the system along a solution, see [AP98, p. 236|. Here
one could also interprete the projection step of the CK algorithm as a procedure which
automatically picks up the relevant equations from a derivative array.

Campbell et al use the following assumptions (here G is the derivative array):

(A1) sufficient smoothness of G

(A2) consistency of G' = 0 as an algebraic equation

(A3) J:=[;2G ... 52G]is 1-full and has constant rank
Y1 Ya
(Ad) J:= [%G aiylG - aiyqG] has full rank everywhere

In our case, assumption Al becomes trivial and A2 is implicitly assumed in “if V; #
&, then...”. But A3 and A4 are quite different compared to ours. Indeed we have no
assumptions for constant rank or full rank, on the contrary we decompose the system by
Fitting ideals, see remarks 4.1 and 2.3.

As noted in [CHYZ9S8, p. 78|, checking the 1-fullness in a neighborhood is generally
not constructive. Although, as noted there, one can compute the “symbolic rank” by
computer algebra programs and then compare to it the “numerical rank” at a point, the
problem remains: how can one determine the symbolic rank to be constant? Therefore
their approach has the same problem as that in [KM9§|.
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The approach of Rabier and Rheinboldt [RR91, RR94]| is geometrical. The main ideas
are similar as in the papers we have considered in this section. Their definitions are
more intrinsic, due to their geometrical nature without referring to equations. However,
two main problems remain: first, to actually handle the system, even if the definitions
are geometrical, one needs to handle equations after all. Second, they are forced to use
similar constant rank conditions as in the papers considered earlier in this section. More
precisely, they assume that the “interstage” manifolds in their definition are of constant
dimension.

We also note that in [RLWO01]| is proven that the approach of Rabier and Rheinboldt
is equivalent to a version of the geometrical theory of PDEs.

5.2 Relations to computer algebra approaches

There has been developed in the last decade several computer algebra approaches, that is
methods based on symbolic manipulation of the equations, to DAEs. In this section we
consider relations of those to our method. Although the algorithm in this paper is also a
computer algebra approach, our aim is to get a form which is suitable for numerical inte-
gration. We also remind the reader that [TA00] is a lengthy exposition of what “suitable”
in this case means.

Now almost all of these symbolic approaches consider the case of partial differential
equations and are viewing DAEs as only a special case. Like Kolchin puts it [Kol73, p.
xiiil:

...there is no special distinction made between ordinary and partial differential equa-
tions. The governing philosophy is that 1 is merely a special case of m, a case neither
requiring nor greatly benefitting from special treatment.

However, we do feel that the ordinary (DAE) case does deserve a special attention. We
also like to recall that we do not make difference between “DAE"s and “ODE”s, cf. [TA00,
remark 3.6].

The symbolic approaches, see e.g. [Hub97, RLWO01| and references therein, are mostly
based on differential algebra (see remark 3.3): the system defines a differential ideal.
However, we saw in a very simple example (remark 2.2) that we cannot base our method
on differential ideals.

Another property of (the implementations of) these approaches is that they assume
each equation to be solvable for its highest derivative term. This causes some ’pivoting’
problems, that is, if there is an equation whose highest derivative term is multiplied by a
nonconstant term g, then the system splits to two cases: whether ¢ = 0 or g # 0. This
has some resemblance to our approach but it is not the same.

Also, changing the ranking might lead to a different splitting of cases. That is, their
case splitting depends on the chosen ranking. It is not clear what is the geometrical
interpretation of different case splittings.

Note that some of these approaches are implemented in Maple, for example packages
rifsimp, diffgrob2 or diffalg.

We note that there seems to be a desire to have algorithms which avoid prime decom-
position, due to its computational cost. See for example [Hub00| and references therein.
We admit that it is an advantage to avoid the prime decomposition(s) but here is the
same problem as in the splitting mentioned above: the choice of ranking decides what
the separants and initials are, and it is not clear what choice, if any, is (geometrically) a
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“right one”. However, it is an interesting question to pose also to our method: with what
could the prime decompositions be replaced to reduce the computational cost?

Finally we mention the concept of an algebraic index defined in Pritchard and Sit
[PS]. They have done a nice survey on DAE approaches (actually, one of the best surveys
we've seen!) but it is not clear how the algebraic index is related to others. On the other
hand, they concentrate on quasilinear first order systems (¢ = 1 and linear with respect
to y1). They demonstrate how a system can be converted to a quasilinear one by adding
more variables. It is not clear how such transformation would affect in case of approaches
considered in the previous section. Moreover, as discussed in section 2.1 we like to avoid
such transformations.

6 Conclusions

We have presented a method which continues our earlier work [TA00, TA01] and is between
numerical and symbolic computations: we use symbolic computation to achieve a form,
here called complete form, suitable to numerical computation. There are already methods
aiming at same goal, but we demonstrate some problems they have.

As noted in [TA00], the conventional approaches to DAEs lack the fundamental prop-
erty of involutivity, and this lack causes for example the well known problems of drift-off
and finding consistent initial values for the system. One could think of the involutivity
(or involutive form), as preconditioning the system: find all hidden equations. Now our
complete form is aimed to be a kind of algebraic counterpart to involutivity, in the more
general case where the system has components.

We assume that the system under consideration is a multivariate polynomial. This
assumption is not very restrictive, since most applications in literature either are polyno-
mials or can be converted to polynomials. On the other hand, this assumption makes it
possible to define the complete form in such a way that we can, in particular, avoid the
constant rank assumptions in conventional approaches. We claim that the constant rank
assumptions are the main problem in those approaches.

Our tools come from commutative algebra and the computationally most costly op-
eration is prime decomposition. We note that the decomposition depends on the chosen
ground field, but we have restricted the ground field to be Q.

Still comparing to literature, one could also think our method of “finding the complete
form” as some kind of index reduction technique, but we take into account all equations
instead of “choosing n eqns”, what is done in index-reductions.

Finally, we have noted about constructivity: it seems to us that most ’algorithmic’
approaches to numerics of DAEs include some steps which are, in general, nonconstructive.
These are discussed in section 5.1. On the other hand, in section 5.2 we note that those
working in symbolic algebra seem to have completely constructive algorithms but they
are not concerned with numerical solution; i.e. what properties should the chosen form
of the system have to be suitable to numerical computations? Also our algorithm has, at
this level of implementation, a gap in constructivity, see remark 4.7. The next immediate
task to do is to fill that gap with techniques mentioned in the remark.
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