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Abstract

In signal processing and related �elds, multichannel measurements are often encountered.

Depending on the application, for instance, multiple antennas, multiple microphones or mul-

tiple biomedical sensors are used for the data acquisition. Such systems can be described us-

ing Multiple-Input Multiple-Output (MIMO) system models. In many cases, several source

signals are present at the same time and there is only limited knowledge of their properties

and how they contribute to each sensor output. If the source signals and the physical system

are unknown and only the sensor outputs are observed, the processing methods developed

for recovering the original signals are called blind.

In Blind Source Separation (BSS) the goal is to recover the source signals from the

observed mixed signals (mixtures). Blindness means that neither the sources nor the mixing

system is known. Separation can be based on the theoretically limiting but practically

feasible assumption that the sources are statistically independent. This assumption connects

BSS and Independent Component Analysis (ICA). The usage of mutual information as a

measure of independence leads to iterative estimation of the score functions of the mixtures.

The purpose of this thesis is to develop BSS methods that can adapt to di�erent source

distributions. Adaptation makes it possible to separate sources without knowing the source

distributions or even the characteristics of source distributions. Special attention is paid to

methods that allow also asymmetric source distributions. Asymmetric distributions occur in

important applications such as communications and biomedical signal processing. Adaptive

techniques are proposed for the modeling of score functions or estimating functions. Three

approaches based on the Pearson system, the Extended Generalized Lambda Distribution

(EGLD) and adaptively combined �xed estimating functions are proposed. The Pearson

system and the EGLD are parametric families of distributions and they are used to model

the distributions of the mixtures. The strength of these parametric families is that they
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contain a wide class of distributions, including asymmetric distributions with positive and

negative kurtosis, while the estimation of the parameters is still a relatively simple procedure.

The methods may be implemented using existing ICA algorithms.

The reliable performance of the proposed methods is demonstrated in extensive sim-

ulations. In addition to symmetric source distributions, asymmetric distributions, such

as Rayleigh and lognormal distribution, are utilized in simulations. The score adaptive

methods outperform commonly used methods due to their ability to adapt to asymmetric

distributions.



Preface

Ja min�a k�a�ansin syd�ameni tutkimaan viisautta ja tietoa, mielett�omyytt�a ja tyhmyytt�a,

ja min�a tulin tiet�am�a�an, ett�a sekin oli tuulen tavoittelemista. Saarn. 1:17

The work reported in this thesis was carried out in the Signal Processing Laboratory,

Helsinki University of Technology during the years 1999{2002. The period included three

months in the Signal Processing Laboratory at University of Pennsylvania, Philadelphia,

USA.

I wish to express my gratitude to my supervisor Prof. Visa Koivunen. I would like

to thank my thesis reviewers Dr. Aapo Hyv�arinen and Dr. Jyrki M�ott�onen for their con-

structive comments. I wish to thank Prof. Saleem Kassam for my visit to University of

Pennsylvania. I am also grateful to my colleagues and co-workers, especially Jan Eriksson,

Dr. Yinglu Zhang and Dr. Charles Murphy. In addition, I would like to thank my parents

Toivo and Marja-Liisa for their support.

The research was funded by the Academy of Finland and the Graduate School in Elec-

tronics, Telecommunications and Automation (GETA). Additional �nancial support was

provided by Elektroniikkainsin�o�orien s�a�ati�o, the Nokia Foundation and Tekniikan edist�amiss�a�ati�o.

These organizations and foundations are greatly acknowledged for making this work possible.

Espoo, Finland

May 13, 2002

Juha Karvanen

3



4



Contents

1 Introduction 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Summary of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Blind Source Separation 19

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Independent Component Analysis Model . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 The basic ICA model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Extensions of the basic ICA model . . . . . . . . . . . . . . . . . . . . 20

2.3 Anatomy of an ICA Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Measures of Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Objective Functions and Estimating Functions . . . . . . . . . . . . . . . . . 24

2.6 Mutual Information and Source Adaptation . . . . . . . . . . . . . . . . . . . 27

2.7 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Natural gradient algorithm . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.2 Fixed-point algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.3 Jacobi algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Characterization of Source Distributions . . . . . . . . . . . . . . . . . . . . . 30

2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Review of source adaptive ICA methods 33

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5



6 CONTENTS

3.2 Kernel estimation of densities . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Parametric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Distribution families . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Mixture of Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Adaptive nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Polynomial expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Threshold functions and quantizers . . . . . . . . . . . . . . . . . . . . 38

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Adaptive Score Models 41

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Pearson System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Estimation of the Pearson system parameters . . . . . . . . . . . . . . 43

4.2.2 Extensions of the Pearson system . . . . . . . . . . . . . . . . . . . . . 45

4.3 Extended Generalized Lambda Distribution . . . . . . . . . . . . . . . . . . . 46

4.3.1 Parameter estimation via sample moments . . . . . . . . . . . . . . . 47

4.3.2 Parameter estimation via L-moments . . . . . . . . . . . . . . . . . . . 47

4.3.3 Other estimation techniques . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Adaptive Estimating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Estimating functions based on cumulants and absolute moments . . . 50

4.4.2 Gaussian moments based estimating functions . . . . . . . . . . . . . . 52

4.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Summary 57



List of original publications

I J. Karvanen, J. Eriksson and V. Koivunen. Pearson System based Method for Blind

Separation. In Proc. of The Second International Workshop on Independent Compo-

nent Analysis and Blind Signal Separation, ICA2000, pages 585{590, June 2000.

II J. Eriksson, J. Karvanen and V. Koivunen. Source Distribution Adaptive Maximum

Likelihood Estimation of ICA Model. In Proc. of The Second International Workshop

on Independent Component Analysis and Blind Signal Separation, ICA2000, pages

227{232, June 2000.

III J. Karvanen, J. Eriksson and V. Koivunen. Maximum Likelihood Estimation of ICA

model for Wide Class of Source Distributions. In Proc. of the 2000 IEEE Workshop on

Neural Networks for Signal Processing X, pages 445{454, December 2000.

IV J. Karvanen and V. Koivunen. Blind Separation of Communication Signals Using

Pearson System Based Method. In Proc. of The Thirty-Fifth Annual Conference on

Information Sciences and Systems, Volume II, pages 764{767, March 2001.

V J. Karvanen and V. Koivunen. Blind Separation Methods Based on Pearson system

and its Extensions. Signal Processing Volume 82, Issue 4, pages 663{673, April 2002.

VI J. Karvanen, J. Eriksson and V. Koivunen. Adaptive Score Functions for Maximum

Likelihood ICA. Journal of VLSI Signal Processing, Volume 32, pages 83{92, 2002.

VII J. Karvanen and V. Koivunen. Blind Separation using Absolute Moments Based Adap-

tive Estimating Function. In Proc. of the Third International Conference on Indepen-

dent Component Analysis and Signal Separation, ICA2001, pages 218{223, December

2001.

7



8 CONTENTS



List of abbreviations and

symbols

Abbreviations

BER bit error rate

BSS blind source separation

cdf cumulative distribution function

EGLD extended generalized lambda distribution

FIR �nite impulse response

GBD generalized beta distribution

GLD generalized lambda distribution

GMSK gaussian mean shift keying

ICA independent component analysis

i.i.d. independent identically distributed

I-MIMO instantaneous multi-input multi-output

ISI intersymbol interference

MIMO multiple-input multiple-output

MSE mean square error

PCA principal component analysis

pdf probability density function

SIR signal-to-interference ratio

9



10 CONTENTS

Symbols

x vector of output signals

A mixing matrix

s vector of source signals

m number of sensors, dimension of the data

y vector of source estimates

W demixing matrix

AT Transpose of matrix A

A�1 Inverse of matrix A

det(A) determinant of matrix A

I identity matrix

f probability density function

fG Gaussian density

F cumulative distribution function

K(f(y); g(y)) Kullback-Leibler divergence between densities f(y) and g(y)

K
�
y jj s� Kullback-Leibler divergence between densities of random variables y and s

�ML maximum likelihood contrast

�MI mutual information contrast

	(x;W) matrix-valued estimating function

'y(y) score function of y

'(yi) (one-unit) estimating function

� characteristic function of a distribution

t time index

T number of observations

f
0(x) derivate of f(x)

�1; �2; �3; : : : central moments

�1; �2; �3; : : : cumulants

L1; L2; L3; : : : L-moments

�1; �2; �3; : : : absolute moments

�
�
1 ; �

�
2 ; �

�
3 ; : : : skewed absolute moments

G0; G1; G2; : : : Gaussian moments



CONTENTS 11

�
Æ
3; �

Æ
4 cumulant based skewness and kurtosis

�3; �4 L-moment based skewness and kurtosis

�
Æ
2 ; �

Æ
3 absolute moments based skewness and kurtosis



Æ
0 ; 


Æ
1 Gaussian moments based skewness and kurtosis

Efxg expected value of x

a0; a1; : : : ; ap numerator polynomial parameters of the Pearson system

b0; b1; : : : ; bq denominator polynomial parameters of the Pearson system

a;b vectors of the Pearson system parameters

M;Q matrices containing central moments

�1; �2; �3; �4 parameters of the GLD

�1; �2; �3; �4 parameters of the GBD

!1; !2; : : : weighting parameters

E1 Performance index

#i Local stability

�i variance of stability solution

� BSS eÆcacy

� kernel function

�T bin-width parameter



12 CONTENTS



Chapter 1

Introduction

1.1 Motivation

In signal processing and related �elds, multichannel measurements are often encountered.

The obtained data can be represented as multivariate time series. Depending on the appli-

cation, for instance, multiple antennas, multiple microphones or multiple biomedical sensors

are used for the data acquisition. Such systems can be described using Multiple-Input

Multiple-Output (MIMO) system models. The observed sensor outputs are di�erent be-

cause the sensors have di�erent properties, e.g. separate locations. On the other hand, the

sensor outputs are related because the sensors are observing the same source signals. In

many cases, several source signals are present at the same time and there is only limited

knowledge of their properties and how they contribute to each sensor output. If the source

signals and the physical system are unknown and only the sensor outputs are observed,

the processing methods developed for recovering the original signals are called blind. An

illustration of an instantaneous mixing MIMO-model is presented in Figure 1.1.

In Blind Source Separation (BSS, also known as Blind Signal Separation) the goal is to

recover the source signals from the observed mixed signals. Blindness means that neither

the sources nor the mixing system is known. Separation can be based on the theoretically

limiting but practically feasible assumption that the sources are statistically independent.

This assumption connects BSS and Independent Component Analysis (ICA). The terms

BSS and ICA are often used exchangeable but the basic di�erence is that in BSS the goal is

13
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Figure 1.1: An illustration of an instantaneous noise-free mixing system. The system and

the sources are unknown and only the sensor outputs are observed.

to separate certain transmitted signals whereas in ICA the goal is to �nd some components

that are statistically as independent as possible. Thus, ICA can be seen as a tool to solve

the BSS problem.

BSS and ICA have been applied, for example, in the following application domains

� Audio and speech signal separation e.g. [113, 102, 62]

� Multiple-Input Multiple-Output (MIMO) communications systems e.g. [60, 19, 42, 10,

29, 123, 116]

� Biomedical signal processing e.g. [82, 85, 66, 24, 118]

� Image processing and feature extraction e.g. [9, 59, 23]

� Econometrics and �nancial applications e.g. [8, 76, 49]

During the last ten years, a considerable amount of work has been focused on BSS/ICA.

Conferences and special sessions concentrating on ICA have been organized. The theoretical

background has been established and various algorithms have been proposed. Several recent

textbooks and tutorial papers provide a good introduction to the �eld [60, 49, 50, 80, 17, 4].



1.2. SCOPE OF THE THESIS 15

1.2 Scope of the Thesis

The purpose of this thesis is to develop ICA methods that can adapt to di�erent source

distributions. Adaptation makes it possible to separate sources without knowing the source

distributions or even the characteristics of source distributions. Special attention is paid to

methods that allow not only symmetric but also asymmetric source distributions. Asym-

metric distributions occur in key application areas, such as, communications and biomedical

signal processing.

The ICA model has two groups of parameters: the mixing system and the source distri-

butions. It has been shown that if the source distributions are known, optimal separation

algorithms may be derived [17]. This is done by utilizing the score functions of the sources.

Blindness means, however, that no explicit knowledge on the source distributions is avail-

able. It follows that the better the sources or the score functions of the sources are estimated

the better separation result we can expect.

The �rst goal of this thesis is to develop methods for learning the source distributions.

In practice, it is adequate to concentrate on the approaches that capture the essential prop-

erties of the source distributions. The second goal is to �nd eÆcient implementations of

the proposed methods. This includes the choice of the optimization algorithm, robustness

considerations and simulation studies of practical performance. The objective is to show

that adaptive estimation methods are necessary and on the other hand, show that the price

paid for the increased 
exibility is not too high.

1.3 Contribution of the Thesis

The contributions of this thesis are in developing new methods for ICA. Adaptive techniques

are proposed for the modeling of score functions or estimating functions. Score functions

are modeled using parametric families. The methods may be incorporated into existing ICA

algorithms. The contributions can be summarized as follows:

� The relationship between score adaptive estimation and minimization of mutual infor-

mation is established.

� Pearson system is proposed as a 
exible score model.
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� An extended Pearson system model allowing multimodal distributions is introduced.

The case of bimodal distributions is considered in more detail. The obtained score

functions are bounded and de�ned everywhere. The parameters can be estimated

using the method of moments.

� The use of the Extended Generalized Lambda Distribution (EGLD) in the ICA prob-

lem is introduced in co-operation with the co-authors [Publication II].

� The method of L-moments is proposed for the estimation of the parameters of the

Generalized Lambda Distribution (GLD).

� The optimal weighting is derived for the adaptive estimating functions comprised of

two �xed components using the concept of BSS eÆcacy.

� Absolute moments are proposed as estimating functions.

� The performance of the proposed methods is studied quantitatively and qualitatively

in simulations. The simulations demonstrate the reliable performance of the methods.

1.4 Summary of Publications

This thesis consists of 7 publications and a summary. The summary part of the thesis is

organized as follows: Chapter 2 introduces the basic concepts and methods of BSS. Chapter

3 contains an overview of the existing methods for the source adaptive ICA. In Chapter 4

the main contribution of the thesis is summarized and methods of Pearson-ICA, EGLD-ICA

and adaptive estimating functions are presented. Chapter 5 provides a brief summary and

outlines future research.

In Publication I a Pearson system based BSS method is introduced. An algorithm using

the method of moments is proposed for �nding the parameters of the Pearson system. The

actual separation is performed using �xed point algorithm [58]. The simulation examples

demonstrate that the method can separate super- and sub-Gaussian sources and even non-

Gaussian sources with zero kurtosis.

In Publication II an EGLD based BSS method is introduced. An algorithm utilizing the

inverse of cumulative distribution function, method of moments and �xed point algorithm

is proposed. The good performance of the algorithm is demonstrated in simulations.
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In Publication III the algorithms proposed in Publications II and I are further studied

and compared. It is demonstrated in simulations that the standard BSS methods may

perform poorly in the cases where the sources have asymmetric distributions. Due to source

adaptation the EGLD and Pearson system based methods reliably separate the sources.

In Publication IV the applications of Pearson-ICA are considered from the viewpoint of

telecommunications. Separation of binary sources and instantaneous mixing of Rayleigh or

lognormal faded signals are used as examples. Simulation results are provided.

In Publication V the use of the Pearson system is further developed. The di�erent

types of distributions in Pearson family are studied in ICA context. It is shown using the

results by Pham [97] that the minimization of the mutual information contrast leads to

iterative use of score functions as estimation functions. An extension of the Pearson system

that can model multimodal distributions is introduced. The applicability of the Pearson

system based method is demonstrated in simulation examples, including blind equalization

of GMSK signals.

Publication VI is an extended version of Publication III. The performance of the pro-

posed methods is studied in more detail. The additional contribution is the method of L-

moments proposed for the estimation of GLD parameters. It is argued that the L-moments

are a more natural way to estimate the GLD parameters than the conventional sample mo-

ments. Additionally, the L-moments have attractive theoretical properties, including lower

sample variance compared to the sample moments.

Publication VII considers the problem of adaptive score estimation from a di�erent

viewpoint. The proposed estimating functions comprised of symmetric and asymmetric

part can capture the essential features of the source distributions. The optimal weighting

between the symmetric and asymmetric part is derived using the concept of BSS eÆcacy.

General results are derived and absolute moment based estimating functions are presented

as an example.

Author derived all the equations, performed all the simulations and was mainly respon-

sible for writing in Publications I, III, IV, V, VI and VII. The co-authors contributed in

steering the research, in designing experiments and in writing the papers.

The �rst author was mainly responsible for writing Publication II. The idea of using the

EGLD is originally proposed by him. Derivation of the score function and the implemen-

tation of the ICA algorithm were done by this author in co-operation with the co-authors.
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The EGLD model was also utilized in Publications III and VI.



Chapter 2

Blind Source Separation

2.1 Overview

This chapter provides a short overview to blind source separation (BSS) and independent

component analysis (ICA). The key concepts and assumptions needed in ICA and BSS are

described. Basic ICA model and its extensions are considered. The elements and principles

of an ICA method are explained. More extensive overviews are given in several books and

tutorial articles [60, 49, 50, 80, 17, 4].

2.2 Independent Component Analysis Model

2.2.1 The basic ICA model

In this thesis we consider the noiseless instantaneous ICA model

x = As; (2.1)

where s = [s1; s2; : : : ; sm]
T is an unknown source vector and matrix Am�m is an unknown

real-valued mixing matrix. The observed mixtures x = [x1; x2; : : : ; xm]
T are sometimes

called as sensor outputs. The following assumptions for the model to be identi�able are

needed according to [27, 68]

1. The sources are statistically mutually independent.

19
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2. At most one of the sources has Gaussian distribution.

3. Mixing matrix A is invertible.

4. Moments of the sources exist up to the necessary order.

Separation means that we �nd a separating matrix W that makes the components of

y =Wx (2.2)

mutually independent. The ith row vector of W is marked by wi. It is possible to �nd

solution up to some scaling and permutation. If W is a separating matrix, any matrix

�PW, where � is a diagonal matrix and P is a permutation matrix (in permutation matrix

exactly one element on every row and column is 1 and the other elements are 0), is also a

separating matrix [27].

The ICA model has two types of parameters: the mixing coeÆcients in A and the

source densities. Usually, we are interested in the mixing matrix A or the actual source

values, and the source densities are treated as nuisance parameters. Without any additional

assumptions, the estimation of the densities is considered as a nonparametric problem.

Together with the parametric estimation of the mixing matrix, the estimation of the ICA

model is referred to as a semiparametric problem [3].

2.2.2 Extensions of the basic ICA model

The basic ICA model may be extended several di�erent ways. The noisy ICA model is

expressed as

x = As+ n; (2.3)

where n is a Gaussian noise vector independent from the sources. Adding the noise makes

the model more realistic because there is always noise in physical sensor measurements. If

the noise variances are small compared to the output variances, the methods for noiseless

ICA can be utilized with good results. At the presence of heavy noise additional methods

are needed to remove the noise from the separated signals. Methods for noisy ICA are

considered e.g. in [60, 77, 31, 36].
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Complex-valued sources and mixing matrices occur especially in communication prob-

lems. There exist ICA methods developed for the complex-valued problem [15, 11]. Some-

times the problem reduces to the real-valued problem, e.g. [123].

In some applications the mixing matrix A is not a square matrix. The case where the

number of mixtures is higher than the number of sources we essentially have the basic

problem with extra information. The rank of the model or the number of sources might

be unknown and should be also estimated e.g. [22]. The case where the number of the

mixtures is lower than the number of the sources is a diÆcult problem. Since the mixing

is not invertible the identi�cation of the mixing matrix and the recovery of the sources

are individual problems. Generally, the sources cannot be recovered without additional

assumptions. The problem has been considered in [108, 28, 20, 32, 79, 63].

In convolutive mixing, the observed discrete-time signals xi(t); i = 1; : : : ;m are gener-

ated from the model

xi(t) =

mX
j=1

X
k

aikjsj(t� k): (2.4)

This is a Finite Impulse Response Multi-input Multi-output (FIR-MIMO) model, whereas

the basic instantaneous mixing model (2.1) can be seen as an instantaneous MIMO (I-

MIMO) system. In model (2.4) each FIR �lter (for �xed indices i and j) is de�ned by the

coeÆcients aijk . Convolutive models are considered e.g. in [6, 114, 93, 45, 46].

Nonlinear ICA model is given by

x = h(s); (2.5)

where h is an unknownm-component mixing function. If the space of the nonlinear functions

h is not limited there exist an in�nity of solutions [61, 40]. Recently, the interest towards

nonlinear ICA has increased. The uniqueness problems are avoided using Bayesian approach

[117], regularization techniques [1] or structured models [109, 40]. An important special case

of the general nonlinear model (2.5) is post-nonlinear mixture model [111]

xi = hi

0
@ mX

j=1

aijsj

1
A ; i = 1; : : : ;m; (2.6)
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where nonlinear functions hi; i = 1; : : : ;m; are applied to the linear mixtures.

2.3 Anatomy of an ICA Method

In this thesis ICA methods are studied in the following framework. An ICA method consist

of three parts:

1. Measure for independence (theoretical contrast)

2. Estimator of the measure, or objective function

3. Algorithm for optimization

These parts are considered in the following sections. We make a distinction between the-

oretical measures of independence and the estimators of independence calculated from the

data. From the theoretical point of view the linear instantaneous ICA problem is solved:

independent components are found when the chosen measure for independence is minimized.

However, the great number of the proposed ICA methods shows that there is work to do

with estimators and algorithms.

2.4 Measures of Independence

Mutual independence of random variables y = [y1; y2; : : : ; ym]
T means that the joint distri-

bution can be factorized and presented as a product of the marginals. The factorization can

be de�ned using cumulative distribution functions

F (y) = F1(y1)F2(y2) : : : Fm(ym); (2.7)

probability densities

f(y) = f1(y1)f2(y2) : : : fm(ym); (2.8)

or characteristic functions

�(t) = �1(t1)�2(t2) : : : �m(tm) (2.9)
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where characteristic function is de�ned by

�(t) =

Z
e
|ty
dF =

Z
e
|ty
f(y)dy; (2.10)

where | is the imaginary unit. These de�nitions characterize independence but they do not

directly tell how to measure dependencies. A natural way to do this is to construct a measure

using, for instance, the di�erence between the joint characteristic functions and the product

of marginal characteristic functions [122, 38] or alternatively, the di�erence between the joint

cdf and the product of the marginal cdfs, e.g. Kolmogorov-Smirnov [47] test statistics

�KS = sup
x

jF (x)� F1(x1)F2(x2) : : : Fm(xm)j: (2.11)

A contrast function or brie
y a contrast is one of the key terms in ICA. A contrast is a

function to be minimized in order to separate the sources. Formally a contrast function is

de�ned as [27]

De�nition 1 A contrast is a mapping � from the set of densities ffy; y 2 R
mg to R

satisfying the following three requirements

1. �(fPy) = �(fy); 8P permutation,

2. �(f�y) = �(fy); 8� diagonal invertible,

3. If y has independent components, then �(fAy) � �(fy); 8A invertible.

According to De�nition 1 a contrast is a function of densities. Under the assumption that

the densities are correctly estimated, a contrast becomes a function of the current mixture

y or equivalently a function of the separating matrix W.

Two fundamental ICA contrasts, the maximum likelihood contrast and the mutual infor-

mation contrast, are based on Kullback-Leibler divergence. The Kullback-Leibler divergence

between the random variables y1 and y2 is de�ned as

K(y1jjy2) =
Z

f1(y) log
f1(y)

f2(y)
dy; (2.12)

where f1 and f2 are the density functions of y1 and y2, respectively. The maximum likelihood
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contrast can be de�ned as the Kullback-Leibler divergence between y and s

�ML(y) = K
�
y jj s� (2.13)

and the mutual information contrast can be de�ned as

�MI(y) = K
�
y jj ~y�; (2.14)

where ~y denotes the vector with independent entries with each entry distributed as the

corresponding marginal of y. Now the connection between mutual information and likelihood

can be written as

K
�
y jj s� = K

�
y jj ~y�+K

�
~y jj s�; (2.15)

Mutual information is a suÆcient statistics in ICA [17]. Likelihood is a sum of mutual

information and a nuisance term that gives the marginal mismatch between the output and

the assumed sources.

2.5 Objective Functions and Estimating Functions

An estimator of a contrast function is often called as objective function, criterion function

or cost function. In addition, the term contrast is sometimes used also for the estimator

calculated from the data. It should be mentioned that the meaning of contrast in ICA di�ers

from the meaning contrast has in statistics [103]. The ICA terminology may be confusing

here but the basic idea is that we have a measure of independence and an estimator for it.

The derivative of an objective function may be called an estimating function. Estimating

functions are sometimes also called separating functions or activation functions. Since the

objective functions must be minimized numerically, the estimating functions have an essen-

tial role in practical ICA algorithms. Formally, the estimating function [3] can be de�ned

as a matrix-valued function 	(x;W) such that

Ef	(x;W�)g = 0; (2.16)

where W� is the true separating matrix. A typical form of estimating function (2.16) is
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	(x;W) = I� '(y)yT where '(y) = ['1(y1); '2(y2); : : : ; 'm(ym)]
T is a vector of one-unit

estimating functions. The term 'estimating function' is commonly used to refer to these

one-unit estimating functions, as done also in this thesis. This de�nition of the estimating

function is related to the projection pursuit [53, 65] and the de
ation approach [33, 54]

where one-unit objective functions are used to extract the sources one by one.

If the source distributions are known, the maximum likelihood principle leads to the

estimating functions that are the score functions of the sources [17]:

'y(y) = � d

dy
log fy(y): (2.17)

This is a fundamental result but it applies only when the source densities are positive

everywhere. For example, if uniformly distributed sources are mixed we cannot use score

functions in separation because the score functions are zero in a �nite interval and unde�ned

elsewhere.

In practice, the source distributions are not known. The maximum likelihood contrast

can be employed with some pre-chosen densities for the sources. An equivalent approach is

to choose directly a suitable nonlinear function as estimating function. We use the notation

where 'y refers to the true score function of random variable y, as de�ned in equation

(2.17). The notation without the subindex ' refers to an estimating function, or to the

estimated score function. This emphasizes the close relationship between the score function

modeling and the nonlinearity selection. If estimating function ' is used, we observe that

the following expression for the assumed source density is obtained

f(yi) =
exp(� R '(yi)dyi)R1

�1 exp(� R '(yi)dyi)dyi : (2.18)

It should be noted that (2.18) is not always a valid density in traditional sense. For some typ-

ical choices of the estimating function, the denominator in (2.18) tends to in�nity. This can

be avoided making a working assumption that yi belongs to a �nite interval and evaluating

the integrals over this interval.

In linear ICA accurate estimation of source distributions is not always crucial. However,

better separation may be achieved if the source distributions are estimated. This becomes

obvious when the number of the sources increases and source distributions are challenging

(e.g. skewed distributions close to Gaussian distribution).
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Cumulants have been used as objective functions since the early days of blind separation

[67, 27, 15, 33]. Cumulants are employed also in some recent works; see e.g. [86] and [30].

Cumulants �1; �2; �3; : : : are de�ned via characteristic function (2.10) by the identity

exp
�X

�q(|t)
q
=q!
�
= �(t) (2.19)

Cumulants may be estimated from the sample moments of same and lower orders. The

estimates of the sample moments (central moments) are obtained as follows

�x =

TX
t=1

x(t)=T (2.20)

�̂2 = �̂
2 =

TX
t=1

(x(t) � �x)2=T (2.21)

�̂3 =

TX
t=1

(x(t) � �x)3=T (2.22)

�̂4 =

TX
t=1

(x(t) � �x)4=T ; (2.23)

where T is the number of observations. In this thesis, notation �1; �2; �3; : : : is used for

both the theoretical sample moments and their estimators. The cumulant-based skewness

and kurtosis may be de�ned as follows

�
Æ
3(yi) =

�3(yi)

�2(yi)3=2
= E

(�
yi � �yi

�yi

�3)
(2.24)

�
Æ
4(yi) =

�4(yi)

�2(yi)2
= E

(�
yi � �yi

�yi

�4
)
� 3; (2.25)

where �yi and �yi are the expected value and the standard deviation of yi, respectively. The

separation can be based on the fact that for Gaussian distribution the higher order cumulants

equal to zero. Maybe the simplest technique to separate the sources is to maximize or

minimize kurtosis.

When sample variance and robustness to outliers (in noisy ICA model) are of concern,

bounded nonlinear functions may be more advisable than cumulants. However, the practical

performance also depends on the underlying source distributions. In Table 2.1 some typi-

cal one-unit objective functions and the corresponding estimating functions are presented.
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Objective function Estimating function

kurtosis �(yi) = y
4
i cubic '(yi) = y

3
i

skewness �(yi) = y
3
i '(yi) = y

2
i

�(yi) = log(cosh(yi)) hyperbolic tangent '(yi) = tanh(yi)

Gaussian moments, e.g. �(yi) = e
�y2i =2 '(yi) = �yie�y2i =2

3rd absolute moment �(yi) = jyij3 '(yi) = yijyij

Table 2.1: Some typical one-unit objective functions and the corresponding estimating func-

tions. The scaling constants are omitted.

These simple estimating functions are good benchmark for more advanced methods: they

are easy to implement and they successfully separate most of typical sources.

The objective functions in Table 2.1, expect the skewness, employ only even moments

or symmetric properties of the source distributions. This means that there is an implicit

assumption that the sources have a symmetric distribution. The explicit connection can be

found using the equation (2.18). In Publication VII adaptive methods for �nding objective

functions with the optimal weighting between the symmetric and asymmetric properties

have been proposed and they will be considered in Section 4.4 of this thesis.

2.6 Mutual Information and Source Adaptation

The ICA methods proposed in this thesis are based on direct minimization of mutual infor-

mation. The direct minimization of mutual information leads to the adaptive estimation of

the score functions of the mixtures as shown in [97] and in Publication V. Starting from

mutual information contrast �MI (W) de�ned as a function of W, the following gradient

(called as relative gradient in [97]) is obtained

�
0

MI(W) =

Z
'y(y)y

T
fx(x)dx � I: (2.26)

Using the relation y =Wx, where W is orthogonal, we can write (2.26) in the form

�
0

MI(W) =

Z
'y(y)y

T
fy(y)dy � I: (2.27)
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If y(t) is an ergodic random process, where the individual samples are distributed according

to fy(y), we obtain the following estimator

�̂
0

MI (W) =
1

T
TX
t=1

'̂y(y(t))y(t)
T � I; (2.28)

where '̂y is an estimator for the score function of y and T is the sample size. In the case of

mutual information contrast, the estimating function is the score function of y. Because the

output y changes on every iteration of the optimization algorithm, the optimal estimating

functions also change in each iteration.

A procedure for parametric minimization of mutual information may be given as follows:

After the choice of model family and some suitable algorithm, such as natural gradient (2.29)

or �xed point algorithm (2.30), the following steps are repeated until the convergence:

1) Appropriate sample statistics (e.g. moments) are computed from the current data yk =

Wkx.

2) The parameters of score function are estimated for each component using the sample

statistics.

3) The score functions are utilized as estimating functions in the ICA algorithm performing

the separation.

2.7 Algorithms

Numerical methods are needed in order to optimize an ICA objective function. In general,

the choice of the algorithm is independent from the choice of the objective function. Of

course, there may be di�erences in the computational complexity. It is commonly assumed

that the data is centered and whitened (zero mean, uncorrelated, unit variance) prior to the

actual separation. After whitening the separating matrix is (asymptotically) orthogonal and

the number of parameters to be estimated is smaller. Prewhitening improves the convergence

but is not necessary for the algorithms to work. The three basic types of algorithms are

reviewed in the following.
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2.7.1 Natural gradient algorithm

A basic principle of the gradient type optimization methods is to move to the direction of

(negative) gradient. In ICA, the gradient can be adjusted to correspond to the geometry

of the problem. This leads to natural gradient [2] or relative gradient [17] algorithm. The

updating rule for the separating matrix is the following

Wk+1 =Wk + �
�
I� '(y)yT

�
Wk; (2.29)

where '(y) = ['1(y1); '2(y2); : : : ; 'm(ym)]
T is the vector of estimating functions and � is

the learning rate.

2.7.2 Fixed-point algorithm

Fixed-point algorithm [57, 58] can be seen as a computationally more eÆcient version of

natural gradient algorithm. The update rule can be expressed as

Wk+1 =Wk +D
�
Ef'(y)yT g � diag(Ef'(yi)yig)

�
Wk; (2.30)

where D = diag
�
1=(Ef'(yi)yig �Ef'0

(yi)g
�
. After every iteration, the separating ma-

trix is projected to the set of orthogonal matrices (in the case of prewhitened data) us-

ing symmetric orthogonalization Worth = (WW
T )1=2W. The algorithm converges when

jjWk+1 �Wkjj < " with e.g. " = 0:0001.

2.7.3 Jacobi algorithms

Jacobi-type algorithms are based on the theorem [27] stating that in the case of the linear

ICA model, pairwise independence implies mutual independence. This leads to the algo-

rithms where pairwise cost functions are sequentially optimized. Such algorithms converge

when all the pairs are optimized in the limits of some predetermined converge criterion.

The best-known Jacobi type algorithm is probably Joint Approximate Diagonalization of

Eigenmatrices (JADE) [15] where the eigenmatrices of the fourth order cumulant tensors

are jointly diagonalized.
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2.8 Characterization of Source Distributions

In many applications the nature of the source signals is known even if the exact source dis-

tributions are unknown. Commonly, distributions are divided to super- and sub-Gaussian

distributions. A symmetric zero mean distribution f(x) is super-Gaussian (respectively

sub-Gaussian) if 9x0 > 0 j 8x � x0; f(x) > fG(x) (f(x) < fG(x) for sub-Gaussian) , where

fG(x) is the normalized Gaussian pdf. In the case of unimodal symmetric sources the sign

of kurtosis (2.25) depends on super- and sub-Gaussianity [83]. The concept of super- and

sub-Gaussianity is not very informative in the case of asymmetric or multimodal distribu-

tions. Measures of both the skewness and the kurtosis are needed to describe asymmetric

distributions. Multimodal distributions may be characterized by the locations of the modes.

Examples on the di�erent types of pdf are provided in Figure 2.1.
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(a) A super-Gaussian distribution (the GGD

(equation (3.2)) with a = 1:4)
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(b) A sub-Gaussian distribution (the GGD

(equation (3.2)) with a = 3:5)
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(c) An asymmetric distribution (Centered

Rayleigh(2) distribution)
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(d) An asymmetric bimodal distribution (mix-

ture of two Gaussian distributions)

Figure 2.1: Examples of di�erent types of distributions
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2.9 Discussion

In this chapter the ICA models and terminology were reviewed. Measures for independence,

their estimators and optimization algorithms were considered. When the family of the pos-

sible source distributions is expanded from symmetric unimodal distributions to asymmetric

and multimodal distributions the need for the source adaptation becomes obvious. The con-

nection with the source adaptation and minimization of mutual information is established.

This suggests the adaptive estimation of the score functions of the mixtures. Methods

applying the score adaptation are considered in the following chapters.



Chapter 3

Review of source adaptive ICA

methods

3.1 Overview

As discussed in Chapter 2, the optimal separation requires that the source distributions are

known. In practice, the source distributions are not known and need to be estimated reliably.

In the pure maximum likelihood approach the prior knowledge on the sources is re�ned to

a density model or an estimating function. In the adaptive maximum likelihood approach

or mutual information approach, densities or score functions are iteratively estimated from

the data. In this chapter, methods for modeling and estimating the source distributions in

ICA are reviewed. The estimation methods may be divided into three classes:

� nonparametric methods, e.g. kernel estimation,

� parametric models for densities and score functions,

� models for estimating functions.

In this chapter, models and methods suitable for the source adaptive approach are re-

viewed. The chapter provides a background for the score adaptive models that are presented

in Chapter 4 and in the original publications.

33
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3.2 Kernel estimation of densities

An overview of kernel estimation and related nonparametric techniques is given in [104]. A

separation method with kernel estimates for the source densities is proposed in [97]. Kernel

estimation of densities is also applied to nonlinear ICA problem [110, 111]. The kernel

density estimate [104] is de�ned by

f̂i(u) =
1

T
TX
t=1

1

�T
�

�
u� yi(t)

�T

�
; (3.1)

where � is the kernel function and �T is a bin-width parameter depending on the number

of observations T . To guarantee that f̂i(u) is a density, it suÆces to take � a density itself.

The bin-width parameter a�ects on the smoothness of the estimate. Pham [97] provides a

detailed theoretical analysis on the use of kernel estimates in ICA.

Some computational problems need to be solved in order to apply kernel estimation. The

integrals in the gradient of mutual information contrast must be discretized by choosing the

spacing for the estimation grid, i.e. the points u where estimator (3.1) is computed. The

computation can be made faster using Fast Fourier Transform (FFT) [104]. The kernel-based

method is further developed in some recent papers [119, 12].

3.3 Parametric models

3.3.1 Distribution families

The main contributions of this thesis are in using parametric families of distributions for

modeling the score functions. These methods are considered in Chapter 4 and in Publications

I-VI. Di�erent parametric families for ICA are also employed in [21, 14, 41]. The models

used in these papers are the Generalized Gaussian Distribution (GGD) and t-distribution.

Both are families of symmetric distributions with shape depending on the parameters. The

pdf of the GGD is de�ned as

f(y; a; �a) =
a�a

2�( 1
a
)
exp(�j�ayja); (3.2)



3.3. PARAMETRIC MODELS 35

where a is the parameter of the distribution, �a a scaling factor and �(x) is Gamma function

given by

�(x) =

Z 1

0

u
x�1 exp(�u)du: (3.3)

The parameter a controls the peakiness of the distribution. If a = 2, the distribution is

reduced to Gaussian distribution; if a < 2, the distribution is super-Gaussian; and if a > 2,

the distribution is sub-Gaussian. Examples are presented in Figure 2.1. The parameter �a

is a scaling factor controlling the variance. The score function of the GGD is given by

'(yi) = a�a sign(yi)j�ayija�1: (3.4)

The parameters of the GGD can be solved from the following moment equations

�4 =
�( 5

a
)�( 1

a
)

�2( 3
a
)

� 3; (3.5)

�a =

s
�( 3

a
)

�2�(
1
a
)
; (3.6)

where �4 is the kurtosis and �2 is the second order moment. In practice, to estimate the

parameters, the sample kurtosis is calculated from the data and the values of the parameters

a and �a are solved numerically.

Another model, t-distribution, is familiar from t-test [107, 106]. The pdf of t-distribution

with b degrees of freedom and the scaling factor �b is

f(y; b; �b) =
�b�(

b+1
2
)p

�b�
�
b
2

� �1 + �
2
by

2

b

�� 1

2
(b+1)

: (3.7)

The score function of t-distribution can be written as

'(yi) =
(1� b)yi

y2i � b
�2
b

: (3.8)

The parameters of t-distribution can be solved from the following moment equations
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�4 =
3�( b�4

2
)�( b

2
)

�2( b�2
2
)

� 3; (3.9)

�b =

s
b�( b�2

2
)

2�2�(
b
2
)
: (3.10)

A simpler way to estimate the parameters of t-distribution using the Pearson system is

presented later in Section 4.2.

In [21], only the GGD is employed as a model for the sources. In [14] the choice between

the GGD and t-distribution is done based on the sample kurtosis

'(yi) =

8>><
>>:
a�a sign(yi)j�ayija�1; if �̂4(yi) � 0

(1�b)yi
y2
i
� b

�2
b

; if �̂4(yi) > 0:
(3.11)

3.3.2 Mixture of Densities

Mixture of Gaussians model (MOG) is employed as the model of source densities especially

in Bayesian approach [7, 117, 78]. The density model is the following

f(x) =

P
j !j

1

�j
p
2�

exp(�(x� �j)
2
=2�2j )P

j !j
; (3.12)

where �i and �
2
i are mean and variance and !j is a weighting parameter. Mixtures of

Gaussians can approximate virtually any continuous source distribution but the number of

required Gaussians depends on the source distribution. For instance, several Gaussians are

needed to approximate uniform density. The expectation-maximization (EM) algorithm [34]

is often used in the learning of the MOG parameters. Due to computational complexity of

MOG-based ICA, the number of Gaussians is usually �xed to some small number. This may

limit the performance in some cases even though the performance of the method is generally

good.

Mixture of densities models are also proposed in [120, 43, 48, 81]. In [120] a mixture

of Gaussian or logistic densities is proposed. In [43] a closely related method of adaptive

activation function neurons is studied. In [48] and [81] MOG and hyperbolic-Cauchy distri-

bution are used. These approaches are related to the basis functions approach presented in

Section 3.4.2.
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3.4 Adaptive nonlinearities

The methods presented in Sections 3.2 and 3.3 started from the estimation of densities. The

methods presented in this section approach the problem from a di�erent viewpoint. Instead

of densities, estimating functions are directly worked out. As mentioned in Section 2.5 these

two approaches are theoretically equivalent. In practice, adaptive nonlinearities may have

some appealing computational properties although ad hoc adaptation rules are often needed.

3.4.1 Polynomial expansions

Edgeworth and Gram-Charlier expansions [106] provide approximations for densities in the

vicinity of a Gaussian density. The expansions can be used to obtain approximations for

negentropy [60]

�Neg =
1

12
�
2
3 +

1

48
�
2
4; (3.13)

or for the score function of a symmetric density

'(s) = s� �4

6
(s3 � 3s); (3.14)

where �3 and �4 are the third and fourth cumulant, respectively. Polynomial expansions

are considered e.g. in [65, 27, 5, 121]. The approximation of entropy can be also based on

other functions than polynomials as proposed in [56]. For instance, Gaussian density and

its derivatives may be employed. These approximations are usually more exact and more

robust than the approximations based on polynomials.

3.4.2 Basis functions

Quasi-maximum likelihood approach employing a set of arbitrary basis functions is proposed

by Pham [98](see [17] for a brief summary). The score function is approximated by a linear

combination

'(yi) =

NX
n=1

!n'n(yi) (3.15)



38 CHAPTER 3. REVIEW OF SOURCE ADAPTIVE ICA METHODS

of a �xed set f'1; '2; : : : ; 'Ng of arbitrary basis functions. It turns out that the weighting
parameters !1; !2; : : : ; !N can be solved without knowing the true score function. Mean

square error between the true score function and its approximation is minimized when

'(yi) = (EfR0

(yi)g)T (EfR(yi)R(yi)T g)�1R(yi); (3.16)

where R(yi) = ['1(yi); '2(yi); : : : ; 'N (yi)] is the N �1 column vector of basis functions and

R
0

(yi) is the column vector of their derivatives. In practice, the expectations are replaced

by sample averages.

Algorithms where the nonlinearities are adaptively chosen on the basis of sub/super-

Gaussianity are used e.g. in [35, 49, 80]. Typically, the nonlinearities are based on functions

such as tanh(y) and y
3 and the sign of the nonlinearity is chosen adaptively.

3.4.3 Threshold functions and quantizers

Very simple algorithms can be constructed using adaptive threshold functions. A threshold

activation function [84] is de�ned as

'(yi) =

8><
>:
0; jyij < bi;

ai sign(yi); jyij � bi;

(3.17)

where ai and bi are data dependent parameters. The threshold bi may be chosen so that the

local stability is maximized. However, this maximization requires knowledge of the source

distribution. As a practical solution, the authors in [84] propose the following updating rules

ai(t+ 1) = ai(t)� �a(1� �̂
2(yi; t)); (3.18)

bi(t+ 1) = bi(t)� �b�̂
Æ
4(yi; t); (3.19)

where �̂2(yi; t) is the sample variance of yi after t observations, �̂
Æ
4(yi; t) is the sample kurtosis

and �a and �b are the learning rates. Additionally, the values of bi are forced to the interval

[0; 1:5].

The simple threshold function can be generalized introducing more thresholds and levels.

This leads to piecewise constant estimating functions that are also called as quantizers [73].

Optimal quantizer can be found if the source distributions are known. The main advantage
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of quantizers and threshold functions is that they can be easily implemented in digital signal

processing.

3.5 Discussion

The presented estimation methods illustrate the trade-o� between generality and simplicity.

The nonparametric estimation is apparently the most 
exible concept. However, a certain

implementation with a �xed kernel is already a more restricted model. The critical part of

kernel estimation is the choice of the kernel function and the bin-width parameter. There

exist opposing opinions on the complexity and the computational cost of kernel estimation

in ICA [97, 60]. The speed requirement depends of course on the particular application

but it seems that kernel estimation is relatively complex method when compared to other

methods.

The 
exibility of parametric estimation depends on the chosen distribution family. Prob-

lems may occur if the chosen distribution family cannot model the essential features of the

actual distribution. On the other hand, if an appropriate parametric model is used, the

methods work eÆciently.

The advantage of the adaptive nonlinearities is that they are computationally simple and

easy to implement. The performance depends on the source distributions. Successful sepa-

ration is expected if the nonlinearities can react to the essential features of the distributions.

Otherwise, the performance may be poor.
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Chapter 4

Adaptive Score Models

4.1 Overview

In this chapter we introduce methods for estimating score functions adaptively. The para-

metric models employed are the Pearson system and Generalized Lambda Distribution.

Additionally, adaptive estimating functions using iterative weighting are presented. The

guidelines used for choosing an appropriate parametric model are

1. The model should adapt to asymmetric or multimodal sources, but the performance

should not degrade in the case of unimodal symmetric source distributions.

2. The parameters of the model should be easy to estimate from the data.

3. The functional form of the score function should be easy to compute and robust against

outliers.

Asymmetric and multimodal source distributions are considered because blindness means

that we cannot restrict to symmetric sources. Asymmetric and multimodal source distribu-

tions also occur in the key application areas, such as, telecommunications and biomedical

signal processing. The requirement of easy parameter estimation is natural from the point

of computational eÆciency and simplicity of the concept. A suitable functional form of the

score function is important to ensure the numerical stability of the practical algorithm.

41
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4.2 Pearson System

The Pearson system is a four parametric family of distributions de�ned by the di�erential

equation

f
0

(x) =
(x� a)f(x)

b0 + b1x+ b2x
2
; (4.1)

where f(x) is a density function and a, b0, b1 and b2 are the parameters of the distribution.

The Pearson system has been extensively studied in statistics. Overviews are given in [90]

and in [106]. The distribution family is named after Karl Pearson [94, 95]. The estimation

of the Pearson parameters is considered e.g. in [105, 13, 25, 26, 51, 87, 74, 96]. Some related

distributions are presented in [25, 88, 64, 89, 112].

An alternative parameterization is

f
0

(x) =
(a1x� a0)f(x)

b0 + b1x+ b2x
2
; (4.2)

where a0, a1, b0, b1 and b2 are the parameters of the distribution. Both parameterizations

(4.1) and (4.2) characterize the same distributions but the expression (4.2) has the advantage

that a1 can be zero and the values of the parameters are bound when the fourth cumulant

exists. Thus, we use the parameterization (4.2). The score function of the Pearson system

is easily solved from (4.2)

'(x) = �f
0

(x)

f(x)
= � a1x� a0

b0 + b1x+ b2x
2
: (4.3)

The derivative of the score function is

'
0

(x) = �a1b0 + a0b1 + 2a0b2x� a1b2x
2

(b0 + b1x+ b2x
2)2

: (4.4)

Several well-known distributions belong to the Pearson family. For instance, for Gaussian

distribution with mean � and variance �2 the values of the parameters are a0 = 12(�2)3�,

a1 = 12(�2)3, b0 = �12(�2)4, b1 = 0 and b2 = 0. Also Gamma, Beta and Student's

t-distribution belong to the Pearson family. This is illustrated in Figure 4.1.

The distributions in Pearson family can be de�ned everywhere (type (iii)), they may be

bounded from left or right (type (ii)), or de�ned in a �nite interval (type (i)). For the ICA
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Figure 4.1: An illustration of the Pearson system in (�23, �4)-plane. The limit for all distribu-

tions is line �4 = �
2
3+1. The Latin numbers refer to the traditional classi�cation of Pearson

distributions. Types I and II are beta distributions of �rst kind. The notation I(J,U) refers

to J- and U-shaped distributions and I(M) to unimodal distribution. The boundary between

I(J,U) and I(M) is curve 4(4�4�3�23)(5�4�6�23�9)2 = �
2
3(�4+3)2(8�4�9�23�12) Type III

is Gamma distribution for which �4 =
3
2
�
2
3 + 3. Type VI is the beta distribution of second

kind. Type V is characterized by curve �23(�4 + 3)2 = 4(4�4 � 3�23)(2�4 � 3�23 � 6). Type

IV is the case where the equation b0 + b1 + b2x
2 = 0 has complex roots. Type VII is the

Student's t-distribution.

problem this classi�cation is more useful than the traditional classi�cation (types I-VII)

[106]. The classi�cation is presented and discussed in Publication V.

Pearson system based blind separation algorithm, Pearson-ICA [71], was originally pro-

posed in Publication I and further improved in Publication V. The implementation is based

on the FastICA algorithm [55].

4.2.1 Estimation of the Pearson system parameters

The parameters of the Pearson system can be estimated using method of moments [106].

The moment equations are derived directly from the de�nition (4.2)

x
n(b0 + b1x+ b2x

2)f
0

(x) = x
n(a1x� a0)f(x): (4.5)
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When the left side is integrated by parts, (4.5) leads to a recursion formula

�nb0�n�1 � (n+ 1)b1�n � (n+ 2)b2�n+1 = (4.6)

a1�n+1 � a0�n;

where �n is nth theoretical central moment. When this recursion formula is successively

applied for values n = 0; 1; 2; 3, the following relationship between the parameters a0, a1, b0,

b1 and b2 and the theoretical central moments ��1 � 0,�0 � 1, �1 = 0, �2, �3 and �4 arises

a1 =j10�4�2 � 12�23 � 18�32j (4.7)

a0 = b1 =� �3(�4 + 3�22) (4.8)

b0 =� �2(4�2�4 � 3�23) (4.9)

b2 =� 2(�2�4 � 3�23 � 6�32): (4.10)

When the theoretical central moments are replaced by the sample moments, the moment es-

timators for the parameters a0, a1, b0, b1 and b2 are obtained. The number of the parameters

actually reduces to three because b1 = a0 and a1 is a scaling term.

If the approximated density is symmetric (i.e. �3 = 0) the estimated score reduces to

'(x) = � (5�4 � 9�22)x

�2�2�4 � (�4 � 6�22)x
2

(4.11)

It can be easily checked that when �4 � 3 this corresponds t-distribution de�ned in (3.8),

(3.9) and (3.10).

The type of the distribution, (i), (ii) or (iii), must be recognized after the model is esti-

mated. For types (i) and (ii) it is possible that the estimated density is not exactly correct

and thus some observations lay outside the domain. In the ICA problem we are only inter-

ested in �nding the score function, which makes it easy to heuristically solve this problem.

First, the sample minimum and maximum can be utilized in the estimation. Alternatively,

saturated score functions (the values of the score function are bounded between suitable

chosen minimum and maximum) can be used. These, as well other practical algorithmic

issues are considered in Publications I and V.



4.2. PEARSON SYSTEM 45

4.2.2 Extensions of the Pearson system

The estimation of the Pearson system parameters can be based on sample statistics other

than the �rst four moments. For instance, in [87] the parameter estimation is based on the

mean, the variance, the skewness and the left (or right) boundary.

The di�erential equation de�ning the Pearson system may also be generalized. A natural

generalization is

f
0

(x)

f(x)
=
a(x)

b(x)
(4.12)

where a(x) = a0 + a1x + a2x
2 + : : : + apx

p and b(x) = b0 + b1x + b2x
2 + : : : + bqx

q are

some polynomials of x. Some generalizations of this kind are considered in [25] and brie
y

discussed in Publication V.

In Publication V we propose a multimodal generalization of the Pearson system de�ned

as follows

f
0

(x)

f(x)
=

a3x
3 + a2x

2 + a1x+ a0

x4 + 1
(4.13)

where a0; a1; a2 and a3 are the parameters of the system. The third order polynomial in

the numerator enables modeling bimodal distributions. The fourth order polynomial in

the denominator makes sure that the score function behaves robustly when outliers are

encountered by bounding their in
uence. Since the denominator is always positive, the

score function does not have points of discontinuity.

The method of moments can be used to estimate the parameters of (4.13). This leads to

the use of the �fth and the sixth order sample moments that are very sensitive to outliers.

Fortunately, some simple heuristic solutions exist for stabilizing the estimates of the �fth

and the sixth moments. One can simply set maximum values for the higher order moments

used. In addition, the in
uence of each individual observation can be made bounded. These

simple modi�cations result to sensible parameter values in practice.



46 CHAPTER 4. ADAPTIVE SCORE MODELS

Uniform

Normal

Impossible Region

Exponential

Gamma

Student’s T

Lognormal

1 2 3 4

5

10

15

20
GBD AreaGLD Area

WeibullRayleigh

�4

�
2
3

Figure 4.2: Characterization of some standardized distributions by their third and fourth

moments. The EGLD family covers the area above the shaded region, which is not valid

for any distribution. The skewness and the kurtosis of many distributions occurring in the

engineering applications are pointed out

4.3 Extended Generalized Lambda Distribution

The Extended Generalized Lambda Distribution (EGLD) is a large family of distributions

covering the whole space of the third and the fourth moment. The lambda distribution

was presented by Tukey [115] in 1960. The concept was generalized in 70's [100, 101, 99].

Its main use has been in �tting a distribution to the empirical data, and in the computer

generation of di�erent distributions. The latest extension of the family by Karian and

Dudewicz in 1996 [70] is a combination of Generalized Lambda Distribution (GLD) and

Generalized Beta Distribution (GBD). The space of (�3; �4) values, which is covered by

the EGLD distribution family, includes the values for all the most important distribution

including normal, uniform, gamma and beta distributions as illustrated in Figure 4.2.

The Generalized Lambda Distribution is de�ned by the inverse distribution function

F
�1(p) = �1 +

p
�3 � (1� p)�4

�2
; (4.14)
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where 0 � p � 1 and �1, �2, �3 and �4 are the parameters of the distribution. Karian and

Dudewicz [70] showed that GLD is a valid distribution if and only if

�2

�3p
�3�1 + �4(1� p)�4�1

� 0: (4.15)

The alternative Freimer-Mudholkar-Kollia-Lin (FMKL) parameterization [44] is given by

F
�1(p) = �1 +

�
p
�3 � 1

�3
� (1� p)�4 � 1

�4

�.
�2: (4.16)

The FMKL-parameterization seems to have some advantages over the parameterization in

equation (4.14) but so far it has not been used for �tting the distribution to data.

The EGLD based blind separation algorithm, EGLD-ICA [39], was originally proposed

in Publication II. The L-moment based estimation was proposed in Publication VI. The

implementation is similar to Pearson-ICA expect for the score function calculation and

parameter estimation.

4.3.1 Parameter estimation via sample moments

Estimation of the GLD parameters using the method of moments is proposed in [70]. The

relationship between the parameters �1, �2, �3 and �4 and the moments �1, �2, �3 and �4 is

established by four nonlinear equations [70] that can be solved numerically. However, due to

the intricacy of the computational process, the parameters �1, �2, �3 and �4 are tabulated

in [69, 39] as functions of �3 and �4 for standardized data where �1 = 0 and �2 = 1. When

the EGLD is �tted to the data, the choice between the GLD and the GBD is made based

on the values of the kurtosis and the skewness as explained in Publication II.

4.3.2 Parameter estimation via L-moments

Other statistics can be utilized in the estimation of the parameters instead of the sample

moments. Well-known drawbacks of the higher order sample moments are the high variance

of estimators and the lack of robustness. The concept of L-moments [52] can be seen as a

solution to these problem. The L-moments are analogous to the conventional moments but

they can be estimated by linear combinations of order statistics i.e. by L-statistics. The
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�rst four theoretical L-moments are de�ned as

L1 =

Z 1

0

F
�1(p)dp (4.17)

L2 =

Z 1

0

F
�1(p)(2p� 1)dp (4.18)

L3 =

Z 1

0

F
�1(p)(6p2 � 6p+ 1)dp (4.19)

L4 =

Z 1

0

F
�1(p)(20p3 � 30p2 + 12p� 1)dp: (4.20)

The L-moments exist if and only if the distribution has a �nite mean. Furthermore, a

distribution with a �nite mean is characterized by its L-moments [52]. Analogously to the

conventional moments, L1 measures the location, L2 measures the scaling, L3 measures the

skewness and L4 measures the kurtosis. Scaling invariant measures are obtained by using

L-moment ratios de�ned as

�r , Lr=L2; r = 3; 4; : : : (4.21)

Unlike the conventional moments, the L-moments of the GLD may be expressed in a closed

form

L1 =�1 � 1

�2

�
1

1 + �4
� 1

1 + �3

�
(4.22)

L2�2 =� 1

1 + �3
+

2

2 + �3
� 1

1 + �4
+

2

2 + �4
(4.23)

L3�2 =
1

1 + �3
� 6

2 + �3
+

6

3 + �3
� 1

1 + �4
+

6

2 + �4
� 6

3 + �4
(4.24)

L4�2 =� 1

1 + �3
+

12

2 + �3
� 30

3 + �3
+

20

4 + �3
� (4.25)

1

1 + �4
+

12

2 + �4
� 30

3 + �4
+

20

4 + �4

The details for the parameter estimation are presented in the Publication VI.

Since the L-moments are linear combinations of order statistics, the variances of the

sample L-moments are usually smaller than the variances of the conventional sample mo-

ments. This implies that the models �tted using the sample L-moments are more reliable

than the models �tted using the conventional sample moments, especially when the sample
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size is small. Additionally, the L-moments are more robust against outliers.

4.3.3 Other estimation techniques

In addition to method of moments and method of L-moments, some other techniques are

recently proposed for the estimation of the GLD parameters. Karian and Dudewicz [37]

proposed the use of percentiles. The percentiles have similar desirable properties as the L-

moments but the di�erence is that in the percentile method, only certain order statistics are

used, whereas in the method of L-moments all order statistics are employed. This suggests

that the L-moments based estimators are more eÆcient than the percentile based estimators.

Purely computational methods, such as, least square �t ( �Ozt�urk and Dale method) [92]

and the starship method [75, 91] are also applicable. The starship method has the following

three steps [75]

1. For a set of data and a range of �1, �2, �3 and �4 values, apply the reverse transfor-

mation, i.e. a data value x is transformed to F (x). (Note that as F does not exist in

closed form for the GLD, numerical methods are needed.)

2. Calculate the value of a suitable goodness-of-�t measure for the closeness of the re-

sulting values to the uniform(0,1) distribution.

3. Choose the �1, �2, �3 and �4 values that minimize the chosen goodness-of-�t measure

to the uniform, as the �tted values.

According to the simulation results in [75] �Ozt�urk and Dale method and the starship method

give good estimates. The computational cost, however, is higher than in the method of

moments or in the method of L-moments.

4.4 Adaptive Estimating Functions

Adaptive estimating functions proposed in Publication VII can be presented as a weighted

sum of two estimating functions

'(si) = !1'1(si) + !2'2(si); (4.26)
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where '1(si) and '2(si) are two �xed estimating functions and !1 and !2 are the weighting

parameters. The corresponding objective function may be presented as

�(yi;!1; !2) = !1j�1(yi)j+ !2j�2(yi)j: (4.27)

The idea is iteratively update the weighting parameters in optimal manner. The optimal

weighting is solved maximizing an eÆcacy measure based on the performance analysis [17,

18, 73, 16] of contrast functions. It is usually assumed in the analysis that all the sources

are identically distributed. Local stability is found to depend on the following nonlinear

moments

#i = Ef'0

(si)g �Efsi'(si)g (4.28)

and the variance of the separation solution is found to depend on

�i = Ef'(si)2g �Efsi'(si)g2: (4.29)

In [73] it is proposed that the following measure can be used as a performance criterion

� =
#
2
i

�i
: (4.30)

This measure is called BSS eÆcacy and it is independent of the scaling of estimating function

'. The BSS eÆcacy gives us an analytical way to compare contrast functions. The solution

maximizing BSS eÆcacy is given in [72] and Publication VII.

4.4.1 Estimating functions based on cumulants and absolute mo-

ments

The simplest choice for the symmetric and the asymmetric objective function is to use

the cumulant based kurtosis (2.25) and skewness (2.24). In Publication VII the cumulant

based objective functions are modi�ed to the absolute moments based objective functions

that possess more complicated theoretical properties but may in some cases have better
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performance in practice. The absolute moment [106] of the order q is de�ned by

�q(yi) = E fjyi � �jqg ; (4.31)

where � is the expected value of the distribution. The even absolute moments are equal to

the conventional central moments of the same order but the odd absolute moments cannot

be directly written in the terms of the central moments. In addition, we may de�ne the

skewed absolute moments by

�
�
q (yi) =E

�
(yi � �)jyi � �jq�1	 =

E fsign(yi � �)jyi � �jqg : (4.32)

Analogously to the absolute moments, the odd skewed absolute moments are equal to the

conventional central moments of the same order but the even skewed absolute moments

cannot be directly written in the terms of the central moments.

The kurtosis of a distribution with unit variance can be measured by the third absolute

moment

�3(yi) = E
�jyi � �j3	 : (4.33)

As a measure for skewness we can use the second skewed absolute moment

�
�
2 (yi) = E fjyi � �j(yi � �)g : (4.34)

Exploiting �3 and �
�
2 we may construct an ICA objective function. First, we �nd that for a

Gaussian random variable yi with � = 0 and �
2 = 1

�3(yi) =

Z 1

�1
jyij3 1p

2�
e
�y2i =2dyi = 2

r
2

�
� 1:59577 (4.35)

and �
�
2 (yi) = 0. Furthermore, we de�ne measures resembling the cumulant based kurtosis

and skewness

�
Æ
3 (yi) = �3(

yi � �

�
)� 2

r
2

�
(4.36)

�
Æ
2 (yi) = �

�
2 (
yi � �

�
): (4.37)
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Based on these measures the following objective function is proposed in Publication VII

��(yi) = !�;1j�Æ3 (yi)j+ !�;2j�Æ2 (yi)j: (4.38)

The expressions for the optimal weighting parameters, !�;1 and !�;2 and other details are

provided in Publication VII.

4.4.2 Gaussian moments based estimating functions

The cumulant based approach can be generalized to other suitable nonlinearities [72]. The

basic idea is that the objective function is a sum of the absolute values of symmetric and

asymmetric functions. The theoretical results for an arbitrary nonlinearities are diÆcult

to obtain and thus the validity of the objective functions must be checked in simulations.

We propose using the Gaussian moments as symmetric and asymmetric objective functions.

The Gaussian moments of order zero to three are de�ned by

G0(yi; b) = e
�by2i =2 � 1p

b+ 1
(4.39)

G1(yi; b) = �byie�by
2

i =2 (4.40)

G2(yi; b) = (by2i � b)e�by
2

i =2 (4.41)

G3(yi; b) = (3b2yi � b
3
y
3
i )e

�by2i =2; (4.42)

where b is a positive constant. The Gaussian moments form the basis of Gram-Charlier and

Edgeworth series [106]. Usually (4.39) is given in the form

G
�
0(yi; b) = e

�by2i =2: (4.43)

The rationale behind the constant � 1p
b+1

becomes obvious when we consider the expected

value of G0(yi) in the case where the distribution of yi is Gaussian (� = 0, �2 = 1)

E fG0(yi)g =
Z 1

�1
e
�by2i =2

1p
2�

e
�y2i =2dyi � 1p

b+ 1
= 0: (4.44)

In addition, we notice that the expected value of the asymmetric part equals zeroE fG1(yi)g =
0 because of the symmetry of Gaussian distribution.
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The nonlinearity in expression (4.43) may be employed as a robust ICA objective function

as proposed in [57, 56]. We propose the use of G0 and G1 as measures of the kurtosis and

the skewness in the ICA framework. We now de�ne theoretical measures for the kurtosis

and the skewness as follows



Æ
0(yi; b) = E

�
G0(

yi � �

�
; b)

�
(4.45)



Æ
1(yi; b) = E

�
G1(

yi � �

�
; b)

�
; (4.46)

where � is the expected value of yi and � is the standard deviation. The measures 
Æ0 and



Æ
1 are analogous to �4 and �3 in sense that they are zero for Gaussian distribution and in

general at least one of them is nonzero for other distributions. However, 
Æ0 and 

Æ
1 do not

measure the kurtosis and the skewness in the same sense as �4 and �3 or �Æ3 and �
Æ
2 . For

instance, the signs of 
Æ1 and �3 may di�er.

Now, the objective function based on Gaussian moments with b = 1 can be expressed as

�G(yi) = !G;1jG0(yi)j+ !G;2jG1(yi)j: (4.47)

The estimating function related to the objective function (4.47) and the derivative of the

estimating function are

'G(yi) = !G;1sign(

Æ
0 )G1(yi) + !G;2 sign(


Æ
1 )G2(yi) (4.48)

'
0

G(yi) = !G;1sign(

Æ
0 )G2(yi) + !G;2 sign(


Æ
1 )G3(yi): (4.49)

The statistic sign(
Æ0 ) has a similar role as the sign of the kurtosis has in many algorithms.

The sign of 
Æ0 is either known in advance, or more practically, estimated from the data for

each source.

4.5 Performance

Several simulations presented in the original publications demonstrate the reliable perfor-

mance of the proposed methods. Special attention is paid on the separation of asymmetric

source distributions. There are three types of design in the simulations examples: First,
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simple examples illustrate that the proposed methods can separate both sub- and super-

Gaussian sources. Second, it is shown that some widely applied algorithms fail in the

separation of asymmetric zero kurtosis sources but the proposed methods separate them

reliably. Third, it is demonstrated that the proposed methods may be highly bene�cial also

in the cases were the symmetrical properties are theoretically suÆcient for the separation.

The performance is measured quantitatively comparing the source signals and the separated

signals or comparing the inverse of mixing matrix and the estimated separating matrix. Sig-

nal to Interference Ratio (SIR(dB)= �10 log10(MSE), where MSE stands for Mean Square

Error MSE= E
�
(s(t) � y(t))2

	
) is calculated between the source signals and the scale, sign

and permutation adjusted separated signals. The matrices are compared using Performance

Index [5].

E1 =

mX
i=1

(

mX
j=1

jpij j
maxk jpikj � 1) +

mX
j=1

(

mX
i=1

jpij j
maxk jpkj j � 1); (4.50)

where P = (pij) =WA.

Figure 4.3 summarizes the performance in a simulation with six Rayleigh distributed

sources. The pdf of Rayleigh distribution is

f(x) =
x

�2
e
� x2

2�2 ; x � 0; (4.51)

where � is a scaling parameter. The results are similar to the results in the original pub-

lications. The score adaptive methods outperform the methods in comparison. The order

between the score adaptive methods depends on the particular source distributions. Usu-

ally, the methods using parametric models perform slightly better than adaptive estimating

functions.

4.6 Discussion

Methods for the ICA score function adaptation are proposed. The properties of these meth-

ods can be now summarized with respect to the design guidelines presented in the beginning

of this chapter. The Pearson system includes both symmetric and asymmetric distributions.

The extended Pearson system can also model multimodal distributions. The parameters of
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Figure 4.3: Boxplot of the SIR values of Pearson-ICA (boxplot number 1), EGLD-ICA with

moments (2), EGLD-ICA with L-moments (3), Absolute moments (4), Gaussian moments

(5) Original FastICA (contrasts 'Pow3' (6), 'Tanh' (7) and 'Gauss' (8)) , JADE (9) and

Extended infomax (10) algorithm. Six Rayleigh distributed source signals of length 5000

were mixed. The number of realizations was 1001. The presented SIR-values are the SIR-

values between the �rst source signal and its estimate; the SIR-values of the other source

signals are similar. The Pearson-ICA and the EGLD-ICA, which exploit also skewness,

perform very well: median SIR-values are 31.25 dB and 26.99 dB (27.63 dB with L-moments),

respectively. For Absolute moments and Gaussian moments median SIR-values are 18.28

dB and 23.19 dB, respectively. The median values for FastICA(Pow3) and JADE are 9.22

dB and 9.89 dB. The median SIR-values of FastICA(Tanh), FastICA(Gauss) and Extended

Infomax are under 4 dB.

the Pearson system can be estimated using method of moments. The EGLD also includes

symmetric and asymmetric distributions. The parameters of the EGLD can be estimated

using method of moments or method of L-moments. Because the cdf and the pdf of the

EGLD are not available in the closed form, numerical methods are needed in the parameter

estimation. Numerical methods are also needed in solving the EGLD score function. The

properties of the adaptive estimating functions depend on the chosen pair of estimating

functions. The estimates for the weighting parameters can be obtained as functions of sam-

ple statistics. The functional form of the estimating function is easy to compute and the

robustness depends on the chosen functions.

The limitations of the proposed methods are related to the chosen parametric model. It



56 CHAPTER 4. ADAPTIVE SCORE MODELS

is assumed that the source and the mixture distributions belong to the chosen parametric

family. If this is not true, the methods are still supposed to work if the estimated score

functions are close to the true score functions. The situation is similar to the case of the

�xed estimating functions that are supposed to perform the separation even if they do not

correspond to the true score functions. However, due to the adaptive score estimation it is

possible to separate a much wider class of source distribution than with any �xed estimating

function.

Simulation comparisons between the methods are easy to perform but it is sometimes

diÆcult to generalize the results. Many practical algorithms have tuning parameters that

make the comparison problematic. For instance, we have not used kernel density estimation

in the simulations because one can always argue that better results could be obtained with a

better choice of the kernel and other tuning parameters. The simulation results indicate that

the source adaptive concept is highly useful. Further, the simulations indicate that Pearson-

ICA, EGLD-ICA and the adaptive estimating functions are reliable implementations of the

concept.



Chapter 5

Summary

This thesis considers developing source adaptive methods for ICA and BSS. In BSS, blind-

ness means that neither the mixing system nor the source distributions is known. This

contradicts with the result that the score functions of the sources are needed for the optimal

maximum likelihood solution. In many widely used ICA methods, �xed estimating functions

are employed, which implicitly corresponds to the direct modeling of the source distributions.

More 
exible methods can be derived starting from the minimization of mutual information.

The usage of mutual information as a measure of independence leads to iterative estimation

of the score functions of the mixtures. The goal of this thesis is to develop widely applicable

adaptive ICA methods that can be implemented in a computationally eÆcient way.

Three adaptive approaches based on the Pearson system, the EGLD and adaptive esti-

mating functions are proposed for ICA. The Pearson system and the EGLD are parametric

families of distributions and they are used to model the distributions of the mixtures. Both

families have four parameters that can be estimated from the data using e.g. method of

moments or method of L-moments. The strength of these parametric families is that they

contain a wide class of distributions, including asymmetric distributions with positive and

negative kurtosis, while the estimation of the parameters is still a relatively simple procedure.

Adaptive estimating functions modeling the score function directly as a weighted sum of

two estimating functions are developed. The weighting parameters are iteratively updated

based on the data. The optimal weighting is solved using the concept of BSS eÆcacy.

The reliable performance of the proposed methods was demonstrated in extensive sim-
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ulations. In addition to symmetric source distribution, asymmetric distributions, such as

Rayleigh and lognormal distribution, were studied in simulations. The reliability of the

proposed methods was also demonstrated when the number of sources is large. The score

adaptive methods outperformed the methods in comparison due to their ability to adapt to

asymmetric distributions.

Future directions to continue the work of this thesis include applying the proposed score

models in recursive online algorithms and in nonlinear ICA. Especially, in post-nonlinear

ICA the estimation of the sources is even more essential than in linear ICA model.
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