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Abstract—We present a contextual clustering procedure for I. INTRODUCTION
statistical parametric maps (SPM) calculated from time varying . L . . .
three-dimensional images. The algorithm can be used for the URRENT t(_)mog_raphlc t_echnolog_'es n r_nedmal Imaging
detection of neural activations from functional magnetic reso- enable noninvasive studies of brain function by measuring

nance images (fMRI). An important characteristic of SPM is  hemodynamic changes related to changes in neuronal activity.
that the intensity distribution of background (nonactive area) The signal changes observed in functional magnetic resonance

is known whereas the distributions of activation areas are not. . : :
The developed contextual clustering algorithm divides an SPM imaging (fMRI) are mostly based on blood oxygenation level

into background and activation areas so that the probability of dependent (BOLD) contrast and are usually close to the noise
detecting false activations by chance is controlled, i.e., hypothesislevel [1], [2]. Consequently, statistical methods and signal av-
testing is performed. Unlike the much used voxel-by-voxel testing, eraging are frequently used to distinguish signals from noise in
neighborhood information is utilized, an important difference. the data. In most fMRI setups, images are acquired during alter-

This is achieved by using a Markov random field prior and . . i
iterated conditional modes (ICM) algorithm. However, unlike nating task (stimulus) and control (rest) conditions.

in the conventional use of ICM algorithm, the classification is ~ 1he anglysis of the ilm(.':lge series is frequently based on the
based only on the distribution of background. The results from computation of a statistical parametric map, and statistical
our simulations and human fMRI experiments using visual inferences derived from it. For example, a voxel-by-voxel

stimulation demonstrate that a better sensitivity is achieved with a computation of the difference of means of intensities between

given specificity in comparison to the voxel-by-voxel thresholding : :
technique. The algorithm is computationally efficient and can be control and task states normalized by the estimated standard

used to detect and delineate objects from a noisy background in €fTOr generates a statistical map that follows #tastribution
other applications. in the nonactive area, i.e., in the background. Correlation

Index Terms—Clustering, functional magnetic resonance imag- analysis [3}-[5], subspace modeling [6], Fourier, and wavelet

ing (fFMRI), hypothesis testing, segmentation, statistical parametric tranqurm methqu [31' [71,[8l, psgudogeneralized least squares
map. analysis using sinusoidal regression [9] and nonparametric Kol-

mogorov—Smirnov test [2] are examples of other approaches
used to create statistical maps. The general linear model [10]
is a general framework that includes the simplestatistic

and most other parametric tests. Significant active areas are
found by thresholding the maps. Methods that assess statistical
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tion [25]. In texture segmentation, pixel features are acquiredn 4 andng  the sizes of the task state (subindéx and
from a pixel neighborhood (see, e.g., [26]). A simple example control state sets (subindeéX).

of a method that utilizes classification information from dt is assumed that the signal level rises during activation and,
voxel's neighborhood is the median filtering of the thresttherefore, the expectation ef; is negative on active regions.
olded image [27]. In addition, the DPT techniques and spatialln nonactive voxels, it is reasonable to assume that intensity
filtering can be seen as methods that incorporate contextualwalues acquired during the task state and control state derive
formation into the analysis. An interesting option is to use tHeom the same Gaussian distribution. Hence tthalues follow
intensity value of a pixel and classification information fromhe ¢ distribution withns + ng — 2 DOF. If ny + ng — 2

the pixel neighborhood in the same stage of the classificatignlarge, the standard normal distribution approximation may
[25], [28], [29]. This approach can be realized in the contekte reasonable. Otherwise distributed values can be readily
of Markov random fields (MRF) [28]-[31]. MRFs regularizetransformed to Gaussian distributed values. By this we mean a
a classification by defining interactions between neighborimgyocess whereby new valuesare computed from the original
pixels. This idea has previously been proposed in the funealuesr;; using

tional brain-imaging context by Holmes [32]. An MRF model

is also used for the spatio-temporal analysis of fMRI data in Ti = Guorm|Pt(rit, df )], (2)

[33] and [34]. _ ) o )

In this paper, we present an iterative contextual analy41€€morm(«) is the normal inverse distribution function.at
method based on MRFs. The first step in the method is §'dp:(«; df) is the cumulative distribution function ferdistri-
compute a statistical parametric map using well-known resulytion withdf DOF.ata:. We will refer to a statistical parametr'lc
from general linear models. Then, the statistical parametfR@P computed using (1)famap and a map transformed using
map is clustered, i.e., segmented into nonactive and active (. @ 7 map. The transformation from the raw data values to
gions. The contextual clustering algorithm is based on Besar%:?t values is |II_ustrated in Fig. 1. It should be no'_[ed that, after
iterated conditional modes (ICM) algorithm [29]. However, ithe transformation (2), only the background region (area out-
our approach the ICM algorithm is modified for performin@'de activations) follows a Gaussian dlstnbuyor?. queyer, this
hypothesis testing by defining an artificial activation class. TH& 2@dequate because only the background distribution is needed
null hypothesis is that a voxel is nonactive. If the null hypothesi@ control false positive rates.
is rejected, the voxel is considered active. Simulations are usgd
to find false positive (i.e., false activation) rates for varying"
parameter values of the algorithm. This allows classification soFollowing the generation of amap, the goal is to recognize
that the probability of false positives is controlled. the active regions from the background. The statistical proper-

In Section Il, the contextual clustering rule is derived. In Sedes of activation classes are unknown but a statistical characteri-
tion Ill, the method is tested using simulated and measur&ation of the background class is available. A hypothesis testing
fMRI data to demonstrate the usefulness of the approach. Taproach is used to deal with this kind of classification problem.
method is discussed and conclusions drawn in Section IV. In the present case, the null hypothesis is that the voxel under

consideration is from the background class.

II. ALGORITHM In a standard one-tailed test of a null hypothesis, the null
hypothesis would be rejected, and a voxel would be classified
as active, if the statistical value of a voxel were significantly

In considering the contextual clustering algorithm, a stamaller than zero. The method presented here is different be-
tistical parametric map can be computed using any existinguse the spatial information from the voxel neighborhood is
method as long as the resulting distribution in nonactive voxedslditionally used.
can be transformed into a standard Gaussian distribution. Fotn order to develop a contextual testing method, a hypothet-
the purposes of this study, an unpaired Studergtatistics with ical activation class, or rejection class, is defined. The class de-
pooled standard error is adequate [35]. Let {i1,42,...,4,} termines a critical region corresponding to an “unlikely event”.
be the set of sites, or voxels, of the statistical parametric mafoxels whose characteristics are “closer” to the rejection class
In voxeli € I, the test statistics can be defined as shown in (fjan the background class violate the null hypothesis and are put
at the bottom of the page, where into the rejection class and considered active.

X,, andX ;5 means of the observed intensity values in The background class is known to follow standard normal

the corresponding voxels of the original(N(0, 1)) distribution from (1) and (2). Herey (11, o2) defines

Contextual Clustering

A. Computation of a Statistical Parametric Map

. . time-varying image; a Gaussian distribution with meanand variancer?. We must
62, andé?y  estimated variances; set certain requirements for the rejection class. At this stage,
Xﬁ,B - X7A

Tit = N = ’ (1)
\/(((HA — 107y + (ng = 1)67)/(na +np — 2))((1/n.4) + (1/n8))
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Fig. 1. (a) Probability density functions of fictional Gaussian control state data centered at value 500 (solid line) and task state data caloeE2bgtiotted

line). 64 = 65 = 100. (b) Probability density functions of the background voxels (solid line) and of the activation voxels (dotted line) after transformation to
statistics when the degrees of freedom (DOF) is 18. Background voxels fotl@tribution and activation voxels noncentralistribution. “Gaussianization” can

be used to transform thtedistributed values so that the background voxels follow Gaussian distribution. The difference between the means of the background and
activation distributions after the “Gaussianization” is defined to be the separationsvalue

suppose that there is no contextual support toward either atass andn = 1 the activation class. Correspondingly, let=

cepting or rejecting the null hypothesis. Then, in a conventiondlrepresent the case that the vokékelongs to the background

hypothesis testing, a null hypothesis is rejected at voxet; andk; = 1 the case that the voxeis active. Letf(r;|k;) be the

is smaller than a user specified threshealdrhis is equivalent conditional class density that the voxdias value;, given that

to the maximum likelihood classification when the backgrourtthe true class i&; . Let P(k; [k n\ ;) be the conditional prior prob-

class followsN(0, 1) and reject class followsV(2a,1). It is ability (i.e., the probability before the measurement information

assumed, therefore, that the rejection class follows(2q, 1) r; is considered) of the clags at voxeli when the classifica-

distribution, which guarantees that the rejection probability witlon in all other voxel locationk \; is given. Letky; represent

be a monotone increasing function @f The definition of the the classification in the neighborhood of voxelnd P(k; |ks;)

rejection class is required to formulate the testing problem ada the conditional prior probability of the clags at voxels.

classification problem. The detection problem is now reduc&hndom variabl& is a (locally dependent) MRF if

to a two class-segmentation problem that can be solved using

standard methods. The ICM algorithm by Besag will be adopted P(K; = kilkpy;) = P(K; = kilko:). (4)

[29]. The derivation of the ICM is now briefly reviewed and aftefyence | the fundamental idea behind the MRF in activation de-

that, itis adapted to the case under discussion, in which only #a@yio1, js that the prior probability distribution for activation at

background distribution is known. o avoxel is specified conditionally on the activation pattern in the
A neighborhood sphere of orderof voxeli is defined as neighborhood of that voxel.

Let r represent the vector of alis. It is assumed that the

9 _fs . G 5 \2 s i2 " . " .
N ={j €T:0Z (ix —Jo)” + (by — Jy) values of the statistical parametric map are conditionally inde-
+ (. — j=)* < g}, (3) pendent so that the conditional densityrd
wherei,, iy, 4. andj,, j,, j. define thex, y, andz coordinates I(r]k) = ﬁ Flrilk). (5)
of the voxel siteg andj. Voxels whose center point is inside i} 7'7’

the neighborhood sphere, excluding voxdkelf, define agth

order neighborhood. In three dimensions, the first-order neigi€nerally, in the maximura posterioriprobability based seg-

borhood consists of the six nearest neighbors of each voXBgntation of the image, the segmentatiok is selected so that
iheq posterioriprobability P(k|r) is globally maximized. This

the second-order neighborhood consists of the eighteen neal 4 ) s
neighbors, and third-order neighborhood consists of the PE°Plem can be solved by applying Bayes' rule and maximizing

nearest neighbors. In this paper, the third-order neighborhood P(k|r) o I(r[k)p(k) (6)
is used, although other neighborhoods are also possible.

Certain definitions and the concept of the MRF [29]-[31] areherep(k) represents prior information that is in our case a
presented now. LeK be the random variable representing thiarkovian prior.
true classification of the image, akdts realization. LetK; be The ICM algorithm can be used to find a local maximum of
the random variable representing the true classification at voxé) through the following steps: 1) Initial classification is chosen
i, andk; its realization. Letn = O represent the backgroundso thatf(r;|k;) is maximized at each voxélseparately; 2) the
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classification is updated at each voxel so that the new class Nélsens = 0, (12) yields the context-free thresholding rule that
maximum conditional probability, given the valtgand current is also used to initialize the classification. Later in this paper,
classification in the neighborhood of voxglthat isks;. The we will refer to the value of the normal cumulative distribution

probability to be maximized at voxelis function ata as a nominal alph&x,, ).
. . Equation (12) is intuitively appealing. The left part of (12)
P(kilr,kp;) o< f(ri|ki)pi (kilKai)- (7) can be understood as a contextually corrected location on the

null distribution. When the majority of the neighboring voxels
Step 2) is repeated until the classification does not changeb&iong to the background, the location is moved to the right on
begins to oscillate between states. the distribution; in other words, to a less significant position.
The Hammersley-Clifford theorem [30] states that an MR®hen the majority of the neighboring voxels belong to the re-
can be written as a Gibbs field, provided that no segmentatifttion class, the location is moved to the left on the distribution.
has a probability equal to zero, as follows: In order to avoid certain unwanted effects, such as the
growing of nonconvex regions, the values that the parameter
[ may have must be restricted. Through the paramgtéhe
- Z Ve(k) (®) trade-off between segmentation accuracy (error rates near the
ecC edges of activations) and weighting of contextual information
can be adjusted. For example, if we set

P) = 2 expl-U(K)] = 7 exp

where
U  energy function; 9
C  setof cliques; 8= @ (13)
V.  potential associated with the clique 6
Z  being the normalization constant. we require that at least 19 of the voxels in the neighborhood of a

Aclique is a set of voxels that are neighbors of one another. Wgckground voxel are classified in the rejection class before the
restrict our attention to the potentials between two neighborimckground voxel falls in the rejection class with probability
voxels, i.e., to the doubletons. One-site cliques, i.e., the singig-0.5 or higher. For example, imagine a voxel with = 0
tons, can be ignored by assigning the value zero to their poten§iglrounded by 19 active voxels. When condition (13) is used,
functions. Let the potential be zero when both voxels of a cliqyge |eft part of (12) reaches the decision levelAccording to
belong to the same class, afidtherwise. Then, consider twooyr experiments, (13) ensures good segmentation accuracy and
realizations which differ only at voxel From (8), the condi- prevents unwanted filling effects. By substituting (13) into (12),
tional prior probability of class» at voxeli is derived as the following rule used iteratively in most of our experiments is
ultimately derived:
pi(m|kai) o< exp [Bu;(m)]

. ﬁ A~ _ < a= I;'z =1
wherew;(m) is the number of neighbors of the voxehaving Tt [i:(1) = 13] { >a=k =0. (14)
classm. The class densities are defined to be Gaussian, i.e.,

The propagation of data through the analysis is illustrated in

1 —(ri — unl)? (10) Fig. 2. There are two important aspects in the implementation

270

Flrilm) = ———

202, of the algorithm. The first is the order in which the voxels are
updated. The second is how the border voxels of the image ma-
By using (9) and (10), ana? = 2 , we find that (7) is maxi- trix are handled. The results presented in this paper are based on

m?

exp [

mized when the class for voxels is chosen so that synchronous updating, in which all voxels are updated simulta-
neously, unless otherwise stated. For clarity, one updating of all

%(m — i )% — Bisi(m) (11) voxels will be refered to as a cycle because the term “iteration”

20 is occasionally used to refer to the updating of one voxel in a

is minimized. Herei; (m) is the number of neighborhood voxelsSeduéntial updating. Regarding behavior on image borders, it

currently classified to class. Positive encourages neighbors!S @ssumed that voxels outside the image volume belong to the

to be of the same class. background. . . s .
Besag [29] applied the ICM algorithm exclusively for two-di- Concern could be raised about detection of activation regions

mensional images. However, it extends readily to three-dimeffith @ mean of less thau, and/or variance different from one
sional (3-D) images by simply defining; () in three dimen- and/or type of distribution that is non-Gaussian. The decision

sions. Three-dimensional variations of the ICM algorithm haJ&!€ (12) provides a partial answer to this problem. Consider an

been used earlier, for example in the segmentation of structufglivation region whose median value is smaller thaDuring
MR brain images in [36], [37]. By minimizing (11) in three di-the initialization, the majority of the voxels are classified as ac-

mensions using a third-order neighborhood and usigg- 0, tivg. Thereafter, inside the activation'reg.ion, the majority of the
1 = 2a, ando? = 1, the following contextual classification neighboring voxels belong to the activation class and the use of
rule is derived: (12) classifies more voxels to the activation class.
In hypothesis testing, the two central questions are: 1) What
8. <a=k=1 is the probability of classifying a truly nonactive voxel to the
ri+  [i(1) — 13] { >a= b =0. (12) " ctivation class with given (probability of Type I error); and
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Fig. 2. Computation of a map and contextual clustering of it.
2) what fraction of the activation voxels are identified with given . ‘ . ﬂ
a (power of the test)? These issues are discussed in Section Il
Slice 9 Slice 10 Slice 11 Slice 12 Slice 13

I1l. EXPERIMENTS

A. Simulated Data ﬂ ﬂ D E ﬂ

Simulation studies were carried out usingmaps of 32

. . B Slice 14 Slice 156 Slice 16 Slice 17 Slice 18
x 32 x 32 voxels in size. The maps were generated using
the following procedure. First, a 64 64 x 64 background n . ' -
image with mean zero and variance one was generated usin
the Gaussian pseudorandom number generator of Matlab 5., 1 Siice 20 Slice 24 Slice 22 Siice 23

(The MathWorks, Inc., Natick, MA). In order to take spatial

correlations into account, this image was filtered and sampl€d. 3. Fifteen spatial levels of the simulated activation image32 xs 32

to the size of 32« 32 x 32 image using the method that willbel>‘e & 37, A 1o Py e ey The ctuatn o & ecrels sonore

described and used in Section IlI-C. Activation was model&@ntered at (17,15,15), radius 3.5.

using a discrete sphere centered at (15,15,15), radius 6.5, inside

which a smaller empty sphere centered at (17,15,15), radius

3.5 (Fig. 3) was located. At the voxel locations defined b§egmentation was achieved by thresholding the volume using

this sphere, intensities were replaced by values drawn fr@n intensity threshold of 120. The result of the segmentation

an activation distribution (Gaussian or uniform) having & used as a visualization aid in Fig. 9. Finally, a simple linear

mean—s,. Various values were given t@,. The number of detrending (baseline correction) was conducted for each voxel.

activation voxels was 986 while the remaining 31782 voxelBhe first three samples of each control state and the first sample

were assigned to the background. of each task state were not included in statistical analysis to
account for the delay in the hemodynamic response.

B. Measured Data

The magnetic resonance imaging of a volunteer w&s Estimation of False Positive Probabilities

performed with a 1.5-T Siemens Magnetom Vision system An estimate was made of the probabilities of classifying
(Siemens, Erlangen, Germany) using a gradient-echo echlite voxel to the activation class under the null hypothesis, i.e.,
planar (EPI) sequence (TE 76 ms, TR 2.4 s, flip anglé, 90voxel-wise false positive ratégpr), and the family-wisg prs,
field of view 256 x 256 mm, matrix size 64« 64, 16 slices, i.e., the probabilities of falsely detecting an activation in a
slice thickness 3 mm, gap 1 mm), and a standard head coilwhole volume. It is assumed that the intensity values ofaps
checkerboard visual stimulus flashing at 8 Hz rate (task cofellow standard normal distribution when no activations exist.
dition, 24 s) was alternated with a visual fixation marker on @his is the usual assumption made, which is normally well
gray background (control condition, 24 s). In total, 110 samplestisfied (see, e.g., [13]), although deviations from normality
(3-D volumes) were acquired. The brain was segmented frare possible [38].

the EPI slices to enable identification of voxels belonging to Although normality is assumed, the spatial independence of
the brain volume. The brain was assumed to remain at a fixém noise is not. We now describe the estimation procedure for
location during the scanning, so it was considered sufficient tioe voxel-wise false positive rates presented in fMRI context by
segment only one volume. The sample number 60 was selecteatmanet al. [12]. Both a 2-D and 3-D correlated noise were
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ESTIMATED VOXEL-WISE FALSE POSITIVE RATES (fpr) IN AN IMAGE WITHOUT ACTIVATIONS

an | a | N [ No filt. | fuop=02] fu20=04] fu2p =061 fu3p =06
0.05 | —1.645 [ 15000 || 0.00000009 | 0.00000009 | 0.00000007 | 0.00000010 | 0.00000015
0.07 | —1.476 | 15000 || 0.0000015 | 0.0000015 | 0.0000014 | 0.0000016 | 0.0000024
0.09 | —1.341 | 15000 || 0.000011 0.000011 0.000011 0.000013 0.000020
0.11 | —1.227 | 5000 | 0.000051 0.000052 0.000053 0.000062 0.000104
0.13 | —1.126 | 5000 | 0.000183 0.000183 0.000192 0.000226 0.00042
0.17 | —0.954 | 1000 0.00131 0.00131 0.00142 0.00175 0.00360
0.21 | —0.806 | 1000 0.00589 0.00593 0.00675 0.0086 0.0173
0.25 | —0.675 | 400 0.0201 0.0204 0.0243 0.0310 0.0546
029 | —0.553 | 400 0.0574 0.0583 0.0706 0.0847 0.1199

N is the number of simulated (random)maps used in simulations.
fw.n-p IS the standard deviation ef-dimensional Gaussian filter used to create spatial correlations.

TABLE I
ESTIMATED PROBABILITY OF DETECTING AT LEAST ONE FALSE POSITIVE
VOXEL IN A =z MAP OF64 X 64 X 16 VOXELS

D. Simulations

The simulated: maps were clustered usiag, = 0.05, 0.09,
0.13, 0.21, 0.29, 0.37 that correspondutes — 1.64,—1.34,

cn f.lNlOt . Ji‘é%’ 35’3 Q(fg —1.13,-0.81, —0.55, —0.33, respectively. Parametgr had
005 T 0007 10007 T 0007 | 0008 valugﬁ = a?/6in all experlments,lgxcept in the test Wlth a
0.06 | 0.028 1 0.028 | 0.028 | 0.032 modified /3. The number of false positive voxels detected in 500
0.07 | 0.09 [ 0.09 | 0.10 | 0.11 simulations were counted for eaehand divided by the number
008 025 | 025 | 025 | 0.28 of truly nonactive voxels (50& 31 782) to estimate voxel-wise
009 ] 051 | 051 | 0.52 | 0.55 probabilities for false positive&). The probabilities for false

fwn-p is the standard deviation of-dimensional
Gaussian filter used to create spatial correlations.
Each result is based on 30000 simulate Bvaps.

negatives(e; ) were computed in a similar fashion. The error
rates for thresholding were computed in the same way, but the
used threshold values were computed by taking the inverse

modeled. Inthe 2-D case, 128128 x 16image was constructed©f the normal cumulative distribution function at of contex-
using a pseudorandom number generator producing normdH§! clustering. Thus, the, were evaluated using the same
distributed numbers with mean zero and unit variance. The slid86 both thresholding and contextual clustering. In certain sim-

of the image were filtered with two-imensional Gaussian filrgflations, the spatial filtering was used to mimic the spatial cor-

of standard deviatiof f,, »-» voxels to approximate spatially relat!ons of the _fMRI data. The _results are shown in the form of
’ ceiver operating characteristic (ROC) curves. The curves re-

stationary and continuously differentiable autocorrelation funﬁ—; t the trade-off bet ity and it
tion of statistical parametric maps. The size of the convoluti ctthe trade-off between sensilivity and specificity.
First, simulations were made using a Gaussian distribution

matrix was 5x 5 voxels. To decrease the effect of pixelation L . .
x P model for the activations with four different means (=0.5,

the filf[ered 128x 128 x 16 image was decimated to 6464 %_5 2.5,3.5) and unitvariance [Fig. 4(a)(d)]. Whemwas very
% :.LG image by taking the mean Vf""“e of each fOUI‘.-V(.)X6| blo.cs'mall, both the thresholding and contextual clustering failed to
This procedure returns the effective standard deviation of f||t(are tect the activation at a reasonatjeConversely, whes, was
tq f.'Ll“’Q'D vogelts. I;; izl:; n%'i? correlauo?ltwasdcrgtﬁte(; n \?ery high, thresholding similarly performed well. The largest
simriarway, buta x o5 Image was fiitered with a difference in performance was found with intermedigteThe
5 x 5 Gaussian filter of standard deviati@fi,, 3-p voxels and discrepancies between thein Fig. 4 andfprs in Table | were

dec_imated using ei_ght—v_oxel blocks. Inrelated fMRI s_tudies_, Nfe to the higher error probability near the activation edges than
estimated correlations in planes corresponded to filter widtps 5, empty image. This effect is noticeable when the fraction

Jw,2-p < 0.6[12],[38]. This is consistent with our findings and ¢ ihe edge voxels from the volume is high.
we performthe estimation of false positive rates and other studie$, ihe subsequent simulation, a non-Gaussian distribution
using fu,-p < 0.6. Because the correlation indirection is - model for activations was used [Fig. 4(e)—(f)], whereby two
likely to be at most the same as it is within planes, a 3-D filtgt 53;ssian densitiess{, = 1.5, s,, = 3.5) formed a single
fuw,3-p = 0.6 is used to represent the worst case. mixed, non-Gaussian density,( = 2.5). The detection rate
The filtered images were scaled into normal deviates and f@@ds between the cases of Fig. 4(b) and (d). It can be seen that
to the contextual clustering algorithm. The estimated voxel-wigge correlation in the noise slightly lowered the power of the
false positive rates with different,, and filter widths are tabu- contextual clustering.
lated in Table I. The corresponding results for obtaining at leastSubsequently, the experiments were conducted using a
one active voxel in the whole volume are tabulated in Table Gaussian distribution with differing variances and uniform
The number of significant digits presented for the estimatesdistributions with varied intervals (Fig. 5). Although the dif-
these tables was selected so that the difference between rfidnences in power between contextual clustering and thresh-
imum and maximum of 95% confidence interval was at mostding decreased as the variance increased, they still existed.
4 units of the least significant digit for that estimate. As the variance increased, the of contextual clustering and
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mixed-density case.
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Fig. 5.

ROC curves for the simulated activation following Gaussian distribution with varied variances and uniform distribution with varidd.isgerva.0 in
all cases. Solid lines refer to contextual clustering and dotted lines to thresholding. (a) Gaussian distribution with varied standardodengetorefer tor =
20,x tooc =2.0,+ tooc = 1.0,x too = 0.5,0 to o = 0.05. (b) Uniform distribution with varied intervals.marks: interval {10, 6]; x:I [—4,0]; +: interval
[—2.5; —1.5]; andx«: interval [-2.6,—2.4].
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ROC curves for modified algorithms. Solid lines with circle marks refer to unmodified algorithm«? /6 and uniformly weighted neighborhood) and

dotted lines to modified algorithm. In all cases, the simulation activation follows Gaussian distribution with unit variaac2,0. In (a), the dotted line refers to
a distance weighted neighborhood; in (b), to varled marks:3 = a?/4; +: 8 = a?/9;*: 3 = 0.4; ando: 3 = 0.9.

thresholding approached the value 0.5. The type of activatiparedtay,,i.e.,tothe parametet Itisrecommended, therefore,
distribution (Gaussian vs. uniform) does not seem to have a silgat the paramete? be related to the parameteis in (13).
nificant effect on the results. As an illustrative example, results using a Gaussian noise dis-

Finally, tests were made using amodified contextual clusteritripution for background and activatios,( = 1.5) with unit
algorithm. In Fig. 6(a), the results were obtained using a distang&riance are shown in Fig. 7. The simulatednap is shown
weighted neighborhood. The second-orderandthird-orderneigh+ig. 7(a). When the testing was performed by thresholding
bors were downweighted by a factorg® andv/3, respectively. thez map, only a few voxels of the activation were recognized
Next, testsusingamodifigtivere performed[Fig. 6(b)]. The dif- [Fig. 7(b)]. Fig. 7(c) shows the initialization image,( = 0.21)
ferences betweefi = a?/4,a%/6,a?/9 were not particularly for the contextual clustering, Fig. 7(d) shows the clustering after
large. Whens had a fixed valuef = 0.4, 0.9) andy,, was suf- the first cycle, and Fig. 7(e) after the second cycle. After the
ficiently large(«,, > 0.21), the activation was detected in mostenth cycle [Fig. 7(f)], the clustering converged. This image
cases but the empty space inside the activation object was filleds approximately the sanfer (see Table 1) as the image in
The reason for this was that the paramét@vras too large com- Fig. 7(b) but the sensitivity is better.
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follow a Gaussian distribution with unit varianeg, = 1.5. (b) Thresholded map with false positive ratgépr =~ 0.006, T' =~ —2.52. (c) Initialization image for
contextual clustering ~ —0.806. (d) Contextual clustering after the first cycle. (e) Contextual clustering after the second cycle. (f) Contextual clustering after
the tenth cycle (convergence)pr =~ 0.006. In (b)—(f), the activation voxels erroneously classified as background are shown as light gray.
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Fig. 8. Detection of simulated activations following Gaussian or uniform distribution. (a) nithegp, the distribution of the activation is Gaussianinrows 1to 5
and uniform in rows 6 to 8. The standard deviation is 0.25, 0.5, 1.0, 2.04000722, ~ 0.5774 and~ 4.6188 inrows 1, 2, 3, 4,5, 6, 7, and 8, respectively. The
widths of uniform distributions are 0.25, 2 and 16 in rows 6, 7, and 8, respectively. The mean of the activagioraries column-wise as 1, —2,—3,—4, and
—5, starting from the left. (b) Thresholdednap( fpr = 0.006, T = —2.52). (c) Contextually clustered map( fpr ~ 0.006, a ~ —0.81). (d) Thresholded
zmap(fpr ~ 1.5 x 1075, T ~ —4.67). (e) Contextually clustered map(fpr ~ 1.5 x 107%, a ~ —1.48).

In Fig. 8, an image with several activation objects followinghresholding technique [Fig. 9(e)]. In other words, when the acti-
several distributions is clustered using two different significansgtions are weak, or themap is computed using a small number
levels. It can be seen that the contextual clustering is more semgisamples, the contextual clustering has more acute sensitivity
tive than the thresholding regardless of the type and variance dfian the thresholding technique. This resultis consistent with the
distribution. It should be noted that the behavior of the contextuaisults obtained using the simulated activation.
clustering algorithm is local. Therefore, the existence of activa- The experiments were repeated using sequential updating of
tion in one location does not affect the results at distant locatioitise class values. The results were very similar with synchronous
Moreover, by dividing the Fig. 8(a) into 40 regions, each havingpdating. When all time samples were used to compriteap,
one activation object, and clustering each region separately, iR% active voxels out of the original 1431 changed to nonactive

likely that the same result as in Fig. 8 would be obtained. voxels, and two nonactive voxels out of 64 105 changed to ac-
. tive. When every sixth sample was used, 29 active voxels out
E. Measured fMRI Data Studies of 551 changed to nonactive, and four nonactive voxels out of

Fig. 9(a) illustrates the computeadnap of the measured fMRI 64 985 changed to active. However, the false positive rates (Ta-
study. The activation of the visual cortex can be seen on the |kes | and Il) should be re-estimated if sequential updating (or
part of the slices. In Fig. 9(b), the threshold is set to the val@her modification) is used.

T = —4.24, which corresponds fftpr = 0.00001. In Fig. 9(c),
the contextual clustering is applied to thenap with decision
parameter value = —1.341, which similarly corresponds to
fpr = 0.00001. With the high number of repetitions, the thresh- The utilization of contextual information was studied for the
olding technique finds the core of the activation while the conteanalysis of fMRI data. The approach consisted of two phases:
tual clustering appears to find the weaker outer areas, too. Haemputation of a statistical parametric map and activation detec-
ever, itis difficult to determine which one of the results is morgon by contextual clustering. The iterative clustering algorithm
accurate. In Fig. 9(d)—(f), only every sixth sample (in time) wasresented in this work is based on Besag’s ICM algorithm [29].
used. In these cases, significantly larger activation areas wérer contribution has been to apply and evaluate the ICM in the
detected using contextual clustering [Fig. 9(f)] than using trmntext of hypothesis testing and statistical parametric maps.

IV. DIScuUsSION ANDCONCLUSION
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Fig. 9. Analysis of visual fMRI studyfpr =~ 0.00001 in all cases. (ay map of the entire datdy = 42 + 45, (b) = map of the entire data thresholded,

T ~ —4.24, (c) = map of the whole data contextually clustereds: —1.34 (d) = map of the partial datdy = 7 + 8, (e) = map of the partial data thresholded,

T ~ —4.24, and (f)= map of the partial data contextually clusteredss —1.34. Although the brain slices are visualized here in planes, the data are analyzed in
three dimensions.

The results presented here demonstrate that the context-fiaees, the types of distributions and potential paraméters
thresholding is more sensitive to random noise than is context@averal methods to estimate the parameters from data have been
analysis. Better sensitivity was achieved with contextual clusuggested. Besag suggests the estimation of unknown parame-
tering. However, a strong spatial dependency in the noise tet@ns/, 1., o, during the iterations of ICM [29]. At each cycle,
may increase the error rate. The results show that the spatial ne-parameters are updated so ll@a|1f§; tm, O ) and the pseu-
tocorrelations present in a typical fMRI study contribute little talolikelihood ] [, ; p: (ki|ka;; 3) are maximized. Examples of
the results. The effect is small particularly for family-wise testhiow the number of classes might be estimated are provided in,
The spatial correlations may be more significant for smalléor example, [39]-[41].
voxel size or for otherimaging modalities, for example, positron A contextual approach based on MRFs and Gibbs sampler was
emission tomography (PET). used by Holmes [32] to segment statistical parametric maps com-

Unlike median filters or spatial extent based methods, tipaited from PET data. One conclusion of [32] was that the ap-
contextual method presented here allows the possibility to ppgoach is less powerful than the thresholding test. However, the
serve the smallest activations if the focal significance is sufsts were not “tuned” to the same significance level and spatial
ficiently high. Furthermore, spatial smoothing or other proceorrelations in the noise of the simulated PET data were large.
dures that result in a loss of information are not required. In a related paper, spatio-temporal fMRI analysis by De-

An alternative to the hypothesis testing approach would beseombeset al. utilizes contextual information and MRFs [33],
maximum probability classification. This should include the e$34]. The main conceptual difference between the method of
timation of the number of activations classes, their means, vabiescombet al. and the method presented here is that the
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former performs data restoration and analysis for the original[5]
spatio-temporal fMRI data while the latter clusters a standard
statistical parametric map. An advantage of the spatio-temporal
analysis is that it uses more data and works on the original[6]
spatio-temporal data. In addition, simulated annealing (SA)
optimization algorithm was used to find the global maximum

of the objective function in [33], [34]. The ICM algorithm pre- [7]
sented here converges to a local maximum (or with synchronous
updating, may start oscillating between states). As a result 01‘[8]
the use of the computationally demanding SA algorithm and
original four-dimensional data, the spatio-temporal method is[9]
slower than the method presented here. A strong point of ICM
is the exclusive dependence on local image characteristics. For
fMRI data, the ICM algorithm converged in ten cycles. The
small number of cycles assures that a deviating data distributidi”
(either due to an activation or artifact) at one location does not
increase the false positive probability or reduce the power a[tl 1
distant locations.

The algorithm using Matlab 5.3 was implemented. On a Pen-
tium 111/500 MHz PC, the contextual clustering, after the com-[12]
putation of az map, took on average about 4 s CPU time for a
64 x 64 x 16 volume. Compared to the 5 s of CPU time needed
to compute the map from 110 volumes (without preprocessing [13]
steps), this is a tolerable addition. Computational efficiency al-
lows the data-analysis to be performed on-line to monitor thei14]
progress of imaging. The algorithm is highly parallel when the
updating is carried out simultaneously on all voxels. This Prop1ss)
erty allows the algorithm to run yet more efficiently on a com-
puter with a parallel architecture. [16]

The results indicate that the power of the developed contexy ;)
tual algorithm is superior to that of conventional voxel-by-voxel
thresholding of a statistical parametric map. Although fMRI
data were used to test the algorithm, the construction of thﬁg]
algorithm is general and it can be used to detect objects wit
unknown distribution from a known background distribution in 9]
other similar problems as well.
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