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Contextual Clustering for Analysis of Functional
MRI Data
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Abstract—We present a contextual clustering procedure for
statistical parametric maps (SPM) calculated from time varying
three-dimensional images. The algorithm can be used for the
detection of neural activations from functional magnetic reso-
nance images (fMRI). An important characteristic of SPM is
that the intensity distribution of background (nonactive area)
is known whereas the distributions of activation areas are not.
The developed contextual clustering algorithm divides an SPM
into background and activation areas so that the probability of
detecting false activations by chance is controlled, i.e., hypothesis
testing is performed. Unlike the much used voxel-by-voxel testing,
neighborhood information is utilized, an important difference.
This is achieved by using a Markov random field prior and
iterated conditional modes (ICM) algorithm. However, unlike
in the conventional use of ICM algorithm, the classification is
based only on the distribution of background. The results from
our simulations and human fMRI experiments using visual
stimulation demonstrate that a better sensitivity is achieved with a
given specificity in comparison to the voxel-by-voxel thresholding
technique. The algorithm is computationally efficient and can be
used to detect and delineate objects from a noisy background in
other applications.

Index Terms—Clustering, functional magnetic resonance imag-
ing (fMRI), hypothesis testing, segmentation, statistical parametric
map.
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I. INTRODUCTION

CURRENT tomographic technologies in medical imaging
enable noninvasive studies of brain function by measuring

hemodynamic changes related to changes in neuronal activity.
The signal changes observed in functional magnetic resonance
imaging (fMRI) are mostly based on blood oxygenation level
dependent (BOLD) contrast and are usually close to the noise
level [1], [2]. Consequently, statistical methods and signal av-
eraging are frequently used to distinguish signals from noise in
the data. In most fMRI setups, images are acquired during alter-
nating task (stimulus) and control (rest) conditions.

The analysis of the image series is frequently based on the
computation of a statistical parametric map, and statistical
inferences derived from it. For example, a voxel-by-voxel
computation of the difference of means of intensities between
control and task states normalized by the estimated standard
error generates a statistical map that follows thedistribution
in the nonactive area, i.e., in the background. Correlation
analysis [3]–[5], subspace modeling [6], Fourier, and wavelet
transform methods [3], [7], [8], pseudogeneralized least squares
analysis using sinusoidal regression [9] and nonparametric Kol-
mogorov–Smirnov test [2] are examples of other approaches
used to create statistical maps. The general linear model [10]
is a general framework that includes the simplestatistic
and most other parametric tests. Significant active areas are
found by thresholding the maps. Methods that assess statistical
significance levels based on the spatial extent of the activation
cluster after intensity thresholding have been developed to
improve sensitivity [11], [12]. Because the spatial extent must
exceed a threshold, these methods are occasionally known as
dual-parameter thresholding (DPT) techniques [13]. It should
be noted that the fMRI time series may be temporally correlated
and that the general linear model has been extended to deal
with temporal correlations [14], [15]. Several preprocessing
steps such as motion correction and temporal filtering are
frequently performed before the data analysis. In particular,
spatial filtering is frequently used to increase signal-to-noise
ratio and validity of inferences based on the theory of Gaussian
fields [13], [15], [16].

In addition to the above mentioned inferential data analysis
approaches, several methods that emphasize the exploratory na-
ture of the problem have been proposed. These methods in-
clude independent spatial component analysis [17], principal
component analysis [18], [19], and clustering of the time series
[20]–[24].

A single activation region typically consists of numerous
voxels. Hence, it may be useful to utilize contextual informa-
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tion [25]. In texture segmentation, pixel features are acquired
from a pixel neighborhood (see, e.g., [26]). A simple example
of a method that utilizes classification information from a
voxel’s neighborhood is the median filtering of the thresh-
olded image [27]. In addition, the DPT techniques and spatial
filtering can be seen as methods that incorporate contextual in-
formation into the analysis. An interesting option is to use the
intensity value of a pixel and classification information from
the pixel neighborhood in the same stage of the classification
[25], [28], [29]. This approach can be realized in the context
of Markov random fields (MRF) [28]–[31]. MRFs regularize
a classification by defining interactions between neighboring
pixels. This idea has previously been proposed in the func-
tional brain-imaging context by Holmes [32]. An MRF model
is also used for the spatio-temporal analysis of fMRI data in
[33] and [34].

In this paper, we present an iterative contextual analysis
method based on MRFs. The first step in the method is to
compute a statistical parametric map using well-known results
from general linear models. Then, the statistical parametric
map is clustered, i.e., segmented into nonactive and active re-
gions. The contextual clustering algorithm is based on Besag’s
iterated conditional modes (ICM) algorithm [29]. However, in
our approach the ICM algorithm is modified for performing
hypothesis testing by defining an artificial activation class. The
null hypothesis is that a voxel is nonactive. If the null hypothesis
is rejected, the voxel is considered active. Simulations are used
to find false positive (i.e., false activation) rates for varying
parameter values of the algorithm. This allows classification so
that the probability of false positives is controlled.

In Section II, the contextual clustering rule is derived. In Sec-
tion III, the method is tested using simulated and measured
fMRI data to demonstrate the usefulness of the approach. The
method is discussed and conclusions drawn in Section IV.

II. A LGORITHM

A. Computation of a Statistical Parametric Map

In considering the contextual clustering algorithm, a sta-
tistical parametric map can be computed using any existing
method as long as the resulting distribution in nonactive voxels
can be transformed into a standard Gaussian distribution. For
the purposes of this study, an unpaired Student’sstatistics with
pooled standard error is adequate [35]. Let
be the set of sites, or voxels, of the statistical parametric map.
In voxel , the test statistics can be defined as shown in (1)
at the bottom of the page, where

and means of the observed intensity values in
the corresponding voxels of the original
time-varying image;

and estimated variances;

and the sizes of the task state (subindex) and
control state sets (subindex).

It is assumed that the signal level rises during activation and,
therefore, the expectation of is negative on active regions.

In nonactive voxels, it is reasonable to assume that intensity
values acquired during the task state and control state derive
from the same Gaussian distribution. Hence, thevalues follow
the distribution with DOF. If
is large, the standard normal distribution approximation may
be reasonable. Otherwise,distributed values can be readily
transformed to Gaussian distributed values. By this we mean a
process whereby new valuesare computed from the original
values using

(2)

where is the normal inverse distribution function at
and is the cumulative distribution function fordistri-
bution with DOF at . We will refer to a statistical parametric
map computed using (1) amap and a map transformed using
(2) a map. The transformation from the raw data values to
the values is illustrated in Fig. 1. It should be noted that, after
the transformation (2), only the background region (area out-
side activations) follows a Gaussian distribution. However, this
is adequate because only the background distribution is needed
to control false positive rates.

B. Contextual Clustering

Following the generation of amap, the goal is to recognize
the active regions from the background. The statistical proper-
ties of activation classes are unknown but a statistical characteri-
zation of the background class is available. A hypothesis testing
approach is used to deal with this kind of classification problem.
In the present case, the null hypothesis is that the voxel under
consideration is from the background class.

In a standard one-tailed test of a null hypothesis, the null
hypothesis would be rejected, and a voxel would be classified
as active, if the statistical value of a voxel were significantly
smaller than zero. The method presented here is different be-
cause the spatial information from the voxel neighborhood is
additionally used.

In order to develop a contextual testing method, a hypothet-
ical activation class, or rejection class, is defined. The class de-
termines a critical region corresponding to an “unlikely event”.
Voxels whose characteristics are “closer” to the rejection class
than the background class violate the null hypothesis and are put
into the rejection class and considered active.

The background class is known to follow standard normal
distribution from (1) and (2). Here, defines

a Gaussian distribution with meanand variance . We must
set certain requirements for the rejection class. At this stage,

(1)
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Fig. 1. (a) Probability density functions of fictional Gaussian control state data centered at value 500 (solid line) and task state data centered at value 525 (dotted
line). � = � = 100. (b) Probability density functions of the background voxels (solid line) and of the activation voxels (dotted line) after transformation tot

statistics when the degrees of freedom (DOF) is 18. Background voxels followt distribution and activation voxels noncentralt distribution. “Gaussianization” can
be used to transform thet distributed values so that the background voxels follow Gaussian distribution. The difference between the means of the background and
activation distributions after the “Gaussianization” is defined to be the separation values .

suppose that there is no contextual support toward either ac-
cepting or rejecting the null hypothesis. Then, in a conventional
hypothesis testing, a null hypothesis is rejected at voxelif
is smaller than a user specified threshold. This is equivalent
to the maximum likelihood classification when the background
class follows and reject class follows . It is
assumed, therefore, that the rejection class follows a
distribution, which guarantees that the rejection probability will
be a monotone increasing function of. The definition of the
rejection class is required to formulate the testing problem as a
classification problem. The detection problem is now reduced
to a two class-segmentation problem that can be solved using
standard methods. The ICM algorithm by Besag will be adopted
[29]. The derivation of the ICM is now briefly reviewed and after
that, it is adapted to the case under discussion, in which only the
background distribution is known.

A neighborhood sphere of orderof voxel is defined as

(3)

where and define the and coordinates
of the voxel sites and . Voxels whose center point is inside
the neighborhood sphere, excluding voxelitself, define a th
order neighborhood. In three dimensions, the first-order neigh-
borhood consists of the six nearest neighbors of each voxel,
the second-order neighborhood consists of the eighteen nearest
neighbors, and third-order neighborhood consists of the 26
nearest neighbors. In this paper, the third-order neighborhood
is used, although other neighborhoods are also possible.

Certain definitions and the concept of the MRF [29]–[31] are
presented now. Let be the random variable representing the
true classification of the image, andits realization. Let be
the random variable representing the true classification at voxel
, and its realization. Let 0 represent the background

class and 1 the activation class. Correspondingly, let
0 represent the case that the voxelbelongs to the background
and 1 the case that the voxelis active. Let be the
conditional class density that the voxelhas value , given that
the true class is . Let be the conditional prior prob-
ability (i.e., the probability before the measurement information

is considered) of the class at voxel when the classifica-
tion in all other voxel locations is given. Let represent
the classification in the neighborhood of voxeland
be the conditional prior probability of the class at voxel .
Random variable is a (locally dependent) MRF if

(4)

Hence, the fundamental idea behind the MRF in activation de-
tection is that the prior probability distribution for activation at
a voxel is specified conditionally on the activation pattern in the
neighborhood of that voxel.

Let represent the vector of all s. It is assumed that the
values of the statistical parametric map are conditionally inde-
pendent so that the conditional density ofis

(5)

Generally, in the maximuma posterioriprobability based seg-
mentation of the image, the segmentation is selected so that
thea posterioriprobability is globally maximized. This
problem can be solved by applying Bayes’ rule and maximizing

(6)

where represents prior information that is in our case a
Markovian prior.

The ICM algorithm can be used to find a local maximum of
(6) through the following steps: 1) Initial classification is chosen
so that is maximized at each voxelseparately; 2) the
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classification is updated at each voxel so that the new class has
maximum conditional probability, given the valueand current
classification in the neighborhood of voxel, that is . The
probability to be maximized at voxelis

(7)

Step 2) is repeated until the classification does not change or
begins to oscillate between states.

The Hammersley-Clifford theorem [30] states that an MRF
can be written as a Gibbs field, provided that no segmentation
has a probability equal to zero, as follows:

(8)

where
energy function;
set of cliques;
potential associated with the clique,
being the normalization constant.

A clique is a set of voxels that are neighbors of one another. We
restrict our attention to the potentials between two neighboring
voxels, i.e., to the doubletons. One-site cliques, i.e., the single-
tons, can be ignored by assigning the value zero to their potential
functions. Let the potential be zero when both voxels of a clique
belong to the same class, andotherwise. Then, consider two
realizations which differ only at voxel. From (8), the condi-
tional prior probability of class at voxel is derived as

(9)

where is the number of neighbors of the voxelhaving
class . The class densities are defined to be Gaussian, i.e.,

(10)

By using (9) and (10), and , we find that (7) is maxi-
mized when the class for voxel is chosen so that

(11)

is minimized. Here is the number of neighborhood voxels
currently classified to class . Positive encourages neighbors
to be of the same class.

Besag [29] applied the ICM algorithm exclusively for two-di-
mensional images. However, it extends readily to three-dimen-
sional (3-D) images by simply defining in three dimen-
sions. Three-dimensional variations of the ICM algorithm have
been used earlier, for example in the segmentation of structural
MR brain images in [36], [37]. By minimizing (11) in three di-
mensions using a third-order neighborhood and using 0,

, and 1, the following contextual classification
rule is derived:

(12)

When 0, (12) yields the context-free thresholding rule that
is also used to initialize the classification. Later in this paper,
we will refer to the value of the normal cumulative distribution
function at as a nominal alpha .

Equation (12) is intuitively appealing. The left part of (12)
can be understood as a contextually corrected location on the
null distribution. When the majority of the neighboring voxels
belong to the background, the location is moved to the right on
the distribution; in other words, to a less significant position.
When the majority of the neighboring voxels belong to the re-
jection class, the location is moved to the left on the distribution.

In order to avoid certain unwanted effects, such as the
growing of nonconvex regions, the values that the parameter

may have must be restricted. Through the parameter, the
trade-off between segmentation accuracy (error rates near the
edges of activations) and weighting of contextual information
can be adjusted. For example, if we set

(13)

we require that at least 19 of the voxels in the neighborhood of a
background voxel are classified in the rejection class before the
background voxel falls in the rejection class with probability
of 0.5 or higher. For example, imagine a voxel with 0
surrounded by 19 active voxels. When condition (13) is used,
the left part of (12) reaches the decision level. According to
our experiments, (13) ensures good segmentation accuracy and
prevents unwanted filling effects. By substituting (13) into (12),
the following rule used iteratively in most of our experiments is
ultimately derived:

(14)

The propagation of data through the analysis is illustrated in
Fig. 2. There are two important aspects in the implementation
of the algorithm. The first is the order in which the voxels are
updated. The second is how the border voxels of the image ma-
trix are handled. The results presented in this paper are based on
synchronous updating, in which all voxels are updated simulta-
neously, unless otherwise stated. For clarity, one updating of all
voxels will be refered to as a cycle because the term “iteration”
is occasionally used to refer to the updating of one voxel in a
sequential updating. Regarding behavior on image borders, it
is assumed that voxels outside the image volume belong to the
background.

Concern could be raised about detection of activation regions
with a mean of less than , and/or variance different from one
and/or type of distribution that is non-Gaussian. The decision
rule (12) provides a partial answer to this problem. Consider an
activation region whose median value is smaller than. During
the initialization, the majority of the voxels are classified as ac-
tive. Thereafter, inside the activation region, the majority of the
neighboring voxels belong to the activation class and the use of
(12) classifies more voxels to the activation class.

In hypothesis testing, the two central questions are: 1) What
is the probability of classifying a truly nonactive voxel to the
activation class with given (probability of Type I error); and
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Fig. 2. Computation of az map and contextual clustering of it.

2) what fraction of the activation voxels are identified with given
(power of the test)? These issues are discussed in Section III.

III. EXPERIMENTS

A. Simulated Data

Simulation studies were carried out usingmaps of 32
32 32 voxels in size. The maps were generated using

the following procedure. First, a 64 64 64 background
image with mean zero and variance one was generated using
the Gaussian pseudorandom number generator of Matlab 5.3
(The MathWorks, Inc., Natick, MA). In order to take spatial
correlations into account, this image was filtered and sampled
to the size of 32 32 32 image using the method that will be
described and used in Section III-C. Activation was modeled
using a discrete sphere centered at (15,15,15), radius 6.5, inside
which a smaller empty sphere centered at (17,15,15), radius
3.5 (Fig. 3) was located. At the voxel locations defined by
this sphere, intensities were replaced by values drawn from
an activation distribution (Gaussian or uniform) having a
mean . Various values were given to . The number of
activation voxels was 986 while the remaining 31 782 voxels
were assigned to the background.

B. Measured Data

The magnetic resonance imaging of a volunteer was
performed with a 1.5-T Siemens Magnetom Vision system
(Siemens, Erlangen, Germany) using a gradient-echo echo-
planar (EPI) sequence (TE 76 ms, TR 2.4 s, flip angle 90,
field of view 256 256 mm, matrix size 64 64, 16 slices,
slice thickness 3 mm, gap 1 mm), and a standard head coil. A
checkerboard visual stimulus flashing at 8 Hz rate (task con-
dition, 24 s) was alternated with a visual fixation marker on a
gray background (control condition, 24 s). In total, 110 samples
(3-D volumes) were acquired. The brain was segmented from
the EPI slices to enable identification of voxels belonging to
the brain volume. The brain was assumed to remain at a fixed
location during the scanning, so it was considered sufficient to
segment only one volume. The sample number 60 was selected.

Fig. 3. Fifteen spatial levels of the simulated activation image 32� 32�s 32
voxels of size. All other levels are empty. The activation is a discrete sphere
centered at (15,15,15), radius 6.5 inside which is a smaller empty sphere
centered at (17,15,15), radius 3.5.

Segmentation was achieved by thresholding the volume using
an intensity threshold of 120. The result of the segmentation
is used as a visualization aid in Fig. 9. Finally, a simple linear
detrending (baseline correction) was conducted for each voxel.
The first three samples of each control state and the first sample
of each task state were not included in statistical analysis to
account for the delay in the hemodynamic response.

C. Estimation of False Positive Probabilities

An estimate was made of the probabilities of classifying
the voxel to the activation class under the null hypothesis, i.e.,
voxel-wise false positive rates , and the family-wise s,
i.e., the probabilities of falsely detecting an activation in a
whole volume. It is assumed that the intensity values ofmaps
follow standard normal distribution when no activations exist.
This is the usual assumption made, which is normally well
satisfied (see, e.g., [13]), although deviations from normality
are possible [38].

Although normality is assumed, the spatial independence of
the noise is not. We now describe the estimation procedure for
the voxel-wise false positive rates presented in fMRI context by
Formanet al. [12]. Both a 2-D and 3-D correlated noise were
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TABLE I
ESTIMATED VOXEL-WISE FALSE POSITIVE RATES (fpr) IN AN IMAGE WITHOUT ACTIVATIONS

N is the number of simulated (random)z maps used in simulations.
f - is the standard deviation ofn-dimensional Gaussian filter used to create spatial correlations.

TABLE II
ESTIMATED PROBABILITY OF DETECTING AT LEAST ONE FALSE POSITIVE

VOXEL IN A z MAP OF 64� 64� 16 VOXELS

f - is the standard deviation ofn-dimensional
Gaussian filter used to create spatial correlations.
Each result is based on 30 000 simulate Dz maps.

modeled. In the 2-D case, 128128 16 image was constructed
using a pseudorandom number generator producing normally
distributed numbers with mean zero and unit variance. The slices
of the image were filtered with two-imensional Gaussian filter
of standard deviation - voxels to approximate spatially
stationary and continuously differentiable autocorrelation func-
tion of statistical parametric maps. The size of the convolution
matrix was 5 5 voxels. To decrease the effect of pixelation,
the filtered 128 128 16 image was decimated to 6464

16 image by taking the mean value of each four-voxel block.
This procedure returns the effective standard deviation of filter
to - voxels. The 3-D noise correlation was created in a
similar way, but a 128 128 64 image was filtered with a 5
5 5 Gaussian filter of standard deviation - voxels and
decimated using eight-voxel blocks. In related fMRI studies, the
estimated correlations in planes corresponded to filter widths

- [12], [38]. This is consistent with our findings and
we perform the estimation of false positive rates and other studies
using - . Because the correlation indirection is
likely to be at most the same as it is within planes, a 3-D filter

- 0.6 is used to represent the worst case.
The filtered images were scaled into normal deviates and fed

to the contextual clustering algorithm. The estimated voxel-wise
false positive rates with different and filter widths are tabu-
lated in Table I. The corresponding results for obtaining at least
one active voxel in the whole volume are tabulated in Table II.
The number of significant digits presented for the estimates in
these tables was selected so that the difference between min-
imum and maximum of 95% confidence interval was at most
4 units of the least significant digit for that estimate.

D. Simulations

The simulated maps were clustered using 0.05, 0.09,
0.13, 0.21, 0.29, 0.37 that correspond to 1.64, 1.34,

1.13, 0.81, 0.55, 0.33, respectively. Parameter had
value in all experiments, except in the test with a
modified . The number of false positive voxels detected in 500
simulations were counted for each, and divided by the number
of truly nonactive voxels (500 31 782) to estimate voxel-wise
probabilities for false positives . The probabilities for false
negatives were computed in a similar fashion. The error
rates for thresholding were computed in the same way, but the
used threshold values were computed by taking the inverse
of the normal cumulative distribution function at of contex-
tual clustering. Thus, the were evaluated using the same
for both thresholding and contextual clustering. In certain sim-
ulations, the spatial filtering was used to mimic the spatial cor-
relations of the fMRI data. The results are shown in the form of
receiver operating characteristic (ROC) curves. The curves re-
flect the trade-off between sensitivity and specificity.

First, simulations were made using a Gaussian distribution
model for the activations with four different means ( 0.5,
1.5, 2.5, 3.5) and unit variance [Fig. 4(a)–(d)]. Whenwas very
small, both the thresholding and contextual clustering failed to
detect the activation at a reasonable. Conversely, when was
very high, thresholding similarly performed well. The largest
difference in performance was found with intermediate. The
discrepancies between thein Fig. 4 and s in Table I were
due to the higher error probability near the activation edges than
in an empty image. This effect is noticeable when the fraction
of the edge voxels from the volume is high.

In the subsequent simulation, a non-Gaussian distribution
model for activations was used [Fig. 4(e)–(f)], whereby two
Gaussian densities ( 1.5, 3.5) formed a single
mixed, non-Gaussian density ( 2.5). The detection rate
was between the cases of Fig. 4(b) and (d). It can be seen that
the correlation in the noise slightly lowered the power of the
contextual clustering.

Subsequently, the experiments were conducted using a
Gaussian distribution with differing variances and uniform
distributions with varied intervals (Fig. 5). Although the dif-
ferences in power between contextual clustering and thresh-
olding decreased as the variance increased, they still existed.
As the variance increased, the of contextual clustering and
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Fig. 4. ROC curves of contextual clustering (solid lines) and thresholding (dotted lines). The ROC curves show the probability of correctly classifying the
activation voxels(1�� ) on the vertical scale and the probability of misclassifying the background class(� ) on the horizontal scale.o marks refer to the spatially
uncorrelated noise and� to the correlated noise (f - = 0.6). The numbers for each point on the curves correspond to the values of� . (a) Case activation
separations = 0:5, (b) cases = 1.5, (c) cases = 2.5, (d) cases = 3.5, and (e)–(f) mixed density case. (e) density functions of background (solid line), two
Gaussian activation densitiess = 1.5, ands = 3.5 (dotted lines) and the mixed density (non-Gaussian) of activations (dashed line). (f) ROC curves in the
mixed-density case.
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Fig. 5. ROC curves for the simulated activation following Gaussian distribution with varied variances and uniform distribution with varied intervals. s = 2.0 in
all cases. Solid lines refer to contextual clustering and dotted lines to thresholding. (a) Gaussian distribution with varied standard deviation,o marks refer to� =

20,� to � = 2.0,+ to � = 1.0,� to � = 0.5,� to � = 0.05. (b) Uniform distribution with varied intervals.o marks: interval [�10, 6];�:l [�4,0];+: interval
[�2.5;�1.5]; and�: interval [�2.6,�2.4].

Fig. 6. ROC curves for modified algorithms. Solid lines with circle marks refer to unmodified algorithm (� = a =6 and uniformly weighted neighborhood) and
dotted lines to modified algorithm. In all cases, the simulation activation follows Gaussian distribution with unit variance,s = 2.0. In (a), the dotted line refers to
a distance weighted neighborhood; in (b), to varied�. � marks:� = a =4; +: � = a =9; �: � = 0.4; and�: � = 0.9.

thresholding approached the value 0.5. The type of activation
distribution (Gaussian vs. uniform) does not seem to have a sig-
nificant effect on the results.

Finally, testsweremadeusingamodifiedcontextualclustering
algorithm. In Fig. 6(a), the results were obtained using a distance
weightedneighborhood.Thesecond-orderandthird-orderneigh-
bors were downweighted by a factor of and , respectively.
Next, testsusingamodifiedwereperformed[Fig.6(b)].Thedif-
ferences between were not particularly
large. When had a fixed value ( 0.4, 0.9) and was suf-
ficiently large , the activation was detected in most
cases but the empty space inside the activation object was filled.
The reason for this was that the parameterwas too large com-

pared to , i.e., to theparameter. It is recommended, therefore,
that the parameter be related to the parameteras in (13).

As an illustrative example, results using a Gaussian noise dis-
tribution for background and activation ( 1.5) with unit
variance are shown in Fig. 7. The simulatedmap is shown
in Fig. 7(a). When the testing was performed by thresholding
the map, only a few voxels of the activation were recognized
[Fig. 7(b)]. Fig. 7(c) shows the initialization image ( 0.21)
for the contextual clustering, Fig. 7(d) shows the clustering after
the first cycle, and Fig. 7(e) after the second cycle. After the
tenth cycle [Fig. 7(f)], the clustering converged. This image
has approximately the same (see Table I) as the image in
Fig. 7(b) but the sensitivity is better.
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Fig. 7. Detection of the simulated activation from a noisy background. (a) Thez map of slice 15 of the activation (see Fig. 3). In thisz map, the activation voxels
follow a Gaussian distribution with unit variance,s = 1.5. (b) Thresholdedz map with false positive ratefpr � 0:006; T � �2:52. (c) Initialization image for
contextual clusteringa � �0:806. (d) Contextual clustering after the first cycle. (e) Contextual clustering after the second cycle. (f) Contextual clustering after
the tenth cycle (convergence),fpr � 0:006. In (b)–(f), the activation voxels erroneously classified as background are shown as light gray.

Fig. 8. Detection of simulated activations following Gaussian or uniform distribution. (a) In thez map, the distribution of the activation is Gaussian in rows 1 to 5
and uniform in rows 6 to 8. The standard deviation is 0.25, 0.5, 1.0, 2.0, 4.0,� 0:0722,� 0:5774 and� 4:6188 in rows 1, 2, 3, 4, 5, 6, 7, and 8, respectively. The
widths of uniform distributions are 0.25, 2 and 16 in rows 6, 7, and 8, respectively. The mean of the activation,�s , varies column-wise as�1,�2,�3,�4, and
�5, starting from the left. (b) Thresholdedz map(fpr � 0:006; T � �2:52). (c) Contextually clusteredz map(fpr � 0:006; a � �0:81). (d) Thresholded
z map(fpr � 1:5� 10 ; T � �4:67). (e) Contextually clusteredz map(fpr � 1:5� 10 ; a � �1:48).

In Fig. 8, an image with several activation objects following
several distributions is clustered using two different significance
levels. It can be seen that the contextual clustering is more sensi-
tive than the thresholding regardless of the type and variance of a
distribution. It should be noted that the behavior of the contextual
clustering algorithm is local. Therefore, the existence of activa-
tion in one location does not affect the results at distant locations.
Moreover, by dividing the Fig. 8(a) into 40 regions, each having
one activation object, and clustering each region separately, it is
likely that the same result as in Fig. 8 would be obtained.

E. Measured fMRI Data Studies

Fig. 9(a) illustrates the computedmap of the measured fMRI
study. The activation of the visual cortex can be seen on the low
part of the slices. In Fig. 9(b), the threshold is set to the value

4.24, which corresponds to . In Fig. 9(c),
the contextual clustering is applied to themap with decision
parameter value , which similarly corresponds to

. With the high number of repetitions, the thresh-
olding technique finds the core of the activation while the contex-
tual clustering appears to find the weaker outer areas, too. How-
ever, it is difficult to determine which one of the results is more
accurate. In Fig. 9(d)–(f), only every sixth sample (in time) was
used. In these cases, significantly larger activation areas were
detected using contextual clustering [Fig. 9(f)] than using the

thresholding technique [Fig. 9(e)]. In other words, when the acti-
vations are weak, or themap is computed using a small number
of samples, the contextual clustering has more acute sensitivity
than the thresholding technique. This result is consistent with the
results obtained using the simulated activation.

The experiments were repeated using sequential updating of
the class values. The results were very similar with synchronous
updating. When all time samples were used to compute amap,
24 active voxels out of the original 1431 changed to nonactive
voxels, and two nonactive voxels out of 64 105 changed to ac-
tive. When every sixth sample was used, 29 active voxels out
of 551 changed to nonactive, and four nonactive voxels out of
64 985 changed to active. However, the false positive rates (Ta-
bles I and II) should be re-estimated if sequential updating (or
other modification) is used.

IV. DISCUSSION ANDCONCLUSION

The utilization of contextual information was studied for the
analysis of fMRI data. The approach consisted of two phases:
computation of a statistical parametric map and activation detec-
tion by contextual clustering. The iterative clustering algorithm
presented in this work is based on Besag’s ICM algorithm [29].
Our contribution has been to apply and evaluate the ICM in the
context of hypothesis testing and statistical parametric maps.
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Fig. 9. Analysis of visual fMRI study,fpr � 0:00001 in all cases. (a)z map of the entire data,N = 42 + 45, (b) z map of the entire data thresholded,
T � �4:24, (c) z map of the whole data contextually clustered,a � �1:34 (d) z map of the partial data,N = 7+ 8, (e)z map of the partial data thresholded,
T � �4:24, and (f)z map of the partial data contextually clustered,a � �1:34. Although the brain slices are visualized here in planes, the data are analyzed in
three dimensions.

The results presented here demonstrate that the context-free
thresholding is more sensitive to random noise than is contextual
analysis. Better sensitivity was achieved with contextual clus-
tering. However, a strong spatial dependency in the noise term
may increase the error rate. The results show that the spatial au-
tocorrelations present in a typical fMRI study contribute little to
the results. The effect is small particularly for family-wise tests.
The spatial correlations may be more significant for smaller
voxel size or for other imaging modalities, for example, positron
emission tomography (PET).

Unlike median filters or spatial extent based methods, the
contextual method presented here allows the possibility to pre-
serve the smallest activations if the focal significance is suf-
ficiently high. Furthermore, spatial smoothing or other proce-
dures that result in a loss of information are not required.

An alternative to the hypothesis testing approach would be a
maximum probability classification. This should include the es-
timation of the number of activations classes, their means, vari-

ances, the types of distributions and potential parameters.
Several methods to estimate the parameters from data have been
suggested. Besag suggests the estimation of unknown parame-
ters during the iterations of ICM [29]. At each cycle,
the parameters are updated so that and the pseu-
dolikelihood are maximized. Examples of
how the number of classes might be estimated are provided in,
for example, [39]–[41].

A contextual approach based on MRFs and Gibbs sampler was
used by Holmes [32] to segment statistical parametric maps com-
puted from PET data. One conclusion of [32] was that the ap-
proach is less powerful than the thresholding test. However, the
tests were not “tuned” to the same significance level and spatial
correlations in the noise of the simulated PET data were large.

In a related paper, spatio-temporal fMRI analysis by De-
scombeset al. utilizes contextual information and MRFs [33],
[34]. The main conceptual difference between the method of
Descombeset al. and the method presented here is that the
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former performs data restoration and analysis for the original
spatio-temporal fMRI data while the latter clusters a standard
statistical parametric map. An advantage of the spatio-temporal
analysis is that it uses more data and works on the original
spatio-temporal data. In addition, simulated annealing (SA)
optimization algorithm was used to find the global maximum
of the objective function in [33], [34]. The ICM algorithm pre-
sented here converges to a local maximum (or with synchronous
updating, may start oscillating between states). As a result of
the use of the computationally demanding SA algorithm and
original four-dimensional data, the spatio-temporal method is
slower than the method presented here. A strong point of ICM
is the exclusive dependence on local image characteristics. For
fMRI data, the ICM algorithm converged in ten cycles. The
small number of cycles assures that a deviating data distribution
(either due to an activation or artifact) at one location does not
increase the false positive probability or reduce the power at
distant locations.

The algorithm using Matlab 5.3 was implemented. On a Pen-
tium III/500 MHz PC, the contextual clustering, after the com-
putation of a map, took on average about 4 s CPU time for a
64 64 16 volume. Compared to the 5 s of CPU time needed
to compute the map from 110 volumes (without preprocessing
steps), this is a tolerable addition. Computational efficiency al-
lows the data-analysis to be performed on-line to monitor the
progress of imaging. The algorithm is highly parallel when the
updating is carried out simultaneously on all voxels. This prop-
erty allows the algorithm to run yet more efficiently on a com-
puter with a parallel architecture.

The results indicate that the power of the developed contex-
tual algorithm is superior to that of conventional voxel-by-voxel
thresholding of a statistical parametric map. Although fMRI
data were used to test the algorithm, the construction of the
algorithm is general and it can be used to detect objects with
unknown distribution from a known background distribution in
other similar problems as well.
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