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Abstract. A central problem in the analysis of functional magnetic res-
onance imaging (fMRI) data is the reliable detection and segmentation
of activated areas. Often this goal is achieved by computing a statisti-
cal parametric map (SPM) and thresholding it. Cluster-size thresholds
are also used. A new contextual segmentation method based on cluster-
ing is presented in this paper. If the SPM value of a voxel, adjusted with
neighborhood information, differs from the expected non-activation value
more than a specified decision value, the contextual clustering algorithm
classifies the voxel to the activation class, otherwise to the non-activation
class. The voxel-wise thresholding, cluster-size thresholding and contex-
tual clustering are compared using fixed overall specificity. Generally, the
contextual clustering detects activations with higher probability than the
voxel-wise thresholding. Unlike cluster-size thresholding, contextual clus-
tering is able to detect extremely small area activations, too. Moreover,
the results show that the contextual clustering has good segmentation
accuracy, voxel-wise specificity and robustness against spatial autocor-
relations in the noise term.

1 Introduction

The most common goal of the fMRI study is the recognition and segmentation of
brain areas that respond to a given task or stimulus. Usually, it is required that
the overall specificity of the recognition is high. On the other hand, the sensitivity
of the process and good specificity in the neighborhood of activated areas are
also important. The segmentation task is challenging due to low signal-to-noise
ratio of activation related signal changes.
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The analysis of an fMRI image series is most often based on the compu-
tation of the SPM and making statistical inferences from it. The SPM can be
computed using general linear model [1]. Also non-parametric approaches like
Kolmogorov-Smirnov [2] statistics are frequently used. Inferences from the SPMs
are usually based on voxel-wise intensities above a threshold [3], on the spatial
extent of contiguous voxels above a threshold (cluster-size thresholds) [4, 5] or
on the combination of these two [6]. Usually the parameters of tests are chosen
so that the probability of detecting a false activation in the whole volume (or in
the search volume) is relatively small, e.g. 0.05.

In this paper, we present a new method for making statistical inferences and
segmentation, called as contextual clustering, which uses both the original sta-
tistical value and current voxel classification in the neighborhood to determine
the new voxel classification. Contextual clustering, voxel-wise and cluster-size
thresholding methods are compared. Especially, sensitivity, segmentation accu-
racy and robustness against spatial correlations are studied.

2 Materials

The results of this study are based on simulated and measured fMRI data. First,
noisy background data (Data A) was created by using Matlab’s (The Mathworks,
inc., Natick, MA, USA) pseudorandom generator. Voxel values were chosen from
the Gaussian distribution with mean zero and variance one (Fig. 1(a)). For each
simulation, 120 three-dimensional samples (images) were created. The matrix
size of each sample was 32 × 32 × 16. In total, 500 fMRI experiments were
simulated, so that the total number of random values generated was 500×120×
32×32×16. The Data A was used to determine segmentation parameters and to
estimate voxel-wise specificity of each segmentation method. Next, a simulation
phantom of 12 spheres (Fig. 1(b)) was added into the samples 21 . . . 40, 61 . . . 80
and 101 . . . 120 of Data A. This operation formed Data B which was used to
estimate the sensitivity and segmentation accuracy of the segmentation methods.
The Data sets C and D were formed by spatially filtering Data A using a filter
with 3 × 3 × 3 Gaussian kernel of full width at half magnitude (FWHM) 0.6
voxels and 1.2 voxels, respectively. Data sets C and D were used to evaluate
robustness of the various methods against spatial autocorrelations.

The measured data of a volunteer was acquired with a 1.5−T Siemens Mag-
netom Vision system (Siemens, Erlangen, Germany) using a gradient-echo echo-
planar (EPI) sequence (TE 76 ms, TR 3.5 s, flip angle 90o), and a standard head
coil. The right median nerve of a right-handed male volunteer was stimulated
electrically with a 0.2 ms constant voltage pulse. The stimulus intensity was ad-
justed slightly above the motor threshold. The stimulation rate was 4 Hz. The
subject kept eyes closed during the experiment. To minimize head movements,
bite bar and supporting vacuum pillow were used.

A set of 240 images (matrix 128×128×16, pixel size 2×2 mm, slice thickness
5 mm) was acquired with the baseline and stimulation condition alternating in
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blocks of ten images. The first three samples of each block were not taken into
statistical analysis to account for the delay in the hemodynamic response.

3 Methods

3.1 Computation of a statistical parametric map

For the purposes of this segmentation study the simple t statistics is an adequate
method to compute an SPM. In voxel i, the test statistics can be formulated [7]:

ti =
XiB − XiA√

(nA−1)σ2
iA

+(nB−1)σ2
iB

nA+nB−2 ( 1
nA

+ 1
nB

)
, (1)

where XiA and XiB are the means of the observed intensity values, σ2
iA and

σ2
iB estimated variances and nA, nB the sizes of the task state (subindex A) and

control state sets (subindex B). The t statistics can be formulated easily also
using the general linear model [1]. Variable ti has the Student’s t distribution
with n1 + n2 − 2 degrees of freedom under null hypothesis. The t-map is trans-
formed to Gaussian distributed z-map using zi = qnorm(pt(ti, r)), where qnorm

is the normal inverse distribution function at x and pt(x, r) is the cumulative
distribution function for t distribution with r degrees of freedom at x.

Often, prior to the computation of SPM, the image data are spatially filtered
in order to increase the signal-to-noise ratio and sensitivity [3]. However, artifacts
such as blurred edges result after low pass filtering. As our study concentrates
on the segmentation of an already computed SPM, the filtering of image data is
not studied here.

3.2 Segmentation methods

Voxel-wise thresholding (VWTH). The simplest segmentation method of
an SPM is thresholding applied to each voxel separately. The voxel at location
i is considered as active if and only if zi < T , where T is a threshold. In our
notation the activations have negative mean and T is chosen negative.

Cluster-size thresholding (CSTH). A cluster c is considered as active if and
only if for all voxels within the cluster zi < T and the size of cluster c is at least
Tsize voxels [5]. In our study, the method is used in 3D with 26-connectivity.

Contextual clustering (CC). The algorithm of contextual clustering is: 1)
Label the voxels with zi < T as active and other voxels as non-active. Voxels
outside the image volume are considered as non-active. 2) Compute for all voxels
i the number of active neighbor voxels, ui. 3) Relabel the voxels for which

zi +
β

T
(ui − N/2) < T (2)
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as active and other voxels as non-active. The number of neighbor voxels equals to
N . Using the 26-connectivity N = 26. The parameter β determines the weighting
of the contextual information and is usually positive. If we set β = 0 we have
the conventional context-free thresholding rule. 4) If the current labeling is same
as the labeling in the previous cycle or in the cycle before that, then stop the
iterations, otherwise return to the step 2).

It should be noted that from the mathematical point of view the algorithm
is identical with iterated conditional modes (ICM) algorithm of two classes [8].
However, the 2-class ICM algorithm with on-line parameter updating is not ap-
plicable because each activation has its own density function. Therefore, actually
the 4-class ICM should be used in our case of three different activation and one
background distributions. In practice, the number of activation distributions is
unknown and therefore the ICM algorithm cannot be used conventionally. In-
stead of trying to classify every voxel into most probable class, as is done with
ICM, the algorithm is used in a completely new way: as a hypothesis testing
technique. In other words, if the statistical parametric value of a voxel adjusted
with contextual information differs from the null distribution more than a preset
threshold, the null hypothesis is rejected. Using the parameter β the trade off
between sensitivity and segmentation accuracy can be adjusted. One way to set
the parameter β is to write β = T 2/s. Then s specifies the excess of activated
voxels (ui −N/2) in the neighborhood required to classify a non-active voxel to
the active class with the probability of 0.5.

3.3 Estimation of parameter values for common overall false
activation probability and voxel-wise specificity

In order to compare the sensitivity of the methods the probability of observ-
ing false activation voxel(s) in a whole volume was fixed to value of 0.05. The
parameter estimation was done by applying the algorithms to the Data A with
different decision parameter values. A decision parameter value that gave a false
activation in 25 images out of 500 (i.e. overall p-value 0.05) was chosen. Also the
probability of false activation at voxel level was computed from the measured
number of false activation voxels.

3.4 Sensitivity, segmentation accuracy and robustness

The 500 SPMs computed from the Data B were segmented with each segmenta-
tion method. The segmented images of each method were averaged separately.
The resulting mean image shows the probability of detection at voxel-level.

In addition, in order to estimate the segmentation accuracy, the number of
voxels falsely classified as active in the neighborhood of activation R3C4 (see
Fig. 1(b)) was counted.

The robustness against spatial autocorrelations in the noise term was evalu-
ated by segmenting Data C and Data D. If the overall probability of detecting
false activation is significantly larger than the expected value of 0.05, the robust-
ness of the method against spatial autocorrelations is low.
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4 Results

The estimated decision parameter values and measured probabilities of false
activations at voxel level for various segmentation methods are given in Table I.
It is seen that although the overall specificity is fixed, there are differences in
specificity at voxel level. Best voxel level specificity was achieved with voxel-wise
thresholding and contextual clustering. An interesting observation was that all
false activations detected with contextual clustering were only one voxel in size.
We also studied the overall specificity with larger volume 64× 64× 16 using the
same decision parameters. In this case the achieved overall false activation rate
was 0.23 ± 0.05.

Table 1. Estimated decision parameter values T for overall false activation rate 0.05
and measured probability of false activation at voxel level P (fv), probability of false
activation voxels P (fR3C4) in the neighborhood of activation R3C4 at voxel level and
overall probability of false activation in the presence of spatial autocorrelations P (fc1)
(FWHM = 0.6 voxels) and P (fc2) (FWHM = 1.2 voxels).

Method Abbrev. T P (fv) · 10−6 P (fR3C4) P (fc1) P (fc2)

Voxel-wise thresholding VWTH −4.490 3.05 0.000 0.05 0.04
Cluster-size thr., Tsize = 2 CSTH:2 −3.269 6.35 0.001 0.08 0.19
Cluster-size thr., Tsize = 8 CSTH:8 −2.066 27.5 0.019 0.18 0.51
Context. clust., β = T 2/2 CC:2 −0.597 3.05 0.006 0.05 0.05
Context. clust., β = T 2/6 CC:6 −1.415 3.05 0.001 0.05 0.05

The sensitivity of each segmentation method is shown in Fig. 1(c)-(g). The
images are computed by averaging the segmentation results. It can be seen that
the voxel-wise thresholding and contextual clustering can detect activations as
small as only one voxel in size. On larger activations the cluster-size thresholding
with Tsize = 8 and contextual clustering are more sensitive than the voxel-wise
thresholding. Cluster-size thresholding with Tsize = 2 seems to be only slightly
more powerful than voxel-wise thresholding but misses the smallest activations.

Activation R3C4 was used to evaluate segmentation accuracy, i.e. the speci-
ficity in the neighborhood of an activation. Also robustness against spatial auto-
correlations was studied. The results are reported in Table I. Cluster-size thresh-
olding with Tsize = 8 had worst segmentation accuracy and robustness against
autocorrelations.

As the last experiment, we analysed the measured fMRI data. Results on two
subsequent slices are shown in Fig. 2. All methods found activations of primary
sensorimotor cortex (SMI) and supplementary motor area (SMA). Large β or
cluster-size threshold Tsize decreases the ability to distinguish closely separated
activations as multiple foci. This is most clearly seen in the area of SMI, where
the clusters of activated voxels in the central sulcus and postcentral sulcus merge
with Tsize = 8 or β = T 2/2.
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Fig. 1. (a) Gaussian noise image, (b) slice 8 of the phantom. (c)-(g) Probability of
activation detection at voxel level. (c) VWTH, (d) CSTH:2, (e) CSTH:8, (f) CC:2, (g)
CC:6. The scale for (c)-(g) is shown on the right side of (g).

5 Discussion

The methods for analysing fMRI data are often compared by power analysis
only. Much less attention is paid to a segmentation accuracy and robustness.
As we consider these properties equally important, they were included into this
study.

Our parameter selection was based on a number of simulations. Although
it is sometimes possible to approximately compute parameter values for chosen
overall specificity [4], the simulation approach has some advantages. First, we are
not forced to make any assumptions about the distribution of noise (e.g. smooth-
ness or Gaussianity). The false activation rates can be estimated as precisely as
needed, by simply increasing the number of simulations. The major drawback of
the simulation approach, as compared to the theoretical one, is the large number
of calculations required. However, with the relatively low matrix sizes of fMRI
acquisitions, the parameter estimation can be done even with desktop computers
in few hours.

One could criticize that in our simulations the time series of activation voxels
follow simple box-car function corrupted with independent Gaussian noise. Some
evidence exists that the assumptions about time series data being Gaussian
distributed and time series samples being independent holds well in fMRI data
[9], but the question is still debated. The hemodynamic response function is, of
course, much more complicated than a simple box-car function. For the same
reason, the SPMs are sometimes computed by using other methods than simple
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Fig. 2. Segmentation of fMRI data in two subsequent slices. (a) Two EPI slices at t = 0
s, (b)The corresponding SPM (z-map). Responses to stimulation of the right median
nerve in the contra- and ipsilateral SMI and SMA can be seen as brighter areas in the
SPM. In the SMI, activation is seen in two adjacent sulci (precentral and postcentral).
Segmentation of the SPM by (c) VWTH, (d) CSTH:2 (e) CSTH:8, (f) CC:2 and (g)
CC:6.

unpaired t test [10, 11]. We believe, however, that the limitations mentioned do
not have any significant effects on the results of this segmentation study.

The spatial autocorrelations in the noise term may have effects on the per-
formance of segmentation methods. If the structure of autocorrelations is known
it can be taken into account in the estimation of decision parameters. In prac-
tice, the structure can not be estimated precisely. Therefore, a good robustness
against spatial autocorrelations is a desirable feature of the segmentation method
and this property was analysed in the present study.



488 Eero Salli et al.

6 Conclusions

Based on our results, the following conclusions can be made: 1) Generally, con-
textual clustering is more sensitive than voxel-wise thresholding. 2) Contextual
clustering can detect, unlike cluster-size thresholding, activations that are only
one voxel in size. 3) On detecting large activations, the precedence of contextual
clustering and cluster-size threholding depends on the parameter values chosen
of a method and the size and strength of an activation. 4) Contextual clustering
has extremely good voxel-wise specificity, segmentation accuracy, and robustness
against spatial autocorrelations. 5) The detection rate of large but weak activa-
tions with contextual clustering is increased by increasing β-parameter, but at
the same time, the segmentation accuracy decreases.

In summary, a new contextual method to statistically segment fMRI activa-
tions, called as contextual clustering, has been developed. This clustering method
appears to be very competitive with the other methods studied.
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