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We studied the effect of use of contextual informa-
tion on the reproducibility of the results in analysis of
fMRI data. We used data from a repeated simple motor
fMRI experiment. In the first approach, statistical
parametric maps were computed from a spatially un-
smoothed data and thresholded using a Bonferroni
corrected threshold. In the second approach, the maps
were computed from a spatially unsmoothed data but
were segmented into nonactive and active regions us-
ing a spatial contextual clustering method. In the
third approach, the statistical parametric maps were
computed from spatially smoothed data and thresh-
olded, using, optionally, a spatial extent threshold.
The variation in the classification was largest in the
Bonferroni thresholded statistical parametric maps.
There were no significant differences in variation be-
tween statistical parametric maps generated with all
the other methods. In addition to reproducibility, the
detection rates of weak simulated activations in the
presence of measured scanner and physiological noise
were investigated. Contextual clustering method was
the most sensitive method, while the least sensitive
method was the Bonferroni corrected thresholding.
Using simulated data, we demonstrated that the con-
textual clustering method preserves the shapes of ac-
tivation regions better than the method using spatial
smoothing of the data. © 2001 Academic Press

INTRODUCTION

The primary goal of image analysis in functional
magnetic resonance imaging (fMRI) activation studies
is usually to detect and delineate the image areas that
have a signal intensity time course, which can be re-
lated to the experimental parameters. The task is chal-
lenging because the images are noisy and often cor-
rupted by motion. The problem is typically solved using
a statistical testing procedure.

First, a statistical parametric map (SPM), also called
a statistic image, is created. Thereafter, either a non-
active or active state is assigned to each voxel. In this

article, we will call this the segmentation phase, as the

459
goal of this step is to divide the statistical parametric
map into nonactive and active regions. Prior to the
computation of statistical parametric map, some pre-
processing steps like motion correction and temporal
and spatial filtering are usually performed.

The statistical parametric map is most often com-
puted using the general linear model that subsume for
example the simple t test (Friston et al., 1995b). Also

onparametric methods, like the Kolmogorov–Smirnov
KS) test have been employed as well. The nonpara-

etric methods do not assume that data are normal.
owever, independence of the samples is assumed.
ence, the temporal autocorrelations increase false-
ositive rates in the KS test over tabular values
Aguirre et al., 1998). Since fMRI data is only slightly
onnormal (Aguirre et al., 1998), and the temporal
utocorrelations can be dealt within the general linear
odel (Worsley and Friston, 1995), the parametric

eneral linear model is usually preferred.
A commonly used segmentation method is intensity

hresholding. The voxels whose statistical value is
arger than a predefined threshold, directly related to
he significance level of a statistical test, are classified
s active. The advantage of the thresholding is its
implicity. However, the restriction of the thresholding
s widely known: the histograms of activation and non-
ctivation classes overlap and the classes may not be
artitioned by using a single threshold. As a conse-
uence, when high specificity, i.e., low false-positive
ate is required, weak activations are not detected.
One way to improve the segmentation is to utilize an

ssumption that the probability of the activation is
elated to the existence of activation in the spatial
eighborhood of a voxel. This a priori information may
e incorporated into the classification procedure by
sing so called contextual methods. A simple way to
se the contextual information is to ignore the original
tatistic values after thresholding and leave only vox-
ls that have a sufficient number of active neighbors,
.e., use so called neighborhood filters (Constable et al.,
993; Skudlarski et al., 1999). The statistical paramet-
ric map can also be filtered before thresholding (Skud-
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larski et al., 1999). Another extension to the intensity
thresholding is the use of spatial extent, or cluster-size,
thresholds (Friston et al., 1994; Forman et al., 1995). In
this approach, only activation clusters larger than a
defined cluster size are considered as statistically sig-
nificant. The use of spatial extent thresholds allows
detection of weak activations when their spatial extent
is relatively large while preserving high overall speci-
ficity. Information from the spatial neighborhood can
also be incorporated into the analysis by either spa-
tially filtering the original fMRI data with a Gaussian
shaped filter (Friston et al., 1995a; Lowe and Sorenson,
1997) or by doing a Markov Random Field (MRF) based
data restoration (Descombes et al., 1998; Kruggel et al.,
1999).

Previously a computationally efficient contextual
clustering algorithm for the segmentation of statistical
parametric maps was introduced (Salli et al., 1999). In
the contextual clustering algorithm, both statistical
parametric values and classification information from
the neighborhood of each voxel are iteratively used to
make a decision whether a voxel is active or not. Hence,
the contextual clustering differs significantly from the
neighborhood filters.

The main goal of the present study was to analyze
the reproducibility of segmentation. Noll et al. (1997)
have made reproducibility studies using motor and
cognitive activation paradigms. Casey et al. (1998)
studied reproducibility across four institutions using a
spatial working memory task. However, neither of
these studies analyzed the effect of segmentation
methods on the reproducibility. In the present study
our approach was to minimize the sources of variation
and study reproducibility achieved with various seg-
mentation methods. False-positive rates associated
with the chosen segmentation parameters were stud-
ied using both simulated statistical parametric maps
and empirical data acquired from a human volunteer.

Additionally, we studied segmentation accuracy and
sensitivity using a simulated activation pattern em-
bedded in a time-series acquired from a resting human
volunteer. Comparison between the results obtained by
using voxel-by-voxel intensity thresholding, spatial ex-
tent method combined with spatial smoothing and con-
textual clustering was made.

MATERIALS AND METHODS

Subjects and Data Acquisition

Magnetic resonance imaging was performed with a
Siemens Vision 1.5 T MRI scanner (Siemens AG, Er-
langen, Germany) at the Department of Radiology,
Helsinki University Central Hospital. A set of 1-mm-
thick sagittal T1-weighted images covering the whole
head (field of view 256 mm; matrix 256 3 256, 180

slices) were acquired with a 3D-MPRAGE sequence
(TR 9.7 ms; echo time TE 4 ms; TI 20 ms; flip angle
10°). These images were used as anatomical reference
images in the visualization of the functional data.
Functional MR images were acquired using a gradient-
echo echoplanar imaging sequence (EPI) (TE 70 ms, TR
2.083 s, flip angle 90°, field of view 256 mm, matrix
64 3 64, 16 slices, slice thickness 3.0 mm, gap 1.0 mm).
Two different types of studies were performed on a
right-handed healthy volunteer: four repetitions of
data acquisition during a simple motor experiment
(studies A1, A2, A3, A4) and 12 without any task (studies
B1, B2, . . . , B12). The acquisition and use of the func-
ional data is shown in Fig. 1. Between the studies A1,

2, A3, A4, and B1 there was a pause of approximately
two minutes. Studies B2, . . . , B12 were acquired on
another day with a 2-min pause between the studies.
To minimize head movement, a head-supporting vac-
uum cast was used. The magnetic field was globally

FIG. 1. Acquisition and use of data. (a) Motor task. (b) No task.
shimmed prior to imaging.
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461USE OF NEIGHBORHOOD INFORMATION IN fMRI
In the motor studies (A1, . . . , A4) the volunteer was
instructed to flex his right wrist during the presence of
the character 1 on a screen and rest during the pres-
ence of the character x. The paradigm consisted of four
rest and four motor execution blocks, or epochs, lasting
15 scans each. In addition, prior to the first rest epoch
of each study, 8 scans were acquired to allow the MRI
to reach a steady state of longitudinal magnetization.
Thus, the total length of each study was (8 1 15 3 4 3
2) 3 2.083 s 5 267 s. The data acquisition during the no
task studies B1, . . . , B12 was otherwise similar except
the motor execution blocks were replaced with rest.
The analysis of the studies was done using the all 120
scans (Full data). Part of the analysis was also done

sing only the first 60 scans (Half data).
To assess the segmentation accuracy and sensitivity

f the segmentation, simulated data was created by
adding an artificial activation pattern (Fig. 2) to the
motion corrected (see the next Subsection) no task data
B1. The intensity values of the voxels that belong both
to the activation epoch (defined as in motor execution
studies) and to the activation pattern were multiplied
by a value of 1.025 or 1.050, corresponding to signal
increase of 2.5 or 5.0% during activation, respectively.

Computation of Statistical Parametric Maps

Statistical parametric maps were computed using
the batch mode of the SPM99 software (Wellcome De-
partment of Cognitive Neurology, London, UK, http://
www.fil.ion.ucl.ac.uk/spm/) following the guidelines for
a basic statistical analysis. First, the images were re-
aligned in order to remove movement-related variance

FIG. 2. One plane of the simulation phantom. The phantom
consisted of three alike planes.
components. Sinc interpolation was used in the trans-
formation. Next, smoothed data were generated using
a Gaussian filter with a full width at half maximum
FWHM 5 8 mm in all three orthogonal directions. The
smoothing is required when the theory of Gaussian
fields is applied to set the intensity and spatial extent
thresholds. On the other hand, unsmoothed data were
used in the Bonferroni corrected thresholding and in
the contextual clustering. The statistical parametric
maps (t maps) were computed both from unsmoothed
and smoothed data by using the general linear model.
The linear model for the signal was specified to be the
fixed box-car function convolved with a model hemody-
namic response function (hrf). Global effects were dealt
by scaling the volumes. Serial correlations were dealt
with temporal filtering of the data. Cut-off period of the
high-pass filter was set to 125 s. Temporal low-pass
filtering was done to allow for a proper assessment of
degrees of freedom.

Segmentation of Statistical Parametric Maps

The t maps were transformed (“Gaussianized”) at
each voxel i to z maps, using

zi 5 qnorm@ pt~ti, r!#, (1)

where zi is the value in the z map, qnorm(x) is the normal
inverse distribution function at x, pt(ti, r) is the cumu-
lative distribution function for t distribution with r

egrees of freedom at ti and ti is the value in t map. In
the thresholding, a voxel is classified as active if

zi . Ti, (2)

where Ti is a predefined intensity threshold. Other-
wise, the voxel is treated as nonactivated. We follow
here the notation in which the activations have a pos-
itive mean. When spatial extent threshold Te is used, it
is required that the number of connected voxels in an
activation cluster is at least Te. In this paper, the
abbreviation SPM(p, Te) will refer to the segmentation
of the z map (computed from smoothed data) using an
extent threshold Te combined to such intensity thresh-
old Ti that the probability of observing at least one
false-positive voxel in the whole brain volume is p. In
practice, the thresholding was done directly to t maps

sing corresponding thresholds in t statistics. The ab-
reviation BF(p) will refer to the intensity threshold-

ing made to the unsmoothed data using

Ti 5 2qnormS p

Nb
D , (3)

where Nb is number of voxels in the search volume (in
the brain region). This conservative threshold, known

as Bonferroni corrected threshold, gives an approxi-
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462 SALLI ET AL.
mate false-positive rate p for the whole volume, assum-
ng that there are no spatial autocorrelations.

In contextual clustering, the classification informa-
ion from the neighborhood of voxels is utilized. The
ontextual clustering rule used in this paper is as fol-
ows (see Salli et al. (1999) and the Appendix): First, as
n initialization step the voxels with

zi . Tcc (4)

are labeled as active and other voxels are labeled as
nonactive, where Tcc is a predefined decision parameter.
After the initialization, the voxels are reclassified. In the
reclassification, a voxel i is considered as active if

zi 1
b

Tcc
~ui 2 Nn/2! . Tcc (5)

and otherwise as nonactive. The constant Nn is the
number of neighbors in the neighborhood system. By
defining a 3-D neighborhood consisting 26 closest vox-
els, Nn 5 26. Variable ui is the number of currently
active neighborhood voxels for the voxel i. User speci-
fied parameter b determines the weighting of neigh-
borhood information, and when positive, encourages
neighbors to be of like class. The parameter b can be
used to adjust the trade-off between sensitivity and
segmentation accuracy. One way to set the b is to write

b 5
T cc

2

s
. (6)

Then s is a user-specified parameter that can have any
real positive value (0 , s , `). As s 3 0 the method
approaches a recursive majority-vote classification. As
s 3 ` the method approaches the voxel-by-voxel
thresholding. Intuitively, s can be understood, for ex-
ample, as a required excess of activated voxels (ui 2
Nn/2) in the neighborhood of voxel i to transform a
value of zero to the level of decision parameter value
Tcc. Classification rule (5) is repeated until convergence
or oscillation between two states occurs. In each cycle
the classification and ui are updated. Voxels outside
the brain are forced to nonactive by assigning a very
small z value (e.g., 21000) to them. Correspondingly, a

onactive state is assigned to the voxels outside the
mage matrix. The abbreviation CC(p, s) will refer to

the segmentation made by contextual clustering using
Nn 5 26 and the combination of s and Tcc chosen so that
the probability to detect at least one false-positive
voxel in the search volume is approximately p.

The algorithm is similar with the iterated condi-
tional modes (ICM) algorithm introduced by Besag
(1986) with a few differences. Besag applied the al-

gorithm for 2-D images while we are working with
3-D images. More importantly, in the original ICM
algorithm it is assumed that the class densities and
the number of object classes is known or can be
estimated. In our approach the algorithm is used as
a hypothesis testing technique. This means that a
voxel is classified to an active voxel only if the sta-
tistical parametric value of a voxel adjusted with
neighborhood information is significantly larger
than zero. In the original form of ICM, T cc would be
elated to the mean of the activation class. However,
n our approach the T cc does not model the real

activation class but relates the algorithm to the de-
sired significance level by controlling the false-posi-
tive rate. Essentially, the algorithm is capable of
detecting activation regions whose median value is
larger than T cc but also activations containing only
one voxel if the z i value of a voxel is high enough.

Segmentation Parameters

Segmentation parameters were chosen so that the
theoretical probability of false activation in the brain
area would be approximately 5%. For SPM(p, Te)
methods the parameters were chosen using the SPM99
software. First, the spatial extent threshold was set
either to zero (no spatial extent threshold) or eight.
Thereafter, using the study B1 such an intensity
threshold was searched that the corrected P value re-

orted by SPM99 software was 0.05. For BF(p) method
the threshold Ti was calculated using Eq. (3).

For contextual clustering [CC(p, s)] method we do
ot currently have an analytic way to compute the
arameters. Therefore simulations are needed to cal-
ulate the parameters for the desired significance level.
ne approach would be to fill the brain mask (search
olume) with random numbers from standard normal
istribution and segment the image. By repeating this
rocedure several times, we could iteratively find the
orrect parameters, but we chose to use a more approx-
mate and general approach. Instead of using a real

ask in the estimation, we ran simulations in a cubic
olume of 16 3 16 3 16 voxels. By repeating the sim-

ulations several times, false-positive rates for different
combinations of Tcc and s (see Eqs. (5) and (6)) were
found at voxel level. It is assumed that the false-posi-
tive rates at voxel level do not significantly depend on
the size or shape of the mask and that the false-posi-
tive voxels exist at random locations independently of
each other. Then the required false-positive rates at
voxel level can be calculated using Eq. (3). To check the
validity of the assumptions made, simulations with
different search volumes and parameters Tcc and s
were performed. The random numbers in the mask
were spatially filtered to account for spatial autocorre-

lations of fMRI data.



463USE OF NEIGHBORHOOD INFORMATION IN fMRI
Empirical False-Positive Rates

Empirical whole volume false-positive rates were
counted from the Full data versions of the fMRI rest
studies B1, . . . , B12. In the analysis, 24 different epoch
type design matrices were used (see Fig. 3). The cut-off
period of the high pass filter was always set to the
value of two times the length of one on-off period.
Otherwise, the analysis was done as explained in the
Subsection “Computation of statistical parametric
maps.”

Reproducibility

Reproducibility of the segmentation was studied by
comparing the analyzed images of four motor activa-
tion studies A1, . . . , A4. Segmented (i.e., binary) im-
ages of all four studies were summed up voxel-by-voxel.
A voxel value in the sum image represents the number
of studies (from zero to four) in which the voxel is
classified as active. This kind of a sum image was
named as a reliability map by Genovese et al. (1997)
and we will adopt the term here. The reliability map
gives an idea about the reproducibility of the method. If
all the nonzero voxels have maximum value (in this
case the value four) the results have been perfectly
reproducible. If all the nonzero voxels have a value of

FIG. 3. Design matrices used in the empirical estimation of the
control and activation epoch lengths 15, 10, or 5 scans. These design
In the designs 13 to 16 epoch lengths of 5 and 10 scans were used, e
epoch of 10 scans (designs 15 and 16). In the designs 17 to 20 epoch le
of 10 and 15 scans were used.
one, the results have not been reproducible at all.
The reliability maps were transformed to the coordi-
nates of the anatomical MR image set for the visual-
ization purposes by using slice-positioning information
in the computation of the required rotations and trans-
lations.

Sensitivity and Segmentation Accuracy Analysis

Sensitivity and segmentation accuracy analysis can-
not be done using real data as the true pattern of
activation is unknown. Instead, the simulated phan-
tom data and measured scanner and physiological
noise from the no task study B1 were used. The per-
centage of the detected phantom voxels was calculated.
As the false-positive rates of all methods at distant
locations from activations were tuned to very small and
approximately to the same level, emphasis was put on
the voxels near the phantom, i.e., to the accuracy of the
segmentation. The numbers of false-positive voxels
were counted to give a quantitative measure of the
segmentation accuracy.

RESULTS

Segmentation Parameters

The counted number of brain voxels was Nb 5

se-positive rates. Designs from 1 to 6 are block designs with equal
atrices have been shifted with half epoch length in designs 7 to 12.
r starting with the epoch of 5 scans (designs 13 and 14) or with the
hs of 5 and 15 scans were used. In the designs 21 to 24 epoch lengths
fal
m

ithe
ngt
12,000 6 600. The voxelwise false-positive rates of
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CC(p, s) were estimated using Tcc 5 0.1, 0.15, . . . ,
.95, 2.0 and s 5 1, 1.5, . . . , 8.5, 9. Results are shown
s a contour graph in Fig. 4. A desired false-positive
ate can be selected for a chosen decision parameter Tcc

with the aid of the contour graph. It should be noted
that the false-positive rates are estimated using simu-
lated random maps without any true activations. The
likelihood of misclassifying a nonactive voxel adjacent
to a truly activated voxel is higher than the corre-
sponding estimated false-positive rate. In Fig. 5 we
have illustrated the use of the contextual clustering
algorithm and the dependence between segmentation
parameters, sensitivity, and segmentation accuracy.

According to Bonferroni correction the required
false-positive rate at the voxel level is 0.05/12,000 5
.17 3 1026. Correspondingly, the threshold for Bon-

ferroni corrected thresholding BF(0.05) is Ti 5 4.46
(Eq. 3). In the case of contextual clustering it is seen
from Fig. 4 that parameters (Tcc, s) 5 (1.44, 6) and (Tcc,
s) 5 (1.07, 4) lead to the false-positive rate slightly
smaller than 0.05 for the whole volume. The corre-
sponding segmentation methods are called CC(0.05, 6)
and CC(0.05, 4), respectively. Verification of these val-

r values. Sensitivity decreases from left to right. False-positive rate
the algorithm is obtained from Fig. 4. Unlike in the voxel-by-voxel
user when contextual clustering is used. Note that if the algorithm
FIG. 4. False-positive rates at voxel level for contextual clus-
tering. T cc and s are the parameters of the algorithm (Eqs. (5) and
6)). Labels on the curves are 2log P values, where P is the

false-positive rate at voxel level. The step-wise behavior of the
contours in the lower left corner is not real. It is due to the limited
grid spacing and countour plotting algorithm. The results are
obtained from simulated statistical parametric maps of 16 3 16 3
FIG. 5. Illustration of contextual clustering with different paramete
at voxel level (2log P) increases from bottom to top. The parameter s of
thresholding, both sensitivity and level of significance can be defined by
on accuracy is slightly decreased.
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465USE OF NEIGHBORHOOD INFORMATION IN fMRI
ues was done using additional simulations. Pearson
correlation coefficients (Milton and Arnold, 1995) be-
tween neighboring voxels in the statistical parametric
map of the no task study B1 were estimated. Pearson
orrelation coefficients in the x, y, and z directions were

0.18 6 0.01. An image of 64 3 64 3 16 voxels in size
as filled with random values drawn from the stan-
ard normal distribution. The image was filtered using
Gaussian filter with a standard deviation of 0.5 vox-

ls and normalized to a unit variance. The filter corre-
ponds to a correlation coefficient of 0.24 according to
ur simulations. Therefore, the filter introduced
lightly larger correlations than what we measured
rom the data. Then the filtered images were seg-
ented. In addition to the filtered brain mask, the

imulations were performed using unfiltered brain
ask and using unfiltered matrices with sizes of 16 3

6 3 16 and 64 3 64 3 64 voxels. Each experiment was
repeated 15,000 times using CC(0.05, 6) and CC(0.05,
4). The false-positive rates at voxel level were within
(0.27 6 0.03) 3 1025 in all cases. The false-positive
rates for the whole volume in the case of brain mask
were counted, too. The false-positives rates were

TABLE 1

Parameters for Different Segmentation Methods to Achieve
False-Positive Rate P 5 0.05 for the Search Volumes

CC(0.05, 6) Tcc 5 1.44 b 5 0.3456
CC(0.05, 4) Tcc 5 1.07 b 5 0.2862
SPM(0.05, 0) Ti 5 4.53 Te 5 0

PM(0.05, 8) Ti 5 3.42 Te 5 8
F(0.05) Ti 5 4.46

Note. CC(p, s) refers to the contextual clustering for spatially
nsmoothed data, SPM(p, Te) to the thresholding with spatially
moothed data, and BF(p) to the Bonferroni thresholding with un-
moothed data. Parameters are for z maps.

TAB

Empirical False-

Designs HPF BF(0.05) CC(0.05, 6

1, 2 125 s 21 25
3, 4 83 s 13 13
5, 6 42 s 0 0
7, 8 125 s 33 38
9, 10 83 s 17 17
11, 12 42 s 4 4
13, 14 62 s 0 0
15, 16 62 s 8 4
17, 18 83 s 8 8
19, 20 83 s 8 8
21, 22 104 s 21 17
23, 24 104 s 17 17
On average 13 13

Note. The value in each cell is the percentage of analyses in which

is the cutoff period of the high pass filter used.
within 0.030 6 0.003 whether unfiltered or filtered
data were used. Hence, the segmentation methods
CC(0.05, 4) and CC(0.05, 6) give a theoretical false-
positive rate slightly less than 0.05 assuming that the
real maps follow standard normal distribution under
the null hypothesis.

The segmentation parameters for the SPM(0.05, Te)
method were obtained from the Full data version of the
no task study B1, using the SPM99 software as ex-
plained earlier. Due to small variations in the search
volumes and smoothness estimates the corrected P
values reported by SPM99 varied from 0.038 to 0.082
in the studies A1, . . . , A4. The segmentation parame-
ters of all methods are shown in the Table 1. The
difference between the SPM(0.05, 0) and BF(0.05) is
that in the former, spatially smoothed data and the
theory of Gaussian random fields are used to derive the
thresholds.

Empirical False-Positive Rates

The false-positive rates were investigated using the
segmentation parameter values of Table 1. The ob-
tained false-positive rates with different design matri-
ces (Fig. 3) are shown in the Table 2. The false-positive
rates increased as a function of average epoch length.
In most cases, the measured false-positive rates were
larger than the expected 5%. On average, SPM(0.05, 0)
had the smallest false-positive rate and SPM(0.05, 8)
the largest rate. According to visual inspection of the
results many activations were located near the brain
edges which indicated movement related problems de-
spite of the movement correction. Hence, we run the
analyses using the realignment parameters as covari-
ates in the general linear model. This resulted in false-
positive rates that were closer to the 5% theoretical

2

sitive Rates (%)

CC(0.05, 4) SPM(0.05, 0) SPM(0.05, 8)

29 13 33
21 13 33
4 0 0

42 25 46
17 8 25
0 0 4
8 8 17
8 0 8

17 0 25
8 4 13

21 17 38
17 8 29
16 8 23

least one active voxel was detected. The designs refer to Fig. 3. HPF
LE

Po

)
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rate. For example, for CC(0.05, 6) the average error
ate was 8% and for CC(0.05, 4) 10%.

Reproducibility
Figure 6 shows the nonzero voxels of the reliability

maps superimposed on the top of anatomical MR im-

FIG. 6. Reliability maps. The voxel values in the maps represent
BF(0.05), (b) CC(0.05, 6), (c) CC(0.05, 4), (d) SPM(0.05, 0), (e) SPM(0
from the Half data.
ages. The value R in the reliability maps is the number
of studies (from 0 to 4) in which the voxel was classified
as active. The core of the activation areas was detected
in all studies and with all methods. Figure 7 shows the
proportions of different values in the reliability maps.
Worst performance was with the Bonferroni corrected
voxel-by-voxel thresholding [BF(0.05)] as the propor-

e number of studies (R) in which the voxel is classified as active. (a)
, 8). Upper images in (a–e) are from the Full data and lower images
th
.05
tion of R 5 3 and R 5 4 voxels was the lowest. Differ-
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467USE OF NEIGHBORHOOD INFORMATION IN fMRI
ences between the other methods were not particularly
large, i.e., the results do not indicate that CC(0.05, s)
would have significantly better or worse reproducibil-
ity than SPM(0.05, Te). It should be noted that large
bsolute number of active voxels does not necessarily
ean good sensitivity. It may be due to spreading of

he active regions as spatial information is used.
ence, primarily attention in the Fig. 7 should be paid

n the proportions of numbers of voxels belonging to
espective reliability value (R) groups.
Low reproducibility indicates low robustness against

ariations in the imaging process, e.g., against the

FIG. 6—

FIG. 7. Proportions of nonzero voxels in reliability maps (see Fi
, 3 and 4, respectively. Absolute number of voxels having a value of
are shown. Note the small proportion of R 5 4 voxels in the BF(0.05) m
thermal noise. The low reproducibility of the voxel-by-
voxel thresholding can be explained by the fact that the
thermal noise exist independently in neighboring vox-
els and its effect can be reduced by using information
from voxels neighborhood.

Sensitivity and Segmentation Accuracy

Table 3 shows the percentages of the simulated
phantom voxels detected with the different methods.
The numbers of false-positives are shown for complete-
ness, too. As expected, the sensitivity of CC(0.05, s) is

ntinued

). Beginning from the bottom, the bars correspond to values R 5 1,
, 3, or 4 are shown in bars. Results using (a) Full data, (b) Half data
g. 6
1, 2
ethod.
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increased as the parameter s is decreased, and the
sensitivity of SPM(0.05, Te) is increased as spatial
extent threshold Te is increased. The results indicate
that the most sensitive methods are CC(0.05, 6) and
CC(0.05, 4). However, the difference to SPM(0.05, 8) is
not large, and by further increasing the spatial extent
threshold Te, sensitivity might increase. With Full

ata the spatial smoothing increased sensitivity
SPM(0.05, 0) vs BF(0.05)] but with Half data the

sensitivity was decreased. Segmentation accuracy can
be assessed visually from Fig. 8. The false-positives
tabulated in Table 3 may be used as a quantitative
comparison of the segmentation accuracy. The results
were as expected. BF(0.05) has the best segmentation
accuracy but has low sensitivity. Lowest segmentation
accuracy is achieved with spatially smoothed data.

DISCUSSION

In this article we studied the use of contextual clus-
tering, thresholding and data smoothing in the analy-

TAB

Percentages of the Phantom Voxels Detected a
with Different Seg

Method

True-positives (%)

Full data Half

ignal rise (%) 2.5 5.0 2.5
C(0.05, 6) 95.9 99.1 46.4
C(0.05, 4) 96.6 99.1 72.2
PM(0.05, 0) 62.0 92.4 1.4
PM(0.05, 8) 90.9 99.0 29.9
F(0.05) 25.4 85.4 1.9

Note. Results are based on simulated data but real noise assum
alse-positives are located into the neighborhood of true-positives s
easure of segmentation accuracy.

FIG. 8. Simulated phantom (2.5% signal rise) detected with vari

Half data are used. (a) BF(0.05), (b) CC(0.05, 6), (c) CC(0.05, 4), (d) SP
sis of motor fMRI experiments. Especially, the repro-
ducibility of the results was investigated. In addition,
using simulated phantom but real noise segmentation
accuracy and sensitivity were studied.

Figure 9 shows the sources of variation that we have
graded as the most important limiting factors in ob-
taining reproducible segmentation. The thermal noise
follows the normal distribution well and exists inde-
pendently in neighboring voxels. Therefore the effects
of this noise source to the reproducibility can be suc-
cessfully decreased with statistical and contextual
methods. In addition to the thermal noise, the move-
ments of head and cardiac or respiratory pulsations are
significant sources of variation. In this study, we used
head supporting vacuum cast and realignment algo-
rithm in order to reduce the effect of head movements.
However, it is obvious that all movement artifacts can-
not be eliminated. In addition, movement correction
may cause new artifacts. Physiological effects may
cause drifts and temporal or spatial correlations to the
data. Therefore we filtered the data in temporal do-

3

the Number of False-Positive Voxels Detected
entation Methods

Number of false-positives

a Full data Half data

5.0 2.5 5.0 2.5 5.0
93.1 2 2 4 8
93.8 6 3 33 20
0.9 35 262 2 11

72.5 242 723 49 191
3.1 0 0 0 0

2.5% and 5.0% signal rise from baseline during activation. The
he ratio of false-positive and true-positive voxels can be used as a

methods. In the upper row Full data are used and in the lower row
LE

nd
m

dat

ing
o t
ous

M(0.05, 0), (e) SPM(0.05, 8).
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main and used reduced degrees of freedoms. The alter-
nation of paradigm conditions at a frequency larger
than the expected low-frequency drifts eliminates the
contribution of the drifts to some extent. The average
spatial autocorrelations were studied but found to be
relatively small. However, it should be kept in mind
that the correlation structure may vary significantly
within the image. Some variation may arise from the
timing errors between the stimulus signal and imaging
sequence. In addition, the time between the stimu-
lus-on signal and actual movement execution of a hand
may slightly vary. However, these timing errors are
small compared to the repetition time (TR) and to the
length of a paradigm block. The variation caused by
these timing errors is believed to be negligible. More
serious variations may arise from system instability. A
recent study by Smith et al. (1999) suggests that the
major cause of low frequency drifts is local magnetic
field instabilities in a scanner and not motion or phys-
iological noise. Smith et al. (1999) observed also that
while high-pass filtering will reduce the effects of drifts
it may decrease the power of the true signal as well.

The use of contextual clustering reduces the effect of
random noise, but does not require spatial smoothing.
Although combined smoothing and the spatial extent
thresholding technique may have good detection rate
on spatially extended activations, the accuracy at voxel
level, i.e., the ability to accurately delineate, or seg-
ment, activation areas, will inevitably be deteriorated.
In the experiments with simulated activation and mea-
sured noise, better segmentation accuracy was
achieved with the contextual clustering technique in
comparison to the combined spatial smoothing and
spatial extent thresholding. The filter width used
(FWHM 5 8 mm) was two times the voxel size which

as been recommended as a minimum for filter width
Worsley and Friston, 1995). However, in the spatial

FIG. 9. Factors affecting the reproducibility visualized with an
shikawa diagram. The Ishikawa diagram is a graphic tool used to
isplay sources of variation in a process.
moothing approach adjustment between spatial accu-
racy and sensitivity is possible by the choice of the
smoothing filter width (Worsley et al., 1996; Poline and
Mazoyer, 1994). Another interesting and recent ap-
proach to the problem of spatial resolution is a 2-D
smoothing on the convoluted manifold of the cortex
(Andrade et al., 2000).

An important difference of the contextual clustering
method to the intensity thresholding technique is that
the desired significance level does not determine the
sensitivity as one-to-one. Higher sensitivity and signif-
icance level can be achieved simultaneously by increas-
ing the b parameter if lower segmentation accuracy is
accepted. In principle, the contextual information
could be utilized by doing a spatio-temporal data res-
toration to the raw time-series data (Descombes et al.,
1998). An advantage of contextual clustering over the
processing of the raw data is computational efficiency.
The method uses as an input only the statistical para-
metric map (e.g., 64 3 64 3 16) instead of the whole
data (e.g., 64 3 64 3 16 3 120). The time required to
segment a statistical parametric map is only a few
seconds with a 500 MHz Pentium III PC. The compu-
tational efficiency allows even real time data-analysis.
The use of the statistical parametric map as an input
also enables the use of the algorithm with any model-
ing method that produces statistical maps. Thus it can
be easily used with many existing fMRI analysis pack-
ages, e.g., with SPM99. Computational efficiency
makes the estimation of false-positive rates possible by
simulations, thus allowing hypothesis testing.

It is clear that the box-car type model for the signal
in the simulation experiment was a very much simpli-
fied model for the activations. However, the statistical
parametric maps were always calculated using the
same linear model and only the way in which spatial
information was used differed. Hence, this simplifica-
tion should not affect the results. Instead, the spatial
shape of the simulated activations is important. Simple
boxes as activation objects would be too simple and
would not reveal all differences in segmentation accu-
racy. Therefore, more complicated shapes were used,
as well.

It is evident that the simulated statistical paramet-
ric maps are only rough approximations of the actual
data. Hence, measured data were used to empirically
estimate the actual false-positive rates. Measured
fMRI noise was used in the sensitivity and segmenta-
tion accuracy studies, too. Genovese et al. (1997) pre-
sented a method to estimate false- and true-positive
rates from replicated experiments. Unfortunately, the
assumptions made are not valid for the purposes of our
study. Especially, the independence assumption of the
classification of the neighboring voxels is not valid.
Instead, we estimated the whole volume false-positive
rates by analyzing the noise data acquired during rest.
The false-positives rate exceeded the expected theoret-

ical 5% rate in most cases. It is evident that several
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factors like the segmentation and imaging parameters,
subject movements, the form of the general linear
model and characteristics of temporal filters affect the
false-positive rates. Indeed, it was possible to decrease
the number of false positives by including the esti-
mated realignment parameters as covariates of no in-
terest to the general linear model.

We have studied the detection of fMRI activations by
utilizing contextual information. We have shown that
the results are more reproducible than with Bonferroni
corrected intensity thresholding for unsmoothed data.
In addition, by using a simulation example, we found
that also the sensitivity is better than with Bonferroni
corrected thresholding. We also illustrated how the
spatial smoothing of the raw data decreases the seg-
mentation accuracy more than the contextual cluster-
ing of a statistical parametric map.

APPENDIX

We model the statistical parametric maps using the
locally dependent Markov random fields (MRF) (Besag,
1974, 1986). This means that the probability for acti-
vation at a voxel is specified conditionally on the acti-
vation pattern in the neighborhood of that voxel. We
will use a two-class model with pairwise interactions.
Considering two segmentations which differ only at
voxel i, unordered classes and pairwise interactions
the conditional probability of class m occurring at voxel
i, given the classes of the neighborhood voxels is

pi~mu z ! } exp@am 1 bui~m!# 5 exp@bui~m!#, (7)

where ui(m) is the number of neighbors of the voxel i
aving class m and b is an interaction parameter (Be-
ag, 1986). Variables am represent the a priori proba-

bility of the class m. This information is not needed in
he hypothesis testing and the variables am are set to

zero. It should be noted that a positive b discourages
active and nonactive classes from appearing at neigh-
boring voxels.

The nonactive voxels zi of a statistical parametric z
ap follow a Gaussian distribution

f~zium! 5
1

Î2ps m
2

expF2~zi 2 mm! 2

2s m
2 G (8)

with mean m0 5 0 and variance s0
2 5 1. A model

istribution for the active regions is somewhat arbi-
rarily defined to be a Gaussian with m1 5 2Tcc and s1

2

5 1 (see the end of the Appendix).
Let z represent the values of the n voxels of a statis-

tical parametric map and k its segmentation. Let us

assume that the values of the statistical parametric
map are conditionally independent so that the condi-
tional density of z is

l~zuk! 5 P
i51

n

f~ziuki!, (9)

where ki is the true classification of the voxel i. One
way to segment the image z is to find the most probable
segmentation for the existing map values, i.e., maxi-
mize the conditional probability P(kuz). In theory, this
inverse problem can be solved by applying the Bayes
rule and maximizing

P~kuz! } l~zuk!p~k!, (10)

where p(k) represents the prior spatial model (Besag,
1986). However, the computational requirements for
finding the global maximum of this would be enor-
mous.

An approximation to the maximum of Eq. (10) can be
found using the iterated conditional modes (ICM) algo-
rithm (Besag, 1986):

(1) As an initial classification, values k i are chosen
so that f( z iuk i) is maximized at each voxel i sepa-
ately. This means that a voxel is considered as
ctive if z i . T cc.
(2) The classification is updated at each voxel sepa-

rately so that the new class has maximum conditional
probability, given the value zi and current classifica-
tion information from the neighborhood of voxel i.
Hence, the class m for voxel i must be chosen so that
the probability

P@muzi, ûi~m!# } f~ziuki!pi@muûi~m!# (11)

is maximized (Besag, 1986). Here, ûi(m) is the current
number of neighbors of class m and is updated at every
cycle. From Eqs. (7) and (8) we get that in order to
maximize Eq. (11) the voxel i is must be classified as
active if

zi 1
b

Tcc
@ûi~1! 2 Nn/2# . Tcc (12)

and otherwise as nonactive. Here Nn is the constant for
the total number neighbors (e.g., 26). Step (2) is re-
peated until the classification does not change anymore
or begins to oscillate between two states. The updating
can be done simultaneously for all voxels (synchronous
updating) or sequentially. We have used the synchro-
nous updating scheme to avoid directional effects.

From the definition of the model activation distribu-
tion it follows that the algorithm will be optimal for

image regions having activations whose zi values fol-
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low the model distribution (m1 5 2Tcc, s1
2 5 1). By

optimal it is meant that a local maximum of probability
in Eq. (10) is found. In the hypothesis testing approach
the maximization is not the goal. Instead the parame-
ter Tcc is set to have as low value as the desired false-
positive rate allows for the chosen b. For the control-
ling the false-positive rate it is only important that the
voxels of the nonactive image regions follow the stan-
dard normal distribution.
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