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Abstract

Functional magnetic resonance imaging (fMRI) is a non-invasive method which can be used
to indirectly localize neuronal activations in the human brain. Functional MRI is based on
changes in the blood oxygenation level near the activated tissue. In an fMRI experiment,
a stimulus is given to a subject or the subject is asked to conduct a physical or cognitive
task. During the experiment, a nuclear magnetic resonance signal is measured outside the
head, and time series of three-dimensional image volumes are constructed. The object of this
thesis is to study the localization of activation regions from the constructed time series as
well as multimodal aspects of brain imaging. The localization of activation regions typically
consists of the following phases: preprocessing of the four-dimensional spatiotemporal data,
computation of a statistic image, and detection of statistically significantly activated regions
from the statistic image. The statistic image is a three-dimensional map, which shows the
statistical significance of the measured experimental effect at voxel level. The detection and
localization of the activated regions can be carried out by segmenting the statistic image into
activated and non-activated regions. The segmentation is difficult because the statistic images
are often noisy and high specificity requirements are set for the activation localization. In this
thesis, a computationally efficient segmentation method has been developed. The method is
based on the utilization of contextual information from the 3-D neighborhood of each voxel
by using a Markov random field model. The method does not require assumptions about
the intensity distribution of the activated voxels. The method has been tested using both
simulated and measured fMRI data. The use of contextual information increased the detection
rate of weakly activated regions. In the simulation experiments, spatial autocorrelations in the
noise term altered overall false-positive rates only little. It was also demonstrated that the
developed method preserved spatial resolution better than the commonly used linear spatial
filtering. In repeated fMRI experiments, variation in the activated regions obtained by the
developed method was about the same as or less than with other widely used methods. In
addition to the activation localization, the use of multimodal data, including the comparison
of fMRI and magnetoencephalographic (MEG) data, is discussed in this thesis. This thesis
also includes multimodal visualization examples created from MEG, single photon emission
computed tomography, fMRI and structural magnetic resonance imaging data.

Keywords: fMRI, activation localization, segmentation, contextual information, multimodal-
ity, visualization
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1 Introduction

Our understanding of the human brain and its function at macroscopic, microscopic and molec-

ular levels has greatly increased during the last decades. Remarkable advances have been made

in molecular and cellular level research and in gene technology including the identification

of genes responsible for various diseases and results of single-neuron recordings (Kandel and

Squire, 2000). The development of functional brain imaging methods producing time series of

volumetric data, like positron emission tomography (PET) and functional magnetic resonance

imaging (fMRI), has provided an ability to monitor neural activity in the whole brain area.

The functional imaging methods produce huge amount of data, which has created a need for

efficient data analysis, processing and visualization methods.

Magnetic resonance imaging (MRI) is nowadays the ultimate method in obtaining images

of human brain structure non-invasively. At the beginning of the 90s it was noted that the

principles of MRI can also be used to image the function of the brain (Ogawa et al., 1990,

1992; Belliveau et al., 1991; Kwong et al., 1992). In most fMRI experiments, blood serves

as an endogenous contrast agent to image hemodynamics accompanying neuronal activation.

It is said that fMRI has revolutionized cognitive neuroscience and neurofunctional imaging

(Menon, 2001; Lai et al., 2000). Functional MRI, together with other brain mapping methods

like PET, electroencephalography (EEG) and magnetoencephalography (MEG), has increased

knowledge of the human brain function. For example, new information has been obtained

about motor function, perception, face recognition, learning and memory (Rosen et al., 1998;

Rowe and Frackowiak, 1999; Moonen and Bandettini, 2000). As a non-invasive method fMRI

can also be used on children and the studies can be repeated several times on a same subject.

This allows the monitoring of changes in cortical organization during learning and development.

Potential clinical applications of fMRI include pre-surgical localization of functionally important

brain areas, detection of functional abnormalities in developmental disorders, monitoring of

brain damage and recovery of function, monitoring of effectiveness of therapeutic interventions

(e.g. drugs and different rehabilitation strategies) and investigation of cerebral correlates of

mental illness (Moonen and Bandettini, 2000; Turner and Ordidge, 2000).

While fMRI measures the relatively slow hemodynamic changes associated with neural ac-

tivity, EEG and MEG measure the electric or magnetic fields generated by neuronal activity.

The temporal and spatial characteristics of the methods complement each other. Single photon

emission computed tomography (SPECT) provides information about physiological function

and can be used to diagnose various abnormalities like cerebral infarcts, brain tumors, in-

flammatory diseases and epilepsy, among many other applications. Anatomical localization of

the abnormalities is sometimes difficult but can be improved by adding structural information

from MR images. These examples illustrate that different imaging modalities provide comple-

mentary information, and fusing the data from different imaging modalities is often beneficial.

Some related multimodal aspects, like comparison of different modalities and visualization, are

presented in this work.

A frequent goal of fMRI data analysis is to recognize activated brain areas, i.e. image

regions whose intensity changes are induced by the stimulus given to a subject. The analysis

of fMRI data is complicated for several reasons. Task- or stimulus-induced signal-change-to-

signal-noise ratio (contrast-to-noise ratio, CNR) is often low. Noise sources include thermal
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noise, physiological fluctuations, effects caused by movements of the subject and instrumental

instabilities. In many cases (e.g. with visual stimulus), the voxels1 of the strongest “activations”

may show signal changes of tens of percents, especially when small voxels are used to reduce

partial volume effects [e.g. Oja et al. (1999a)]. However, the histogram of activation-related

signal changes may be broad and include small changes. Large signal changes often arise

from relatively large venous vessels (Kim et al., 2000) rather than from the smaller venules

and capillaries closer to the activated neuronal tissue. Typical magnitudes of signal changes in

tasks involving primary sensory or primary motor areas are of the order of a few percent, and in

cognitive tasks of the order of one percent or so. To detect these subtle changes from the noise,

the measurements are usually repeated several times over a long period of time, which, in turn,

may lead to problems associated with subject motion and scanner instabilities. The second

complication of fMRI data analysis is the large size of datasets, typically tens of megabytes

in size. Analysis of these data sets requires a great deal of storage space, powerful computers

and efficient data analysis methods. In addition, autocorrelated noise makes it more difficult

to draw statistical inferences.

In this work, the localization of the activated regions has been studied as a segmentation

problem: how to divide an image into activated and non-activated areas. The term “segmenta-

tion” implicitly includes not only the detection and localization, but also the delineation of the

activated regions. Usually a 3-D statistic image (SI), also called a statistical map, is computed

from the four-dimensional spatiotemporal fMRI data after preprocessing steps. The effects of

signal variations originating from physiology or scanner instabilities are minimized by means

of study design and data preprocessing and during the computation of the SI. The intensities

of non-activated voxels of the SI are assumed to follow a known distribution, e.g. the standard

normal distribution N(0, 1), and activated voxels unknown distributions. The segmentation

of the SI represents a special type of segmentation problem in which the distribution of the

background (null distribution) voxels is known but the distributions of the object (activated

regions) voxels are not. A traditional approach is to threshold the computed SI. Together the

computation of the SI and its thresholding consist of a large number of hypothesis tests, one

for each voxel. A voxel is considered to be activated if the test rejects a null hypothesis that

the voxel is not activated. It is important to note that in addition to the task-induced signal

change, the intensities of the activated voxels in the SI depend on the noise level and on the

number of data points in the measured time series. Hence, even if the task-induced MR signal

change is several percent, the signal-to-noise ratio (SNR) of the SI may be low.

Segmentation of noisy images is improved in many applications by utilizing spatial con-

textual information. Especially Markov random field (MRF) models are widely used. The

main assumption behind most contextual segmentation methods is that the intensity distri-

butions of different classes (e.g. the classes of the activated/non-activated voxels) are known

a priori, or that the distributions can be estimated from the data. The goal is to find the

most probable segmentation given the measured data and prior information. In this work,

contextual segmentation is used in a different and new way. It is studied how the contextual

segmentation and hypothesis testing can be combined so that the distributions of the activated

voxels are not needed. A contextual clustering method based on the MRF model and iterated

1A voxel is the 3-D counterpart to a pixel, i.e. any of the small discrete volume elements that together
constitute a 3-D image.
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conditional modes algorithm (Besag, 1986) is developed and tested using simulated data and

measured fMRI data. During an initialization step, the voxels are classified into activated and

non-activated voxels by thresholding the SI. After the non-contextual initialization, the voxels

are re-classified by using simultaneously both the SI values and classification information from

the adjacent voxels. Information from larger neighborhoods is incorporated by iterating the

classification. Although the algorithm is used for fMRI statistic images, it should be possible

to use the methodology in other similar applications, too.

In summary, the goals of the present work are:

• to develop a computationally efficient fMRI activation localization and delineation algo-

rithm, which utilizes information from the spatial neighborhood of each voxel but does

not require the modelling of the activations,

• to evaluate the algorithm,

• to present some methodology and tools for comparing, combining and visualizing multi-

modal data.

This thesis is organized as follows. Imaging modalities related to this work are introduced in

section 2. Contextual segmentation, MRF models and energy minimization in segmentation are

discussed in section 3. The developed contextual clustering algorithm is introduced. In section

4, the frequently used fMRI analysis methods are reviewed and the main results from the use

of contextual clustering in fMRI data analysis are presented. Multimodal and visualization

aspects are discussed in section 5. Some concluding remarks are given in section 6. Section 7

contains short summaries of the publications of this thesis.
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2 Medical imaging modalities

2.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) (Lauterbur, 1973; Wolbarst, 1993) is based on the nuclear

magnetic resonance (NMR) phenomenon and, in turn, on the absorption and emission of energy

in the radio frequency (RF) range of the electromagnetic spectrum. The discussion below is

restricted to the imaging of protons, which are the most relevant nuclei in medical imaging.

When placed in a magnetic field of strength B0, protons will be aligned with their magnetic

moments either parallel (lower-energy spin state) or antiparallel (higher-energy spin state) to

the field. However, slightly more than half of the nuclei will be aligned in the lower-energy

spin state creating a net magnetization for a population of protons. A proton with a net

spin can absorb a photon of angular frequency ω0. The Larmor frequency ω0 depends on the

gyromagnetic ratio γ of the given nucleus and B0:

ω0 = γ ·B0. (1)

For hydrogen protons, γ/2π = 42.58 MHz / T. The protons are excited with an RF pulse. Soon

after the photon absorption, the nuclei will re-emit some of the absorbed energy in the form of

radio signals at Larmor frequency. In MRI, the emitted signal is spatially encoded by spatially

varying magnetic fields created by gradient coils. Hence, different frequency components of

the detected signal correspond to different locations of the source signal and spatial images

are obtained by performing an inverse Fourier transformation. The original frequency domain

signal space is called k-space. In practice, only a thin slice of the object under imaging is

excited at a time using a slice selection gradient in the presence of a frequency-selective RF

pulse. A volumetric image is constructed by combining the slice images.

In the classical view of nuclear magnetic resonance phenomenon, the net magnetization

moment vector of the population of protons makes an angle with the direction of the external

magnetic field (z-axis) after the RF excitation pulse. Immediately after the RF excitation pulse,

the protons are in phase and give rise to the precessing transverse net magnetization. The time

constant that describes how the z-component of the net magnetization vector returns to thermal

equilibrium is called the spin-lattice or longitudinal relaxation time, T1. Longitudinal relaxation

is caused by a fluctuating magnetic field and exchange of energy between the spins and the

lattice. The time constant that would describe the return to the equilibrium of transverse

magnetization, Mxy, in the absence of magnetic field inhomogeneities, is called spin-spin or

transverse relaxation time, T2. The transverse relaxation is caused by longitudinal relaxation

and spin-spin interactions leading to spin dephasing in the population of protons. Relaxation

time T ∗
2 includes the effect of magnetic field inhomogeneities to the transverse relaxation time.

By varying the sequence of the RF pulse applied and collected, different types of images, e.g.

T1-, T2- or T ∗
2 -weighted, can be obtained. The clinical usefulness of MRI is based on the fact

that relaxation times are tissue-type-sensitive. The contrast in gradient echo sequences arises

from T ∗
2 effects, whereas spin echo sequences reflect T2 effects (Kennan, 2000).

2.2 Functional magnetic resonance imaging

In the broad sense, the term functional MRI (fMRI) may mean any MR imaging technique

used to study function in a human or an animal. In this work, fMRI refers to the detection of



5

hemodynamic changes associated with neural activity. The activation studies based on regional

differences in oxygenated blood (BOLD contrast) (Kwong et al., 1992; Ogawa et al., 1990,

1992), are likely to be the most common fMRI technique. BOLD fMRI is discussed in more

detail below. Perfusion MRI, which is the other main type of functional MRI, is based on the

intravenous injection of a magnetic compound (Belliveau et al., 1990, 1991; Rosen et al., 1991)

or arterial spin-labelling (Williams et al., 1992). Perfusion MRI provides extensive information

on the capillary level tissue hemodynamics ranging from cerebral blood volume (Belliveau et al.,

1990) and cerebral blood flow (Østergaard et al., 1996b,a) to the intravoxel distribution of flows

(Østergaard et al., 1999). In the rest of this thesis, the term “fMRI” refers to activation studies

based on BOLD.

Biophysics and physiology of BOLD-based fMRI

BOLD (blood oxygenation level-dependent) fMRI (Ogawa et al., 1990) is based on the difference

in magnetic properties of deoxyhemoglobin and oxyhemoglobin (Thulborn et al., 1982), and on

the local changes in the blood deoxyhemoglobin concentration during electrical neuronal acti-

vation. The paramagnetic deoxyhemoglobin, unlike the diamagnetic oxygenated hemoglobin,

distorts the local magnetic field on a microscopic scale. Blood T2 is predominantly determined

by the oxygenation state of hemoglobin (Thulborn et al., 1982). The T2 effect is caused by local

magnetic field variations around the erythrocytes and water diffusion in these fields. T ∗
2 effects

include T2 effects but also the time-reversible dephasing of spins that is caused by the spatial

distribution of the magnetic field within a voxel.

All relationships between neuronal activity, blood flow and oxygenation are not fully un-

derstood, but the process can be outlined as follows (Turner and Ordidge, 2000). First, some

specific areas of the brain start to perform a task. Neuronal and metabolic activity, and the

rates of oxygen and glucose usage increase in the activated areas. At this stage, the blood

oxygenation decreases in the capillaries supplying the tissue and it may be possible to detect a

small drop (early negative response) in the MR signal. Vasodilatory compounds are released at

an increased rate and moved to the capillaries and resistance arterioles as long as the electrical

activity persists. The resistance arterioles are dilated and blood flow increases in the resistance

arterioles and in the capillary bed supplied by the arterioles. Also the capillaries dilate and

oxygen supply to active tissue exceeds the demand. Blood oxygenation increases in capillaries

and venules draining them, leading to the decreased concentration of deoxyhemoglobin. Blood

volume increases in the venous bed. If the enhanced neuronal activity continues, vascular and

metabolic changes reach equilibrium in 1–3 min. When the neuronal activity returns to baseline

the blood flow also returns to baseline, but the blood volume in the draining venules remains

elevated for 30–60 s.

It is worth noting that although the activation localization in the BOLD fMRI is based on the

detection of relative signal changes, the measurements of the BOLD signal allow quantification

of various parameters. These include the change in transverse relaxation rates during activation

(Constable et al., 1993), the size of the blood vessels (Ogawa et al., 1993) and determination

of the oxygen extraction ratio of a tissue (Oja et al., 1999b).
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Spatial and temporal resolutions of BOLD fMRI

The spatial resolution of fMRI is determined by scanner hardware, physiological limits and

ultimately hemodynamic limits. High spatial resolution in fMRI requires both an adequate

signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) (Kim et al., 2000). In MRI, the

SNR is proportional to the voxel volume. At 1.5 T, voxel sizes of about 3–5 mm are typically

used for fMRI. By using higher magnetic fields, better SNR can be obtained and the voxel size

reduced. The SNR can also be increased by using surface coils if only specific regions of the

brain are studied (Cohen et al., 1994). However, ultimately the spatial resolution of fMRI is

restricted by the fact that fMRI does not measure neuronal activity directly. The measured

BOLD signal includes components from the blood oxygenation changes in draining veins, which

limits the spatial resolution of the BOLD fMRI (Lai et al., 2000). Several methods have been

proposed to reduce the loss of spatial resolution caused by draining veins. These include the

methods based on the use of MR angiography, the paramagnetic property of deoxyhemoglobin,

the temporal phase of the fMRI signal time course, velocity dephasing gradients and the phase

angle of the complex-valued fMRI time series (Lai et al., 2000; Menon, 2002). The utilization

of an early negative response or the use of a differential imaging technique may enable even

submillimeter resolutions (Menon, 2001).

The temporal resolution of fMRI is determined by the scanner hardware, used pulse se-

quences, neuronal-hemodynamic coupling, variability therein, and the question being asked

(Bandettini, 2000). The minimum time between successive image acquisitions is about 100 ms,

but the collection of a multi-slice volumetric EPI data set requires typically a repetition time of

about 2 s (Bandettini, 2000). Activations following stimuli of about 30 ms have been detected.

On the other hand, the fastest on-off rate of a stimulus in which the signal amplitude is not

compromised is about 8 + 8 s (Bandettini, 2000).

Noise and artifact sources of fMRI

In most MR imaging, the sources of noise include thermal noise from the subject, receiver coil,

preamplifiers and other electronics, and quantization noise from the analog-to-digital conver-

sion. Bulk head movement is likely the best known source of artifacts in fMRI. Respiratory

effects, cardiac effects, CSF fluctuations and eye movements are important sources of physiolog-

ical noise (Jezzard, 2000). Respiration-related artifacts, caused by small magnetic field shifts or

head motion, may be serious especially if the used fMRI paradigm has a period similar to the

respiratory period. Cardiac-related effects are mainly brain tissue pulsations caused by cerebral

blood volume and pressure fluctuations, and inflow of fresh blood spins into the slice of inter-

est. Biswal et al. (1995) reported slow signal fluctuations (frequencies < 0.1 HZ), which they

explained by a manifestation of functional connectivity of the brain. Scanner instabilities may

also be a major cause of low-frequency drifts in the signal (Smith et al., 1999). Endogenous

neural activations also cause BOLD responses with spatial and temporal dimensions. Non-

physiological artifacts include shape distortions, signal losses (drop-outs) and ghosting artifacts

(Turner and Ordidge, 2000).
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Fast MRI methods

Fast MR imaging techniques include fast low-angle shot (FLASH) imaging (Frahm et al., 1986),

RARE (Hennig et al., 1986) and echo planar imaging (EPI) (Mansfield, 1977). In EPI, only one

RF excitation pulse is used to generate data that is sufficient to fill the k-space. Functional MRI

studies of this work were made using a gradient-echo EPI sequence with a rectilinear trajectory

in the k-space, which is probably the most popular fMRI sequence. Variations of the used

EPI technique include the spiral k-space sampling technique, echo-volumar imaging (Mansfield

et al., 1985) and the principle of echo shifting with a train of observations (PRESTO) technique

(Liu et al., 1993).

2.3 Other functional imaging or measurement techniques

Magnetoencephalography (MEG) is the recording of magnetic fields produced by electrical

activity in the brain (Cohen, 1972; Hämäläinen et al., 1993). Superconducting magnetometers

(SQUIDS) are used to measure the very weak magnetic fields in a magnetically shielded room.

In most cases, the goal of the data analysis is to estimate the region where the source of the

activity seen in the signals originates. In other words, a current distribution that would yield the

measurements is calculated. A frequently used model of the source is the equivalent current

dipole (ECD) model. Other solutions to this non-unique inverse problem include multipole

expansions and distributed current sources (Hämäläinen and Nenonen, 1999). While fMRI

gives indirect information on slow functional processes, the time resolution of MEG is much

better. On the other hand, due to the difficulties and non-uniqueness of the inverse problem in

MEG, the spatial localization accuracy of fMRI is generally better.

Electroencephalography (EEG) measures electric potential differences on the scalp pro-

duced by brain activity. Electric potentials are often affected by inhomogeneities in the head

(Hämäläinen et al., 1993). Emission tomography methods (PET, SPECT) acquire information

on the concentration and distribution of radionuclides introduced to the patient’s body. The

spatial resolution of SPECT ranges from 6 to 8 mm, whereas the resolution of PET is about

4 mm (Volkow et al., 1997). The temporal resolution of PET is about 45 s and of SPECT

> 60 s (Volkow et al., 1997). Like fMRI/MEG/EEG, the emission tomography methods can be

used to asses regional brain function but they are additionally useful in measuring biochemical

components of neurotransmission (Volkow et al., 1997). Near-infrared (NIR) imaging, or (laser)

optical imaging, is based on the modelling of the absorption and scattering of the near-infrared

light in tissue (Villringer and Chance, 1997). In the method, the intensity and the mean time-

of-flight of photons through the tissue are measured at different points on the boundary. The

measured data can be used to reconstruct images of the changes in the optical properties of

the tissue. NIR imaging utilizes the coupling between neuronal activity and optical properties

of the brain.

A literature search using the MEDLINE / PubMed database (U.S. National Library of

Medicine, http://www.nlm.nih.gov/) was done to estimate the relative change of (neuro-) fMRI,

MEG, EEG and NIR publications from 1990 to 2000. For the results, see Fig. 1. The search was

restricted to title words. Most frequent expressions of techniques were used, for example fMRI-

related publications were searched using the expressions “fMRI”, “functional AND MRI” and

“functional AND magnetic AND resonance AND imaging”. To reduce the number of false hits
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Fig. 1: Increase of MEG, EEG, fMRI (neuro) and NIR (near-infrared) imaging-related publica-
tions in the MEDLINE/PubMed database during the 90s. The presented values are only relative
– the actual number of publications is higher because the search was restricted by the keywords
in titles.

it was additionally required that brain- and activity/stimulus-related words existed anywhere

within the records2. Naturally, the searches were capable of finding only a subset of all related

publications. However, the results clearly show how the fMRI was virtually unknown at the

beginning of 90s but in a few years changed to one of the most widely used brain function

imaging methods.

2The exact Boolean search expressions were:
NIR: ((NIR[Title Word] OR (near[Title Word] AND infrared[Title Word]) OR optical[Title Word]) AND (imag-
ing[Title Word] OR tomography[Title Word] OR topography[Title Word])) AND (neural OR brain OR cortex)
AND (activity OR activation OR stimulus OR stimulation OR stimulated)
fMRI : fMRI[Title Word] OR (functional[Title Word] AND MRI[Title Word]) OR (functional[Title Word] AND
magnetic[Title Word] AND resonance[Title Word]) AND (neural OR brain OR cortex) AND (activity OR ac-
tivation OR stimulus OR stimulation OR stimulated)
MEG : (MEG[Title Word] OR magnetoencephalography[Title Word] OR magnetoencephalographic[Title Word]
OR magnetoencephalogram[Title Word] ) AND (neural OR brain OR cortex) AND (activity OR activation OR
stimulus OR stimulation OR stimulated)
EEG : (EEG[Title Word] OR electroencephalography[Title Word] OR electroencephalographic[Title Word] OR
electroencephalogram[Title Word] ) AND (neural OR brain OR cortex) AND (activity OR activation OR stim-
ulus OR stimulation OR stimulated)
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3 Segmentation methods related to this work

By definition, segmentation means that an image is divided into non-overlapping (disjoint)

objects in a meaningful way. Classification of each pixel or voxel of an image to one of the

possible classes results in a segmented image. The number of different segmentation methods

developed for medical images is huge. Some of the methods used in medical imaging were

reviewed by Clarke et al. (1995) and by Acharya and Menon (1998). There are also several

ways to classify the methods. One way is to divide the methods into non-contextual and

contextual methods. In non-contextual methods, the voxel’s classification does not depend on

the measurement values of other voxels. A voxel is classified using only the measurement vector

of the voxel under consideration. In the case of one-channel data, this is called one-level or

multi-level thresholding. Contextual methods utilize information from other voxels, especially

from the adjacent voxels. Another criterion divides segmentation methods into those that

use an a priori model about the expected segmentation and those which do not. Geometry-

driven methods use an a priori geometric model, which is deformed using edge information and

elasticity constraints [for a review see e.g. Acharya and Menon (1998) and for an application

see Lötjönen et al. (1999)]. The Markov random field models (MRF) are another approach to

incorporate a contextual a priori model to the segmentation. The idea behind MRF models is

outlined in the next subsection.

3.1 Markov random field-based segmentation

It is usually reasonable to assume that the distribution of class labelling at a voxel is conditioned

on the class labels in the other voxels. Especially, it is likely that the true classification of nearby

voxels is strongly correlated. This prior assumption can be modelled by Markov random fields

(MRFs) (Besag, 1974; Geman and Geman, 1984), which are widely used in segmentation and

noise reduction tasks. Besag (1986) introduced the iterated conditional modes (ICM) algorithm

that is a computationally efficient method to carry out MRF-based segmentation. A similar

algorithm was used by Kittler and Pairman (1985) to identify clouds. What is important to

note is that these algorithms use both the measurement value of a voxel and classification

information from the neighborhood simultaneously. Information from larger neighborhoods is

incorporated by iterating the classification. The method developed in this thesis follows these

ideas and is closely related to the ICM algorithm. Pappas (1992) presented a general MRF-

based segmentation algorithm that took into account local intensity variations by an iterative

procedure involving averaging over a sliding window whose size decreased as the algorithm

progressed. Liang et al. (1994) segmented brain images using a Markov random field prior and 3-

channel data including T1-, T2- and PD-weighted 2-D MR images. Unlike in many other papers,

the number of classes was estimated from the data. Park and Kurz (1996) developed a general

MRF-based image enhancement algorithm and found that it outperformed e.g. the median

filter. Held et al. (1997) described a fully automatic 3-D segmentation technique for brain MR

images. Implementations based on simulated annealing and ICM were presented. Difference to

the method by Liang et al. (1994) was that also intensity inhomogeneities and non-parametric

intensity distributions were taken into account, but the classes were pre-determined. Rajapakse

et al. utilized a 3-D MRF model in the segmentation of single-channel magnetic resonance (MR)

cerebral images (Rajapakse et al., 1997; Rajapakse and Kruggel, 1998). Their method was also
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adaptive to intensity inhomogeneities, but in addition MRF-parameters were estimated from

the data. Also Kim and Paik (1998) presented an unsupervised segmentation method for MR

images. Their method was based on an adaptive version of the ICM algorithm, and even the

size of the window for parameter estimation was chosen using the data. Descombes et al.

(1998b,a) proposed reduction of noise from fMRI datasets using an MRF model. Van Leemput

et al. (1999) described a fully automatic brain tissue classification method. In their approach,

initialization is done using a digital brain atlas containing prior expectations about the spatial

location of tissue classes. Thereafter, tissue classification including correction for MR signal

inhomogeneities and parameter estimation is done in an interleaved manner by maximizing

tissue likelihood in the presence of MRF-prior.

An MRF model defines interactions of different class values. Interactions are considered

within some neighborhood. The neighborhood of a pixel or voxel consists of its closest pixels

or voxels. In most cases, first-, second- or third-order neighborhoods are used. The first-order

neighborhood consists of the four closest pixels in 2D and the six closest voxels in 3D. The

second-order neighborhood consists of the eight closest pixels in 2D and the 18 closest voxels

in 3D. The third order neighborhood in 3D additionally includes the eight corner voxels into

the neighborhood. Another useful term is “clique”. A clique is a set of pixels or voxels that

are all neighbors of each other.

Mathematically the concept of the MRFs can be described as follows. Let i = {1, 2, . . . , n}
index n sites (pixels / voxels) of an image I. Let xi represent the classification of the site i and

let x represent the classification of all sites. Let Ni be a neighborhood of site i. The random

variable representing x is a locally dependent Markov random field if

p(xi|xI\i) = pi(xi|xNi
), (2)

where I\i refers to all sites of I excluding site i. A usual requirement is that the probability of

any particular segmentation of the image is positive (positivity constraint): x ∈ Ω, p(x) > 0,

where Ω is the set of all possible segmentations. Then, according to the Hammersley-Clifford

theorem [see e.g. Besag (1974)] the density of x is given by a Gibbs distribution:

p(x) =
1

Z
exp[−

∑
c∈C

Vc(x)]. (3)

Here Z is a normalization constant whose value is not usually needed in segmentation. Vc is a

potential function associated with clique c. The summation is over all cliques C. The higher

the potential value of a clique configuration is, the less likely its existence is a priori. One

difficulty in using Markov random fields lies in the determination of potential function Vc for

different types of cliques. Often the potential functions are determined heuristically and the

usefulness of the model is demonstrated by using test data.

The simplest but regularly used approach is to give non-zero potentials only to singletons

(i.e. cliques consisting of only one voxel) and doubletons (cliques consisting of two voxels) [see

e.g. Rajapakse et al. (1997); Rajapakse and Kruggel (1998)]. A drawback of this simplification

is worth noting: the position information of neighboring class values is not utilized in contrast to

the use of more complicated cliques (Park and Kurz, 1996). It is argued that these simple models

are not well suited for segmentation as they cannot represent the “real world” (Morris et al.,

1996). Especially with “true” values for potential values, the models do not seem to provide
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enough “smoothing”, but may delete fine structures. On the other hand, these models have

been used successfully in many applications. The problems can be avoided at least partially by

defining additional restrictions for the potential functions. The use of more complicated models

[e.g. the line and fine structures preserving chien model with 3× 3 cliques by Descombes et al.

(1995)] in segmentation is rare, possibly due to the computational difficulties, which may be

severe in 3D.

The potentials of the singletons (often expressed using α) reflect the a priori knowledge of

the relative likelihood of the different classes. If the a priori likelihood of different classes is

not used (e.g. the classes are assumed to be equally likely), the potentials of the singletons

are set to zero. The potentials of the doubletons (β) are used to adjust the likelihood that

neighboring voxels belong to different classes. One method is to set the potential to β if

the voxels belong to different classes and otherwise to 0 or −β [e.g. Besag (1986); Pappas

(1992)]. Sometimes different potentials (β1, β2, . . .) are defined to the first-order, second-order

etc. neighbors [e.g. Rajapakse et al. (1997); Rajapakse and Kruggel (1998); Liang et al. (1994)].

Also possible different voxel dimensions in x−, y−, and z−directions can be taken into account

by defining different interactions for different directions. Sometimes it is useful to order the

classes and define the potentials to utilize this order information. For example, a larger potential

could be given for cliques consisting of white matter (WM) and cerebral spinal fluid (CSF)

voxels than for cliques consisting of gray matter (GM) voxels in place of CSF voxels. This

would reflect prior knowledge that GM voxels are often located between WM and CSF voxels.

Another example is noise reduction using an MRF model. In this case, the potential function

can be defined to be a function of difference of intensity values inside a clique (Park and Kurz,

1996). It is worth noting that an MRF model is often not expected to be an accurate model

of the true image itself but a tool to utilize contextual information. Hence, even if the Markov

a priori model is not accurately determined, its use may significantly improve segmentation

results.

3.2 Goals of segmentation

A frequent goal of segmentation is to choose the most probable segmentation x (maximizing

a posteriori probability, MAP segmentation) given the measurement data and the available a

priori information. Let vector z contain the measurement values, or some other features, of

voxels. Thus, by Bayes’ theorem x maximizes the probability

P (x|z) ∝ p(z|x)p(x). (4)

Another goal of segmentation might be to maximize the marginal posterior probability (MMP)

at each voxel i. That is, to maximize

P (xi|z) ∝
∑
xI\i

p(z|x)p(x). (5)

This is equivalent to the minimization of the expected number of erroneously classified voxels

and can be seen as an approximation to MAP. The xi’s can be estimated using the Gibbs

sampler (Geman and Geman, 1984).

It is worth noting that the MAP (or MMP) segmentation requires realistic models about

the data and the estimation of the model parameters. For example, the models used for the
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segmentation of brain MR images include the non-contextual finite Gaussian mixture model

and the contextual Gaussian hidden MRF model (Zhang et al., 2001). Typically, the unknown

parameters are the means and variances of the Gaussian distributions and MRF parameters like

singleton and doubleton interaction parameters. The inclusion of bias field and partial volume

models introduces additional unknown parameters. The determination of the parameters using

either training data or the actual data is the central issue of many publications. Several meth-

ods like the expectation-maximization algorithm (Dempster et al., 1977; Van Leemput et al.,

1999; Zhang et al., 2001) have been proposed to estimate the parameters. Estimation of the

model parameters is often carried out in an iteratively manner simultaneously with the energy

minimization (see the next subsection) algorithm. We have adopted an alternative approach,

namely the classification by hypothesis testing, not requiring the estimation of parameters.

When the voxels of an image are classified into two classes, ω0 and ω1, there are two basic

types of errors:

• a voxel of class ω0 is erroneously classified to class ω1 and

• a voxel of class ω1 is erroneously classified to class ω0.

Segmentation by hypothesis testing means classification of the voxels into two classes so that

one of the classes is defined as a null class. A voxel is classified to the alternative, or rejection,

class if the null hypothesis is rejected. The null hypothesis is rejected if the probability for

the test statistic, or a higher one, to occur by chance assuming that the null hypothesis is true

is smaller than a predefined α-level. Segmentation by hypothesis testing can be used if the

intensity distribution of the null class is known. The difference between MAP- and testing-

based classification is illustrated in Fig. 2. Voxel classification based on hypothesis testing is

widely used in fMRI data analysis because

• the distribution of non-activated voxels can be approximately characterized but the dis-

tribution of activated voxels is unknown,

• the classification of a non-activated voxel to the activation class is considered a more

serious error than the classification of an activated voxel to the non-activation class, and

• the significance (p-) values of the found activated regions are often needed to report the

significance of the findings.

Hypothesis testing is often performed on each voxel separately. Segmentation methodology

and contextual information are seldom used in testing approaches. Generally speaking, the use

of information from other voxels prevents accurate statistical voxel-specific inferences. However,

by properly choosing the segmentation algorithm the advantages may be more important than

the drawbacks.

3.3 Minimization of energy function

The a posteriori probability of segmentation x can be written as P (x|z) ∝ exp− U(x), where

U(x) is called the energy function. Maximization of the a posteriori probability is then equiv-

alent to the minimization of energy function U(x). In practice, the minimization algorithm

determines the labelling of the voxels and is occasionally called the labelling algorithm. A
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Fig. 2: Schematic illustration of differences between MAP- and hypothesis-testing-based classi-
fication when only intensities (no spatial information) are used. The dotted line represents the
density f0 of a background class multiplied by its a priori probability P (0) = 0.9, the dashed
line the density f1 of an alternative class multiplied by its a priori probability P (1) = 0.1. Val-
ues classified to the alternative class with MAP and testing techniques are shown in the right
upper corner of the figure. In MAP classification, voxel i is classified into the alternative class
whenever P (1)f1(zi) > P (0)f0(zi). This requires a knowledge (usually estimation) of f0, f1 and
their a priori probabilities. In classification based on a hypothesis testing, a voxel is classified
to the alternative class when the probability for the value of zi, or a higher one, by chance, and
assuming the background class, is small enough. This requires knowledge of f0 only.

simulated annealing (SA) algorithm is widely used to find the minimum of the energy function

[see e.g. Kirkpatrick et al. (1983); Geman and Geman (1984); Lakshmanan and Derin (1989);

Descombes et al. (1998b,a); Rajapakse and Piyaratna (2001)]. The main benefit of the SA

algorithm is that it converges toward the global minimum of the energy function and does

not depend on the initialization (Geman and Geman, 1984). This is achieved by allowing an

increase of the energy function with a probability that is related to the parameter referred to

as temperature, Te. To adhere to the theoretical properties of convergence, the temperature

Te must be decreased logarithmically. The final classification after a large number of cycles is

considered to be an energy minimum and an MAP estimate of the classification. The main

downside of the SA algorithm is its huge computational demands.

One difficulty with Markov random field models is the phenomenon known as phase tran-

sition, which creates images consisting of only one class. Besag (1986) proposed the iterated

conditional modes (ICM) algorithm for the minimization of the energy function. Originally,

the ICM was proposed as an approximation to MAP estimation, although later it was also

considered to overcome the phase transition problem. In the ICM algorithm, the class label of
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Fig. 3: Detection of a simulation object from a noisy background. (a) Fifteen spatial levels
of a simulation object 32 × 32 × 32 voxels in size. All other levels are empty. (b) Slice 15
of the simulation object added to a noisy background. The noise follows N(0, 1); mean of
the object is µ = −1.5. (c) A thresholded image with a false-positive rate FPR ≈ 0.006;
T ≈ −2.52, (d) an initialization image for contextual clustering Tcc ≈ −0.806, and β = T 2

cc/6,
(e) contextual clustering after the first cycle, (f) contextual clustering after the second cycle,
(g) contextual clustering after the 10th cycle (convergence), FPR ≈ 0.006. In (c)–(g), the
object voxels erroneously classified to the background are shown in light gray. A version of the
contextual clustering for negative object values was used. Source: Publication I.

site i is updated so that the a posteriori probability

P (xi|z, x̂I\i) ∝ f(zi|xi)pi(xi|x̂Ni
) (6)

is maximized (Besag, 1986). Here f(zi|xi) is the conditional density of the observed zi with

given xi. The maximization is applied to each voxel in turn or to all voxels simultaneously. The

ICM algorithm, or its variants, have been used widely to minimize the energy in MRF-based

segmentations [see e.g. Liang et al. (1994); Kim and Paik (1998); Zhang et al. (2001)].

The Gibbs sampler (Geman and Geman, 1984) is a technique used to sample realizations

from the posterior distribution of x. The sampling is started with some initial segmentation.

Each pixel is processed in turn. In the basic version, the new classification xi for pixel i is
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Fig. 4: Contextual clustering of an image containing multiple objects. (a) The source image.
The voxel intensities on the object regions follow different distributions with different means
and variances, (b) the segmentation result. The segmentation was obtained using parameter
values Tcc ≈ −1.48, β ≈ 0.37. Source: Publication I.

chosen with probability

P (xi|z, xI\i) ∝ f(zi|xi)pi(xi|xNi
). (7)

MMP estimation can be performed by running the Gibbs sampler several cycles and counting

the most frequent class for each voxel after a burn-in period, which removes the effects of the

initial sampling values.

Dubes et al. (1990) compared the ICM, SA and MMP methods. The ICM method was

found to perform consistently well and to be the most robust on images corrupted by correlated

noise. It was noted that although the SA is theoretically guaranteed to find a globally optimal

segmentation, it can fail in actual problems because compromises are needed to overcome the

computational burden. In addition, the ICM was a few orders of magnitude faster than the SA.

The MMP implemented using the Gibbs sampler required more computation than the ICM but

far less than the SA.

3.4 Approach used in this thesis

In this work, we have developed a method to perform segmentation into two classes, a back-

ground class ω0 and an alternative class ω1, by hypothesis testing simultaneously utilizing

neighborhood information. It is assumed that the true distribution of class ω0 voxels is known

to be the standard normal N(0, 1), possibly after the transformation of the variables. The
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Contextual clustering algorithm

Contextual clustering algorithm, which segments an image into background (ω0) and object
regions (ω1), is presented. The voxel intensities of the background are assumed to be drawn
from standard normal distribution.

1 Define decision parameter Tcc (positive) and the weight of neighborhood information
β (positive). Let Nn be the total number of voxels in the neighborhood a. Let zi

be the intensity value of voxel i.

2 Initialization: Classify voxels with

zi > Tcc (8)

to ω1 and other voxels to ω0. Store the classification to variables C0 and C1.

3 For each voxel i, count the number of voxels, ui, belonging to class ω1 in the neigh-
borhood of voxel i. Assume that the voxels outside the image volume belong to
ω0.

4 Classify voxels with

zi +
β

Tcc
(ui −Nn/2) > Tcc (9)

to ω1 and other voxels to ω0. Store the classification to variable C2.

5 If C2 6= C1 and C2 6= C0, copy C1 to C0, C2 to C1 and return to step 3, otherwise
stop and return C2.

Note: The presented form of the algorithm detects positive deviations from the standard
normal distribution. If negative deviations are to be detected, Tcc should be chosen to have
a negative value and “>” should be replaced with “<” in Equations (8) and (9).

aAll experiments in this work have been conducted using the 3rd-order 3-D neighbor-
hood, i.e. Nn = 26

distribution of class ω1 values is unknown. The classification could be done by a one-sided

hypothesis test, accepting the null hypothesis that a voxel belongs to ω0 whenever the voxel

intensity zi is smaller than a predefined threshold Tcc, and otherwise rejecting the null hypoth-

esis and thus classifying the voxel to class ω1. In order to utilize neighborhood information,

an artificial distribution for class ω1 is introduced, N(2Tcc, 1). That way the maximum likeli-

hood (ML) classification of each voxel into either ω0 or ω1 will produce the same result as the

one-sided hypothesis test. Then a Markovian random field model on the classification is added,

and the classification is estimated as a local maximum in the posterior probability, thus giving

a neighborhood-information-added analog to the one-sided hypothesis test. A 3-D MRF model

with pair-wise interactions and a third-order neighborhood is used. The potential function is

defined as Vc = 0 if both voxels of a doubleton belong to the same class, and otherwise as

Vc = β. Minimization of the energy function is done following ICM style minimization, because

• ICM is computationally efficient,

• the results depend only on the local characteristics of the data, and

• there is some evidence (Dubes et al., 1990) on the good robustness against spatial corre-
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lations in the noise term.

We will call the segmentation carried out using the ideas presented a “contextual clustering”.

Its steps are summarized in the box, for details of the derivation see Publication I. Segmentation

of a single object from random noise is illustrated in Fig. 3. Segmentation of several objects

following different distributions is shown in Fig. 4. It is worth noting that the algorithm

measures deviation from the background only (i.e. no information about object distributions

is used). In addition, apart from the immediate neighborhood of object voxels, type I error

probabilities are determined by the parameters of the algorithm (Tcc and β) only.

The essential difference between the ICM algorithm (or MAP estimation) and the proposed

algorithm is worth noting. In the ICM, relative a posteriori probabilities for a voxel belonging

to classes ω0 and ω1 should be estimated. A voxel is classified to a class whose a posteriori

probability is the highest. This requires a priori information about the statistical properties

of both classes and parameter estimation. In our approach, only the statistical properties of

background class ω0 are used. Loosely speaking, a voxel is classified to ω1 if the values of the

voxel and the “surrounding” voxels differ enough from the distribution of class ω0. For this

reason, the need for the modelling of activation distributions is avoided. In the derivation from

the ICM, the “real” activation class was replaced with an artificial test class. The mean of the

test class and the interaction between neighboring voxels are set so that a desired overall or

voxel-level type I error rate is achieved, i.e. the mean and MRF parameters no longer represent

the characteristics of the true image. We emphasize that the replacement is a heuristic step.

Hence, relatively extensive tests were conducted in Publications I–III. Main results of the tests

are presented in section 4.
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4 Data analysis

4.1 Acquisition of data and goals of fMRI data analysis

In fMRI activation studies a stimulus is given to a subject or the subject is asked to perform

a task. Time series of MR images are recorded and analyzed. In epoch-based, or block-based

fMRI, blocks of different states (e.g. control and stimulus) are alternated and the images of

different states are compared. Each block typically consists of several images. Too short blocks

are inefficient due to the slowness of the hemodynamic response. On the other hand, too long

blocks should be avoided due to baseline fluctuations, subject’s movements and discomfort.

Optimal block length and other parameters of the study designs are debated questions and out

of the scope of this thesis.

In addition to epoch-type studies, fMRI can be used to study event-related activations

(Buckner et al., 1996; Rosen et al., 1998). Event-related fMRI is used to study responses to short

stimuli, e.g. to single words. Event-related task paradigms can be used to map hemodynamic

changes lasting in the order of seconds or several hundreds of milliseconds. Event-related fMRI

provides the ability to study the same paradigms in both fMRI and MEG (or EEG) sessions.

The number of articles related to the fMRI data analysis is large [see e.g. Lange (2000)].

Perhaps the most common goal of fMRI data analysis is to localize the brain areas responsible

for the processing of the stimulus. In many approaches, the localization of fMRI activations

consists of three phases:

1) Preprocessing of the data, possibly including motion correction and smoothing or noise

reduction,

2) voxel-by-voxel computation of the statistic image (SI), also called a statistical (paramet-

ric) map, and

3) segmentation of the SI into activated and non-activated regions.

Phase 2) essentially reduces the 4-D spatio-temporal fMRI data into a 3-D spatial image by

considering all time series separately. The values of the SI follow a known null distribution in

non-activated voxels. Phase 3) is usually called a testing phase aiming to detect statistically

significant activations from the 3-D SI. As will be later discussed, this phase is usually carried

out so that the probabilities of false activation detection (“false-positive rates (FPR)”) are

controlled either at the voxel level or the overall (volume) level. The term “segmentation”

is used here to emphasize that, at least implicitly, the ultimate goal is not only to obtain

information about the location of activation centers but also to obtain other information like

the shapes or sizes of the activations. The simplest approach to segment SI is to threshold it

in a voxel-by-voxel manner. However, it is generally accepted that the truly activated voxels

tend to form clusters, and methods to incorporate spatial information during step 3) have been

developed. We shall describe later in this overview how the contextual clustering procedure

described in section 3 can be used to perform phase 3).

This thesis will concentrate on the localization and delineation of activations. However,

several other questions may be posed than just where the activation happened. Bayesian

models with Markov Chain Monte Carlo posterior sampling seem useful in estimating many

hemodynamic parameters, for example signal rise times or the impact of changing task demands
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(Genovese, 2000; Gössl et al., 2001). Path analysis is used to quantify relationships between

multiple brain regions (Bullmore et al., 1996b, 2000). The goal of time series clustering [see e.g.

Baumgartner et al. (1997); Golay et al. (1998); Baune et al. (1999); Goutte et al. (1999); Ngan

and Hu (1999)] is to partition the time series into clusters of similar time courses. Typically,

time series clustering does not require prior assumptions about the shape of the expected time

course.

Multivariate analysis, like singular value decomposition (SVD) and independent components

analysis (ICA) (McKeown et al., 1998), take place on all voxels’ time courses at the same time.

SVD, or related principal component analysis (PCA), may be used to explore fMRI-signal

structures without any a priori knowledge about the activation signal [e.g. Bullmore et al.

(1996b); Lange (2000)]. As an example, Friston et al. (1994a) used SVD to extract a global

representation of the hemodynamic response function.

4.2 Preprocessing of fMRI data

Reliable activation detection and the controlling of false-positive rates (FPRs) in fMRI activa-

tion detection requires modelling of noise. Noise can be divided into systematic and random

noise. Optimal detection of activations requires a correct model for the hemodynamic response.

Both the noise and hemodynamic response have temporal and spatial aspects.

The simplest approximation for the time courses of a non-activated voxel is that the intensity

values are independently drawn from a Gaussian distribution with some mean µ and variance

σ2, constant over the experiment. In an approximation, the time courses are also spatially

independent if the means are not considered. This white Gaussian noise model is often implicitly

assumed in the widely used t-test methods. In practice, the intensity values of fMRI data are

correlated in time and space. The amount of correlation may depend, e.g., on the size of voxels

and the time of repetition. The number of false-positive detections may differ from the expected

number of false positives if the correlations are not taken into account properly. In addition, the

changes in the baseline level cause substantial difficulties in the data analysis. Spatial aspects

are closely related to the activation detection phase and are hence deferred to subsection 4.4.

The primary reason for low-pass filtering in statistical analysis is to set the degrees of

freedom of the data to a known level. In addition, running a filter whose width corresponds to

the width of the signal increases detection sensitivity. Kruggel et al. (1999) compared a moving

average filter, an FIR low-pass filter, an autoregressive filter and a Kalman filter with event-

related data. The best sensitivity was determined for the moving average filter, closely followed

by the temporal low-pass filter. However, the low-pass filter revealed a higher independence

of the results in relation to the filter parameters. Zarahn et al. (1997) reported that temporal

autocorrelation in spatially unsmoothed data is described well by a 1/f relationship, where f

is frequency. In addition, they found that temporal smoothing of the noise data with low-pass

filters in conjunction with the use of a general linear model (GLM) (Worsley and Friston, 1995)

was advantageous in controlling FPRs.

Systematic noise, like drifts and fluctuations, may be caused, e.g., by scanner instabilities,

scanner noise, motion artifacts, variations in blood pressure and respiratory or cardiac effects

(Bandettini et al., 1998; Smith et al., 1999). A standard approach is to high-pass filter the time

series or simply remove a linear trend. The high-pass filtering can be performed as a separate

pre-processing step or it can incorporated to the linear model discussed later. Biswal et al.
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(1996) described the use of finite impulse response (FIR) band reject digital filters in removing

physiological fluctuations. Buonocore and Maddock (1997) developed an adaptive Wiener filter

to suppress cardiac and respiratory structure noise in fMRI images. Skudlarski et al. (1999)

found that removal of intensity drifts using high-pass filtering is beneficial to the efficacy of the

analysis. Marchini and Ripley (2000) removed non-linear trends by using a simple running-lines

smoother, which they found to be a reliable method.

A global nuisance signal can be partially taken into account by scaling the images, so that

they all have the same global mean value. However, it is possible that much of the brain truly

responds neurally to the experimental paradigm and that adjustment for the global signal leads

to inferences about brain function based on artifact (Aguirre et al., 1998b). The global signal

can also be included as a nuisance covariate into the GLM (Zarahn et al., 1997).

In order to optimize the sensitivity of activation detection, the hemodynamic response

function (HRF) should be modelled accurately. It is generally known that the hemodynamic

response is slow. After the onset of neural activation, it increases to a peak value during several

seconds. Return to the baseline is even slower. Several models have been used for the HRF.

In using the Fourier transform technique, only the frequency of the activation needs to

be known (Bandettini et al., 1993). The same is true when a linear combination of sine and

cosine terms at the fundamental frequency of simulation is fitted (Bullmore et al., 1996a) to the

data. These approaches are naturally limited to the periodic stimulus functions. A widely used

approach is to use a model of a linear and time-invariant system, although it is generally known

that the model is not precisely correct. For example Dale and Buckner (1997) demonstrated that

the fMRI signal summated approximately linearly in visual stimulation experiments although

subtle departures from linearity were observed. In the epoch-based experiments, the linearity

is not as important issue as it is when short stimuli are repeated rapidly. In the linear model

the response to an arbitrary input (stimulus) function is equal to the convolution of that input

with the system’s impulse response. Then, the observed fMRI signal x(t) (without baseline) at

time t in a discrete-time domain is given by

x(t) = α
∑
s

h(t− s)p(s) + ε(t), (10)

where α is the gain of the fMRI imaging process, p(s) is the stimulus function, h(t) is the

impulse response function and ε(t) represents additive noise. Assuming that the effects of

stimuli summate linearly, this equation can be applied not only to a single stimulus but also to

cases where many stimuli are presented rapidly. The simplest model for the impulse response

function is the delta function. Then x(t) is modelled to be α + ε(t) during a stimulus and ε(t)

otherwise. A slightly more realistic approach is to add a delay of few seconds to the system.

These models are implicitly used in the two-sample t-test. In more advanced approaches, the

impulse response function is modelled by a gamma or Poisson density function (Friston et al.,

1994b; Boynton et al., 1996; Cohen, 1997), a difference between two gamma density functions

(Friston et al., 1998), a Gaussian function (Rajapakse et al., 1998), or an empirically derived

function. Variation in the impulse response (e.g. variation in lag and and dispersion) can be

modelled by a combination of basis functions or by a finite-impulse response (FIR) set. Choices

for the basis function include a canonical response function and its derivatives (Friston et al.,

1998), a Fourier set (Josephs et al., 1997) and gamma density functions (Dale and Buckner,

1997). The FIR sets do not assume any shape for the hemodynamic response, although it is
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possible to include knowledge about the responses using restriction matrices (Burock and Dale,

2000). In the linear model, it is also possible to define different impulse response functions to

different types of stimuli.

Movement correction and other geometrical transformations

Movement of a subject is considered to be one of the most serious problems in fMRI experiments.

Movement may lead to decreased detection sensitivity or movement artifacts. Often the head of

the patient or volunteer is fixed with a vacuum pillow during scanning. Also bite bars are used.

However, small movements cannot be avoided. To remove the effect of head movements, several

motion correction algorithms based on the internal properties of the data and either rigid or

non-rigid models have been developed and used. The movement correction, as registration in

general, encompasses several separate problems. These include the selection of a cost function,

optimization of the cost function and interpolation of the data after the determination of the

transformation parameters (Woods et al., 1992; Friston et al., 1996b; Eddy et al., 1996; Kim

et al., 1999; Cox and Jesmanowicz, 1999; Jenkinson and Smith, 2001a).

Movement correction is an example of within modality, within subject registration proce-

dure. Several other registration and transformation procedures are also needed in the analysis

of functional data [see e.g. Jenkinson and Smith (2001b)]. In order to show activation maps

on the top of high-resolution structural MR images, a between modalities within subject reg-

istration is widely used. In this case raw functional MR data (e.g. EPI) is registered with the

structural images because the computed activation maps are not suitable for registration. In

some cases, slice position and orientation information from the headers of image files can be

used and registration can be avoided. There is also often a need to combine between modalities

within subject, and between subjects within modality transformations in order to show the

activation maps of different subjects on the top of one common reference image. Difficulty lies

in the fact that substantial variation between anatomies exists. Generally, one of the subjects

is chosen as a reference. Structural images of other subjects are elastically registered with the

reference subject. Then the functional images of each subject are registered with the corre-

sponding structural images of the subject. Finally, the two transformations are combined and

activation maps are transformed to the coordinates of the reference structural image. Alter-

natively, some standard atlas, like the coordinate system of Talairach and Tournoux (1984),

can be used as a reference coordinate system. This has the advantages that the results can

be reported in standard generally known coordinates and compared easily with other studies.

Additional references concerning the geometrical transformations include Pelizzari et al. (1989);

Thompson and Toga (1996); Christensen et al. (1997); Ashburner et al. (1999).

4.3 Computation of statistic images

In the most basic fMRI analysis technique, the mean of images acquired during one condition is

subtracted from the mean of images acquired during an alternative condition. Images obtained

at the beginning of each epoch are generally discarded due to the delay in the hemodynamic

response. However, the subtraction technique alone does not give information about the sta-

tistical significance of the difference. Instead of direct subtraction, statistic images (SIs) are

preferred. In the SI, non-activated voxels follow a known null distribution. There are several
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ways to compute such images.

The SI of t-statistic can be obtained from a subtraction image by normalizing it with the

standard error estimate, i.e. using the methodology of standard Student’s t-tests. The t-statistic

has been used from the early days of fMRI (Constable et al., 1993). In the correlation analysis

(Bandettini et al., 1993), correlation coefficients are calculated between the measured signal

and an expected response function (reference signal) at each voxel. Thereafter, the calculated

correlation coefficients are compared with the theoretical null distribution coefficients. Several

variations exist. Kleinschmidt et al. (1995) used correlation coefficient maps with noise distri-

bution reconstructed from the actual data. Kuppusamy et al. (1997) used a combination of

cross-correlation and t-test images. An example of spectral density estimation methods is a

non-parametric technique described by Marchini and Ripley (2000). The method was found to

be more resistant to high-frequency artifacts than the usual time-domain approaches.

The t-test and the correlation test are special cases of the general linear model (GLM)

(Friston et al., 1995). Usually, the GLM is written in matrix form:

xi = Gbi + εi (11)

Here xi includes measured data for voxel i, G is called a design matrix, bi is a vector of

unknown model parameters, and εi is a vector of residuals drawn from a Gaussian distribution.

The design matrix G models the experiment, e.g. the hemodynamic response (see section 4.2),

baseline, and nuisance effects, like low-frequency components. The columns of G represent

different parts of the model and each row represents one scan (3-D volume). If G is full rank,

the least squares and simultaneously the maximum likelihood (ML) estimates of b are given by

b̂i = (GT G)−1GT xi, (12)

where T indicates the transpose and −1 the inverse of a matrix. In the case that the data are

convolved (smoothed) using a convolution kernel K, the GLM is written as

Kxi = KGbi + Kei. (13)

Unbiased estimators for bi, its variance and statistical significance were given by Worsley and

Friston (1995). For example,

b̂i = (GT KT KG)−1GT KT Kxi. (14)

The primary goal of smoothing is to set the temporal autocorrelations to a known level so

that SIs can be computed properly. An alternative approach to the temporal smoothing is to

estimate and remove the actual autocorrelations (pre-whiten the data) (Bullmore et al., 1996a;

Burock and Dale, 2000; Woolrich et al., 2001). Woolrich et al. (2001) found their pre-whitening

approach to give valid statistics at the voxel level and to maximize estimation efficiency.

In order to test a specific effect at voxel i (e.g., is b1,i significantly larger than zero?), a t-

statistic value is calculated. The t-statistic value is calculated by dividing a contrast (i.e. linear

compound of the parameter estimates) by the estimated standard error at the voxel [for details,

see Friston et al. (1995); Worsley and Friston (1995)]. When there is no specific effect at the

voxel, the t-value is drawn from a null distribution, which is, in theory, a t-distribution. All

t-statistic values displayed together form a t-statistic image. The t-statistic images can be
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transformed to standard z-statistic images using the transformation Φ(t) = Ψ(z), where Φ(·)
is the t-distribution function and Ψ(·) is the cumulative standard Gaussian function. The

knowledge about the null distribution enables the determination of voxels in which the specific

effect is statistically significant. The next subsection covers this issue in greater detail. In

addition to t-statistic, also an F -statistic is widely used with the GLM. An F -test can be used

to assess the significance of a subset of basis functions. The F -test allows comparison of the

different factors to the model.

Other statistics are used, too. For example, Bullmore et al. (1996a) presented a test statistic

called a fundamental power quotient (FPQ). In the approach, an fMRI signal is modelled by

the sum of a fitted sine wave and a cosine wave. The FPQ at a voxel is given by

FPQ =
1

2

( γ̂

σ̂

)2

+

(
δ̂

σ̂

)2
 , (15)

where γ̂ and δ̂ are estimates of the amplitude of a sine wave and a cosine wave, respectively,

and σ̂ is an estimate of the assumed common standard error of γ̂ and δ̂. In theory, 2 × FPQ

has approximately the chi-squared null distribution with two degrees of freedom.

Ardekani et al. (1999) proposed the use of subspace modelling and maximum likelihood

estimation in the detection of fMRI activations. This method identifies both the dimension

and the basis vectors of the nuisance subspace (confounds) using an ML estimation method.

The Kolmogorov-Smirnov (KS) statistic is widely used in the analysis of fMRI data, [for

a list of publications see Aguirre et al. (1998a)]. The KS-statistic is based on the maximum

distance between the cumulative probability distributions of the different conditions. It does

not assume that the noise in the fMRI time series follows a Gaussian distribution. However,

independence of the samples is assumed. Indeed, experiments indicate that FPRs, yielded by

the KS-test, may excess the tabular values (Aguirre et al., 1998a).

4.4 Detection of activations from statistic images

The ultimate goal of fMRI data analysis is often the detection, localization and delineation

of activation regions from SIs. The approaches can be roughly divided into two groups:

hypothesis-testing-based methods and modelling-based methods. The hypothesis-testing-based

methods control FPRs and detect statistically significantly activated regions. In modelling- or

estimation-based methods, activation distributions are estimated and voxels are classified by

maximizing the a posteriori probabilities.

Spatial smoothness and smoothing

Spatial smoothness, or coherency, i.e. the presence of cross-correlations of voxel time series is

an important issue due to the need for multiple comparison correction. One type of smoothness

can be modelled by a continuously differentiable spatial autocovariance function (Zarahn et al.,

1997). Filtering the data with a Gaussian kernel creates this type of smoothness. The width

of the filter kernel is often expressed with the term of full width at half maximum (FWHM).

An alternative expression is the standard deviation of the filter, λ. For a Gaussian filter, these
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two are related according to formula

λ =
FWHM√

8ln2
. (16)

Spatial smoothing of data with a Gaussian filter is a debated issue. It is argued that the best

smoothing filter is one that matches the objects to be identified (Worsley and Friston, 1995).

However, it should be noted that only the detection of objects is considered then. If other as-

pects, like the localization of the edges of objects, are considered, the issue is more complex. It is

generally known that spatial smoothing may dislocate edges and fuse neighboring objects. The

second reason for spatial smoothing is that statistical inferences and multiple comparison correc-

tion utilizing the theory of Gaussian random fields, implemented as SPM’99 software (Wellcome

Department of Cognitive Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm/), assume

that the data are spatially smooth (Worsley and Friston, 1995). A Gaussian random field is

one that has a Gaussian distribution at every point and at every collection of points. To fulfill

the smooth Gaussian random field requirement, the fMRI data are smoothed using a Gaus-

sian filter. Several methods for the estimation of the level of smoothness have been developed

(Worsley et al., 1992; Kiebel et al., 1999; Forman et al., 1995). Typically, the methods are

based on the variance of the gradients in statistic or residual images. In multi-subject analysis,

smoothing is used to ensure that effects between subjects are assessed on a reasonable spatial

scale with respect to functional anatomy.

Generally, SIs calculated from heavily smoothed data are able to find large areas of weak

activation, while SIs calculated from unsmoothed or lightly smoothed data are sensitive to

small but strong foci and also to noise. Multifiltering approaches are proposed to find both

types of activations. Poline and Mazoyer (1994) proposed a multiscale method in which the

(PET) image is filtered successively with Gaussian filters of increasing widths. Skudlarski et al.

(1999) studied a modification in which SIs obtained from smoothed data were added to the

SI obtained from unsmoothed data. Also this simpler approach was found to be powerful in

practice.

Descombes et al. (1998a) replaced the Gaussian filtering with an spatio-temporal edge pre-

serving MRF-based noise reduction in order to avoid blurring and to preserve the resolution

of data. Kruggel et al. (1999) compared a finite impulse response temporal low-pass filter, a

temporal Gaussian filter, an autoregressive filter, a spatial Gaussian filter and a spatio-temporal

MRF-based noise reduction. The best shape recovery and sensitivity were obtained using an

MRF filter while the temporal low-pass filter and temporal Gaussian filters provided better

linearity. However, the consequences of MRF data restoration to the statistics of the following

ordinary voxel-by-voxel data analysis remain unclear. Descombes et al. (1998b) extended the

model. A hemodynamic function was estimated for each voxel. A voxel was considered active

if the norm of the hemodynamic function was high enough. MRF potentials were used to reg-

ularize the activation maps, using potentials between the activation map and parameter maps

that characterize the hemodynamic functions.

Hypothesis testing

In the hypothesis-testing-based approaches, it is tested whether the null hypothesis can be

rejected with some statistical significance level (called false-positive rate (FPR), α-level of test
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or probability of type I error). When a statistical test is applied separately for each voxel,

the total number of tests for typical fMRI data is thousands. Hence, the overall probability of

finding at least one statistically significant voxel is considerably larger than the level chosen for

conducting each individual test. This is called a multiple comparison problem. One method to

control overall (family-wise) FPRs is Bonferroni correction. Specifically, to do k tests, one for

each voxel, the overall α-level is divided by k to obtain the required voxel-level α-level. The

drawback of the Bonferroni correction is that the smoothness of the data may lead to the too

conservative thresholds.

Different procedures are different in sensitivity, localization power and delineation accuracy.

Omnibus tests (Friston et al., 1991) have no localization power at all. If an omnibus test rejects

the null hypothesis, no information about the location of activations is obtained. The procedure

is said to control the overall FPR in the weak sense (Friston et al., 1996a). For example, a

test that is based on the total number of voxels above some threshold is an omnibus test.

High localization power and strong control is obtained by making statistical inferences for each

voxel separately. Then, the voxels above some intensity threshold are considered activated. A

procedure is said to control the FPR in the strong sense if the probability of a false positive

over any set of voxels for which the null hypothesis is true is less than α regardless of the truth

of the null hypothesis elsewhere.

Various post-processing operations can be used after the thresholding. By using spatial

extent thresholds, the intensity threshold can be lowered, still maintaining a low overall FPR

(Friston et al., 1994b). Simple median filtering can be used to eliminate spurious small activa-

tions. In a modification called neighborhood filtering (Skudlarski et al., 1999), only the voxels

that have a sufficient number of activated neighbors are left to the activation map. However,

Skudlarski et al. found that spatial smoothing of images is more efficient than extent thresh-

olding or neighborhood filtering of the SI. Kleinschmidt et al. (1995) heuristically combined

spatial information to the correlation coefficient analysis. The spatial extent of activations was

delineated by adding neighboring pixels with lower correlation coefficient values.

The approaches to control FPRs and to make multiple comparison correction can be di-

vided into theoretical parametric approaches, non-parametric approaches and simulation-based

approaches (Petersson, 1998).

Theoretical parametric approaches. Theoretical parametric approaches are based on

Gaussian field approximation. To hold the assumptions, the fMRI data are smoothed before

the analysis. Used approximations are only asymptotically true, in the limit of high thresholds.

The results exist for voxel-level, cluster-level and set-level inferences. A basic voxel-level test

gives the probability that the observed voxel value, or a higher one, could have occurred by

chance in the data volume. This probability is commonly called a corrected p-value of the test.

Cluster-level tests give a probability that a connected activation region observed could have

occurred by chance (Worsley et al., 1992; Poline et al., 1997). Friston et al. (1996a) introduced

an analysis to make set-level inferences, i.e. to calculate the probability of getting the observed

number of clusters, or more, in the volume analyzed. Together the voxel-level, cluster-level and

set-level inferences form a hierarchy of tests that have different regional specificity and power.

Non-parametric approaches. The permutation test theory can be used to detect activa-

tions and to handle multiple comparison problem (Holmes et al., 1996; Belmonte and Yurgelun-

Todd, 2001; Nichols and Holmes, 2002). An advantage of the randomization or permutation
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tests is that few assumptions about the data are needed, because the distributions are con-

structed from the data itself. The basic idea is to randomly, or by permutation, re-order the

acquired scans. SIs are computed for each re-ordering. Summarizing each SI by its maximum

value gives the permutation distribution for maximum values. Voxels or regions can be classified

as significantly activated or non-activated by comparing actual statistics to the permutation

distribution. When permutation tests are used with fMRI, the temporal autocorrelations should

be taken into account (Bullmore et al., 1996a; Locascio et al., 1997).

Simulation approaches. Simulations can be used to estimate the significance of data in

problems that are otherwise intractable. Naturally also the usual voxel-level, cluster-level and

set-level inferences can be based on the simulations. Simulation approaches are dependent on

adequate characterization and modelling of image noise. The number of simulations must be

sufficiently high to determine the tails of probability distributions with high precision. Forman

et al. (1995) estimated the probability of different cluster sizes with simulated SIs. The images

were filtered with Gaussian filters of different widths and thresholded with different thresholds.

Thereafter, the occurrence of clusters of different sizes was counted. Poline and Mazoyer (1994)

used Monte Carlo simulations to evaluate a multi-scale detection method. Ledberg et al. (1998)

estimated the autocorrelation of PET data. This estimate was used to generate simulated

images and, in addition, a distribution of cluster sizes was derived. The distribution was used

to estimate the probabilities of the clusters of different sizes.

Modelling- or MRF-based approaches

Everitt and Bullmore (1999) presented an SI classification method based on mixture modelling.

In their approach, it is assumed that the distribution of SI values is a mixture of two distribu-

tions, one being the distribution of non-activated voxels and the other being the distribution

of activated voxels. It is assumed that every voxel in the SI is drawn either from the specified

null distribution f0 or from the alternative (activation) distribution f1(µ), where µ is the mean

of the alternative distribution, or in a general case some other unknown parameter or a vector

of unknown parameters. Then the mixture density can be written as

f(x; µ, p) = pf0(x) + (1− p)f1(x; µ), (17)

where p is the proportion of non-activated voxels. The p and µ were estimated from the data by

maximizing the log-likelihood
∑N

i=1 log f(xi; µ, p) of the data, where i indexes the N voxels of

the SI. After the parameter estimation the a posteriori probability that a voxel is activated was

calculated using the Bayes’ formula. Standard errors of the parameters were also be estimated.

The basic assumption was that all activated voxels follow the same activation distribution whose

shape is defined a priori. An additional concern is the stability, or robustness, of the approach.

If the number of activated voxels is very small, the estimation of µ or p in a robust way may

be difficult.

Hartvig and Jensen (2000) extended the model of Everitt and Bullmore (1999) by also

considering the local spatial properties of the data. The SI values from the neighborhood

were used to calculate the a posteriori probability that a voxel is activated. Spatial models

of different complexity were considered. The models were chosen so that they model the

fact that activated areas tend to constitute a group of at least a few voxels but posterior

probabilities can be presented in a simple closed form, which is computationally very efficient.
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The concerns presented above also apply to this approach. In addition, it is unlikely that any

of the presented spatial models represents accurately the true world. However, the authors

found that the spatial models improved the estimation of the activation pattern significantly,

compared to the nonspatial model of Everitt and Bullmore (1999) and to the smoothing of

the data. This demonstrates that even if the spatial model is not accurate or correct, the

use of spatial information may improve the classification. However, the accuracy of estimated

quantitative values for activation a posteriori probabilities seems to be questionable.

Holmes and Ford (1993) utilized the Markov random fields in the detection of PET activa-

tions. In the approach, 2-D SIs were modelled using MRFs with distance-weighted pair-wise

interactions, i.e. doubletons. The means of positive and negative activation classes were set to

±2T , where T was a Bonferroni-corrected threshold. MMP estimation was carried out using

the Gibbs sampler with about 1000 successive realizations after a burn-in of 10 iterations. The

method was found to be less powerful than simple thresholding with thresholds ±T . The inter-

pretation of the results is difficult. The method cannot be seen as a modelling-based technique

giving MMP estimates because neither the activation class nor the MRF model parameters

were estimated from the data or otherwise specified in a realistic way. On the other hand,

the method was neither treated as a hypothesis testing technique. That is, the parameters

were not set so that a pre-determined FPR could be achieved. This is one explanation for the

lower power compared to the thresholding technique. Another possible reason was the strong

spatial autocorrelation structure of PET data. A possible reason for not tuning the parameters

to control FPRs was the large number of simulations that would have been required. As the

Gibbs sampler is slow, e.g. compared to the ICM-algorithm, the computational requirements

would have been substantial. Another potential problem of the approach, from the viewpoint

of hypothesis testing, lies in locality properties. As hundreds or thousands of iterations are

carried out it is not clear what effects a deviating distribution at one location might have at

distant locations.

Recently, Rajapakse and Piyaratna (2001) segmented SIs into activated and non-activated

regions using a Markov random field model. Their model consisted of singleton and doubleton

cliques. The distributions of activated and non-activated voxels were assumed to be Gaussian.

The mean and standard deviation of the distributions as well as the singleton and doubleton

parameters were estimated iteratively from the data after k-means-based initialization. Energy

minimization was done using simulated annealing leading to an MAP estimate of the segmen-

tation. Visually inspecting, the activation patterns obtained using the MRF approach were

less noisy than those obtained by simple thresholding or spatial extent thresholding. A strong

point of the method is that it is data-driven requiring no user-specified parameters. However,

an assumption was made that all the activated voxels follow the same Gaussian distribution.

No technique to control FPRs was presented.

Genovese (2000) modelled fMRI data using Bayesian procedures. Prior knowledge about

the signal was utilized, for example distribution of the lag between the beginning of a task

and a hemodynamic response was specified by using earlier data. Markov chain Monte Carlo

sampling techniques were used to estimate the posterior distributions of parameters of interest.

Activation maps can be created by locating the pixels in which the posterior probability of

the stimulus effect being positive is high enough. However, perhaps the main strength of the

Bayesian modelling techniques is that they can be used to solve many other problems than
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Fig. 5: False-positive rates (FPRs) at voxel level for contextual clustering as a function of Tcc

and s. Labels on the curves are −logP values, where P is the FPR at voxel level. The step-wise
behavior of the contours in the lower left corner is due to the limited grid spacing and a contour
plotting algorithm. Source: Publication III.

the activation localization. The Bayesian models also give measures to the uncertainty in the

estimates. Markov chain Monte Carlo sampling is a computationally demanding operation,

which was mentioned as a weakness of the approach. Spatial information was not used in the

presented experiments.

4.5 Approach used in this thesis

In this thesis (Publications I–III), SIs were segmented into non-activated and activated regions

using the contextual clustering algorithm presented in section 3. Detailed derivation of the

algorithm is presented in Publication I. A short summary of the results of Publications I–III

is given in this subsection. Different notations in Publications I–III are worth noting. In

Publications I and II, the SIs are computed so that activated regions have a negative mean. In

Publication III, they have a positive mean. Therefore, the actual classification formulas differ

slightly. In this section, the notation of Publication III is used. In all the Publications, the SIs

are transformed to z-maps, in which the values of non-activated voxels are assumed to follow

the standard normal distribution. As a summary, classification is initialized using Eq. (8)

and re-classification is made iteratively using Eq. (9). The number of neighboring voxels is

Nn = 26, because a 26-connected 3-D neighborhood is used. In the equations, ω0 represents

the background (non-activated voxels) class while ω1 represents the activation class. Parameter

β is the weight of neighborhood information, also expressed as β = T 2
cc/s, where s and Tcc are

user-specified parameters.

Materials

The contextual clustering method was evaluated using both simulated and measured fMRI data.

Simulated activations in Publication I were spheres of a fixed size with a noncentral spherical
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Table 1: The effect of spatial autocorrelations to overall false-positive rates (FPR). λ is the
standard deviation (in voxels) of the 3-D Gaussian filter used to create autocorrelations. Source:
Publication I, Table II and Publication II, Table 1.

Tcc s Image FPR FPR λ
size (Independent (Correlated

(voxels) Voxels) Voxels)

0.597 2 16384 0.05 0.05 0.5

1.415 6 16384 0.05 0.05 0.5

1.341 6 65536 0.51 0.55 0.6

1.405 6 65536 0.25 0.28 0.6

1.476 6 65536 0.09 0.11 0.6

1.555 6 65536 0.028 0.032 0.6

1.645 6 65536 0.007 0.008 0.6

hole [Fig. 3(a)]. In Publication II, filled spheres of different sizes were used. In Publication

III, a simulation pattern including letters was used [Fig. 7(a)]. In Publications I–II, Gaussian

noise generated by computer was used, while in Publication III measured fMRI noise was used.

The measured fMRI data were collected using various epoch-type paradigms with a visual

checkerboard stimulus (Publication I), an electrical median nerve stimulus (Publication II) and

a wrist flexing task (Publication III). In addition, in Publication III some of the fMRI data sets

were acquired without any stimulus in order to collect baseline data and to measure overall

FPRs. All data acquisition was performed using a 1.5-T Siemens Magnetom Vision scanner at

the Department of Radiology, Helsinki University Central Hospital.

Most of the analysis work, including all the simulations, were performed using implemented

Matlab (The MathWorks, Inc., Natick, MA) functions. In Publication III, movement correc-

tion, smoothing and computation of SIs were performed using the SPM’99 software (Wellcome

Department of Cognitive Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm/) running

on the top of Matlab.

False-positive rates and the effect of spatial autocorrelations

Controlling of false-positive rates (FPRs) is a central problem in the detection of activations

from fMRI data. FPRs at voxel level were studied using simulated null z-maps. In Publication I,

the studies were restricted mainly to s = 6 while in Publication III several values for s were used.

From Fig. 5 it can be seen that a voxel-level FPR decreases rapidly as Tcc is increased or s is

decreased. For instance, (Tcc, s) = (1.0, 5) gives an approximate false-positive rate FPR = 10−4,

(Tcc, s) = (1.3, 5) gives FPR = 10−6 and (Tcc, s) = (1.0, 3.5) gives also FPR = 10−6. As a

comparison, with the thresholding technique (equivalent to s →∞), threshold T should be set

to a value of T = 3.7 to obtain FPR = 10−4, and to a value of T = 4.8 to obtain FPR = 10−6.

The drawback of increasing Tcc is decreased detection sensitivity, while decreasing s leads to

lower segmentation accuracy.

Sensitivity to spatial autocorrelations generated by a Gaussian filter was studied in Pub-

lications I–II using simulated data, which were convoluted by a Gaussian kernel. The spatial

autocorrelations were found to increase the error rates (FPRs) at voxel level. However, at
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Table 2: Overall and voxel-level false-positive rates (FPRs) obtained using simulations, and
Bonferroni-type correction made to overall FPRs. Spatially independent voxels were used.
Source: Publication I, Tables I,II and Publication II, Table 1

Tcc s Image overall voxel-level overall FPR
voxels

size FPR FPR

0.597 2 16384 0.05 3.1× 10−6 3.1× 10−6

1.415 6 16384 0.05 3.1× 10−6 3.1× 10−6

1.341 6 65536 0.51 1.1× 10−5 7.8× 10−6

1.476 6 65536 0.09 1.5× 10−6 1.4× 10−6

1.645 6 65536 0.007 9.0× 10−8 1.1× 10−7

the overall (volume) level the effect was found to be relatively small (see Table 1). An ex-

planation is that while the spatial autocorrelations increase the FPRs at voxel level, also the

effective number of resolution elements in the whole volume is decreased. These two phenomena

may partially cancel each other. The results from Publications I–II indicate that the simple

Bonferroni-type correction seems to approximately relate FPRs between voxel and volume lev-

els (Table 2). The approximation should not be extended outside the parameter values used

in Publications I–II. If in doubt, the overall FPRs can be partially validated by simulations

as in Publication III. However, it should be noted that Gaussian smoothing is not necessarily

adequate to model spatial correlations.

Empirical overall FPRs were studied in Publication III. It was found that the overall FPRs

exceeded the expected FPRs, especially when designs with long epochs were used. This was the

case with the all tested methods: Bonferroni-corrected intensity thresholding, Gaussian random

field based thresholding, optionally combined with spatial extent thresholding, and contextual

clustering. The reason is unknown. A plausible explanation is spatial coherency that cannot

be modelled with a stationary autocorrelation field. That kind of spatial coherency moves

the mean of null distribution away from zero (Zarahn et al., 1997). We have found some

indications about spatially correlating “spiking”-artifacts from some data sets, which may, at

least partially, explain the false positives. Also the motion is a possible explanation. The FPRs

were decreased on the average when the estimated realignment parameters were included to

the GLM as covariates.

Sensitivity, specificity and segmentation accuracy

Good detection sensitivity is an opposite aim to good specificity, i.e. to a low FPR. Sensitivity

vs. specificity measurements can be done only on simulated data as the “true” classification of

fMRI cannot be determined. In this work, sensitivity is understood as the proportion of detected

activated voxels from all activated voxels. Different approaches to study sensitivity were used

in Publications I–III. In Publication I, the decision parameter Tcc (called a in Publication

I) was varied and the measured true positives were plotted as a function of false positives.

In Fig. 6, some results of this ROC study are presented. In Publications II–III, the overall

FPR of different methods was fixed. Sensitivity was studied using computer-generated noise

(Publication II) and measured fMRI noise (Publication III). Some results from Publication III
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Fig. 6: Sensitivity vs. specificity study using a simulated activation pattern [see Fig. 3(a)]. (a)
Density functions of background (solid line), two Gaussian activation densities (dotted lines)
and the resulting mixed density (non-Gaussian) of activations (dashed line). (b) Receiver op-
erator characteristic (ROC) curves of contextual clustering (solid lines) and thresholding (dot-
ted lines). The ROC curves show the probability of correctly classifying the activation voxels
(1− ε1) on the vertical scale and the probability of misclassifying the background voxels (ε0) on
the horizontal scale. ◦: spatially uncorrelated noise; ∗: correlated noise. Source and notation:
Publication I.

are illustrated in Fig. 7.

Simulation experiments showed that the sensitivity of contextual clustering is almost univer-

sally better than that of voxel-by-voxel thresholding. Compared to the cluster-size thresholding,

the situation is more complicated and depends on the actual parameter values and the size and

strength of the activation object (Publications II–III). It was also found that when the over-

all FPR is fixed to the same level among different methods, the voxel-level FPR of cluster-size

thresholding is high (Publication II). Contextual clustering had only a slightly higher voxel-level

FPR than voxel-by-voxel thresholding. When a cluster-size threshold is used, a false activation

region always consists of at least the number of voxels specified by the spatial extent threshold.

If the probability of misclassifying non-activated voxels near a true activation is the same

or almost the same as the probability at distant locations, we define that the method has a

good segmentation (delineation) accuracy. Effect of contextual information to the segmentation

accuracy was studied in Publications II–III. As expected, voxel-by-voxel thresholding without

spatial smoothing or contextual information is the most specific method in the neighboring

voxels of activated regions. Spatial smoothing substantially decreased segmentation accuracy

(Publication III). Performance of thresholding, cluster-size thresholding and contextual cluster-

ing can be visually assessed from Figs. 7 and 8. Parameter β defines the weight for contextual

information. In most experiments, β was chosen using β = T 2
cc/s. If the value of weight pa-

rameter s is chosen to be sufficiently large, e.g. s = 6, a relatively good segmentation accuracy

is achieved and possible filling effects are avoided. In addition, Eq. (9) has only one root for
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(a) (b) (c) (d)

Fig. 7: Detection and delineation of a simulation phantom (2.5% signal rise) added to measured
fMRI baseline images. Analysis was based on 120 and 60 scans in the upper and lower row,
respectively. (a) Simulation phantom, (b) detection using voxel-by-voxel thresholding, (c) con-
textual clustering, (d) spatial smoothing and voxel-by-voxel thresholding followed by cluster-size
thresholding. Source: Publication III.

Tcc, when β is chosen according to β = T 2
cc/s. This seems to reduce the possibility that the

classification of a voxel could change from non-activated to activated when parameter Tcc is

increased. By decreasing s the segmentation accuracy was decreased but sensitivity increased

(Fig. 8 and Publications II–III). Hence, s can be seen as a parameter that allows adjusting

the tradeoff between sensitivity and segmentation accuracy. Finally, it should be noted that

as s → ∞, the weight of contextual information β → 0, and the behavior of the clustering

algorithm approaches the voxel-by-voxel thresholding.

The contextual clustering method is capable of detecting small activations. Capability to

detect small activations was noticed, e.g. in the simulation experiments of Publication II. As

a conclusion, at least with some parameter settings, the contextual clustering algorithm can

detect activations of only one voxel in size almost as well as voxel-by-voxel thresholding (with a

fixed overall FPR). For larger activations, the contextual clustering algorithm is more sensitive.

It is worth noting that cluster-size thresholding cannot detect activated areas smaller than the

cluster-size threshold - unless spatial smoothing has spread the activation cluster or neighboring

voxels exceed the intensity threshold by chance.

Reproducibility

The reproducibility study is an evaluation method that can be used even when the ground

truth is unknown (Baumgartner et al., 1997; Casey et al., 1998). Reproducibility of the results

depends on multiple factors beginning from the reproducibility of the hemodynamic response.
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Fig. 8: Localization of fMRI activations in two subsequent slices. (a) The EPI slices. (b) The
corresponding SIs (z-maps). Responses to stimulation of the right median nerve in the contra-
and ipsilateral SMI and SMA can be seen as brighter areas. In the SMI, activation is seen in
two adjacent sulci (precentral and postcentral). Segmentation of the SI by (c) voxel-by-voxel
thresholding, (d) contextual clustering with s = 2 and (e) with s = 6. The estimated overall
FPR is 0.05. Source: Publication II.

The motivation behind reproducibility studies conducted in this thesis was the assumption that

non-reproducible noise may have a different effect on different analysis strategies.

Reproducibility of the activation patterns was studied in Publication III (see Fig. 9). It was

found that contextual clustering improved reproducibility, as compared to the voxel-by-voxel

thresholding. By using spatial smoothing, it was possible to obtain similar improvement in

reproducibility but with lower segmentation accuracy. In a related study (Salli et al., 2001)

using the same material as in Publication III it was found that the highest reproducibility was

obtained with s = 2, but values s = 6 and s = 10 gave almost equally high reproducibility.

However, too detailed conclusions should be avoided as the material only consisted of four

sessions on one volunteer.

Computational efficiency

One of the goals of this work was to develop an activation localization algorithm which is

computationally efficient enough to be used in clinical practice, or even to be used to monitor

on-line the progress of imaging. On a typical PC, it takes only a few seconds to cluster one 3-D

image using a Matlab script (Publication I). By using an optimized code (e.g. C-function) or

a computer with parallel architecture the execution time could likely be reduced significantly.
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Fig. 9: An fMRI experiment consisting of a simple motor task was performed four times on the
same subject. SIs were computed using a GLM and activations were segmented with the con-
textual clustering algorithm (Tcc, s) = (1.44, 6). The upper left image of Fig. 6b of Publication
III was computed using the four activation maps shown here.

Permutation approach

So far we have assumed that SIs are computed using parametric statistic, and FPRs are esti-

mated using simulated data. It will be outlined below how permutation tests could be used

with the contextual clustering algorithm. Further analysis and validation of the approach will

be left for future work. An advantage of the permutation testing approach is that normality

of the fMRI time series is not assumed. In addition, the multiple comparison problem can be

solved. As an output the described permutation procedure will give p-values for each activation

region detected by the contextual clustering algorithm.

According to Eq. (9), the last step (of the last cycle) of the contextual clustering consists

of thresholding the map z′ = z + β
Tcc

(u − 13) by Tcc. The z′-map can be understood as an

activation-enhanced version of the original z-map. Thresholding of z′ by Tcc gives the result of

contextual clustering. Hence, the permutation methodology developed for the assessing of the

significance of activations [e.g. Holmes et al. (1996); Nichols and Holmes (2002)] can be directly

utilized.

In principle, any statistic can be used to compute SIs, and the results of permutation tests

are still valid. However, for reasons of optimality and predictability, we recommend that the SIs

are computed using t-statistic. Especially, the contextual enhancement will fail if the mean of

non-activated areas is non-zero. It is also assumed that the values in time series are temporally

uncorrelated. It seems that correlations can be essentially reduced by high-pass filtering and

pre-whitening the time series (Woolrich et al., 2001).

In order to give p-values to the activated regions, a suitable test statistic, which differentiates

the detected regions, needs to be defined. We propose here the sum of z values over the

activation region, although other measures, like the size of activation, can be used, too. Multiple

comparison correction can be made by considering a maximal statistic (Nichols and Holmes,

2002) that is the maximum of the calculated sum values in this case. A large number (preferably

at least 1000) of z-maps are computed using random orderings of the scans. For each ordering,

a z′-map is computed and contextually clustered. The sum of z′-values is computed for every

activation region and the maximum of the sum values is stored. Together the maximum values

from all the random orderings and the actual ordering form an empirical distribution for the
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maximal statistic. The multiple comparison corrected p-value for each detected activation

region is the proportion of the permutation distribution for the maximal statistic that is greater

than or equal to the sum of z′-values obtained using the actual ordering.

Parameters Tcc and β must be chosen properly to enhance the activation regions. If too

large Tcc is chosen, the activation regions are not enhanced. Similarly, if Tcc is chosen to be too

small, almost all voxels are enhanced, resulting in no actual enhancement for activation regions.

In both cases the results are still statistically valid but it is unlikely that any activations are

detected. The problem here is that Tcc and β need to be chosen before the analysis is performed.

If the t-statistic is used to compute the SIs, the results from the Publications I and III can be

used to set the parameters so that only a small proportion of the voxels is initially classified

as activated. Thereafter, the results from the permutation testing can be used to reject the

activation regions whose p-value is larger than 0.05, for example.

4.6 Testing or modelling activations?

As already discussed, the two fundamentally different ways to classify voxels of fMRI statistic

images into activated and non-activated voxels are

1) by controlling the FPRs (either voxel-level or overall), and

2) by finding a posteriori the most probable segmentation, or by minimizing the total num-

ber of false classifications - both false positives and false negatives. A variation of this

approach would be to minimize the weighted sum of false positives and negatives.

Naturally the goals are loosely defined because the concept “activation” cannot be defined

easily. Traditionally, mostly way 1) has been used in the fMRI activation detection while type

2) classification is widely used i.e. in the brain tissue classification. In this thesis, the way 1)

has been adopted. The primary reason is that the way 1) requires information only about the

distribution of non-activated voxels while the way 2) requires the modelling of the activation

distributions.

Potentially, the modelling of activation distributions could provide a posteriori probabilities

for a voxel being activated or non-activated voxel. However, the modelling of fMRI activation

distributions seems to be a much more complicated issue than e.g. the modelling of different

tissue classes in the segmentation of structural brain MR images. In general, any parametric

forms (e.g. Gaussian or Poisson) for intensity distributions of activations in SIs can hardly be

realistic. It is well possible that fMRI data consist of multiple activation spots. Each of the

spots may have its own distribution. In addition, the distribution of statistic values most likely

vary spatially within each activation spot. Realistic modelling of all these factors would be

important but difficult, considering that the proportion of activated voxels may be very small.

In approach 1) only the distribution of non-activated voxels is required. This information

is provided by the definition of the used statistic. Voxels whose statistic value is high enough

to occur by chance are considered activated. In this section and in Publications I–III it was

demonstrated that spatial context can be used to decrease the effect of random noise and to

increase the probability of detecting weak activations. In addition, the shapes of activations

could be reconstructed relatively accurately in the simulation experiments.
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5 Multimodal imaging

Different imaging modalities provide complementary information. The combination of data

acquired using different methods is useful but not straightforward. In this section, some case

studies about combining and comparing structural and functional brain imaging or measure-

ment data are presented. Especially, methods for segmentation, registration, visualization and

comparison of fMRI and MEG localization results are discussed.

5.1 Registration

A basic requirement for multimodal imaging is the registration of different image modalities.

The co-registration between MEG and MRI is not straightforward because MEG does not

provide any anatomic landmarks. In Publications IV–V, a standard procedure based on the

anatomical landmarks (preauricular points and the nasion) was used. These, as well as three

head position indicator coils attached to the skin, were located with a three-dimensional dig-

itizer (Polhemus, Inc., Colchester, VT, USA). The head position within the measurement de-

war was determined using current fed into the indicator coils (Ahlfors and Ilmoniemi, 1989).

Co-registration between MEG and MRI was determined by locating the preauricular points

and nasion from the MR images. The transformation between structural high-resolution MRI

and fMRI activation maps (Publications III–V) was implemented by utilizing slice-positioning

information included into the header files of structural high-resolution MR and functional echo-

planar images. In this approach, it is assumed that the subject has not moved between the

structural MRI and fMRI sessions. It is also assumed that geometrical distortions are not

significantly different between the fMRI and MRI data sets. This is an issue that should be

studied in the future and, if necessary, a distortion correction method may be used. The reg-

istration algorithm used for the MRI and SPECT data (Publication VI) follows a noniterative

least-squares method using a singular value decomposition of a 3× 3 covariance matrix (Arun

et al., 1987). The used approach is based on external skin markers or anatomical markers

defined interactively on the screen using a mouse. After the registration the data sets are in

the same coordinate system and thus comparable.

5.2 Comparing and combining fMRI and MEG

Although MEG is sensitive to millisecond-scale changes in mental activity, its ability to resolve

source localization is limited by the ill-posed inverse problem. PET and especially fMRI have a

higher spatial resolution than MEG but worse temporal resolution. In the context of functional

brain imaging, first attempts to restrict the electromagnetic inverse problem with PET data

were done by Heinze et al. (1994). However, fMRI provides even better spatial resolution

than PET, event-related fMRI techniques providing the possibility to use stimulus setups that

are identical to or slightly modified compared to those used in MEG. There have been several

studies on the regularization of the MEG inverse problem using the physiological and structural

information available from MRI and fMRI [see e.g. George et al. (1995); Liu et al. (1998); Dale

et al. (2000) and Publication IV]. The use of structural MRI can be based on the findings that

the majority of the magnetic signals observed arise from the gray matter. Additionally, the

neurons are preferentially oriented perpendicular to the cortex. This information can be used
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to constrain the orientation of sources. The usefulness of fMRI arises from the assumption

that at many activations, sources contributing to the MEG signal can be detected with fMRI.

However, it is possible that areas classified as active by fMRI produce no MEG signal (extra

fMRI sources). Conversely, it is possible that some electromagnetically active sources are not

detected by fMRI (invisible fMRI sources). Therefore, the MEG solution space should not be

overconstrained by fMRI data (Liu et al., 1998). Despite some mismatches, combined fMRI,

MRI and MEG data have been successfully used to obtain accurate spatiotemporal maps of

human brain activity, including information about statistical reliability and spatial accuracy at

different locations (Ahlfors et al., 1999; Dale et al., 2000).

In MEG, a common approach to the inverse problem is the modelling of the activation

sources with equivalent current dipoles (ECD). An ECD is the simplest electrical current ele-

ment that could explain the measured magnetic field. In Publication IV, the fMRI data were

used to specify the locations of the ECDs while the time-varying intensity and orientation in-

formation was obtained from MEG. Another approach is to define the locations of all possible

sources a priori and to determine the components of each dipole. As the number of possible

source locations is generally larger than the number of sensors, minimum-norm solutions have

been used. Additionally, fMRI data can be used to weight the possible locations of sources. Liu

et al. (1998) conducted Monte Carlo simulations, studied the usefulness of the approach and

quantified the effects of extra and invisible fMRI sources. Information from the MRI was found

to give an improved solution for the MEG inverse problem with high spatial and temporal

resolution.

In Publication IV, an eight-dipole model fitted to MEG data was constrained with fMRI

data. The MEG data were obtained with the Neuromag-122 magnetometer at the BioMag

Laboratory, Helsinki University Central Hospital. The objectives of the study were

• to compare the localizations obtained with MRI and fMRI separately, and

• to study the time course of activation at different cortical sites.

Related to present thesis, image processing tools for the comparison of the locations of fMRI

and MEG activations were designed and implemented.

To compare the source locations deduced from fMRI and MEG data, the Euclidean distance

between the center points of activations detected by MEG and fMRI was measured. The

location of a fitted current dipole was used directly as a center point of activation in MEG.

In fMRI, an activation region typically consists of a number of voxels. The centroid (i.e. the

center of mass) of an activation area was used to specify the location of the fMRI activation.

This required a method to cluster the activated voxels from the fMRI into separate activation

areas.

The active voxels of thresholded fMRI statistic images were grouped into 6–8 clusters using

the k-means clustering (Bow, 1984). The objective function to be minimized is the sum of

squared distances between each voxel and its cluster center:

S =
∑
∀i

[i− C(i)]2, (18)

where C(i) is the mean of the cluster that voxel i is assigned to. The initialization was done

manually.
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To achieve the second objective, fMRI information was used as a spatial constraint in the

solution of the MEG inverse problem. The position of each dipole was fixed to the centroids of

fMRI activation areas. The strength and direction of each dipole were allowed to vary so as to

produce a least-squares fit to the measured magnetic field pattern at each point of time during

the entire sweep.

The results of Publication IV demonstrate that the integrated use of MEG and fMRI can

provide plausible information about brain function after somatosensory stimulation, with high

resolution in both spatial and temporal domains.

5.3 Segmentation and multimodal visualization

Structural MRI data can be used to create presentations about brain surface. In many oc-

casions, presentations of fMRI and MEG localization results on 3-D reconstruction of cortex

are useful. For example, maps of vital areas, such as language, motor function, and memory,

can be used for planning of operations on gliomas (Publication V). To produce rendered 3-D

multimodal visualization, tools for the analysis of fMRI and MEG data, segmentation of MRI

data, registration and transformation of fMRI, MEG and MRI data to common coordinates

system and multimodal visualization techniques are needed.

Various segmentation methods for the medical image data exist. In most applications,

the methods are not fully automatic or reliable but can greatly reduce the amount of needed

human work. For the 3-D visualization of cortex, a brain segmentation (extraction) method is

needed. Deformable surfaces and region growing-based algorithms form two widely used groups

of methods. When deformable surfaces are used, some initial, or a priori, model of the surface

is deformed using actual image data to match the model with the outer edge of brain. The

deformable models are especially efficient when the images are noisy and contain incomplete

edge information (Lötjönen et al., 1999). A simple region growing-approach is often adequate

for the extraction of the brain from high-quality MR images as the contrast between the gray

matter and the cerebral spinal fluid is high. In the basic version, a seed voxel is chosen to

represent an initialization region. Thereafter, the adjacent voxels whose gray-level differs at

most by a specified threshold from the average gray level of the region are merged to the region.

This is repeated until no new voxels can be merged.

In this work, the extraction of brain from MR images was based on a region growing

algorithm additionally utilizing edge information (Yu et al., 1992; Sipilä et al., 1992). An

easy-to-use segmentation software with graphical user interface and interactive correction tools

was designed and implemented. The results were validated by visual inspection.

Several ways to visualize combined 3-D structural and functional image data exist. Often

the activations are projected onto brain surface. The cortical inflation techniques allow the 3-D

visualization of deeply located sources [see e.g. Fischl et al. (1999)]. Spatiotemporal evolving

of brain activity can be presented as a movie (Liu et al., 1998).

Rendering and shading methods are needed to create projection images from 3-D data.

Rendering and shading algorithms use either the original (possibly segmented) voxel data or

calculated surface (usually triangulated) presentation of the objects of interest. In this thesis,

two relatively fast volume-rendering methods, operating directly on the volume data, were used

to perform renderings. The first method utilizes a prebuffer technique (Ylä-Jääski et al., 1991)

to speed up the rendering. The prebuffer is an intermediate image plane parallel to the object



39

Fig. 10: Examples of 3-D multimodal visualizations. (a) Surface-shaded image constructed using
MRI combined with SPECT data on a cut plane in a man with a cerebral infarct (Publication
VI). (b) The location of an MEG current dipole source representing an evoked response for
electric stimulation of the right median nerve (red dipole) and the center of activation shown
by fMRI (blue dot) (Publication V). The MEG localizations in (c) and (d) were obtained by
recording the neuromagnetic field in response to an auditory stimulus and by determining the
location of a current dipole source. In (c) the original MRI data at the depth of an MEG
response are shown using gray values inside a circle. The center of the circle indicates the
localization result at the opposite side of the brain in order to visualize cerebral asymmetry.
Source: Tiihonen et al. (1998). In (d) a cut plane is used to visualize an MEG localization
result. Published e.g. in Kaplan-Solms and Solms (2000). In (e) fMRI activations detected
using contextual clustering [Tcc = 1.3 (red), Tcc = 1.7, Tcc = 2.1, Tcc = 2.5 and Tcc = 2.9
(yellow) (s = 6 in all cases)] are visualized on two slice levels.

slices. This technique was used with a gradient shading method based on the surface normal

vectors estimated from a calculated distance map. This approach was used in Publication VI

and Fig. 10(a) of this overview. The second method uses the Stanford VolPack volume renderer

(Lacroute and Levoy, 1994). The Stanford VolPack renderer uses a similar prebuffer technique

as the first method but also includes additional optimization techniques based on pre-computed

data structures. The shading model of the VolPack is based on the surface orientation estimated

from the original 3-D data. Also the partial transparency of the voxels is modelled. This shading

approach was found to give cortex renderings of good quality [Fig. 10(b)-(e)]. In addition to

the used pre-buffer techniques, several other volume rendering acceleration techniques exist,

e.g. the use of “probe” rays (Pyökkimies et al., 2001) can speed-up rendering.
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In a neurosurgery application, MRI, fMRI and MEG data are fused for planning of opera-

tions on gliomas, for example. A “brain map” combining the information from these modalities

is produced for a neurosurgeon, aiding the identification of important functional areas of the

brain during the operation. The map consists of surface-shaded 3-D brain images, constructed

from the anatomical MRI. The MEG and/or fMRI localization results are visualized on the

brain surface. On the other hand, combined MRI and SPECT studies may be useful in the

diagnosis of many diseases (Publication VI). Various multimodal 3-D visualization modes are

shown and explained in Fig. 10. While the clinical value of 3-D renderings has been some-

what unclear so far, they will most likely have an important role e.g. in surgery (Shahidi et al.,

1998). In addition, 3-D renderings have proven to be useful in visualizing research results e.g. in

scientific journals.
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6 Concluding remarks

Aspects related to the analysis of fMRI data and multimodal brain imaging were presented and

discussed in this work. Especially, a new fMRI activation detection and delineation method

utilizing spatial neighborhood information was developed and studied. It was shown how

weak and therefore statistically insignificant activations changed to significant when spatial

information was used. This was achieved without using models for the distribution of activated

voxels or estimating any segmentation parameters.

Many interesting topics were restricted outside this thesis. These include the usefulness

of more complicated potential functions or larger neighborhoods or utilization of anatomical

or topological information. An interesting possibility would be to confine the analysis to the

cortex and to use a surface-based coordinate system [e.g. Fischl et al. (1999); Andrade et al.

(2001)]. Problems specific to multi-subject studies were not discussed either.

A question not addressed is how stimulus-related activation should be defined. Any stimulus

will cause changes in the neural activity (and hemodynamic response) at different locations of

the brain and potentially in very large areas. As the sensitivity of imaging and analysis methods

improve, the volume of statistically significantly activated regions will likely grow. Therefore,

the activation voxels and/or regions detected must be classified to more and less relevant.

Commonly this is done by assigning statistical significance values to the voxels and clusters.

Another approach would be to use, for example, an estimated magnitude of a hemodynamic

response.

The ultimate goal of data analysis should be kept in mind. For example, a neurosurgeon

might be interested in the most likely location of primary motor cortex, or in the list of possible

locations. Both are different problems than the detection and delineation of statistically signifi-

cant activation areas. More research is needed so the that the optimal data analysis procedures

can be found out.

A possible strength of fMRI compared to MEG is the fMRI’s capability to separate activation

regions which are located close to each other. This separation information may be beneficial

when used as prior information in the MEG inverse problem. In this context, it is important

to avoid data smoothing, which may fuse the activated regions together. Hence, the fMRI

activation detection method developed in this thesis may also be useful when fMRI and MEG

information are combined.
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7 Summary of publications

I Contextual clustering for analysis of functional MRI data (IEEE Trans. Med.

Imaging 20:403–414, 2001).

A contextual clustering algorithm was derived and its relation to the Markov random

fields, ICM algorithm and hypothesis testing was explained. By using receiver operator

characteristics (ROC) analysis, voxel-level sensitivity and specificity of the contextual

clustering was studied. Computer-generated noise with and without spatial correlations

was used in the ROC analyses. The behavior of the algorithm in the case of multiple

activation regions following different distributions was also studied. Voxel-level and overall

false-positive rates were estimated and tabulated using simulated, optionally filtered, data.

A real fMRI experiment using a visual stimulus was carried out. The contextual clustering

algorithm was compared to intensity thresholding.

II Statistical segmentation of fMRI activations using contextual clustering (Proc.

of the 2nd International conference on Medical Image Computing and Computer Assisted

Intervention (MICCAI’99). Lect. Notes Comput. Sci. 1679:481–488, 1999).

Contextual clustering, intensity thresholding and spatial extent thresholding techniques

were compared. Segmentation accuracy, i.e. the false-positive rate in the immediate neigh-

borhood of a strong activation, was studied using simulated data. Sensitivity was tested

using activations of different sizes and intensities. Robustness against spatial correlations

in the noise term was studied. An fMRI experiment with electrical median nerve stimula-

tion was used as a real data example to illustrate the performance of the various methods.

The different techniques were compared by using a fixed overall false-positive rate.

III Reproducibility of fMRI: Effect of the use of contextual information (NeuroIm-

age 13:459–471, 2001).

A typical fMRI study was repeated four times with the same volunteer. Statistic im-

ages were computed and the images were segmented into activated and non-activated

regions. Thereafter, the locations of the activated voxels were compared by computing

reliability maps. Sensitivity and segmentation accuracy of different activation detec-

tion approaches were studied using a simulated activation pattern but measured noise.

False-positive rates were measured by analyzing measured control state data with various

design matrices. The statistic image segmentation methods used in this publication were:

Bonferroni-corrected thresholding, contextual clustering using parameters determined by

simulations, intensity thresholding using thresholds determined by the Gaussian random

field theory and intensity thresholding followed by spatial extent thresholding using in-

tensity thresholds determined by the Gaussian random field theory. Spatial smoothing of

the data was used in the last two strategies while unsmoothed data were used with the

Bonferroni-corrected thresholding and contextual clustering. Excluding the smoothing,

the preprocessing and generation of the statistic images were done in the same way in all

cases.
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IV Activation of multiple cortical areas in response to somatosensory stimula-

tion: Combined magnetoencephalographic and functional magnetic resonance

imaging (Hum. Brain Mapp. 8:13–27, 1999).

Information from fMRI and MEG was combined. Methodology to compare the localiza-

tion results of fMRI and MEG was developed. The activation sites from fMRI were used

to constrain the solution of the inverse problem of MEG.

V Hospital-wide PACS: multimodal image analysis using ATM network (Com-

puter Assisted Radiology: Proc. of the International Symposium on Computer and Com-

munication Systems for Image Guided Diagnosis and Therapy (CAR’96). 399–404, 1996).

Experiments on implementing a hospital-wide picture archiving and communication sys-

tem (PACS) were described. Multimodal clinical applications utilizing the PACS network

and the developed scientific software were presented. Related to the present thesis, visu-

alization techniques and segmentation software were introduced.

VI Registration and display of brain SPECT and MRI using external markers

(Neuroradiology 38:108–114, 1996).

A registration and display system for brain SPECT and MRI was developed. The useful-

ness of the the multimodal approach was shown with images from patients suffering from

different illnesses. From the viewpoint of the present thesis, visualization techniques for

multimodal data were introduced.

Errata

Publication I: In Section III.C, “The 3-D noise correlation was created in a similar way, but a

128 × 128 × 64 image was filtered...” should be “The 3-D noise correlation was created in a

similar way, but a 128× 128× 32 image was filtered...”

Publication IV: In Table I, “SII contralateral N20m” should be “SI contralateral N20m” and

“SI contralateral P30m” should be “SI contralateral P35m”

Publication VI: Theoretically three markers are adequate for the registration, if they are not

colinear.

Author’s contribution

All publications included in this thesis are a result of group effort. Majority of the method-

ological work concerning the developed contextual clustering algorithm in Publications I–III

was carried out by the author of this thesis. Especially, the author developed and implemented

the different variations of the contextual clustering algorithm, designed, implemented and per-

formed computer simulations and tests. Additionally in Publication III, the author contributed

to the design of fMRI experiments and carried out the data analyses. In Publication IV, the

author contributed to the development of the methods and tools needed in the comparison of

fMRI and MEG localization results including the transformation of fMRI activation maps to

MEG coordinates and determination of fMRI activation centroids. The author was the main
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responsible for designing and implementing the scientific segmentation and visualization tools

used in Publication V. However, the author did not develop or implement the kernel routines of

the volume rendering or region growing algorithms. In Publication VI, the author contributed

to the multimodal visualizations, but not to the registration or imaging. Especially, Figures 4,

5 and 7 of Publication VI were created by the author. In addition, the author of this thesis

has been the main responsible for creating all 3-D visualizations presented in this overview.

Publications I–III were mostly written by the author of this thesis.
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