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Abstract

This thesis develops new adaptive filtering algorithms suitable for communications applica-

tions with the aim of reducing the computational complexity of the implementation. Low

computational complexity of the adaptive filtering algorithm can, for example, reduce the

required power consumption of the implementation. A low power consumption is important

in wireless applications, particularly at the mobile terminal side, where the physical size

of the mobile terminal and long battery life are crucial. We focus on the implementation

of two types of adaptive filters: linearly-constrained minimum-variance (LCMV) adaptive

filters and conventional training-based adaptive filters.

For LCMV adaptive filters, normalized data-reusing algorithms are proposed which can

trade off convergence speed and computational complexity by varying the number of data-

reuses in the coefficient update. Furthermore, we propose a transformation of the input

signal to the LCMV adaptive filter, which properly reduces the dimension of the coeffi-

cient update. It is shown that transforming the input signal using successive Householder

transformations renders a particularly efficient implementation. The approach allows any

unconstrained adaptation algorithm to be applied to linearly constrained problems.

In addition, a family of algorithms is proposed using the framework of set-membership

filtering (SMF). These algorithms combine a bounded error specification on the adaptive

filter with the concept of data-reusing. The resulting algorithms have low average com-

putational complexity because coefficient update is not performed at each iteration. In

addition, the adaptation algorithm can be adjusted to achieve a desired computational

complexity by allowing a variable number of data-reuses for the filter update.

Finally, we propose a framework combining sparse update in time with sparse update

of filter coefficients. This type of partial-update (PU) adaptive filters are suitable for appli-

cations where the required order of the adaptive filter is conflicting with tight constraints

for the processing power.
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Chapter 1

Introduction

1.1 Motivation

When designing optimal receiver filters for various applications, it is desirable that all un-

wanted interference is minimized. To implement a high-performance receiver, the receiver

filter requires functions that can estimate the interference statistics. The cost of this de-

sign process could turn out to be impractical for several reasons: (1) The interference in

the system can be time-varying, which is often the case in communications applications.

This would require continuous retransmission of some of the interference parameters from

the transmitter to the receiver. (2) The computational cost of the solution may render it

impractical.

Instead of having a solution where all the interference statistics are required to be known

a priori for the filter design, we could think of an implementation which recursively (or

adaptively) estimates the interference, and as time proceeds, incorporates this knowledge

into a dynamic filter design. In other words, the receiver filter would be an adaptive filter.

One important factor contributing to the power consumption of the implementation is the

computational complexity of the employed adaptive schemes. In practice, we are often

faced with a penalty in terms of the receiver performance when reducing the computa-

tional complexity of the adaptive scheme (see discussions in Section 1.2 of this chapter).

Therefore, an interesting topic of research is the development of low-complexity adaptive
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Figure 1.1: Schematic diagram of an adaptive filter.

implementations where this penalty is kept to a minimum

The thesis is concerned with the derivation of new efficient adaptive filtering algo-

rithms. The algorithm derivations are general in the sense that they can be applied in any

application where an adaptive filter may be needed. Recently adaptive solutions for com-

munications applications have received a lot of attention in the literature. As the data-rates

of evolving communications systems increases, the digital-signal processors will have less

time to perform the required calculations. Therefore, communications applications, as well

as other applications, will benefit from reduced-complexity adaptive filtering algorithms.

The rest of the chapter is organized as follows. First we will give a brief review of the

area of adaptive filtering and give examples of its most common applications. In this way,

the reader can appreciate the concepts and terms used when listing the contributions of

this thesis. Furthermore, we review four adaptation algorithms which we will extensively

refer to throughout the thesis. Finally at the end of the chapter, we outline in detail the

contributions of each chapter in the thesis.

1.2 Adaptive Filters

An adaptive filter is useful whenever the statistics of the input signals to the filter are

unknown or time varying, and the design requirements for fixed filters cannot easily be

specified [1]. Examples of such applications are: system identification [2], channel equaliza-
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tion/identification and interference suppression in communications systems [3, 4, 5, 6, 7, 8],

and acoustic echo cancellation [9, 10]. The adaptive filter measures the output signal of the

filter, and compares it to a desired output signal dictated by the true system. By observ-

ing the error between the output of the adaptive filter and the desired output signal, an

adaptation algorithm updates the filter coefficients with the aim to minimize an objective

function. Figure 1.1 shows the basic schematic diagram of an adaptive filter, where x(k),

y(k), d(k), and e(k) are the input, output, desired output and error signals of the adaptive

filter for time instant k. As can be seen from Figure 1.1, the adaptive filter is a nonlinear

filter through its dependence on the input signal, although, at a given time instant it will

act as a linear filter. As a consequence, the analysis of an adaptive filter can be quite

involved as compared to the analysis of fixed filters. On the other hand, the self-designing

feature of the adaptive filter often makes it easy to apply without requiring much a priori

specification of the problem at hand [1].

The adaptive filter can have either finite-duration impulse response (FIR) or infinite-

duration impulse response (IIR). For an adaptive FIR filter the output is obtained as a

linear combination of the present and the N − 1 past input signal samples, N being the
number of filter coefficients. An adaptive FIR filter is many times preferred over an adaptive

IIR filter due to its simplicity and robustness. Furthermore, many practical problems can

be accurately modeled by an FIR filter, e.g., channel identification in communications

systems [5, 9]. The adaptive IIR filter can serve as a viable alternative to the FIR in

applications where the required order of the adaptive filter is very high, since an IIR filter

in general requires fewer filter coefficients than its FIR filter counterpart [1]. Drawbacks of

the adaptive IIR filter include possible stability problems and, in certain problems, lack of

a unique solution [1, 11].

As already mentioned, the adaptation algorithm tries to minimize an objective function

Jw, which is often related to the output error. Among the most common objective functions

that are used for derivation of adaptation algorithms are:

• The mean-squared error (MSE) having Jw = E[e
2(k)];

• The least-squares (LS) having Jw = 1/k ·∑k
i=1 e

2(i);
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• The weighted least-squares (WLS) having Jw =
∑k

i=1 λ
k−ie2(i).

Choosing among the many different objective functions often involves a trade-off between

certain conflicting performance measures. Some of the most important performance mea-

sures related to adaptive filters are [1, 2]:

• The convergence rate, i.e., the number of algorithm iterations required to converge
to the vicinity of a steady-state solution.

• The accuracy of the obtained solution as compared to the optimal obtainable solution.
An often used measure is the excess MSE, or the misadjustment, which quantifies

how close the adaptive filter coefficients are to the ones of the optimal filter.

• The computational complexity of the algorithm.

• Robustness to quantization when implemented in finite-precision.

• Tracking ability, i.e., the performance of the filter when operating in a nonstationary
environment.

As previously stated, these performance measures are often conflicting and as a conse-

quence, specifications on the adaptive filter in terms of these measures cannot in general

be met simultaneously. For example, fast convergence rate usually implies computation-

ally demanding implementation. On the other hand, if low misadjustment is desired, an

algorithm of low computational complexity would most likely suffer from slow convergence.

1.3 Applications

This section reviews three applications where adaptive filters are frequently used. For more

detailed discussion, see [1, 12].

1.3.1 System Identification

In many applications it is necessary to identify an unknown system. Examples of such

applications are: identification of the acoustic echo path in acoustic echo cancellation [9,
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Figure 1.2: Schematic diagram of a system-identification application.

13, 14], channel identification in communications systems [8], and active noise control [15].

Figure 1.2 shows the basic structure of a system-identification application. The adaptive

filter and the unknown system share the same input signal, usually a wideband signal

in the case of channel identification or a noisy voice signal in the case of acoustic echo

cancellation. The adaptation algorithm compares the desired signal with the output of the

adaptive filter in order to minimize the chosen objective function Jw. The desired signal

will, in addition to the output from the unknown system, contain some measurement noise

n(k) which will affect the variance of the estimate of the unknown system [1].

1.3.2 Interference Suppression in Communications Systems

In wireless communications systems the main factors limiting the system capacity are

various kinds of interference such as intersymbol interference (ISI) due to multipath prop-

agation in frequency selective fading channels, cochannel (or multiple access) interference,

and adjacent channel interference. ISI is the main impairment in single user communica-

tions and can be corrected through the use of an adaptive equalizer [3, 16, 17]. In multiuser

communications systems, e.g., code division multiple access (CDMA) systems, the dom-

inant source of impairment is cochannel interference coming from simultaneously active

user signals occupying the same frequency band. In multi-rate CDMA systems, e.g., the
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Figure 1.3: Schematic diagram of an adaptive equalizer.

third generation (3G) mobile communications systems [18], ISI suppression can also sub-

stantially improve the capacity for the high data-rate applications [19, 20, 21, 22]. There is

an extensive literature dealing with multiple access (or multiuser) interference suppression

in batch and in adaptive modes, see, e.g., [4, 7, 20, 23, 24, 25, 26].

The adaptive mode is very attractive due to its implementation in situations where

there are tight complexity and processing-delay constraints, as in the case of a mobile

handset. Adaptive cochannel and ISI suppression schemes many times resemble the single-

user equalizer. Figure 1.3 shows the structure of an adaptive equalizer, where u(k) is

the user signal of interest and i(k) is cochannel interference. The adaptive filter will

try to suppress the channel-induced ISI, and in certain applications also the cochannel

interference when it can be considered cyclo-stationary, e.g., in CDMA systems with short

user spreading codes [25]. The desired signal d(k) is now a delayed replica of the transmitted

signal, where the value of the delay D is chosen to compensate for the delay introduced by

the channel.

1.3.3 Antenna Arrays

In various applications, knowledge of certain signal parameters can be included in the

adaptation algorithm such that the adaptive filter is constrained to provide a solution that

satisfies some a priori knowledge. A class of such adaptive filters is the linearly constrained

6



minimum variance (LCMV) adaptive filter, which requires a set of linear constraints to be

satisfied at each iteration. The LCMV filter finds applications in antenna array process-

ing [6, 27, 28, 29] and blind multiuser detection in CDMA systems [25, 30, 31, 32, 33, 34, 35].

The adaptation algorithm controlling the coefficients of the adaptive filter is minimizing an

objective function Jw with the additional requirement of meeting a set of linear constraints.

By imposing linear constraints on the adaptive filter, the necessity of a desired signal can

often be relaxed, resulting in what is commonly referred to as blind algorithms. The linear

constraints usually reflect the prior knowledge of the the system, like the direction of ar-

rival (DOA) of user signals in antenna array processing, the user spreading code in blind

multiuser detection, the linear phase requirement in system identification [36]. Figure 1.4

shows an LCMV antenna array with M antennas in a system containing two user signals,

u1(k) and u2(k), transmitting the data u1(k) and u2(k), respectively. The user signals are

impinging the array from the directions specified by the vectors s(θ1) and s(θ2), θi being

the DOA of user i. The vector s(θi) is referred to as the steering vector and in case of

a uniform linear array (ULA) with element spacing of half the wavelength, the steering

vector has the particular simple form given by s(θi) = [1 e
jπ sin θi . . . ej(M−1)π sin θi ]T [6, 37].

The adaptive filter in this particular example is updated through the minimization of the

objective function Jw under the constraint of unity response in the direction of the user of

interest.

1.4 Adaptation Algorithms

This section briefly introduces four well-known algorithms that possess different qualities in

terms of the performance measures mentioned in Section 1.1. The algorithms are presented

here for future reference since adaptation algorithms derived within this thesis will be

based on or bear similarities to these algorithms. The first algorithm to be discussed in

Section 1.4.1 is the celebrated least mean-square (LMS) algorithm proposed by Widrow

and Hoff [38] in 1960. Due to its low computational complexity, it still remains one of

the most popular adaptive filtering algorithms. We also discuss the NLMS algorithm [39]
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Figure 1.4: Schematic diagram of an LCMV adaptive antenna array consisting of M anten-

nas, with an adaptation algorithm minimizing the objective function Jw while constrained

to pass the desired signal from user direction s(θ1) with unity response.

proposed in 1967, which can be seen as a version of the LMS algorithm where the step size

is time varying.

Thereafter, in Section 1.4.2, we review the recursive least-squares (RLS) algorithm [40]

proposed in 1950, which is among the fastest adaptive filtering algorithms in terms of

convergence speed. The connection between the RLS algorithm and the Kalman filter

theory can be found in [12, 41]. The high computational complexity of the RLS algorithm

can be significant in applications where the order of the adaptive filter is high. This inspired

the development of algorithms with computational complexity somewhere in between those

of the LMS and RLS algorithms. The affine-projection (AP) algorithm [42] presented in

Section 1.4.3 utilizes the concept of reusing past information to improve the convergence

speed. Finally, the quasi-Newton (QN) algorithm [43] is discussed in Section 1.4.4. The

QN algorithm performs favorably in finite-precision as compared to the RLS algorithm.

The adaptive filter considered in this thesis is assumed to be of FIR type with N
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Figure 1.5: Adaptive FIR filter.

coefficients such that the output of the adaptive filter can be expressed as

y(k) = wT(k)x(k) (1.1)

where

w(k) = [w1(k) w2(k) · · · wN(k)]
T (1.2)

is the vector containing the coefficients of the adaptive filter, and

x(k) = [x(k) x(k − 1) · · · x(k −N + 1)]T (1.3)

is the vector containing the input samples. The structure of the adaptive filter is shown in

Figure 1.5. In the particular application of antenna arrays discussed in Section 1.3.3, the

input vector is different but the algorithms to be discussed below are the same.

1.4.1 The Least Mean-Square (LMS) Algorithm

The least mean-square (LMS) algorithm [1, 12, 38] is probably the most widely used adap-

tive filtering algorithm, being employed in several communications systems. It has gained
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Table 1.1: The Least Mean-Square Algorithm

LMS Algorithm
for each k
{
e(k) = d(k)− xT(k)w(k)
w(k + 1) = w(k) + µe(k)x(k)

}

popularity due to its low computational complexity and proven robustness. The LMS al-

gorithm is a gradient-type algorithm that updates the coefficient vector by taking a step

in the direction of the negative gradient [12] of the objective function, i.e.,

w(k + 1) = w(k)− µ

2

∂Jw

∂w(k)
(1.4)

where µ is the step size controlling the stability, convergence speed, and misadjustment.

To find an estimate of the gradient, the LMS algorithm uses as objective function the

instantaneous estimate of the MSE, i.e., Jw = e2(k) resulting in the gradient estimate

∂Jw/∂w(k) = −2e(k)x(k) [12]. The pseudo-code for the LMS algorithm is shown in
Table 1.1. In order to guarantee stability in the mean-squared sense, the step size µ should

be chosen in the range 0 < µ < 2/tr{R}, where tr{·} is the trace operator and

R = E[x(k)xT(k)]

is the input-signal autocorrelation matrix. The upper bound should be considered opti-

mistic and in practice a smaller value is recommended [1]. A normalized version of the

LMS algorithm, the NLMS algorithm [1, 39, 44], is obtained by substituting the step size

in Equation (1.4) with the time-varying step size µ/‖x(k)‖2, where 0 < µ < 2 [44]. The

NLMS algorithm is in the control literature referred to as the projection algorithm (PA) [45].

The main drawback of the LMS and the NLMS algorithms is the slow convergence for col-

ored noise input signals. In cases where the convergence speed of the LMS algorithm is

not satisfying, the adaptation algorithms presented in the following sections may serve as

viable alternatives.

10



Table 1.2: The Recursive Least-Squares Algorithm

RLS Algorithm
R−1(0) = δ−1I, δ small positive constant

for each k
{
k(k) = R−1(k − 1)x(k)
κ(k) = k(k)

λ+xT(k)k(k)

R−1(k) = 1
λ

[
R−1(k − 1)− k(k)kT(k)

λ+xT(k)k(k)

]
e(k) = d(k)−wT(k)x(k)
w(k + 1) = w(k) + e(k)κ(k)

}

1.4.2 The Recursive Least-Squares (RLS) Algorithm

To overcome the problem of slow convergence of the LMS algorithm operating in colored

environment, one can implement the recursive least-squares (RLS) algorithm [1, 12]. The

RLS algorithm is a recursive implementation of the least-squares (LS) solution, i.e., it

minimizes the LS objective function. The recursions for the most common version of the

RLS algorithm, which is presented in its standard form in Table 1.2, is a result of the

weighted least-squares (WLS) objective function Jw =
∑k

i=1 λ
k−ie2(i). Differentiating the

objective function Jw with respect tow(k) and solving for the minimum yields the following

equations[
k∑

i=1

λk−ix(i)xT(i)

]
w(k) =

k∑
i=1

λk−ix(i)d(i) (1.5)

where 0 < λ ≤ 1 is an exponential scaling factor often referred to as the forgetting factor.
Defining the quantities

R(k) =
k∑

i=1

λk−ix(i)xT(i)

and

p(i) =
k∑

i=1

λk−ix(i)d(i),

the solution is obtained as

w(k) = R−1(k)p(k).
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The recursive implementations is a result of the formulations

R(k) = λR(k − 1) + x(k)xT(k)

and

p(k) = λp(k − 1) + x(k)d(k).

The inverse R−1(k) can be obtained recursively in terms of R−1(k−1) using the matrix

inversion lemma1 [1] thus avoiding direct inversion of R(k) at each time instant k. The

main problems with the RLS algorithm are potential divergence behavior in finite-precision

environment and high computational complexity, which is of order N2. The stability

problems are usually a result of lost symmetry and positive definiteness of the matrix

R−1(k). More robust implementations exist based on square-root factorization or QR

decomposition of matrix R−1(k), see, for example, [1, 12, 46]. Various versions of the

so-called fast transversal algorithms with computational complexity of order N have been

proposed [47, 48, 49, 50] but many of these suffer from stability problems when implemented

in finite precision.

Algorithms whose convergence rate and computational complexity are somewhere be-

tween those of the LMS and RLS algorithms are considered in the following section.

1.4.3 The Affine-Projection (AP) Algorithm

It is well known that normalized LMS algorithms often converge faster than the basic

LMS algorithm, and can many times provide a viable alternative to the RLS algorithm.

Examples of such low-complexity algorithms are the binormalized data-reusing least mean-

square (BNDRLMS) [51, 52], the normalized new data-reusing (NNDR) [53], and the affine-

projection (AP) [13, 42, 54, 55, 56, 57] algorithms. The idea of re-utilizing past and present

information in the coefficient-update, called data-reusing, has shown to be a promising ap-

proach to balance convergence speed and computational complexity of the algorithm. The

BNDRLMS algorithm utilizes current and past data-pairs in its update. The relationships

1[A+BCD]−1 = A−1 − A−1B[DA−1B+C−1]−1DA−1
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Table 1.3: The Affine-Projection Algorithm

AP Algorithm
for each k
{
e(k) = d(k)−XT(k)w(k)

t(k) =
[
XT(k)X(k) + δI

]−1
e(k)

w(k + 1) = w(k) + µX(k)t(k)
}

between a number of data-reusing algorithms were addressed in [58]. The AP algorithm

can be seen as a general normalized data-reusing algorithm that reuses an arbitrary number

of data-pairs.

The AP algorithm updates its coefficient vector such that the new solution belongs to

the intersection of P hyperplanes defined by the present and the P − 1 previous data pairs
{x(i), d(i)}k

i=k−P+1. The optimization criterion used for the derivation of the AP algorithm

is given by

w(k + 1) = argmin
w

‖w −w(k)‖2 subject to

d(k) = XT(k)w (1.6)

where

d(k) = [d(k) d(k − 1) · · · d(k − P + 1)]T

X(k) = [x(k) x(k − 1) · · · x(k − P + 1)] (1.7)

The updating equations for the AP algorithm obtained as the solution to the minimiza-

tion problem in (1.6) are presented in Table 1.3 [13, 42]. To control stability, convergence,

and final error, a step size µ is introduced where 0 < µ < 2 [54]. To improve robustness a

diagonal matrix δI (δ a small constant) is used to regularize the inverse matrix in the AP

algorithm.
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1.4.4 The Quasi-Newton (QN) Algorithm

The RLS algorithm with its fast convergence relies on the estimation of the inverse of the

correlation matrix R−1(k). For stability, it is required that R−1(k) remains symmetric and

positive definite. However, implementation in finite precision may cause R−1(k) to become

indefinite [43]. One algorithm that provides convergence speed comparable to that of the

RLS algorithm but is guaranteed to be stable even under high input-signal correlation and

fixed-point short-wordlength arithmetic is the quasi-Newton (QN) algorithm [43, 59].

In the QN algorithm, the coefficient vector is updated as

w(k + 1) = w(k) + µ(k)h(k) (1.8)

where µ(k) is a step size obtained through an exact line search, and h(k) is the direction

of update given by

h(k) = −R−1(k − 1) ∂Jw

∂w(k)
(1.9)

Choosing Jw = e2(k) we have ∂Jw/∂w(k) = −2e(k)x(k), and performing an exact line
search results in a step size [43]

µ(k) =
1

2xT(k)R−1(k − 1)x(k) (1.10)

The update of R−1(k) is crucial for the numerical behavior of the QN algorithm, and

different approximations lead to different QN algorithms. In [43] an approximation of

R−1(k) was given that is robust and remains positive definite even for highly correlated

input signals and short wordlength arithmetic

R−1(k) = R−1(k − 1) + [µ(k)− 1]R
−1(k − 1)x(k)xT(k)R−1(k − 1)
xT(k)R−1(k − 1)x(k) (1.11)

where the initial value R−1(0) can be any positive definite matrix, usually chosen as

R−1(0) = δI with δ > 0.

The QN algorithm can be implemented as shown in Table 1.4. In Table 1.4 a positive

constant α is used to control the speed of convergence and the misadjustment. Convergence

in the mean and the mean-squared sense of the coefficient vector is guaranteed for 0 < α < 2

provided that R−1(k) is positive definite [43, 59, 60].
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Table 1.4: The Quasi-Newton Algorithm

QN Algorithm
for each k
{
e(k) = d(k)−wT(k)x(k)
t(k) = R−1(k − 1)x(k)
τ(k) = xT(k)t(k)
µ(k) = 1

2τ(k)

R−1(k) = R−1(k − 1) + [µ(k)−1]
τ(k)

t(k)tT(k)

w(k + 1) = w(k) + α e(k)
τ(k)
t(k)

}

1.4.5 Complex-Valued Signals

The algorithms in this thesis are derived for real-valued input signals. The extension of

the algorithms to work with complex-valued input signals is straightforward [1, 12, 61, 62].

In the case of complex-valued input signals, let Jw,w∗ denote the real-valued objective

function of the weight vector w to be solved for, and w∗ denotes the conjugate of vector

w. The maximum rate of change of Jw,w∗ is given by ∂Jw,w∗/∂w∗ [61, 62]. In order to

get a meaningful result, the objective function needs to have explicit dependency on the

conjugate of the weight vector. Usually this simply translates into changing transposition

to conjugate transposition (or Hermitian). For a more detailed discussion on the topic,

see [61, 62].

To illustrate the procedure of deriving the complex version of an algorithm, let us take

as an the complex-valued LMS algorithm discussed in Section 1.4.1. The objective function

becomes Jw,w∗ = |e(k)|2, where e(k) = d(k)−wHx(k). Therefore we have

∂Jw,w∗

∂w∗ =
∂
{
[d(k)−wHx(k)]H[d(k)−wHx(k)]

}
∂w∗

= −e∗(k)x(k) (1.12)

As with the LMS algorithm for real-valued input signals, the update is obtained by taking

a small step in the negative gradient of the objective function. With the above definition
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of the gradient, we get

w(k + 1) = w(k) + µe∗(k)x(k) (1.13)

1.5 Overview and Contributions

The scope of this thesis is to develop new adaptation algorithms for both unconstrained

adaptive filters and LCMV adaptive filters as depicted in Figures 1.1 and 1.4, respectively.

The focus of the thesis is on FIR adaptive filters. The performance of new algorithms is

evaluated through analysis, and simulations in the applications described in Section 1.3.

Three strategies, to be described shortly, are used to derive adaptation algorithms with

low computational complexity: (1) rank reduction of linearly constrained filters through a

transformation of the input signal; (2) application of the set-membership filtering (SMF)

framework, and; (3) application of partial-update.

Below we give a brief background of each strategy:

(1) In LCMV adaptive filtering, the computational complexity is not only due to the

adaptation algorithm employed. The adaptive LCMV filter updates in a subspace

orthogonal to the space spanned by the set of linear constraints. Therefore, the

adaptation algorithms usually make use of a projection matrix, and the form of

this matrix affects the overall computational complexity of the implementation. A

method to reduce the computational complexity for the implementation of LCMV

adaptive filters is to employ reduced-rank updating [30, 63, 64, 65, 66, 67] where a

transformation is applied to the input signal to reduce the dimension of the problem

such that adaptation can be performed in a reduced subspace.

(2) Adaptive SMF [68, 69, 70, 71, 72] is a recent approach to adaptive filtering. The SMF

framework specifies a bound on the output estimation error, and as a consequence,

there exists a set of feasible solutions. The adaptive SMF only performs updates if

the magnitude of the error exceeds the predefined bound and, therefore, a reduction

of the average computational complexity is obtained.
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(3) Partial-update (PU) adaptive filtering is a technique suitable for applications where

the order of the adaptive filter is so high that it may even prohibit the use of the

NLMS algorithm, see, e.g., [14, 73, 74]. PU adaptive filters reduce the algorithm

complexity by properly decreasing the number of filter coefficients that are updated

at each iteration so that the filter order may be kept fixed.

The chapters in the thesis are arranged as follows. Chapter 2 provides new results on

the equivalence of constrained adaptive filtering structures together with the introduction

of a new adaptation algorithm. Furthermore, an introduction to the field of linearly con-

strained adaptive filters is provided to give the necessary background for the new approach

introduced in Chapter 3. Chapter 3 derives new constrained adaptive filtering algorithms

where rank reduction is performed through an orthogonal transformation of the input sig-

nal. Chapter 4 introduces and analyzes novel data-selective normalized adaptive filtering

algorithms with two data-reuses, and Chapter 5 extends this work to include an arbitrary

number of data reuses. Chapter 6 derives constrained affine projection algorithms and

reduced computational complexity schemes are obtained through both rank reduction and

application of the set-membership filtering framework. Finally, Chapter 7 investigates and

analyzes partial-update adaptive filters. Furthermore, partial-update is combined with

the framework of set-membership filtering to derive novel low-complexity adaptation algo-

rithms.

Table 1.5 shows how the algorithms developed in each chapter are related to different

approaches to adaptive filtering. Furthermore, it provides information on how the different

fields can be combined to obtain efficient adaptation algorithms.

The scientific contributions of the thesis are found in Chapters 2–7. Chapter 2 also

reviews known results from the literature in order to provide necessary background ma-

terial for Chapter 3. The main contributions of Chapter 2 can be found in Sections 2.3

and 2.5. In Chapters 3–7 we have tried to keep the necessary background material to a

minimum and it is mostly appearing in the introductory part together with relevant refer-

ences. In particular, Chapter 4.2–4.2.1 contains background material on set-membership

adaptive filtering, which is extensively used for the derivation of the algorithms through
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Table 1.5: Characterization of the Algorithms Developed in the Thesis.

Chapter LCMV Data-Reusing Set-Membership Filtering Partial-Update

2 ×
3 ×
4 × ×
5 × ×
6 × × ×
7 × ×

Chapters 4–7. In order to clarify the contributions of the thesis, they are listed below for

each chapter.

Chapter 2: Constrained Adaptive Filters

• A new LCMV adaptive filtering algorithm is proposed, namely, the normalized con-
strained LMS (NCLMS).

• Equivalence study of the transients of the constrained RLS (CRLS) algorithm and the
generalized sidelobe canceller (GSC) structure [28] employing an RLS algorithm. It

is shown that the two implementations produce identical transients assuming proper

initializations.

Chapter 3: Householder Constrained Adaptation Algorithms

• An efficient implementation of LCMV adaptive filters is presented based on House-
holder transformation of the input signal vector. The transformation of the input

signal reduces the dimension of the subspace in which the adaptive-filter coefficients

are updated. The approach allows application of any unconstrained adaptation al-

gorithm to a linearly constrained problem, and always renders efficient and robust

implementations.

• Derivation of several adaptation algorithms based on Householder transformations
such as the constrained versions of the LMS, the NLMS, and the QN algorithms.
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Chapter 4: Set-Membership Binormalized Data-Reusing LMS Algorithms

• Transient analysis of the SM-NLMS algorithm [69] is performed, indicating a decrease
in convergence speed for correlated input signals.

• Two new algorithms, called set-membership binormalized LMS (SM-BNDRLMS) al-
gorithms, are derived using the concept of set-membership filtering (SMF). They can

be regarded as a generalization of the recently proposed set-membership NLMS (SM-

NLMS) algorithm [69]. They reuse two past input and desired signal pairs in order

to construct a space of feasible solutions for the coefficient updates. The algorithms

include data-dependent step sizes that provide fast convergence and low excess MSE.

Convergence analyses for the mean-squared error have been done and closed-form

expressions are given for both white and colored input signals.

Chapter 5: Set-Membership Affine-Projection Algorithms

• The set-membership affine-projection (SM-AP) algorithm is introduced. The algo-
rithm generalizes the ideas of both the SM-NLMS and the SM-BNDRLMS algorithms

to reuse information from several past input and desired signal pairs. The resulting

algorithm can be seen as a set-membership version of the affine-projection (AP)

algorithm with an optimized step size. Unlike most adaptive filtering algorithms,

the SM-AP algorithm does not trade off convergence speed with misadjustment and

computational complexity.

Chapter 6: Low-Complexity Constrained Affine-Projection Algorithms

• This chapter introduces the constrained affine-projection (CAP) algorithm. Analy-
sis of the bias is provided together with an efficient implementation obtained via a

unitary transformation of the input signals.

• To achieve an algorithm with a reduced computational complexity, the set-membership
constrained affine-projection (SM-CAP) algorithm is derived. The algorithm updates

in a way that the filter coefficients remain in a set described by both a bounded error

constraint and a set of linear constraints.

19



Chapter 7: Partial-Update NLMS Algorithms with Data-Selective Updating

• Analysis of the excess MSE is provided for the partial-update NLMS (PU-NLMS)
algorithm [75] and a closed-form expression is provided for the case of white noise

input signals. New and more accurate bounds on the step size are provided to ensure

stability of the algorithm.

• Derivation of a set-membership algorithm with partial updating. The new algorithm
combines the sparse updates coming from the set-membership framework with the

ideas of partial-update algorithms. Convergence in the mean-squared is shown for

the case of white input signals.

Although this thesis is presented as a monograph, results have been published in journals

and conference proceedings [76, 66, 67, 77, 78, 79, 80, 81, 82]. Part of the material has

been submitted to journals but has not yet been accepted for publication, however, in many

cases a related conference paper containing the ideas has been published.
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Chapter 2

Constrained Adaptive Filters

This chapter presents a tutorial of linearly-constrained minimum-variance (LCMV) fil-

tering. It also provides new results for the comparison of two well-known structures for

implementation. The chapter serves as a necessary background for the new approach pro-

posed in Chapter 3. Through a graphical description of the algorithms further insight

on linearly constrained adaptive filters is made possible and the main differences among

several algorithms are highlighted. The related structure for LCMV filters, the general-

ized sidelobe canceler (GSC), is discussed as well as conditions for which the optimal and

adaptive implementations of the LCMV filters and the GSC are equivalent. The main

contribution of the chapter is the study of transient equivalence of the constrained RLS

(CLRS) algorithm and the GSC structure employing an RLS algorithm. We prove that the

two adaptive implementations are equivalent everywhere regardless of the blocking matrix

chosen. This guarantees that algorithm tuning is not affected by the blocking matrix. This

result differs from the more restrictive case for transient-equivalence of the constrained

LMS (CLMS) algorithm and the GSC employing LMS algorithm, because in this case the

blocking matrix needs to be unitary.

2.1 Introduction

Adaptive receiving-antenna systems that can operate in real time were developed in the

sixties [83, 84] and were intended to perform directional and spatial filtering with minimum
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Figure 2.1: Broadband adaptive receiving array.

knowledge of the statistics of arriving signals. Linearly-constrained (LC) adaptive array

processing [27] was undoubtedly a significant improvement to previously devised adaptive

antenna-array systems, for the need of training sequences and knowledge of interfering-

signal statistics became unnecessary. In the approach presented in [27] output power is

minimized while a desired signal arriving at a known direction is linearly filtered according

to a specified frequency response.

Figure 2.1 shows a schematic diagram of a broadband array-processing filter with M

sensors and filters with N taps. The output of the array may be expressed as y(k) =

wT(k)x(k) where

w(k) =
[
wT

1 (k) w
T
2 (k) · · · wT

M(k)
]T

(2.1)

x(k) =
[
xT

1 (k) x
T
2 (k) · · · xT

M(k)
]T

(2.2)

and

xi(k) = [xi(k) xi(k − 1) · · · xi(k −N + 1)]T (2.3)

For LC adaptive filters, coefficient update is performed in a subspace which is orthog-

onal to the subspace spanned by a constraint matrix [27]. Direction of update is given by

the input-signal vector premultiplied by a projection matrix, which is rank-deficient. This
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may be regarded as the use of nonpersistently exciting input signal,1 and lack of persis-

tence of excitation requires that a correction term be added to the coefficients to prevent

accumulation of roundoff errors [27, 28]. The constrained LMS (CLMS) algorithm, which

does not require re-initialization and incorporates the constraints into the solution was

first introduced by Frost [27]. More recently, other constrained adaptation algorithms were

introduced which are tailored to specific applications or present advantageous performance

regarding convergence and robustness, see, e.g., [66, 67, 85, 86, 87, 88, 79]. The constrained

RLS (CRLS) algorithm introduced in [85] is one solution which tries to overcome the prob-

lem of slow convergence experienced with the CLMS algorithm in situations where the

input signal is strongly correlated.

An alternative approach to the implementation of LC array processing was introduced

by Griffiths and Jim in [28], which became known as the generalized sidelobe canceling

(GSC) model. With the GSC model, dimension of the adaptation subspace is properly

reduced by means of a blocking matrix such that the persistence of excitation is not lost

due to imposing constraints. By transforming the constrained minimization problem into

an unconstrained minimization problem, the GSC model allows any adaptation algorithm

be directly applied. Furthermore, as the restriction imposed on the blocking matrix is

only that its columns must be orthogonal to the constraint matrix, a myriad of possible

implementations result. It has been shown in [28] that, in order for the transients of the

CLMS algorithm and the GSC employing an LMS algorithm to bear any relation, the

blocking matrix needs to be orthogonal. An equivalence comparison of the transients had

not yet been performed for the CRLS algorithm and the GSC structure employing an RLS

algorithm, herein referred to as the GSC-RLS algorithm.

The rest of the chapter is organized as follows. Section 2.2 gives the background of

the LCMV filter. Section 2.3 review the CLMS and the CRLS algorithms, and introduces

the normalized constrained LMS (NCLMS) algorithm. Graphical descriptions of various

algorithms are presented in order to provide a better understanding of the updating process

used in constrained algorithms. Section 2.4 gives the background of the GSC model.

1For a discussion on persistence of excitation, see [45].
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Section 2.5 discusses the transient equivalence of the adaptive implementations of LC and

GSC filters, and the CRLS and the GSC employing an RLS algorithm in particular. We

try to answer the following question: Is the requirement of orthogonal blocking matrix

related to the implementation of the LMS algorithm carried over to the case of the RLS

algorithm? It is shown that this is not the case, and that the transients of the CRLS and

the GSC-RLS algorithm are identical everywhere if the blocking matrix is orthogonal to

the constraint matrix, which is the case for any GSC structure. As a consequence, any

valid blocking matrix used in the GSC-RLS structure will always produce the same curves

as the CRLS algorithm. Section 2.6 discusses techniques to construct the blocking matrix

in the GSC model. Finally, Section 2.7 contains simulations followed by conclusions in

Section 2.8.

2.2 Optimal Linearly-Constrained Minimum-Variance

Filter

The optimal (LCMV) filter is the one that minimizes the objective function Jw subject to

a set of linear constraints, i.e.,

w = argmin
w

Jw subject to CTw = f (2.4)

where w, as remarked before, is a vector of coefficients of length MN , C is the MN × p

constraint matrix, and f is the p × 1 gain vector, p being the number of constraints. The
most common LCMV filter used in the literature is probably the one minimizing the mean

output energy (MOE) objective function:

Jw = w
TRw (2.5)

where R is theMN×MN autocorrelation matrix of the input signal. By using the method

of Lagrange multipliers, the optimal solution becomes [12, 27]

wopt = R
−1C(CTR−1C)−1f (2.6)
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The LCMV filter in (2.6) has been used in several applications in communications

systems, and its popularity may be accredited the possibility of adaptive implementations

which do not require training signals, see, e.g., [25, 27, 28, 30, 31, 32]. A more general setup

uses the MSE, Jw = E[e
2(k)] = E[{d(k)−wTx(k)}2], as the objective function, giving the

optimal solution [89]

wopt = R
−1p+R−1C[CTR−1C]−1[f −CTR−1p] (2.7)

where p is the cross-correlation vector between the input vector x(k) and the desired signal

d(k). It is easy to verify that, in the absence of a desired signal, d(k) = 0 and p = 0, the

optimal solution in (2.7) becomes equal to (2.6). The rest of the chapter treats the more

general case when a desired signal is present, since applications where no desired signal

exists can easily be modeled by setting d(k) = 0. An application where a desired signal

is present was discussed in [36] where constraints were used to ensure linear phase filters.

Furthermore, in many wireless systems a training signal is periodically retransmitted to

aid estimation of time-varying parameters, e.g., multipath channel coefficients, and in such

applications we could think of a solution that switch in time between the two cases discussed

above.

Both equations (2.6) and (2.7) above bear the difficulty of knowing in real-time the

inverse of the input-signal autocorrelation matrix, R−1, and the cross-correlation vector

p. A much more practical approach is to produce an estimate of wopt recursively at every

iteration. As time proceeds, the estimate is improved such that convergence in the mean

to the optimal solution may eventually be achieved.

2.3 LC Adaptive Filtering

2.3.1 The Constrained Least Mean-Square Algorithm

Frost [27] has proposed an algorithm to estimate wopt based on the gradient method or,

more specifically, based on the least-mean-square (LMS) algorithm for adaptive filtering.

25



Let w(k) denote the estimate of wopt at time instant k and

y(k) = wT(k)x(k) (2.8)

denote the filter output, equal in absolute value to the output error, in applications where

the reference signal is zero.

The Constrained LMS (CLMS) algorithm [27] uses as an estimate of the input-signal

autocorrelation matrix R, at instant k, the outer product of the input-signal vector by

itself, i.e., R̂ = x(k)xT(k). In this case, the coefficient-update equation becomes [27]:

w(k + 1) = w(k) + µe(k)
[
I−C(CTC)−1CT

]
x(k) +C(CTC)−1[f −CTw(k)]

= w(k) + µe(k)Px(k) +C(CTC)−1[f −CTw(k)]

= P [w(k) + µe(k)x(k)] + F (2.9)

where I is the MNth-order identity matrix [27],

P = I−C(CTC)−1CT (2.10)

is the projection matrix onto the subspace orthogonal to the subspace spanned by the

constraint matrix, and [27]

F = C(CTC)−1f (2.11)

Note that in (2.9) the term multiplied by the projection matrix, w(k) + µy(k)x(k),

corresponds to the unconstrained LMS solution which is projected onto the homogeneous

hyperplane CTw = 0 and moved back to the constraint hyperplane by adding vector F.

Figure 2.2 illustrates this operation.

A normalized version of the CLMS algorithm, namely the NCLMS algorithm, can be

derived [86]; the update equation becomes:

w(k + 1) = P

[
w(k) + µ

e(k)

xT(k)Px(k)
x(k)

]
+ F

= w(k) + µ
e(k)

xT(k)Px(k)
Px(k) +C(CTC)−1[f −CTw(k)] (2.12)

We shall stress here the fact that for the normalized constrained LMS (NCLMS) al-

gorithm in (2.12) the a posteriori output signal is zero for µ = 1. The solution is at

26



the intersection of the hyperplane defined by the constraints, H1 : C
Tw = f , with the

hyperplane defined by the null a posteriori condition H0 : x
T(k)w = d(k). Therefore,

the solution w(k + 1) is not merely a projection of the solution of the normalized LMS

(NLMS) algorithm onto the hyperplane defined by the constraints. This is also illustrated

in Figure 2.2, where we present a detailed graphical description of the coefficient update

of several algorithms in the case of two coefficients only. In this case, hyperplanes H0 and

H1 become two lines as noted in the figure. As w(k) must satisfy the constraints, it must

belong to H1 and can be decomposed in two mutually orthogonal vectors, F and Pw(k).

The figure also illustrates how the solutions of the constrained version of the LMS algo-

rithm, the NLMS algorithm, and the projection algorithm [90] relate. Note that in this

figure all updated vectors for the constrained algorithms are located along the direction

of CTw = f (points 4, 6, and 7). Therefore, if w was rotated with an angle θ such that

w1 axis and F had the same direction, the component along this direction would not need

to be updated. This fact will be used in Chapter 3 where new Householder-Transform

algorithms are introduced.

The necessity of the last term in (2.9) and (2.12) may be surprising, for it is expected

that all w(k) satisfy the constraint and, therefore, this last term should be equal to zero. In

practical implementations, however, this term shall be included to prevent divergence in a

limited-precision arithmetic machine [28] due to perturbations introduced in the coefficient

vector in a direction not excited by vector Px(k). The same reasoning can be applied

to the constrained recursive least-squares (CRLS) algorithm presented in [85] and to the

constrained quasi-Newton (CQN) algorithm presented in [87].

2.3.2 The Constrained Least-Squares Algorithm

The constrained recursive least-squares (CRLS) algorithm to be discussed below uses the

weighted least-squares criterion, Jw =
∑k

i=1 λ
k−ie2(i), as an objective function resulting in

the following optimization problem

w(k) = argmin
w

{eT(k)e(k)} subject to CTw = f (2.13)
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Figure 2.2: Geometrical interpretation of some constrained algorithms.

1. w(k) = F+Pw(k)
2. w(k + 1) for the unconstrained LMS algorithm.
3. w(k + 1) for the unconstrained NLMS algorithm.
4. w(k + 1) for the constrained LMS algorithm [27].
5. Pw(k+1) for the constrained LMS algorithm [27].
6. w(k + 1) for the projected NLMS algorithm [90].
7. w(k+1) for the constrained NLMS algorithm [86].

where the error vector e(k) is defined as

e(k) = d(k)−XT(k)w (2.14)

and

d(k) =
[
d(k) λ1/2d(k − 1) · · · λk/2d(0)

]T
(2.15)

X(k) =
[
x(k) λ1/2x(k − 1) · · · λk/2x(0)

]
(2.16)

are the (k + 1)× 1 reference vector and the MN × (k + 1) input matrix, respectively, and
λ is the forgetting factor (0 < λ ≤ 1). Applying the method of Lagrange multipliers gives
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the constrained LS solution at time instant k [91]

w(k) = R−1(k)p(k) +R−1(k)C[CTR−1(k)C]−1[f −CTR−1(k)p(k)] (2.17)

where R(k) is the MN × MN deterministic correlation matrix and p(k) is the MN × 1
deterministic cross-correlation vector defined as

R(k) = X(k)XT(k) =
k∑

i=0

λk−ix(i)xT(i) (2.18)

p(k) = X(k)d(k) =
k∑

i=0

λk−ix(i)d(i). (2.19)

A recursive update of the optimal LS solution in (2.17) will now be addressed. First

we note that the solution in (2.17) can be divided into two terms

w(k) = wuc(k) +wc(k) (2.20)

where

wuc(k) = R
−1(k)p(k) (2.21)

and

wc(k) = R
−1(k)C[CTR−1(k)C]−1[f −CTR−1(k)p(k)] (2.22)

The coefficient vector wuc(k) is an unconstrained solution (the deterministic Wiener so-

lution) and is independent of the constraints, whereas wc(k) depends on the constraints

imposed by CTw(k) = f . The coefficient vector wuc(k) already has a recursive expression

given by the unconstrained RLS algorithm [12]

wuc(k) = wuc(k − 1) + euc(k)κ(k) (2.23)

where κ(k) = R−1(k)x(k) is the gain vector, and euc(k) = d(k) − wT
uc(k − 1)x(k) is the

a priori unconstrained error.

In order to derive a recursive update for wc(k), let us define the auxiliary matrices Γ(k)

and Ψ(k), which have dimensions (MN × p) and (p× p), respectively.

Γ(k) = R−1(k)C (2.24)
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Ψ(k) = CTΓ(k) = CTR−1(k)C (2.25)

such that

wc(k) = Γ(k)Ψ
−1(k)[f −CTwuc(k)] (2.26)

For the case of a single constraint, Ψ(k) is a scalar and computation of Ψ−1(k) is trivial.

In case of multiple constraints, a recursive formula will be required to reduce the com-

putational complexity. Since we are not concerned here with the derivation of efficient

updating schemes, Table 2.1 shows only the basic recursions of the CRLS algorithm as

stated by Equations (2.23)–(2.26). For a more efficient implementation of the CRLS algo-

rithm, see [36, 85]. For the equivalence study to be carried out in Section 2.5 we show in

Appendix A2.1 of this chapter that the CRLS recursions can be written as

w(k) = w(k − 1) + e(k)R−1(k)x(k)− e(k)R−1(k)C[CTR−1(k)C]−1CTR−1(k)x(k)

(2.27)

Equation (2.27) is of pure theoretical interest, since it will not render an efficient imple-

mentation.

2.4 The Generalized Sidelobe Canceling Model

Many implementations of LC adaptive filters utilize the advantages of the GSC model [12],

mainly because this model employs unconstrained adaptation algorithms that have been

extensively studied in the literature. Figure 2.3 shows the schematic of the GSC model.

Let B in Figure 2.3 be a full-rank MN × (MN − p) blocking matrix designed to filter

out completely the components of the input signal that are in the same direction as the

constraints. Matrix B must span the null space of the constraint matrix C, i.e.,

BTC = 0 (2.28)

In order to relate the GSC model and the linearly constrained minimum variance (LCMV)

filter, let T be an MN ×MN transformation matrix such that

T =
[
C B

]
(2.29)
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Table 2.1: The Constrained RLS Algorithm.

Initialization:

wuc(0) and R
−1(0)

for each k

{
k(k) = R−1(k − 1)x(k)
κ(k) = k(k)

λ+xT(k)k(k)

R−1(k) = 1
λ

[
R−1(k − 1)− k(k)kT(k)

λ+xT(k)k(k)

]
euc(k) = d(k)−wT

uc(k − 1)x(k)
wuc(k) = wuc(k − 1) + euc(k)κ(k)

Γ(k) = R−1(k)C

Ψ(k) = CTΓ(k)

w(k) = wuc(k) + Γ(k)Ψ
−1(k)

[
f −CTwuc(k)

]
}

Now suppose that a transformed coefficient vector w̄ relates to the LCMV coefficient vector

w through

w = Tw̄ (2.30)

This transformation of the coefficient vector does not modify the output error [69] as long

as T is invertible, which is always guaranteed from (2.28). If we partition vector w̄ as

w̄ =


 w̄U

−w̄L


 (2.31)

with w̄U and w̄L vectors of dimension p × 1 and (MN − p) × 1, respectively, it can be
shown that we have [12]

w = F−Bw̄L (2.32)
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Figure 2.3: Generalized sidelobe canceling (GSC) model.

and

w̄U = (C
TC)−1f (2.33)

w̄L = wGSC (2.34)

where F = Cw̄U is the constant part of vector w̄ that satisfies the constraints, i.e., C
Tw =

CTF = f [12]. Vector wGSC is not affected by the constraints and may be adapted using

unconstrained adaptation algorithms in order to reduce interference from signal components

that lie within the null space of C. For example, the GSC implementation of the LMS

algorithm (GSC-LMS) is, using the notation in Figure 2.3, given by

wGSC(k + 1) = wGSC(k) + µeGSC(k)xGSC(k).

The desired signal as defined in Figure 2.3, incorporates an external reference signal

d(k) such that the resulting desired signal fed back to the adaptation algorithm in the

GSC structure becomes dGSC(k) = F
Tx(k)−d(k). This more general case includes common

applications where d(k) = 0, e.g., blind beamforming [27] and blind multiuser detection [33].

It is clear from the previous discussion that coefficient adaptation for the GSC model is

performed within a reduced-dimension subspace. The transformation T in (2.29) applied

onto the input-signal vector is such that the lower part of this transformed input BTx(k)

is restricted to the null space of the constraint matrix C, which is of dimension MN − p.
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Therefore adaptation along BTx(k) does not cause any departure from the constraint

hyperplane. Another important factor to stress is that the input signal of the adaptive

filter is persistently exciting of order MN − p.

2.4.1 The GSC-RLS Algorithm

This section provides the details related to the GSC-RLS implementation necessary for the

equivalence study in Section 2.5. The optimal least-squares solution of wGSC(k) is given

by

wGSC(k) = R
−1
GSC(k)pGSC(k) (2.35)

where RGSC(k) and pGSC(k) are the deterministic autocorrelation matrix the and cross-

correlation vector, respectively. From Figure 2.3 it follows that

RGSC(k) =
k∑

i=0

λk−ixGSC(k)x
T
GSC(k) = B

TR(k)B (2.36)

pGSC(k) =
k∑

i=0

λk−i[FTx(k)− d(k)][BTx(k)] = −BTp(k) +BTR(k)F (2.37)

The RLS recursions for the GSC structure becomes

wGSC(k) = wGSC(k − 1) + eGSC(k)κGSC(k) (2.38)

where eGSC(k) = dGSC(k) − wT
GSC(k − 1)xGSC(k) is the a priori error and κGSC(k) =

R−1
GSC(k)xGSC(k) is the gain vector. In the next section we will compare the recursions in

Equation (2.38) with those of the CRLS algorithm in Equation (2.27).

2.5 Equivalence of LC and GSC Adaptive Filters

This section addresses the relationship between the LC adaptive filters and their corre-

sponding GSC implementation. It is well known that the CLMS and GSC-LMS as well as

the CRLS and the GSC-RLS formulations have the same optimal solution [28, 91]. Analysis

of the CLMS and GSC-LMS algorithms reveals that the transients of both algorithms only
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become equal if B is orthogonal, i.e., BTB = I [28]. The requirement of a orthogonal block-

ing matrix can lead to a computationally complex implementation of the GSC structure.

This is because the computations required for the multiplication of the input-signal vector

with the blocking matrix may exceed the filtering operation by an order of magnitude. In

these situations employing other approaches may be more efficient [66, 67]. For the case

of non-orthogonal matrices the transient, or equivalently, the convergence speed, depends

on the step size and the particular blocking matrix chosen. In other words, if the blocking

matrix changes, the step size changes, including the limits for stability. To our knowledge,

no results comparing the transient behavior of the CRLS and the GSC-RLS algorithms has

been provided before. Our main goal for the remaining part of this section is to investigate

under what circumstances the transients of the CRLS algorithm in Section 2.3.2 and the

GSC-RLS algorithm in Section 2.4.1 are identical.

We will study the coefficient-vector evolution defined as

∆v(k) = w(k)−w(k − 1) (2.39)

Equation (2.27) gives us the coefficient-vector evolution for the CRLS algorithm as

∆v(k) = e(k)
{
I−R−1(k)C

[
CTR−1(k)C

]−1
CT
}
R−1(k)x(k) (2.40)

For the GSC-RLS algorithm, considering that w(k) = F − BwGSC(k), Equation (2.38)

gives us

∆v(k) = F−BwGSC(k)−w(k − 1)

= F−B [wGSC(k − 1) + eGSC(k)R
−1
GSC(k)xGSC(k)

]−w(k − 1)

= e(k)B[BTR(k)B]−1BTx(k)

= e(k)
{
B
[
BTR(k)B

]−1
BTR(k)

}
R−1(k)x(k) (2.41)

where w(k− 1) = F−BwGSC(k− 1) was used together with Equation (2.36). In order for
Equations (2.40) and (2.41) to be identical it is required that the following matrix equality

holds:

B
[
BTR(k)B

]−1
BTR(k) +R−1(k)C

[
CTR−1(k)C

]−1
CT = I (2.42)
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The initialization of both schemes (CRLS and GSC-RLS) should be equivalent, which

meansR−1
GSC(0) =

[
BTR(0)B

]−1
and w(0) = F−BwGSC(0). The equivalence of the CRLS

and the GSC-RLS using the correct initialization is ensured by the following lemma:

Lemma 1. For BTC = 0, if R−1(k) exists and is symmetric, if rank(B) =MN − p, and

if rank(C) = p, Equation ( 2.42) holds true.

Proof. Define the matrices B̄ = RT/2(k)B and C̄ = R−1/2(k)C whereR(k) = R1/2(k)RT/2(k).

With these notations, the left hand side of Equation (2.42) becomes B̄(B̄TB̄)−1B̄T +

C̄(C̄TC̄)−1C̄T, and it remains to show that this addition of matrices equals identity. For

this purpose, let us introduce the matrix T̄ = [C̄ B̄]. T is a full-rank (MN ×MN) matrix,

and, consequently, T̄−1 exists. We have,

T̄TT̄ =


C̄TC̄ C̄TB̄

B̄TC̄ B̄TB̄


 =


C̄TC̄ 0

0 B̄TB̄


 (2.43)

where the relation B̄TC̄ = 0 was used. We have

(T̄TT̄)−1 =


(C̄TC̄)−1 0

0 (B̄TB̄)−1


 (2.44)

Therefore,

T̄(T̄TT̄)−1T̄T = T̄T̄−1T̄−TT̄T = I

= [C̄ B̄]


(C̄TC̄)−1 0

0 (B̄TB̄)−1




C̄T

B̄T




= C̄(C̄TC̄)−1C̄T + B̄(B̄TB̄)−1B̄T = I (2.45)

�

As a consequence of Lemma 1, and Equations (2.40) and (2.41), we can conclude that the

necessary requirement for equivalent transients of the CRLS and the GSC-RLS algorithms

is that BTC = 0, which holds true in any GSC structure. This is a looser requirement

than the transient-equivalence of the CLMS and GSC-LMS algorithms, which in addition

to BTC = 0, requires B to be orthogonal.
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2.6 Choice of Blocking Matrix B

The structure of matrix B plays an important role in the GSC structure, for its choice

determines the computational complexity and, in many cases, the robustness against nu-

merical instabilities of the overall system [33]. If singular value decomposition or any other

decomposition is employed, the resulting non-squared (MN × MN − p) matrix B will,

in general, have no exploitable special structure. This may result in a highly inefficient

implementation with computational complexity up to one order of magnitude higher than

that of the adaptation algorithm itself. This is due to the matrix-vector multiplication

Bx(k) performed at each iteration.

A non-orthogonal blocking matrix suggested in [92] is implemented as a sequence of

sparse blocking matrices B = B1 · · ·Bp−1Bp where Bi is an (MN − i + 1) × (MN − i)

matrix of full rank. A straightforward choice of Bi is

BT
i =



c̃i,2 −c̃i,1 · · · 0

...
. . . . . .

...

0 · · · c̃i,MN−i+1 −c̃i,MN−i


 (2.46)

where c̃i,j denotes the (i, j)th element the matrix C̃i−1 = B
T
i−1B

T
i−2 · · ·BT

1C. To illustrate

the procedure discussed above, consider the simplified example below.

EXAMPLE 2.1

Given the constraint matrix

C =



1 3

2 2

3 1


 ,

construct a blocking matrix as a sequence of sparse blocking matrices using Equation (2.46).

SOLUTION

In this example, the number of constraints equals p = 2 and, consequently, the blocking

matrix can be constructed as a sequence of two blocking matrices B = B1B2. The first

blocking matrix B1 is designed to null out the first column of C and, therefore, we have
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c̃i,j = ci,j. Using (2.46) gives us

BT
1 =


c1,2 −c1,1 0

0 c1,3 −c1,2


 =


2 −1 0

0 3 −2


 (2.47)

The matrix C̃1 becomes

C̃1 = B
T
1C =


0 4
0 4




and the second blocking matrix is now easily constructed as

BT
2 = [c̃2,2 − c̃2,1] = [4 − 4]

�

A similar blocking matrix to the one discussed above with slightly lower complexity was

presented in [69] for the case of p = 1 constraint. The simple blocking matrix above reduces

the overall complexity considerably but will, for example, not be directly applicable to the

problem of LCMV filtering of sinusoids that was considered in [85]. In beamforming with

presteering the requirement for spatial blocking of the look direction is that the rows of B

sum up to zero [28]. A commonly used blocking matrix fulfilling this requirement contains

1 and −1 along the diagonals, and is obtained by Equation (2.46) using c̃j = 1. If the

number of antennas is such that M = 2L, L = Z+, an orthogonal blocking matrix can be

constructed easily using Walsh functions [28].

Although in some applications [28] it may be possible to construct trivial blocking

matrices whose elements are either 0, 1, or −1, these matrices pose some practical problems
that may prevent their use. For instance, if matrixB is such that the transformation matrix

T is not orthogonal, then the transients of the adaptive filters in the GSC model and in

the LCMV may bear no relation [28]. Furthermore, if applied to the multistage Wiener

filter structure presented in [69], non-orthogonal transformations invariably yield severe

problems related to finite precision arithmetic [33].

The Householder decomposition as suggested in Chapter 3 allows efficient implemen-

tation and results in a orthogonal transformation matrix. If necessary, the Householder

reflections can be performed via dedicated CORDIC hardware or software [93].
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2.7 Simulation Results

In this section the equivalence of the CRLS and GSC-RLS algorithms is investigated in two

applications. The first application is a beamforming application where the desired signal

is set to zero, i.e., d(k) = 0. The second application using the more general desired signal

with d(k) �= 0 is a system-identification application where the adaptive filter is constrained
to have linear phase.

2.7.1 Beamforming with Derivative Constraints

A uniform linear array with M = 12 antennas with element spacing equal to half wave-

length was used in a system with K = 5 users, where the signal of one user is of interest

and the other 4 are treated as interferers. The system is assumed to be narrowband and,

therefore, only one filter coefficient per antenna, N = 1, is necessary. The received discrete-

time signal can be written as

x(k) = SAu(k) + n(k)

where S = [s(θ1) s(θ2) . . . s(θK)] is the steering matrix containing the steering vectors of

the users given by [37] s(θi) = [e
j(1−m0)π sin θi e(2−m0)jπ sin θi . . . ej(M−m0)π sin θi ]T, θi being

the direction of arrival (DOA), A = diag[A1 A2 . . . AK ] contains the user amplitudes Ai,

u(k) = [u1(k) u2(k) . . . uK(k)]
T is a vector of the transmitted user information, and n(k)

is the sampled noise sequence. The parameter m0 specifies a reference antenna which is

used as phase reference, here set to m0 = 3. The direction of arrival (DOA) and the signal-

to-noise ratio (SNR) for the different signals can be found in Table 2.2. A second-order

derivative constraint matrix [37] was used giving a total of three constraints (see [37] for

further details) and the constraint matrix

C = [c0 c1 c2]

where ci = [(1 − m0)
i (2 − m0)

i · · · (M − m0)
i]T. We used a non-orthogonal blocking

matrix that was constructed through a sequence of sparse matrices as proposed in [92],
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Table 2.2: Signal Parameters

SIGNAL DOA θi SNR
desired 0o 15 dB
interferer 1 22o 20 dB
interferer 2 −15o 25 dB
interferer 3 −20o 25 dB
interferer 4 −50o 20 dB

which was also reviewed in Section 2.6, rendering an implementation of the multiplication

Bx(k) of low computational complexity.

The CRLS and the GSC-RLS algorithms used λ = 0.99. Figure 2.4 shows the evolution

of coefficient-error norm for the CRLS and the GSC-RLS algorithms. Figure 2.4 also plots

the results for the CLMS and the GSC-LMS algorithms. As can be seen from the figure,

the CLMS and the GSC-LMS algorithms only become identical when using the orthogonal

blocking matrix, whereas the CRLS and the GSC-RLS algorithms are identical for the

non-orthogonal blocking matrix. This fact is further illustrated in Figure 2.5, where the

norm of the difference between the CRLS and the GSC-RLS solutions is plotted.

2.7.2 Identification of Plant with Linear Phase

An experiment was carried out in a system-identification problem where the filter coeffi-

cients were constrained to preserve linear phase at every iteration. For this example we

made N = 11 and, in order to fulfill the linear phase requirement, we made

C =



I(N−1)/2

0T

−J(N−1)/2


 (2.48)

with J being a reversal matrix (an identity matrix with all rows in reversed order), and

f = [0 · · · 0]T (2.49)
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Figure 2.4: Coefficient-error vector as a function of the iteration k for a beamforming

application using derivative constraints.

Due to the symmetry of C and the fact that f is a null vector, more efficient structures

can be employed [36]. We used the non-orthogonal blocking matrix given by

B =



IN/2 0

0T 1

JN/2 0


 (2.50)

The input signal consists of zero-mean unity-variance colored noise with eigenvalue spread

around 1350 and the reference signal was obtained after filtering the input by a linear-phase

FIR filter and adding measurement noise with variance equal to 10−6.

The CRLS and the GSC-RLS algorithms used λ = 0.95. Figure 2.6 shows the evolution

of coefficient-error norm for the CRLS and the GSC-RLS algorithms. Similarly as in

the beamforming example, the curves for the CRLS and the GSC-RLS algorithms are

identical, and the CLMS and the GSC-LMS become identical only when the blocking
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Figure 2.5: Norm of the difference of the CRLS and the GSC-RLS coefficient vectors as a

function of the iteration k for a beamforming application using derivative constraints.

matrix is orthogonal. Figure 2.7, plots the norm of the difference between the CRLS and

the GSC-RLS solutions.

2.8 Conclusions

This section reviewed the area of constrained adaptive filters and presented theoretical

results linking transient behavior of the constrained RLS algorithm and the GSC structure

with the RLS algorithm. We showed that, contrary to the LMS algorithm, in the case of the

RLS algorithm transient behavior can always be ensured to be identical in the two forms

of implementation provided only that the blocking matrix and the constraint matrix span

orthogonal subspaces. This result facilitates algorithm tuning, because it establishes that

the constrained algorithm behaves exactly like its unconstrained counterpart in transient
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Figure 2.6: Coefficient-error vector as a function of the iteration k for a system-

identification application.

as well as in steady state. This confirms intuition, because both implementations solve

the same LS problem exactly. The result presented here may favor the utilization of

the unconstrained counterpart of the CRLS algorithm, because it facilitates the choice of

various versions of the RLS algorithm optimized with respect to computational complexity

and robustness.
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function of the iteration k for a system-identification application.

Appendix A2.1

In this Appendix it is shown that the CRLS algorithm [85] can be written on the form

given by Equation (2.27). Let us start by finding a recursive expression of Γ(k). We first

note that R−1(k) can be written as [12]

R−1(k) =
1

λ
[R−1(k − 1)−R−1(k)x(k)xT(k)R−1(k − 1)] (2.51)

Using (2.51) in (2.24) results

Γ(k) =
1

λ

[
R−1(k − 1)C−R−1(k)x(k)xT(k)R−1(k − 1)C]

=
1

λ

[
Γ(k − 1)− κ(k)xT(k)Γ(k − 1)] (2.52)

In order to obtain a recursive expression for Ψ−1(k), pre-multiply (2.52) by CT and
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apply the Matrix Inversion Lemma

Ψ−1(k) = λ
{
CTΓ(k − 1)−CTκ(k)xT(k)Γ(k − 1)}−1

= λ [A+BCD]−1

= λ
{
A−1 −A−1B

[
DA−1B+C−1

]−1
DA−1

}
= λ

[
Ψ−1(k − 1) + Ψ

−1(k − 1)CTκ(k)xT(k)Γ(k − 1)Ψ−1(k − 1)
1− xT(k)Γ(k − 1)Ψ−1(k − 1CTκ(k)

]
(2.53)

In order to simplify the notation, define +++(k) as

+++(k) =
Ψ−1(k − 1)CTκ(k)

1− xT(k)Γ(k − 1)Ψ−1(k − 1)CTκ(k)
(2.54)

which gives

Ψ−1(k) = λ
[
Ψ−1(k − 1) + +++(k)xT(k)Γ(k − 1)Ψ−1(k − 1)] (2.55)

From (2.54), we know that

+++(k) = +++(k)xT(k)Γ(k − 1)Ψ−1(k − 1)CTκ(k) +Ψ−1(k − 1)CTκ(k) (2.56)

Post-multiplying (2.53) byCTκ(k) and dividing by λ gives the same expression as in (2.56),

therefore

+++(k) =
1

λ
Ψ−1(k)CTκ(k) (2.57)

To show the formulation of the CRLS algorithm given by (2.27), substitute euc(k) by

euc(k) = d(k)−wT
I (k − 1)x(k),

and Ψ(k) and Γ(k) by their recursive expressions. Using the recursions given by Equa-

44



tions (2.20) and (2.22), the coefficient update for the CRLS algorithm is given by

w(k) = wuc(k) +wc(k)

= wuc(k − 1) + Γ(k)Ψ−1(k)[f −CTwuc(k − 1)] + euc(k)κ(k)

− Γ(k)Ψ−1(k)CTκ(k)euc(k)

= wuc(k − 1) + Γ(k − 1)Ψ−1(k − 1) [f −CTwuc(k − 1)]
− κ(k)xT(k)Γ(k − 1)Ψ−1(k − 1) [f −CTwuc(k − 1)]+ euc(k)κ(k)

+ Γ(k − 1)+++(k)xT(k)Γ(k − 1)Ψ−1(k − 1) [f −CTwuc(k − 1)]
− κ(k)xT(k)Γ(k − 1)+++(k)xT(k)Γ(k − 1)Ψ−1(k − 1)× [f −CTwuc(k − 1)]
− Γ(k)Ψ−1(k)CTκ(k)euc(k) (2.58)

In Equation (2.58) the first row simplifies to

wuc(k − 1) + Γ(k − 1)Ψ−1(k − 1) [f −CTwuc(k − 1)] = w(k − 1).

and the second row using eI(k) = d(k)− xT(k)wuc(k − 1), becomes

κ(k)
(
d(k)− xT(k){wuc(k − 1) + Γ(k − 1)Ψ−1(k − 1)× [f −CTwuc(k − 1)]})
= κ(k)[d(k)− xT(k)w(k − 1)] = κ(k)e(k).

As a consequence Equation (2.58) simplifies to

w(k) = w(k − 1) + κ(k)e(k) + Γ(k − 1)+++(k)xT(k)Γ(k − 1)Ψ−1(k − 1) [f −CTwuc(k − 1)]
− κ(k)xT(k)Γ(k − 1)+++(k)xT(k)Γ(k − 1)Ψ−1(k − 1) [f −CTwuc(k − 1)]
− Γ(k)Ψ−1(k)CTκ(k)︸ ︷︷ ︸

λ   (k)

[d(k)− xT(k)wuc(k − 1)]

= w(k − 1) + κ(k)e(k)

+ [Γ(k − 1)− κ(k)xT(k)Γ(k − 1)]︸ ︷︷ ︸
λΓ(k)

+++(k)xT(k)Γ(k − 1)Ψ−1(k − 1) [f −CTwuc(k − 1)]

− Γ(k)λ+++(k)[d(k)− xT(k)wuc(k − 1)]

= w(k − 1) + κ(k)e(k) + λΓ(k)+++(k)xT(k)Γ(k − 1)Ψ−1(k − 1) [f −CTwuc(k − 1)]
− λΓ(k)+++(k)[d(k)− xT(k)wuc(k − 1)]
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= w(k − 1) + κ(k)e(k)− λΓ(k)+++(k)

× (d(k)− xT(k) {wuc(k − 1) + Γ(k − 1)Ψ−1(k − 1) [f −CTwuc(k − 1)])︸ ︷︷ ︸
w(k−1)

}

= w(k − 1) + κ(k)e(k)− λΓ(k)+++(k)
[
d(k)−wT(k − 1)x(k)]

= w(k − 1) + e(k)κ(k)− λe(k)Γ(k)+++(k)

= w(k − 1) + e(k)R−1(k)x(k)− e(k)R−1(k)C[CTR−1(k)C]−1CTR−1(k)x(k) (2.59)
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Chapter 3

Householder Constrained Adaptation

Algorithms

This chapter introduces and analyzes an efficient and robust implementation of linearly-

constrained adaptive filters that utilize Householder transformation (HT). The method

allows direct application of any unconstrained adaptation algorithm as in a generalized

sidelobe canceler (GSC), but unlike the GSC the HT-based approach always renders ef-

ficient and robust implementations. A complete and detailed comparison with the GSC

model and a thorough discussion of the advantages of the HT-based approach are also

given. Simulations are run in a beamforming application where a linear array of 12 sensors

is used. It is verified that not only the HT approach yields efficient and robust implemen-

tation of constrained adaptive filters, but also the beampatterns achieved with this method

are much closer to the optimal solution than the beampatterns obtained with GSC models

of similar computational complexity.

3.1 Introduction

The linearly-constrained adaptation algorithms discussed in Chapter 2 have in common

that the direction of update is premultiplied with a rank-deficient projection matrix, which

renders them not optimal in the sense of computational complexity. Furthermore, these

algorithms have in common a correction factor to ensure the constraints at every iteration.
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If this correction factor is not applied, coefficient divergence may occur due to roundoff

errors in certain direction that cannot be suppressed [28]. The GSC model, also discussed

in Chapter 2, properly reduces the dimension of the coefficient update using a blocking ma-

trix. The structure of the blocking matrix has a direct effect on the overall computational

complexity through its multiplication to the input-signal vector at each iteration. Con-

struction of the blocking matrix using, e.g., singular-value decomposition (SVD), results in

a matrix with no special structure, which in the GSC model renders high computational

complexity per iteration. In these cases, the practical use of the GSC structure is ques-

tionable. The extra computations resulting from the product of the blocking matrix by the

input-signal vector may exceed those of the adaptation algorithm and filtering operation

by up to one order of magnitude. Other types of blocking matrices with sparse structures

may be of more practical use from the perspective of computational complexity. Many

times such solutions are application dependent and the resulting matrix is, in general, not

orthogonal; in these cases, adaptive implementations of the GSC and linearly-constrained

minimum-variance (LCMV) filters may bear no relation [28].

The main contributions of this chapter consider efficient implementations of LC adap-

tive filtering algorithms that overcome the problem of added computational complexity

that may occur in the GSC structure. By suitably transforming the input-signal vector

using successive Householder transformations, the algorithms may operate on a reduced-

dimension subspace and, therefore, does not require updating of all its coefficients. No

correction terms need to be applied and the solution satisfies the constraints exactly in

each iteration. In addition, as in the GSC structure, the proposed method may be used

with any unconstrained adaptive filtering algorithm. A geometrical interpretation is used

to illustrate better the use of the Householder transformation. A detailed explanation of

the matrices involved in the process is presented and pseudo-code routines are provided.

Even in cases where the GSC structure is equivalent to the Householder implementation

introduced here, the latter is more efficient.

The organization of the chapter is as follows. In Section 3.2, the new Householder-

transform constrained algorithms are presented as a lower-complexity solution for reducing
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the subspace in which adaptive-filter coefficients are updated. Relations to the GSC model

are made, resulting in a framework where any unconstrained adaptation algorithm can be

applied to linearly constrained problems using the proposed method. Section 3.3 contains

simulation results, followed by conclusions in Section 3.4.

3.2 Householder-Transform Constrained Algorithms

For a general constrained minimization problem, the multiplication of the blocking matrix

by the input-signal vector in a GSC structure may be computationally intensive and, for

many applications, not practical. In this section we propose an elegant solution to this

problem. The derivation of the first algorithm presented in this section starts from the

CLMS algorithm, Equation (2.9), and performs a rotation on vector Px(k) in order to

make sure that the coefficient vector is never perturbed in a direction not excited by

Px(k). This can be done if an orthogonal rotation matrix Q is used as a transformation

that will generate a modified coefficient vector w̄(k) that relates to w(k) according to

w̄(k) = Qw(k) (3.1)

We can visualize this operation in Figure 2.2 on page 28 if we imagine axis w1 and w2

rotated counterclockwise by an angle θ.

If we choose the matrix Q such that QQT = QTQ = I and

C̄(C̄TC̄)−1C̄T =


Ip×p 0

0 0


 (3.2)

then C̄ = QC satisfies f = C̄Tw̄(k+1) and the transformed projection matrix is such that

P̄ = QPQT

= I− C̄(C̄TC̄)−1C̄T

=


0p×p 0

0 I


 (3.3)

If w̄(0) is initialized as

w̄(0) = C̄(C̄TC̄)−1f = QF (3.4)
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then its first p elements, w̄U(0), need not be updated. The update equation of the proposed

algorithm, named the Householder-Transform Constrained LMS [66], is obtained by pre-

multiplying (2.9) by Q:

w̄(k + 1) = Qw(k + 1) = Q {P [w(k) + µe(k)x(k)] + F}

=
[
QPQT

]
[Qw(k)] + µe(k)

[
QPQT

]
[Qx(k)] +QF

=


0p×p 0

0 I


 w̄(k) + µe(k)


0p×p 0

0 I


 x̄(k) +


w̄U(0)

0




=


 w̄U(0)

w̄L(k + 1)


 =


w̄U(0)

w̄L(k)


+ µe(k)


 0

x̄L(k)


 (3.5)

where w̄L(k) and x̄L(k) denote the MN − p last elements of vectors w̄(k) and x̄(k), re-

spectively. Note that vector C̄(C̄TC̄)−1f has only p nonzero elements.

Although the solution w̄(k) is biased by a transformation Q, the output signal and,

consequently, the output error is not modified by the transformation. We conclude, there-

fore, that the proposed algorithm minimizes the same objective function as the CLMS

algorithm.

3.2.1 Choice of the Transformation Matrix Q

We maintain that matrix Q in (3.1) may be constructed with successive Householder

transformations [94] applied onto each of the p columns of matrix CL, where L is the

square-root factor of matrix (CTC)−1, i.e., LLT = (CTC)−1.

Theorem 1. If

Q = Qp · · ·Q2Q1 (3.6)

where

Qi =


Ii−1×i−1 0T

0 Q̄i


 (3.7)

and Q̄i is an (MN − i+1)× (MN − i+1) Householder transformation matrix on the form

Q̄i = I− 2v̄iv̄
T
i [94], then ( 3.2) is satisfied.
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Proof. After i− 1 transformations, matrix Qi−1 · · ·Q1CL may be partitioned as

Qi−1 · · ·Q1CL =

i−1︷ ︸︸ ︷ MN−i+1︷ ︸︸ ︷

D(i) ... E(i)

. . . . . . . . . . . .

0
... A(i)



}

i − 1}
MN − i + 1

(3.8)

The i − 1 Householder transformations make matrix D(i) upper triangular. Now let a
(i)
j

denote the jth column of the A(i) matrix. It can be shown by carrying out the Householder

transformation Q̄i on A
(i) that if the columns, viz {a(i)

j , j = 1, . . . , MN − i+ 1}, of A(i)

satisfy

‖a(i)
j ‖ = 1 (3.9)

(a
(i)
i )

Ta
(i)
j = δij (3.10)

then

Q̄iA
(i) =




±1 0 · · · 0
0 , · · · ,

...
...
. . .

...

0 , · · · ,




(3.11)

For i = 1, Q̄1 = Q1, A
(1) = CL. Matrix CL has orthonormal columns, because

(CL)TCL = LT(LLT)−1L = I. Therefore, (3.9) and (3.10) are directly satisfied. By the

fundamental theorem of inner-product invariance in Householder transforms [95], orthonor-

mality is maintained for Q1CL and, by induction, (3.9) and (3.10) are also satisfied for

any i > 1. As a consequence, D(i) is a diagonal matrix with ±1 entries and E(i) is a matrix

of zeros. This concludes the proof. �

Notice that the ±1 entries in matrix D(i) result from the robust implementation of the

Householder transformation given in [94].

From (3.5) we verify that the algorithm updates the coefficients in a subspace with

reduced dimension. The components of vector w(k) which lie in the subspace of the con-

straints need not be updated. Due to the equivalence of Householder reflections and Givens

rotations [96], a succession of Givens rotations could also be used. However, rotations are
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not as efficiently implemented as reflections and computational complexity might render

the resulting algorithm not practical.

3.2.2 The Normalized HCLMS Algorithm

A normalized version of the HCLMS algorithm, namely the NHCLMS algorithm [66], can

be derived and its update equation is

w̄(k + 1) =


 w̄U(0)

w̄L(k + 1)


 =


w̄U(0)

w̄L(k)


+ µ

e(k)

x̄T
L(k)x̄L(k)


 0

x̄L(k)


 (3.12)

Note that the Householder transformation allows normalization without the need of mul-

tiplication by a projection matrix, as it is required for the NCLMS in (2.12).

Figure 3.1 illustrates the coefficient update for the HCLMS and the NHCLMS algo-

rithms, where as in Chapter 2, H0 and H1 are the hyperplanes defined by the null a poste-

riori condition and the constraints, respectively. Note that in this figure a rotation by θ is

performed on the coordinate system, w̄ = [w̄1 w̄2]
T = Qw(k) = Q[w1 w2]

T. This angle is

chosen such that the rotated axis w̄2 becomes parallel to the constraint hyperplane and the

coordinate corresponding to w̄1 needs no further update. This is so because w̄1 becomes

orthogonal to H1. Table 3.1 shows an algorithmic description of the HCLMS algorithm.

3.2.3 Computational Complexity Issues

In this subsection we explain why and how the implementation via Householder transfor-

mation is better than the GSC and the constrained alternatives. Let us start with the

procedure used to compute the product Qx(k). In order to have an efficient Householder

implementation, the transformation of the input-signal vector in every iteration is carried

out through p reflections given by

x̄(k) = Qx(k) = Qp · · ·Q2Q1x(k) (3.13)

where

Qi =


Ii−1×i−1 0T

0 Q̄i


 (3.14)
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Figure 3.1: Coefficient-vector rotation.

1. w̄(0) = QF = QC(CTC)−1f .
2. w(k + 1) for the HCLMS algorithm.
3. w(k + 1) for the HNCLMS algorithm.

and matrix Q̄i = I− 2v̄iv̄
T
i is a (MN − i+1)× (MN − i+1) Householder transformation

matrix [94].

If we define the vector vT
i = [0

T
i−1 v̄

T
i ]

T, where the p × 1 vector 0i−1 introduces i − 1
zeros before v̄i, we can construct the matrix V = [v1 v2 · · · vp], and the factored product

in (3.13) could be implemented with the procedure described in Table 3.2. Furthermore, the

procedure for the calculation of the Householder vectors and the resulting V is described in

Table 3.3, where A is the matrix to be triangularized and in the particular case of interest,

A = CL with L being the square-root factor of the matrix
(
CTC

)−1
as proposed earlier

in this section.

From Table 3.2 we see that the computation of x̄(k) = Qxk using the product represen-

tation in (3.13) only involves 2MNp− p(p− 1) multiplications and 2MNp− p2 additions.

Table 3.4 shows the computational complexity for the CLMS, NCLMS, HCLMS, NHCLMS
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Table 3.1: The HCLMS Algorithm

Available at time instant k:
x(k), C, f , Q, and µ (step size)

Initialize:
w̄(0) = QC(CTC)−1f ;

for k = 0, 1, 2, . . .
{
x̄(k) = Qx(k);
x̄L(k) =MN − p last elements of x̄(k);

w̄(k) =

[
w̄U(0)
w̄L(k)

]
;

e(k) = d(k)− w̄T(k)x̄(k);
w̄L(k + 1) = w̄L(k) + µe(k)x̄L(k);

}

Table 3.2: Computation of Qx(k)

x̄k = x(k);
for i = 1 : p
{
x̄k(i :MN) = x̄k(i :MN)

−2V(i :MN, i)
[
VT(i :MN, i)x̄k(i :MN)

]
;

}
x̄(k) = x̄k;

algorithms and the GSC implementation of the CLMS and NCLMS algorithms. The com-

putational complexity for the GSC implementation is given for two choices of the blocking

matrix B. The first implementation, uses a B matrix obtained by SVD leading to an

inefficient implementation of the multiplication Bx(k). The second implementation ap-

plicable in certain problems, uses a B matrix constructed through a sequence of sparse

matrices as presented in [92], rendering an implementation of the multiplication Bx(k) of

low computational complexity.
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Table 3.3: Construction of Matrix V Containing the Householder Vectors

Available at start:
A is an MN × p matrix to be triangularized

Initialize:
V = 0MN×p;

for i = 1 : p
{
x = A(i :MN, i);
e1 = [1 01×(MN−i)]

T

v = sign (x(1)) ‖x‖e1 + x;
v = v/‖v‖;
A(i :MN, i : p) = A(i :MN, i : p)− 2v (vTA(i :MN, i : p)

)
;

V(i :MN, i) = v;
}

3.2.4 Householder-Transform Constrained Algorithms and the

GSC

Figure 3.2 shows, step-by-step, the relation between a Householder-constrained (HC) al-

gorithm and the GSC structure. If Q is factored into an upper part and lower part (see

Figure 3.2) it is easy to show that QL, spans the null space of C and may be regarded as

a valid blocking matrix (see Appendix A3.1). Furthermore, QT
Uw̄U(0) = C(C

TC)−1f = F

(see Appendix A3.1), which is the upper part of the GSC structure. However, we stress

that for most practical values of p the implementation of QL and QU separately renders

much higher computational complexity because it does not take advantage of the effi-

ciency of the Householder transformation. The transformed input-signal vector can be

efficiently obtained via p Householder transformations which require only p inner prod-

ucts. We maintain that our approach can be regarded as a GSC structure and, therefore,

any unconstrained adaptive algorithm can be used to update w̄L(k). As an example of

this assertion, Table 3.5 shows the equations of the Householder-Transform Constrained

Quasi-Newton (HCQN) algorithm obtained directly from [87] and Figure 3.2 as previously
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Table 3.4: Computational Complexity

ALGORITHM ADD. MULT. DIV.
CLMS (2p + 2)MN − (p + 1) (2p + 2)MN + 1 0
NCLMS (3p + 3)MN − (p + 2) (3p + 3)MN + 1 1
GSC-LMS (MN)2 + (2− p)MN − (1 + p) (MN)2 + (3− p)MN − (2p − 1) 0
GSC-NLMS (MN)2 + (3− p)MN − 2(1 + p) (MN)2 + (4− p)MN − (3p − 1) 1
GSC-LMS with B of [92] (3 + p)MN − p(p+5)

2 − 1 (3 + 2p)MN − p(p + 3) + 1 0
GSC-NLMS with B of [92] (4 + p)MN − p(p+7)

2 − 2 (4 + 2p)MN − p(p + 4) + 1 1
HCLMS (2p + 2)MN − (p2 + p + 1) (2p + 2)MN − (p2 − 1) 0
NHCLMS (2p + 3)MN − (p2 + 2p + 2) (2p + 3)MN − (p2 + p − 1) 1

reported in [97]. Notice that the algorithm in Table 3.5 does not require the inversion and

construction of the p×p matrix encountered in the conventional CQN algorithm presented

in [87], resulting in a much simpler implementation of the algorithm.

3.3 Simulation Results

In this section the performances of the proposed algorithms is evaluated through simula-

tions and compared to their GSC counterparts.

The same setup is used as in Section 2.7, where a uniform linear array with M = 12

antennas with element spacing equal to half wave-length was used in a system with K = 5

users, where the signal of one user is of interest and the other 4 are treated as interferers.

The direction of arrival (DOA) and the signal-to-noise ratio (SNR) for the different signals

is reproduced in Table 3.6. A second-order derivative constraint matrix [37] was used giving

a total of three constraints. For the GSC implementation the nonunitary blocking matrix

in [92] was used (see also Equation (2.46) in Chapter 2).

Figure 3.3 shows the learning curves of the different algorithms. The results were

obtained by averaging 2000 realizations of the experiment. The step sizes used in the

algorithms were µ = 5 · 10−4 for the CLMS and the HCLMS algorithms, µ = 10−5 for

the GSC-LMS algorithm, µn = 0.05 for the NLMS algorithms, and α = 0.05 for the QN

algorithms.

As can be seen from the figure, the Householder implementations have a better perfor-
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Figure 3.2: The HC adaptive filter under the GSC model.

1. Applying the transformation as in (3.1);
2. Splitting the transformed vector as in (3.5);
3. Partitioning Q in order to reach the GSC equivalent;
4. The HC algorithm viewed from a GSC perspective.

mance than the corresponding GSC implementations using the sparse blocking matrix.

Figures 3.4–3.6 show the beampatterns resulting from the different algorithms. The

beampatterns obtained with the Householder algorithms are very close to the optimal

solution. On the other hand, the GSC-based implementations failed to suppress completely

all interferers at the same time, which suggests that the adaptation algorithms did not

achieve a steady-state even after 7000 iterations. The output gains in the directions of the

interferers are shown in Table 3.7.

3.4 Conclusions

In this chapter we presented an efficient implementation of linearly-constrained minimum-

variance adaptive filters based on the Householder transformation of the input signal.
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Table 3.5: The HCQN Algorithm

Available at time instant k:
x(k), C, f , and Q

Initialize:
α, R̄−1

L (0), and w̄(0) = QC(C
TC)−1f

for k = 1, 2, . . .
{
x̄(k) = Qx(k);
x̄U(k) = p first elements of x̄(k);
x̄L(k) =MN − p last elements of x̄(k);

w̄(k − 1) =
[

w̄U(0)
−w̄L(k − 1)

]
;

ē(k) = w̄T
U(0)x̄U(k)− w̄T

L(k − 1)x̄L(k);
% ē(k) is equivalent to the a priori output
% or y(k) = w̄T(k − 1)x̄(k)
t(k) = R̄−1

L (k − 1)x̄L(k);
τ = x̄T

L(k)t(k);
µ(k) = 1

2τ(k)
;

R̄−1
L (k) = R̄

−1
L (k − 1) + µ(k)−1

τ(k)
t(k)tT(k);

w̄L(k) = w̄L(k − 1) + α ē(k)
τ(k)
t(k);

}

With this type of transformation, we derived several adaptation algorithms for LCMV

applications, such as the Householder-transform constrained least mean square algorithm

and its normalized version, and maintained that extension to other adaptation algorithms

should be trivial.

Via Householder transformation we were able to reduce the dimension of the subspace

in which the adaptive-filter coefficients are updated, therefore obtaining a transformed

input signal which is persistently exciting. Viewed under the perspective of the generalized

sidelobe canceling model, we showed that the transformation matrix can be factored into

a matrix satisfying the constraints and a blocking matrix.

In terms of computational complexity our method is comparable to the most efficient

implementations of the blocking matrix found in the literature, with the advantage that

the Householder transformation, and consequently the blocking matrix implicitly used in

58



Table 3.6: Signal Parameters

SIGNAL DOA θi SNR
desired 0o 15 dB
interferer 1 22o 20 dB
interferer 2 −15o 25 dB
interferer 3 −20o 25 dB
interferer 4 −50o 20 dB

Table 3.7: Output Gains in the Directions of the Interferers.

ALGORITHM θ = 22o θ = −15o θ = −20o θ = −50o

GSC-LMS -26.20 dB -13.29 dB -11.76 dB -22.99 dB
GSC-NLMS -31.74 dB -21.39 dB -18.73 dB -22.67 dB
GSC-QN -26.97 dB -27.29 dB -22.79 dB -24.88 dB
HCLMS -35.40 dB -23.38 dB -17.94 dB -32.85 dB
NHCLMS -31.50 dB -33.85 dB -24.82 dB -27.83 dB
HCQN -32.92 dB -30.76 dB -28.66 dB -26.75 dB

the transformation, are unitary. For this reason, not only the steady-state mean squared

output error is the same as that of the conventional nontransformed LCMV filter, but

the equivalence is also verified during the transient. Having a unitary transformation also

imparts robustness to the method, especially when applied to nonconventional Wiener-

filter structures (e.g., multistage representation). Some of these properties were illustrated

in one example of beamforming.

Appendix A3.1

This Appendix contains the details related to the discussion on the Householder Transform

algorithms under a GSC perspective. Let Q be partitioned as

Q =


QU

......

QL




where QU has dimension p × MN and QL has dimension (MN − p) × MN . It will be

shown below that by using this partition of Q, a GSC structure can be derived. It turns

out that QU can be related to the upper part in the GSC, which consist of the filter F, and,
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Figure 3.3: Learning curves of the algorithms.

that QL can be regarded as a valid blocking matrix. First, we show that Q
T
Uw̄L(0) = F.

Pre-multiply Equation (3.2) with QT

QTC̄(C̄TC̄)−1C̄T = C(CTC)−1C̄T

= QT


Ip×p 0

0 0


 = [QT

U 0
]

(3.15)

where the result from Equation (3.2) was used together with the equality C̄TC̄ = CTQTQC =

CTC. Post-multiplying (3.15) with w̄(k) gives

C(CTC)−1C̄Tw̄(k) = C(CTC)−1CTw(k) = F

=
[
QT

U 0
]
w̄(k) =

[
QT

U 0
] w̄U(0)

......

w̄L(k)




= QT
Uw̄U(0) (3.16)
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Figure 3.4: Beampattern for the HCLMS and GSC-LMS algorithms.

which is the the upper part in the GSC structure. In order to show that QL constitutes a

valid blocking matrix, note that

QC =


QUC

......

QLC


 = C̄(C̄TC̄)−1C̄TC̄

=


Ip×p 0

0 0


QC =


QUC

......

0


 (3.17)

and, therefore, QLC = 0, and together with the fact that QL has full rank we can conclude

that it fulfills the requirement for a valid blocking matrix.
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Figure 3.5: Beampattern for the HNCLMS and the GSC-NLMS algorithms.
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Figure 3.6: Beampattern for the HCQN and the GSC-QN algorithms.
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Chapter 4

Set-Membership Binormalized Data

Reusing LMS Algorithms

This chapter presents and analyzes novel data selective normalized adaptive filtering al-

gorithms with two data reuses. The algorithms, the set-membership binormalized LMS

(SM-BNDRLMS) algorithms, are derived using the concept of set-membership filtering

(SMF). These algorithms can be regarded as generalizations of the recently proposed set-

membership NLMS (SM-NLMS) algorithm. They include two constraint sets in order to

construct a space of feasible solutions for the coefficient updates. The algorithms include

data-dependent step sizes that provide fast convergence and low excess mean-squared er-

ror (MSE). Convergence analyses in the mean squared sense are presented and closed-form

expressions are given for both white and colored input signals. A study of the transient of

the SM-NLMS algorithm is performed, which suggests a slowdown in convergence speed

for colored input signals. Simulation results show the good performance of the new al-

gorithms in terms of convergence speed, final misadjustment, and reduced computational

complexity.

4.1 Introduction

The least mean square (LMS) algorithm has gained popularity due to its robustness and

low computational complexity. The main drawback of the LMS algorithm is that the con-
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vergence speed depends strongly on the eigenvalue spread of the input-signal correlation

matrix [1]. To overcome this problem, a more complex recursive least squares (RLS) type

of algorithm can be used. However, the faster convergence of the RLS algorithm does not

imply a better tracking capability in a time-varying environment [1]. An alternative to

speed up the convergence at the expense of low additional complexity is to use the binor-

malized data-reusing LMS (BNDRLMS) algorithm [51, 52]. The BNDRLMS algorithm,

which uses consecutive data pairs in each update, has shown fast convergence for correlated

input signals. However, the fast convergence comes at the expense of higher misadjust-

ment, because the algorithm utilizes the data even if it does not imply innovation. In order

to combat the conflicting requirements of fast convergence and low misadjustment, the ob-

jective function of the adaptive algorithm needs to be changed. Set-membership filtering

(SMF) [68, 69, 70, 98, 99] specifies a bound on the magnitude of the estimation error. The

SMF uses the framework of set-membership identification (SMI) [100, 101, 102, 103] to

include a general filtering problem. Consequently, many of the existing optimal bounding

ellipsoid (OBE) algorithms [72, 100, 104, 105, 106] can be applied to the SMF framework.

Most, if not all, of the SMF algorithms feature reduced computational complexity

primarily due to (sparse) data-selective updates. Implementation of those algorithms es-

sentially involves two steps: (1) information evaluation (innovation check); and (2) update

of parameter estimate. If the update does not occur frequently and the information eval-

uation does not involve much computational complexity, the overall complexity is usually

much less than that of their RLS (as well as LMS) counterparts. It was shown in [68]

that the class of adaptive solutions, called set-membership adaptive recursive techniques

(SMART) include a particularly attractive OBE algorithm, referred to as the Quasi-OBE

algorithm or the bounding ellipsoidal adaptive constrained least-squares (BEACON) al-

gorithm [70, 72], with a complexity of O(N) for the innovation check. Also in [68] an

algorithm with recursions similar to those of the NLMS algorithm with an adaptive step

size was derived. The algorithm named set-membership NLMS (SM-NLMS) algorithm, fur-

ther studied in [69], was shown to achieve both fast convergence and low misadjustment.

Applications of set-membership filtering include adaptive equalization where it allows the
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sharing of hardware resources in multichannel communications systems [70], adaptive mul-

tiuser detection in CDMA systems [71, 107], and in filtering with deterministic constraints

on the output-error sequence [108].

The SM-NLMS algorithm only uses the current input signal in its update. We show

that the convergence speed of the SM-NLMS algorithm depends on the eigenvalue spread

of the input signal. In order to overcome this problem we propose two versions of an

algorithm that uses data pairs from two successive time instants in order to construct a set

of feasible solutions for the update. The new algorithms are also data-selective algorithms

leading to a low average computational complexity per update. In addition, for correlated

input signals, they retain the fast convergence of the BNDRLMS algorithms related to the

smart reuse of input-desired data pairs. The low misadjustment is obtained due to the

data-selective updating utilized by the new algorithms. The idea of data reuse was also

exploited in the context of OBE algorithms in [106].

The organization of the chapter is as follows. Section 4.2 reviews the concept of set-

membership filtering, and the SM-NLMS algorithm of [69]. In Section 4.2 we also study

the convergence speed of the SM-NLMS algorithm. The new algorithms are derived in

Section 4.3. Section 4.4 contains analysis of the algorithms in the mean-squared sense,

followed by simulations in Section 4.5. Section 4.6 contains the concluding remarks.

4.2 Set-Membership Filtering

This section reviews the basic concepts of set-membership filtering (SMF). For a more

detailed introduction to the concept of SMF, the reader is referred to [70]. Set-membership

filtering (SMF) is a framework applicable to filtering problems. A specification on the filter

parameters is achieved by constraining the output estimation error to be smaller than a

deterministic threshold. As a result of the bounded error constraint there will exist a set

of filters rather than a single estimate. The SMF paradigm is inspired by set-membership

identification (SMI) applicable in system-identification when a bounded-noise assumption

can be made. We will not discuss SMI in this thesis and, for an extensive treatment, we
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refer to [101, 102, 105]. SMF, with its bounded-error specification, finds several applications

in signal processing for communications where a bounded noise assumption cannot be made

and where the assumption of the existence of “true parameters” is unnatural. Examples

of such applications are equalization [70, 107, 109], adaptive multiuser detection [71] and

beamforming [110].

In SMF, the filter w is designed to achieve a specified bound γ on the magnitude of the

output error. This bound is a design parameter and can vary depending on the application.

For example, it was shown in [70] that perfect equalization is obtained if γ = dmin/2 where

dmin is the minimum distance between the signal constellations.

Assuming a sequence of input vectors {x(k)}∞k=1 and a desired signal sequence {d(k)}∞k=1,

we can write the sequence of estimation errors {e(k)}∞k=1 as,

e(k) = d(k)−wTx(k) (4.1)

where x(k) and w ∈ R
N with d(k) and e(k) ∈ R. For a properly chosen bound γ on the

estimation error, there are infinitely many valid estimates of w.

Let S denote the set of all possible input-desired data pairs (x, d) of interest. Let
Θ denote the set of all possible vectors w that result in an output error bounded by γ

whenever (x, d) ∈ S. The set Θ referred to as the feasibility set is given by

Θ =
⋂

(x,d)∈S
{w ∈ R

N : |d−wTx| ≤ γ} (4.2)

Assume that the adaptive filter is trained with k input-desired data pairs {x(i), d(i)}k
i=1.

Let H(k) denote the set containing all vectors w for which the associated output error at
time instant k is upper bounded in magnitude by γ. In other words,

H(k) = {w ∈ R
N : |d(k)−wTx(k)| ≤ γ} (4.3)

The set H(k) is referred to as the constraint set and its boundaries are hyperplanes. Finally

define the exact membership set ψk to be the intersection of the constraint sets over the

time instants i = 1, . . . , k, i.e.,

ψ(k) =
k⋂

i=1

H(i) (4.4)
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It can be seen that the feasibility set Θ is a subset of the exact membership set ψk at

any given time instant. The feasibility set is also the limiting set of the exact membership

set, i.e., the two sets will be equal if the training signal traverses all signal pairs belonging

to S.
The idea of SMART is to adaptively find an estimate that belongs to the feasibility

set or to one of its members. Since ψ(k) in (4.4) is an N dimensional polytope, it is not

easily computed. One approach is to apply one of the many optimal bounding ellipsoid

(OBE) algorithms, which tries to approximate the exact membership set ψ(k) by tightly

outer bound it with ellipsoids. Another adaptive approach is to compute a point estimate

through projections using, for example, the information provided by the constraint set

H(k) like in the set-membership NLMS (SM-NLMS) algorithm considered in the following
subsection. It was also shown in [69] that the SM-NLMS algorithm can be associated with

an optimal bounding spheroid (OBS).

4.2.1 Set-Membership Normalized LMS Algorithm

The set-membership NLMS (SM-NLMS) algorithm derived in [69] is similar to the con-

ventional NLMS algorithm in form. However, the philosophy behind the SM-NLMS al-

gorithm derivation differs from that of the NLMS algorithm. The basic idea behind the

algorithm is that if the previous estimate w(k) lies outside the constraint set H(k), i.e.,
|d(k) − wT(k)x(k)| > γ, the new estimate w(k + 1) will lie on the closest boundary of

H(k) at a minimum distance, i.e., the SM-NLMS minimizes ‖w(k+1)−w(k)‖2 subject to

the constraint that w(k + 1) ∈ H(k). This is obtained by an orthogonal projection of the
previous estimate onto the closest boundary of H(k). A graphical visualization of the up-
dating procedure of the SM-NLMS can be found in Figure 4.1. Straightforward calculation

leads to the following recursions for w(k)

w(k + 1) = w(k) + α(k)
e(k)x(k)

‖x(k)‖2
(4.5)

with

α(k) =


1−

γ
|e(k)| , if |e(k)| > γ

0, otherwise
(4.6)
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H(k)

w(k)

w(k + 1)
d(k)− wTx(k) = +γ

d(k)− wTx(k) = −γ

Figure 4.1: The SM-NLMS algorithm.

where α(k) denotes the time-dependent step size. The update equations (4.5)–(4.6) resem-

ble those of the conventional NLMS algorithm except for the time-varying step size α(k).

Note that, since the conventional NLMS algorithm minimizes ‖w(k + 1)−w(k)‖2 subject

to the constraint that wT(k + 1)x(k) = d(k), it is a particular case of the above algorithm

by choosing the bound γ = 0. Furthermore, using a step size α(k) = 1 in the SM-NLMS

whenever w(k) �∈ H(k), would result in a valid update because the hyperplane with zero
a posteriori error lies in H(k). However, the resulting algorithm does not minimize the
Euclidean distance of the coefficient-vector update.

4.2.2 SM-NLMS Algorithm – Convergence Issues

The SM-NLMS algorithm reviewed in the previous section has been proven to have the

following important features [69]:

• the magnitude of the parameter error w(k + 1) −w∗, where w∗ is any point in the

feasibility set, is monotonically nonincreasing;

• the magnitude of the difference of the parameter estimates between consecutive iter-
ations w(k + 1)−w(k) converges to zero, and;

• the step size converges to zero, and the magnitude of the prediction error is asymp-
totically smaller than γ.
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The mentioned convergence features are indeed important but it would be of interest to get

an idea about how the convergence speed is affected by the statistics of the input signal.

Simulations indicate that the convergence speed of the SM-NLMS algorithm depends on

the eigenvalue spread of the input-signal correlation matrix. Due to the similarity in form

to the conventional NLMS algorithm it does not come as a surprise. However, no such

study has yet been performed, and it is the objective of this section to make a quantitative

study of the convergence speed of the SM-NLMS algorithm for the case of a large number

of filter coefficients.

A number of assumptions are made to simplify our study: (1) independence assump-

tion [1]; (2) a large number of coefficients in the adaptive filter, and; (3) the SM-NLMS al-

gorithm performs an update at time instant k with the probability Pe(k) = Pr{|e(k)| > γ}.

The coefficient error at time instant k+1 defined as ∆w(k+1) = w(k)−wopt, is given

by

∆w(k + 1) =

[
I− α(k)

x(k)xT(k)

‖x(k)‖2

]
∆w(k) + α(k)

n(k)x(k)

‖x(k)‖2
(4.7)

Invoking the independence assumption and using some results of Section 4.4 we get

E [∆w(k + 1)] = E

[
I− Pe(k)

x(k)xT(k)

‖x(k)‖2

]
E [∆w(k)] (4.8)

If N is assumed large and E[x(k)] = 0, we have ‖x(k)‖2 ≈ tr{R}, which leads to

E [∆w(k + 1)] =

[
I− E{Pe(k)} R

tr{R}
]
E [∆w(k)] (4.9)

Using the spectral decomposition of R as R = QΛQT [1], where Q is a unitary matrix

whose columns are equal to the eigenvectors of R and Λ is a diagonal matrix with the

corresponding eigenvalues, i.e., Λ = diag[λ1 . . . λN ]. We can now define the rotated vector
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∆w̄(k + 1) = QT∆w(k + 1),

E [∆w̄(k + 1)] =

[
QT − E{Pe(k)}Q

TQΛQT

tr{R}
]
E [∆w(k)]

=

[
I− E{Pe(k)} Λ

tr{R}
]
E [∆w̄(k)]

=
k∏

i=0

[
I− E{Pe(i)} Λ

tr{R}
]
E [∆w̄(0)]

=
k∏

i=0




1− E{Pe(i)}λ1∑N
j=1 λj

0 · · · 0

0 1− E{Pe(i)}λ2∑N
j=1 λj

0
...

...
...

. . .
...

0 0 · · · 1− E{Pe(i)}λN∑N
j=1 λj



E [∆w̄(0)]

(4.10)

For E{Pe(k)} �= 0 the coefficient-error will decrease, and the slowest mode will determine
the speed. During the initial transient we have E{Pe(k)} �= 0 and we can, therefore, con-
clude that during the initial transient, the convergence speed of the SM-NLMS algorithm

will depend on the eigenvalue spread of the input signal.

To improve the convergence speed at a small additional computational complexity per

update, we will in next section study set-membership adaptation algorithms reusing two

input-signal data-pairs.

4.3 Set-Membership Binormalized Data-Reusing LMS

Algorithms

The SM-NLMS algorithm in the previous subsection only considered the constraint set

H(k) in its update. The SM-NLMS algorithm has a low computational complexity per
update but from previous section we could see that its convergence speed follows the

trend of the normalized LMS algorithm which depends on the eigenvalue spread of the

input-signal correlation matrix. The exact membership set ψ(k) defined in (4.4) suggests

the use of more than one constraint set. In this subsection, two algorithms are derived

requiring that the solution belongs to the constraint sets at time instants k and k− 1, i.e.,
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w(k + 1) ∈ H(k) ∩ H(k − 1). The recursions of the algorithms are similar to those of the
conventional BNDRLMS algorithm [51]. The set-membership binormalized data-reusing

LMS (SM-BNDRLMS) algorithms can be seen as extensions of the SM-NLMS algorithm

that use two consecutive constraint sets for each update. The first algorithm presented in

Section 4.3.1 is a two-step approach minimizing the Euclidean distance between the old

filter coefficients and the new update subject to the constraints that the new update lies in

both constraint sets H(k) and H(k − 1). The second algorithm presented in Section 4.3.2
reduces the computational complexity per update as compared to the first algorithm by

choosing a different update strategy.

4.3.1 Algorithm I

The first set-membership binormalized data-reusing LMS algorithm (SM-BNDRLMS-I)

performs an initial normalized step according to the SM-NLMS algorithm. If the solution

to the first step belongs to both constraint sets H(k) and H(k − 1) no further update is
required. If the initial step moves the solution out of H(k− 1), a second step is taken such
that the solution is at the intersection of H(k) and H(k − 1) at a minimum distance from
w(k). Figure 2 depicts the update procedure. The SM-BNDRLMS-I algorithm minimizes

‖w(k + 1)−w(k)‖2 subject to w(k + 1) ∈ H(k) ∩H(k − 1).
The solution can be obtained by first performing an orthogonal projection of w(k) onto

the nearest boundary of H(k) just like in the SM-NLMS algorithm

w′(k) = w(k) + α(k)
e(k)x(k)

‖x(k)‖2
(4.11)

where α(k) is defined in (4.6) and e(k) is defined in (4.1) If w′(k) ∈ H(k − 1), i.e.,
|d(k − 1) − w′T(k)x(k − 1)| ≤ γ, then w(k + 1) = w′(k). Otherwise a second step is

taken such that the solution lies at the intersection of H(k) and H(k − 1) at a minimum
distance from the previous coefficient vector. The second step in the algorithm will be in

the direction of x⊥(k), which is orthogonal to the first step, i.e.,

w(k + 1) = w′(k) + β(k)
ε(k − 1)x⊥(k)

‖x⊥(k)‖2
(4.12)
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H(k) H(k)

H(k − 1) H(k − 1)

w(k)

w(k)

w′(k)w(k + 1) w(k + 1)

(a) (b)

Figure 4.2: The SM-BNDRLMS-I algorithm: (a) The orthogonal projection onto the near-

est boundary of H(k) lies within H(k − 1), i.e., w′(k) ∈ H(k − 1), no further update. (b)

The orthogonal projection onto the nearest boundary of H(k), w′(k), lies outside H(k− 1),
final solution at the nearest intersection of H(k) and H(k − 1).

where

x⊥(k) =
(
I− x(k)x

T(k)

‖x(k)‖2

)
x(k − 1)

ε(k − 1) = d(k − 1)−w′T(k)x(k − 1)

β(k) = 1− γ

|ε(k − 1)| (4.13)

In summary, the recursive algorithm for w(k) is given by

w′(k) = w(k) + α(k)
e(k)x(k)

‖x(k)‖2

w(k + 1) = w′(k) + λ1x(k) + λ2x(k − 1) (4.14)
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where

e(k) = d(k)−wT(k)x(k)

ε(k − 1) = d(k − 1)−w′T(k)x(k − 1)

λ1 = − β(k)ε(k − 1)xT(k − 1)x(k)
‖x(k)‖2‖x(k − 1)‖2 − [xT(k − 1)x(k)]2

λ2 =
β(k)ε(k − 1)‖x(k)‖2

‖x(k)‖2‖x(k − 1)‖2 − [xT(k − 1)x(k)]2

α(k) =


1−

γ
|e(k)| , if |e(k)| > γ

0, otherwise

β(k) =


1−

γ
|ε(k−1)| , if |e(k)| > γ and |ε(k − 1)| > γ

0 otherwise
(4.15)

Remark. If the constraint sets H(k) and H(k − 1) are parallel, the denominator term of

the λis in ( 4.15) will be zero. In this particular case the second step of Equation ( 4.14) is

not performed to avoid division with zero.

It is easy to verify that if the bound of the estimation error is chosen to be zero, i.e.,

γ = 0, the update equations will be those of the conventional BNDRLMS algorithm with

unity a step size [51]. Table 4.1 shows the recursions of the SM-BNDRLMS-I algorithm.

Lemma 2. The magnitude of the parameter error ‖w∗−w(k+1)‖, where w∗ is any point

in the feasibility set, and w(k + 1) is given by ( 4.14), is a monotonically nonincreasing

sequence.

Proof. For the case where the SM-BNDRLMS-I only uses the first step, its recursions

become equal to those of the SM-NLMS algorithm which has been shown in [69] to have

‖w∗−w(k+1)‖ ≤ ‖w∗−w(k)‖. For the case when both steps are taken (see Figure 4.2b),
introduce the hyperplanes wT

∗ x(k) = d∗ and wT
∗ x(k − 1) = d∗. Let w0 and w1 denote,

respectively, the intersections of the extensions ofw(k) andw(k+1) in the directions of x(k)

with the hyperplane defined by [w∗ −w]Tx(k), see Figure 4.3 for a graphical illustration.
Using [w∗−w0] ⊥ [w0−w(k)], [w∗−w1] ⊥ [w1−w(k+1)], and [w0−w(k)] ‖ [w1−w(k+1)]
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H(k)

H(k − 1)

w0w1w∗

w(k)

w(k + 1)

Figure 4.3: Distance evolution.

we get

‖w∗ −w(k)‖2 = ‖w0 −w(k)‖2 + ‖w∗ −w0‖2

≥ ‖w1 −w′(k)‖2 + ‖w∗ −w0‖2

since w(k) �∈ H(k − 1), and

‖w∗ −w(k + 1)‖2 = ‖w1 −w(k + 1)‖2 + ‖w∗ −w1‖2

= ‖w1 −w′(k)‖2 + ‖w∗ −w1‖2.

It now only remains to show that ‖w∗ −w1‖2 ≤ ‖w∗ −w0‖2. We have

‖w∗ −w0‖2 =
[d∗ −wT(k)x(k − 1)]2

‖x⊥(k)‖2
=

e2
1(k − 1)
‖x⊥(k)‖2

and

‖w∗ −w1‖2 =
[d∗ −wT(k + 1)x(k − 1)]2

‖x⊥(k)‖2
=

e2
2(k − 1)
‖x⊥(k)‖2

where e2
1(k − 1) ≥ e2

2(k − 1) since w(k + 1) ∈ H(k − 1).
Consequently we have ‖w∗ −w(k + 1)‖2 ≤ ‖w∗ −w(k)‖2. �
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Table 4.1: The Set-Membership Binormalized LMS Algorithm I

SM-BNDRLMS-I Algorithm
for each k
{
e(k) = d(k)− xT(k)w(k)
if |e(k)| > γ
{
α(k) = 1− γ/|e(k)|
a = xT(k)x(k)
w′(k) = w(k) + α(k)e(k)x(k)/a
ε(k − 1) = d(k − 1)− xT(k − 1)w′(k)
if |ε(k − 1)| > γ
{

b = xT(k − 1)x(k − 1)
c = xT(k)x(k − 1)
β(k) = 1− γ/|ε(k − 1)|
den = ab− c2

λ1 = −ε(k − 1)c/den
λ2 = ε(k − 1)a/den
w(k + 1) = w′(k) + β(k) [λ1x(k) + λ2x(k − 1)]

}
}
else
{
w(k + 1) = w(k)

}
}

4.3.2 Algorithm II

The SM-BNDRLMS-I algorithm in the previous subsection requires the intermediate check,

that is if w′(k) ∈ H(k), to determine if a second step is needed. This check will add extra
computation. The algorithm proposed below, the SM-BNDRLMS-II, does not require this

additional check to assure that w(k+1) ∈ H(k)∩H(k−1). Let Si(k) (i = 1, 2) denote the

hyperplanes which contain all vectors w such that d(k − i+ 1)−wTx(k − i+ 1) = gi(k),

where gi(k) are extra variables chosen such that the bound constraints are valid. That is,

if gi(k) are chosen such that |gi(k)| ≤ γ, then Si(k) ∈ H(k − i+ 1).
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H(k)

H(k − 1)

w(k)
d(k − 1)− wTx(k − 1) = g2(k)

d(k)− wTx(k) = g1(k)w(k + 1)

Figure 4.4: General algorithm update.

Consider the following optimization criterion whenever w(k) �∈ H(k) ∩H(k − 1)

w(k + 1) = argmin
w

‖w −w(k)‖2 subject to:

d(k)− xT(k)w = g1(k)

d(k − 1)− xT(k − 1)w = g2(k)

(4.16)

The pair {g1(k), g2(k)} specifies the point in H(k) ∩ H(k − 1) where the final update will
lie, see Figure 4.4. In order to evaluate if an update according to (4.16) is required, we

need to first check if w(k) ∈ H(k) ∩ H(k − 1). Due to the concept of data reuse together
with the constraint |gi(k)| ≤ γ, this check reduces to w(k) ∈ H(k). Below we first solve
for the general update, and thereafter consider a specific choice of the pair {g1(k), g2(k)}
leading to a simplified form.

To solve the optimization problem in (4.16), we can apply the method of Lagrange

multipliers leading to the following objective function,

Jw = ‖w −w(k)‖2 + λ1[d(k)− xT(k)w − g1(k)]

+ λ2[d(k − 1)− xT(k − 1)w − g2(k)] (4.17)
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After setting the gradient of (4.17) to zero and solving for the Lagrange multipliers, we get

w(k + 1) =


w(k) +

λ1

2
x(k) + λ2

2
x(k − 1) if |e(k)| > γ

w(k) otherwise
(4.18)

where

λ1

2
=
[e(k)− g1(k)] ‖x(k − 1)‖2 − [ε(k − 1)− g2(k)]x

T(k)x(k − 1)
‖x(k)‖2‖x(k − 1)‖2 − [xT(k − 1)x(k)]2 (4.19)

λ2

2
=
[ε(k − 1)− g2(k)] ‖x(k)‖2 − [e(k)− g1(k)]x

T(k − 1)x(k)
‖x(k)‖2‖x(k − 1)‖2 − [xT(k − 1)x(k)]2 (4.20)

where e(k) = d(k)−wT(k)x(k) and ε(k − 1) = d(k − 1)−wT(k)x(k − 1) are the a priori

error at iteration k and the a posteriori error at iteration k − 1, respectively.
Since w(k) always belongs to H(k − 1) before a possible update we have ε(k − 1) ≤ γ.

Therefore choosing g2(k) = ε(k − 1) satisfies |g2(k)| ≤ γ. In the same way as in the

SM-NLMS and SM-BNDRLMS-I algorithms, it is sufficient to choose g1(k) such that the

update lies on closest boundary of H(k), i.e., g1(k) = γe(k)/|e(k)|. The above choices
lead to the SM-BNDRLMS-II algorithm, where the new estimate w(k + 1) will lie at the

nearest boundary of H(k) such that the a posteriori error at iteration k − 1, ε(k − 1), is
kept constant. A graphical illustration of the update procedure is shown in Figure 4.5.

The update equations for the SM-BNDRLMS-II algorithm are given by

w(k + 1) = w(k) +
λ1

2
x(k) +

λ2

2
x(k − 1) (4.21)

where

λ1

2
=

α(k)e(k)‖x(k − 1)‖2

‖x(k)‖2‖x(k − 1)‖2 − [xT(k − 1)x(k)]2
λ2

2
= − α(k)e(k)xT(k − 1)x(k)

‖x(k)‖2‖x(k − 1)‖2 − [xT(k − 1)x(k)]2

α(k) =


1−

γ
|e(k)| , if |e(k)| > γ

0, otherwise
(4.22)

As with the SM-BNDRLMS-I algorithm in the previous subsection, the problem with

parallel constraint sets is avoided by using the SM-NLMS update of (4.5) whenever the

denominator in the λi is zero. Table 4.2 summarizes the recursions of the SM-BNDRLMS-II

algorithm.
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H(k)

H(k − 1)

w(k)
d(k − 1)− wTx(k − 1) = ε(k − 1)

d(k)− wTx(k) = γ
w(k + 1)

Figure 4.5: The SM-BNDRLMS-II algorithm.

4.3.3 Computational Complexity

The computational complexity per update in terms of the number of additions, multi-

plications, and divisions for the three algorithms are shown in Table 4.3. For the SM-

BNDRLMS-I, the two possible update complexities are listed where the first corresponds

to the total complexity when only the first step is necessary, i.e., when w′(k) ∈ H(k − 1),
and the second corresponds to the total complexity when a full update is needed. Ap-

plying the SM-BNDRLMS algorithms slightly increases the computational complexity as

compared with that of the SM-NLMS algorithm. However, the SM-BNDRLMS algorithms

have a reduced number of updates and an increased convergence rate as compared to

the SM-NLMS algorithm, as verified through simulations in Section 4.5. Comparing the

complexities of the SM-BNDRLMS-I and SM-BNDRLMS-II algorithms, we note that the

difference in the overall complexity depends on the frequency the second step is required in

Algorithm I. In the operation counts, the value of ‖x(k − 1)‖2 at iteration k was assumed

unknown. However, once ‖x(k)‖2 or ‖x(k−1)‖2 is known one can compute the other using

only two additional multiplications, e.g., ‖x(k − 1)‖2 = ‖x(k)‖2 − x2(k) + x(k −N)2. The

relation between ‖x(k−1)‖2 and ‖x(k)‖2 has been used in the operation counts of the SM-

BNDRLMS algorithms. If an update occurs at two successive time instants, ‖x(k − 1)‖2
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Table 4.2: The Set-Membership Binormalized LMS Algorithm II

SM-BNDRLMS-II Algorithm
for each k
{
e(k) = d(k)− xT(k)w(k)
if |e(k)| > γ
{
α(k) = 1− γ/|e(k)|
a = xT(k)x(k)
b = xT(k − 1)x(k − 1)
c = xT(k)x(k − 1)
den = ab− c2

λ1 = e(k)b/den
λ2 = −e(k)c/den
w(k + 1) = w(k) + α(k) [λ1x(k) + λ2x(k − 1)]

}
else
{
w(k + 1) = w(k)

}
}

and xT(k− 1)x(k− 2) are known from previous update, and as a consequence the number
of multiplications and additions in such updates can be further reduced by approximately

N for the SM-NLMS algorithm and 2N for the SM-BNDRLMS algorithms. Finally, note

that if we continuously estimate ‖x(k)‖2 and xT(k)x(k − 1), regardless if an update is
required or not, the SM-BNDRLMS-II algorithm will always be more efficient than SM-

BNDRLMS-I. These savings in computations are crucial in applications where the filter

order is high and computational resources are limited.

Table 4.3: Computational Complexity per Update

ALG. MULT. ADD. DIV.
SM-NLMS 3N + 1 3N 2

SM-BNDRLMS-I (1 step) 4N + 1 4N 2
SM-BNDRLMS-I (2 steps) 7N + 8 7N + 3 4
SM-BNDRLMS-II 5N + 7 5N + 3 2
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4.4 Second-Order Statistical Analysis

This section addresses the steady-state analysis of the SM-BNDRLMS algorithms.

4.4.1 Coefficient-Error Vector

In this subsection we investigate the convergence behavior of the coefficient vector w(k).

It is assumed that an unknown FIR wopt is identified with an adaptive filter w(k) of the

same order N − 1 using the SM-BNDRLMS-II algorithm. The desired response is given by

d(k) = xT(k)wopt + n(k) (4.23)

where n(k) is measurement noise, assumed here to be Gaussian with zero mean and variance

σ2
n. We study the evolution of the coefficient error ∆w(k) = w(k)−wopt. The output error

can now be written as

e(k) = n(k)− xT(k)∆w(k) (4.24)

The update equations for the adaptive filter coefficients are given by

w(k + 1) =




w(k) if |e(k)| ≤ γ

w(k) + [e(k)− γ] a if e(k) > +γ

w(k) + [e(k) + γ] a if e(k) < −γ

(4.25)

where

a =
‖x(k − 1)‖2x(k)− [xT(k − 1)x(k)]x(k − 1)

‖x(k)‖2‖x(k − 1)‖2 − [xT(k)x(k − 1)]2 (4.26)

As a consequence, the coefficient error at time instant k + 1 becomes

∆w(k + 1) =




∆w(k) if |e(k)| ≤ γ

[I+A] ∆w(k) + b− c if e(k) > +γ
[I+A] ∆w(k) + b+ c if e(k) > −γ

(4.27)

where

A =
x(k − 1)xT(k − 1)x(k)xT(k)− ‖x(k − 1)‖2x(k)xT(k)

‖x(k)‖2‖x(k − 1)‖2 − [xT(k)x(k − 1)]2 (4.28)
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and

b = n(k)a

c = γa (4.29)

In the analysis, we utilize the following initial assumptions:

AS1) The filter is updated with the probability Pe(k) = Pr{|e(k)| > γ}, and
Pr{e(k) > γ} = Pr{e(k) < −γ}.

Note that the probability Pe(k) will be time-varying because the variance of the output

error, e(k), depends on the mean of the squared coefficient-error vector norm and for

Gaussian noise with zero mean and variance σ2
n we get σ

2
e = σ2

n + E
[
∆wT(k)R∆w(k)

]
.

Since we are interested in the excess MSE we will assume hereafter that

AS2) Since we are only interested in the excess MSE we will hereafter assume that the

filter has reached the steady-state value.

4.4.2 Input-Signal Model

In the evaluation of the excess MSE we use a simplified model for the input signal vector

x(k). The model uses a simplified distribution for the input-signal vector by employing

reduced and countable angular orientations for the excitation, which are consistent with

the first- and second-order statistics of the actual input-signal vector. The model was used

for analyzing the NLMS algorithm [44] as well as the BNDRLMS algorithm [51], and was

shown to yield good results.

The input signal vector for the model is

x(k) = s(k)r(k)v(k) (4.30)

where

• s(k) is ±1 with probability 1/2
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• r2(k) has the same probability distribution as ‖x(k)‖2, and in the case of white Gaus-

sian input signal it is a sample of an independent process with χ-square distribution

with N degrees of freedom, with E [r2(k)] = Nσ2
x

• v(k) is one of the N orthonormal eigenvectors of R = E [x(k)xT(k)
]
, say {Vi, i =

1, . . . N}. For a white Gaussian input signal, it is assumed that v(k) is uniformly
distributed such that

Pr {v(k) = Vi} = 1
N

(4.31)

4.4.3 Excess MSE for White Input Signals

In this subsection we investigate the excess MSE in the SM-BNDRLMS algorithms. In

order to achieve this goal we have to consider a simple model for the input signal vector

which assumes a discrete set of angular orientations. The excess MSE is given by [1]

ξexc = lim
k→∞

ξ(k)− ξmin (4.32)

where

ξ(k) = E
[
e2(k)

]
= E

[{
n(k)− xT(k)∆w(k)

}2
]

(4.33)

is the MSE at iteration k and ξmin is the minimum MSE. With these equations, we have

∆ξ(k) = E
[{

n(k)− xT(k)∆w(k)
}2
]
− ξmin

= E
[
∆wT(k)R∆w(k)

]
= tr {Rcov [∆w(k)]} (4.34)

For the input-signal model presented in the previous subsection, ∆ξ(k + 1) can be

written as

∆ξ(k + 1) = ∆ξ(k + 1)|x(k)‖x(k−1) × P [x(k)‖x(k − 1)]

+ ∆ξ(k + 1)|x(k)⊥x(k−1) × P [x(k)⊥x(k − 1)] (4.35)

Conditions x(k)‖x(k−1) and x(k)⊥x(k−1) in the model are equivalent to v(k) = v(k−1)
and v(k) �= v(k − 1), respectively, because v(k) and v(k − 1) can only be parallel or
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orthogonal to each other. P [x(k)‖x(k − 1)] denotes the probability that x(k)‖x(k−1), and
P [x(k)⊥x(k − 1)] the denotes probability that x(k)⊥x(k−1). For the case x(k)‖x(k−1),
the SM-BNDRLMS algorithm will behave like the SM-NLMS algorithm which has the

excess MSE (see Appendix A4.1 of this chapter)

∆ξ(k + 1)|x(k)‖x(k−1) =

(
1− 2Pe(k)− P 2

e (k)

N

)
∆ξ(k) + P 2

e (k)
σ2
n

N + 1− νx

(4.36)

where νx = E[x
4(k)/σ4

x] varies from 1 for binary distribution, to 3 for Gaussian distribution,

to ∞ for a Cauchy distribution [52, 44]. For the case x(k)⊥x(k− 1) the expression for the
coefficient error vector also reduces to the same as that of the SM-NLMS algorithm (see

Appendix A4.2 of this chapter) giving

∆ξ(k + 1)|x(k)⊥x(k−1) =

(
1− 2Pe(k)− P 2

e (k)

N

)
∆ξ(k) + P 2

e (k)
σ2
n

N + 1− νx (4.37)

Combining we have

∆ξ(k + 1) = ∆ξ(k + 1)|x(k)‖x(k−1)P [x(k)‖x(k − 1)]

+ ∆ξ(k + 1)|x(k)⊥x(k−1)P [x(k)⊥x(k − 1)]

= (P [x(k)‖x(k − 1)] + P [x(k)⊥x(k − 1)])∆ξ‖(k)

= (P [x(k)‖x(k − 1)] + P [x(k)⊥x(k − 1)])∆ξ⊥(k)

=

(
1− 2Pe(k)− P 2

e (k)

N

)
∆ξ(k) + P 2

e (k)
σ2
n

N + 1− νx (4.38)

Recall assumption AS2) of the filter to being in steady-state such that the probability

Pe(k)→ Pe is constant. The stability and convergence of (4.38) holds since Pe(k) ≤ 1. If
we let k → ∞, the excess MSE becomes

ξexc =
N

N + 1− νx

· Peσ
2
n

2− Pe

(4.39)

Assuming the filter has converged to its steady-state value, the probability of update

for white Gaussian input signals is given by

Pe = 2Q

(
γ√

σ2
n + σ2

xE [‖∆w∞‖2]

)
(4.40)
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where Q (·) is the complementary Gaussian cumulative distribution function given by

Q (x) =

∫ ∞

x

1√
2π

e−t2/2dt (4.41)

and E [‖∆w∞‖2] is the mean of the squared norm of the coefficient error after convergence.

To be able to calculate the expression in (4.39) we need Pe which in turn depends on

σ2
xE [‖∆w∞‖2]. Therefore consider the following two cases of approximation:

AP1) The variance of the error is lower bounded by the noise variance, i.e., σ2
e = σ2

n +

σ2
xE [‖∆w∞‖2] ≥ σ2

n. Therefore, a simple lower bound is given by P̂e ≥ 2Q
(

γ
σn

)

AP2) We can rewrite the variance of the error as σ2
e(k) = σ2

n+E [ẽ
2(k)] , where ẽ(k) = e(k)−

eopt denotes the distance between the error at kth iteration and the optimal error.

Assuming no update we have |e(k)| ≤ γ, and with σ2
opt = σ2

n we get σ
2
e(k) ≤ 2σ2

n + γ2.

Therefore, an upper bound of the probability of update is given by P̂e = 2Q
(

γ
σe

)
≤

2Q

(
γ√

2σ2
n+γ2

)

The approximations of Pe together with Equation (4.39) are used in the simulations to

estimate the excess MSE for different thresholds γ.

4.4.4 Excess MSE for Colored Input Signals

When extending the analysis to colored input signals we may still use the input-signal

model in (4.30). The angular distributions of x(k) will change, i.e., the probabilities

P [x(k)‖x(k − 1)] and P [x(k)⊥x(k − 1)] will be different from those for white input signals.
However, as with the case of white input signals, these probabilities will not have effect on

the final results, see Equation (4.38). In order to get an expression for the probability of

update Pe for colored input signals we assume that the input is correlated according to

x(k) = rx(k − 1) + (1− r)v(k) (4.42)
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where v(k) is a white noise process with zero mean and variance σ2
v . Straightforward

calculations give the autocorrelation matrix

R = σ2
x




1 r r2 · · · rN−1

r 1 r · · · rN−2

...
...

...
. . .

...

rN−1 rN−2 rN−3 · · · 1




(4.43)

where

σ2
x =
1− r

1 + r
σ2
v = bσ2

v (4.44)

Assuming the filter has converged to its steady-state, the variance of the output error can

now be computed as

σ2
e = σ2

n + E[∆w
T
∞R∆w∞]

≤ σ2
n +

σ2
x

b
E[||∆w∞||2] (4.45)

where the last inequality is shown in Appendix 4.3. The probability of update is now given

by

Pe ≤ Q

(
γ√

σ2
n + b−1σ2

xE[||∆w∞||2]

)
(4.46)

To be able to evaluate the probability of update Pe the same approximation is made as in

AP2) for the case of white input signals, i.e., σ2
xE[‖∆w∞‖2] ≤ σ2

n+γ2. An upper bound for

the case of colored input signals is now given by P̂e ≤ 2Q
(

γ√
(1+b−1)σ2

n+b−1γ2

)
. The lower

bound given in AP1) in the previous section is still valid.

4.5 Simulation Results

In this section, the new algorithms are applied to a system identification problem. The

order of the plant was p = N−1 = 10 and the input signal was colored noise with condition
number 100. The signal-to-noise ratio (SNR) was set to 80dB and 20dB in two different

examples.
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Figure 4.6 shows the learning curves averaged over 500 simulations for the SM-BNDRLMS-

I, the SM-BNDRLMS-II, the SM-NLMS, the BNDRLMS, and the NLMS algorithms for

an SNR = 80 dB. The upper bound on the estimation error was set to γ =
√
5σn, and the

step sizes used in the BNDRLMS and the NLMS algorithms were set to unity in order to

obtain the fastest convergence.

Figure 4.6 clearly shows how the SM-BNDRLMS-I, and the SM-BNDRLMS-II algo-

rithms combine the fast convergence of the BNDRLMS algorithm with the low misad-

justment of the SM-NLMS algorithm. In an ensemble of 500 experiments of 1000 it-

erations the average number of updates per experiment for the SM-BNDRLMS-I, SM-

BNDRLMS-II, and the SM-NLMS algorithms were, 185, 180, and 436 respectively. For the

SM-BNDRLMS-I an average of 108 updates were full updates.

Figure 4.7 shows the learning curves results for an SNR = 20 dB. The parameters used

in the algorithms were the same as in the first example. As can be seen from the figure,

the SM-BNDRLMS algorithms still have higher convergence speeds than the SM-NLMS

algorithm.

In 1000 iterations, the average number of updates per experiment for the SM-BNDRLMS-

I, SM-BNDRLMS-II, and the SM-NLMS algorithms were, 100, 95, and 129 respectively.

For the SM-BNDRLMS-I an average of 15 updates were full updates.

In the two examples above the NLMS and the BNDRLMS algorithms were unable to

reach the same low steady-state value as their set-membership versions, and a trade-off

between convergence speed and final MSE was observed.

For the two examples above we also plotted the overall complexity versus the total num-

ber of iterations for the SM-NLMS and the SM-BNDRLMS algorithms. The curves are nor-

malized with respect to the number of filter coefficients N . To minimize the computational

complexity for all the algorithms, we recursively estimated ‖x(k)‖2 and xT(k)x(k − 1) at
each iteration. Figures 4.8 and 4.9 show the results based on the above simulations. For the

case of high SNR, we see from Figure 4.8 that the overall complexity of the SM-BNDRLMS

algorithms are initially higher than the SM-NLMS algorithm. As time proceeds the overall

complexity of the SM-BNDRLMS-II algorithm becomes similar to that of the SM-NLMS
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Figure 4.6: Learning curves of the SM-BNDRLMS-I, the SM-BNDRLMS-II, the SM-

NLMS, the BNDRLMS, and the NLMS algorithms. Condition number of the input-signal

correlation matrix = 100, SNR = 80 dB, and γ =
√
5σn.

algorithm. The SM-BNDRLMS-II, with its extra innovation check, tends to a slightly

higher value. For a low SNR the SM-NLMS algorithm will have a slightly lower overall

complexity as compared to the SM-BNDRLMS algorithms.

The algorithms were also tested for a low SNR of 10 dB. The adaptive filter had N =

60 coefficients. The learning curves for the SM-NLMS and SM-BNDRLMS algorithms

are shown in Figure 4.10. If the order of the filter is decreased, the differences between

convergence rate of the algorithms decrease. This confirms the intuition that for high

background noise, the simplest algorithms could provide as good performance as more

dedicated ones.

In order to test the algorithms in a time-varying environment, the system coefficients

were changed according to the model, wopt(k) = wopt(k−1)+u(k), where u(k) is a random
vector with elements of zero mean and variance σ2

v = 10
−6. In the simulations the additive
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Figure 4.7: Learning curves of the SM-BNDRLMS-I, the SM-BNDRLMS-II, the SM-

NLMS, the BNDRLMS, and the NLMS algorithms. Condition number of the input-signal

correlation matrix = 100, SNR = 20 dB, and γ =
√
5σn.
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Figure 4.8: The overall complexity normalized with N versus the number of data points in

the simulation for SNR = 80 dB.
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Figure 4.9: The overall complexity normalized with N versus the number of data points in

the simulation for SNR = 20 dB.
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Figure 4.10: Learning curves of the SM-BNDRLMS-I, the SM-BNDRLMS-II, the SM-

NLMS. Condition number of the input-signal correlation matrix = 100, SNR = 10 dB,

and γ = σn.

90



Table 4.4: Excess Mean-Square Error in Nonstationary Environments

ALG. ξexc (dB)
NLMS -40.8

BNDRLMS -43.5
SM-NLMS -40.8

SM-BNDRLMS-I -43.4
SM-BNDRLMS-II -43.5

noise was set to zero, and the bound on the estimation error was set to γ =
√
5σv. The

results in terms of the excess MSE in dB can be found in Table 4.4. As can be noticed

the new proposed algorithms present tracking performance comparable to the BNDRLMS

algorithm.

Finally experiments were conducted to validate the theoretical results obtained in the

MSE analysis. The MSE was measured for different values of γ (γ varied from σn to
√
10σn). The order of the plant was N − 1 = 10, and the SNR was chosen to 60 dB.

Figure 4.11 shows the MSE versus γ2/σ2
n for a modeled input signal, where the input

vectors were chosen such that v(k) and v(k − 1) were parallel or orthogonal with proba-
bilities 1

N
and N−1

N
, respectively. As can be seen from the figure, the theoretical curves can

predict the behavior of the simulation for the assumed model. Figures 4.12 and 4.13 show

the results for white and colored input signals, respectively. In the case of colored input,

the condition number of the input-signal correlation matrix was equal to 100. It was shown

in [69] that the output error e(k) is upper bounded by γ after that convergence has taken

place. Therefore, we can conclude that the MSE is upper bounded by γ2. However, from

the figures it can be seen that the theoretical formulas for the MSE can provide a much

tighter bound than simply considering σ2
e = γ2. If we use this upper bound in AP1) to-

gether with Equation (4.39), the difference for the white input case will be between 2.5 dB

and 10 dB for γ2/σ2 in the range 2–10.
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Figure 4.11: MSE for N = 10 as function of γ2/σ2
n, for the input signals as modeled.

4.6 Conclusions

This chapter derived two novel adaptation algorithms based on the concept of set-membership

filtering. The algorithms utilize consecutive data-pairs in order to construct a space of fea-

sible solutions for the updates. The new algorithms were applied to a system identification

problem, in order to verify the good performance of the algorithm when compared with the

SM-NLMS algorithm in terms of high convergence speed, low misadjustment, and reduced

number of updates. Analysis for the mean-squared error was carried out for both white

and colored input signals, and closed form expression for the excess MSE was provided.

Appendix A4.1

For the special case that x(k)‖x(k−1) the recursions of the SM-BNDRLMS algorithm will
be equal to those of the SM-NLMS algorithm. In the derivations below x(k) is replaced

by s(k)r(k)v(k), and the second-order approximation E[1/r2(k)] ≈ 1/[σ2
x(N + 1 − νx)]
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Figure 4.12: MSE for N = 10 as function of γ2/σ2
n for white input signals.

introduced in [44] is used. The coefficient error at time instant k+1 expressed in terms of

the probability Pe(k) can be easily derived in the same manner as with the SM-BNDRLMS

algorithms in Section 4.4 and is given by

∆w(k + 1) =

[
I− Pe(k)

x(k)xT(k)

‖x(k)‖2

]
∆w(k) + Pe(k)

n(k)x(k)

‖x(k)‖2
(4.47)

For white input signal we have R = σ2
xI. The expression for ∆ξ(k + 1) is given by

∆ξ(k + 1) = σ2
xtr (cov [∆w(k + 1)]) = σ2

xtr
(
E
[
∆w(k + 1)∆wT(k + 1)

])
= σ2

xtr

(
E

{[
I− Pe(k)

x(k)xT(k)

‖x(k)‖2

]
∆w(k)∆wT(k)

[
I− Pe(k)

x(k)xT(k)

‖x(k)‖2

]})

+ σ2
xP

2
e (k)tr

(
E

{
n2(k)x(k)xT(k)

[‖x(k)‖2]2

})

= ψ1 + ψ2

(4.48)
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Figure 4.13: MSE for N = 10 as function of γ2/σ2
n for colored input signals.

where

ψ1 = σ2
xtr

(
E

{[
I− Pe(k)

x(k)xT(k)

‖x(k)‖2

]
∆w(k)∆wT(k)

[
I− Pe(k)

x(k)xT(k)

‖x(k)‖2

]})
= σ2

xtr
(
E
{
∆w(k)∆wT(k)

})
− σ2

xPe(k)tr

(
E

[
∆w(k)∆wT(k)x(k)xT(k)

‖x(k)‖2

])

− σ2
xPe(k)tr

(
E

[
x(k)xT(k)∆w(k)∆wT(k)

‖x(k)‖2

])

+ σ2
xP

2
e (k)tr

(
E

[
x(k)xT(k)∆w(k)∆wT(k)x(k)xT(k)

[‖x(k)‖2]2

])

= ρ1 + ρ2 + ρ3 + ρ4 (4.49)

with

ρ1 = σ2
xtr
(
E
[
∆w(k)∆wT(k)

])
= ∆ξ(k) (4.50)
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ρ2 = −σ2
xPe(k)tr

(
E

[
∆w(k)∆wT(k)x(k)xT(k)

‖x(k)‖2

])
= −σ2

xPe(k)tr
(
E
[
∆w(k)∆wT(k)v(k)vT(k)

])
= −σ2

x

N
Pe(k)tr

(
E
[
∆w(k)∆wT(k)

])
= −Pe(k)

N
∆ξ(k)

= ρ3 (4.51)

where the last equality is true since tr (AB) = tr (BA).

ρ4 = σ2
xP

2
e (k)tr

(
E
[
A∆w(k)∆wT(k)A

])
= σ2

xP
2
e (k)tr

(
E

[
x(k)xT(k)∆w(k)∆wT(k)x(k)xT(k)

[‖x(k)‖2]2

])

= σ2
xP

2
e (k)E

[
∆wT(k)x(k)xT(k)x(k)xT(k)∆w(k)

[‖x(k)‖2]2

]

= σ2
xP

2
e (k)E

[
∆wT(k)x(k)xT(k)∆w(k)

‖x(k)‖2

]
= σ2

xP
2
e (k)E

[
∆wT(k)v(k)vT(k)∆w(k)

]

=
σ2
xP

2
e (k)

N
tr
(
E
[
∆w(k)∆wT(k)

])
=

P 2
e (k)

N
∆ξ(k) (4.52)

ψ2 = σ2
xP

2
e (k)tr

(
E

{
n2(k)x(k)xT(k)

[‖x(k)‖2]2

})

= σ2
xP

2
e (k)tr

(
E

[
n2(k)

v(k)vT(k)

r2

])

= σ2
xP

2
e (k)σ

2
n

(
E

[
1

r2

])

=
σ2
nP

2
e (k)

N + 1− νx (4.53)

Finally, we get

∆ξ(k + 1)|x(k)‖x(k−1) =

(
1− 2Pe(k)− P 2

e (k)

N

)
∆ξ(k) + P 2

e (k)
σ2
n

N + 1− νx (4.54)
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Appendix A4.2

For the case x(k)⊥x(k − 1), (4.28) and (4.29) reduce to

A|x(k)⊥x(k−1) =
x(k − 1)xT(k − 1)x(k)xT(k)− ‖x(k − 1)‖2x(k)xT(k)

‖x(k)‖2‖x(k − 1)‖2 − (xT(k)x(k − 1))2

=
−‖x(k − 1)‖2x(k)xT(k)

‖x(k)‖2‖x(k − 1)‖2

=
−x(k)xT(k)

‖x(k)‖2
(4.55)

and

b|x(k)⊥x(k−1) = n(k)
‖x(k − 1)‖2x(k)− (xT(k − 1)x(k))x(k − 1)

‖x(k)‖2‖x(k − 1)‖2 − (xT(k)x(k − 1))2

= n(k)
x(k)

‖x(k)‖2
(4.56)

The coefficient error vector now reduces to

∆w(k + 1) =

[
I− Pe(k)

x(k)xT(k)

‖x(k)‖2

]
∆w(k) + Pe(k)

n(k)x(k)

‖x(k)‖2
(4.57)

which is the same as in (4.47) for the case of the SM-NLMS algorithm. Consequently we

get

∆ξ(k + 1)|x(k)⊥x(k−1) =

(
1− 2Pe(k)− P 2

e (k)

N

)
∆ξ(k) + P 2

e (k)
σ2
n

N + 1− νx (4.58)
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Appendix A4.3

In this Appendix we show the relation δ = σ2
x

b
E[||∆w∞||2] − σ2

xE[∆w
T
∞R∆w∞] ≥ 0 holds

true for the autocorrelation matrix in Equation (4.43). Using Equation (4.43) we get

δ =
σ2
x

b
E[||∆w∞||2]− σ2

x∆w
T
∞




1 r r2 · · · rN−1

r 1 r · · · rN−2

...
...

...
. . .

...

rN−1 rN−2 rN−3 · · · 1



∆w∞

=
σ2
x

b
E[‖∆w∞‖2]− σ2

xE[‖∆w∞‖2]− σ2
x

N∑
j=1

N∑
i=1
i�=j

E[∆wi∆wj]r
|i−j|

=
σ2
x

b


(1− b)E[‖∆w∞‖2]− b

N∑
j=1

N∑
i=1
i�=j

E[∆wi∆wj]r
|i−j|




=
σ2
x

1− r


2rE[‖∆w∞‖2]− (1− r)

N∑
j=1

N∑
i=1
i�=j

E[∆wi∆wj]r
|i−j|




(4.59)

where b = (1 − r)/(1 + r) was used. Considering the worst-case scenario, we substitute

E[∆wi∆wj] with the magnitude of the maximum value of the cross-terms, i.e., cmax =

max∀i,j,i�=j |E[∆wi∆wj]|

δ ≥ σ2
x

1− r


2rE[‖∆w∞‖2]− (1− r)

N∑
j=1

N∑
i=1
i�=j

cmaxr
|i−j|




=
σ2
x

1− r

{
2rE[‖∆w∞‖2]− (1− r)cmax

N−1∑
i=1

2(N − i)ri

}

≥ σ2
x

1 + r

{
2rE[‖∆w∞‖2]− 2(N − 1)(1− r)cmax

N−1∑
i=1

ri

}

=
σ2
x

1− r

{
2rE[‖∆w∞‖2]− 2r(N − 1)cmax(1− rN−1)

}
≥ 0 (4.60)

where E[‖∆w∞‖2] ≥ (N − 1)cmax was used, which holds true for any covariance matrix.
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Chapter 5

Set-Membership Affine-Projection

Algorithm

This chapter presents a new data selective adaptive filtering algorithm, the set-membership

affine-projection (SM-AP) algorithm. The algorithm generalizes the ideas of the recently

proposed set-membership NLMS (SM-NLMS) algorithm and the set-membership BNDRLMS

algorithm proposed in the previous chapter to include constraint sets constructed from

the past input and desired signal pairs. The resulting algorithm can be seen as a set-

membership version of the affine-projection (AP) algorithm with an optimized step size.

Also the SM-AP algorithm does not trade convergence speed with misadjustment and com-

putational complexity as most adaptive filtering algorithms. Simulations show the good

performance of the algorithm, especially for colored input signals, in terms of convergence,

final misadjustment, and reduced computational complexity.

5.1 Introduction

For highly correlated input signals the RLS algorithms are known to present faster conver-

gence than the LMS algorithm and its normalized version, the NLMS algorithm [1]. This

advantage comes at the expense of a higher computational complexity. Data-reusing algo-

rithms are known to be a viable alternative to the RLS algorithm in terms of lower compu-

tational complexity in situations where the input signal is correlated. The affine-projection
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(AP) algorithm [42, 54, 111, 58] is among the prominent unconstrained adaptation algo-

rithms that allow tradeoff between fast convergence and low computational complexity. By

adjusting the number of projections, or alternatively, the number of reuses, we can obtain

ramping performances from that of the normalized least-mean square (NLMS) algorithm to

that of the sliding-window recursive least squares (RLS) algorithm [58, 56]. The penalty to

be paid when increasing the number of data reuse is a slight increase in algorithm misadjust-

ment. Trade-off between final misadjustment and convergence speed is achieved through

the introduction of a step size, which is not the best solution. An alternative solution to this

drawback is to employ the concept of set-membership filtering (SMF) [68, 69, 70, 98, 99]

to data reusing algorithms. SMF specifies an upper bound on the estimation error and

reduces computational complexity on the average due to its data-discerning property. The

set-membership NLMS (SM-NLMS) algorithm proposed in [69] was shown to achieve both

fast convergence and low misadjustment, and its data-selectivity and low computational

complexity per update makes it very attractive in various applications [70, 108]. An early

attempt in this direction was the introduction of the set-membership binormalized data-

reusing LMS algorithm (SM-BNDRLMS) in Chapter 4 [77, 78]. This chapter generalizes

the ideas in Chapter 4 by adopting P past data-pairs. The resulting algorithms include

the SM-NLMS and SM-BNDRLMS as special cases, which correspond to choosing P = 1

and P = 2, respectively. The conventional affine-projection (AP) algorithm [13, 42, 54] is

also shown to be a limiting case of the new algorithms, when the predefined bound of the

estimation error goes to zero.

The chapter is organized as follows. The new algorithm, the set-membership affine-

projection (SM-AP) algorithm, is derived in Section 5.2. Section 5.3 contains the simula-

tions, and Section 5.4 the concluding remarks.

5.2 Set-Membership Affine-Projection Algorithm

The set-membership binormalized data-reusing (SM-BNDRLMS) algorithms derived in

Chapter 4 made use of two members of the exact membership set ψ(k) in (4.4) to con-
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struct a set of feasible solutions for the coefficient update. This section introduces the

set-membership affine-projection (SM-AP) algorithm whose updates belong to a member

of the exact membership set which is spanned by P constraint sets. The necessary concepts

and notations of set-membership filtering (SMF) are defined in Chapter 4 of this thesis.

For a more complete treatment of SMF,see [70].

5.2.1 Derivation of the General SM-AP Algorithm

Let us start by expressing the exact membership set ψ(k) defined in (4.4) as

ψ(k) =
k−P⋂
i=1

H(i)
k⋂

j=k−P+1

H(j) = ψk−P (k)
⋂

ψP (k) (5.1)

where ψP (k) is the intersection of the P last constraint sets, and ψk−P (k) is the intersection

of the k−P first constraint sets. The objective is to derive an algorithm whose coefficient

update belongs to the last P constraint sets, i.e., w ∈ ψP (k).

Let Si(k) denote the hyperplane which contains all vectors w such that d(k − i+ 1)−
wTx(k − i + 1) = gi(k) for i = 1, . . . , P . The next section discusses the choice of the

parameters gi(k) but for the time being all choices satisfying the bound constraint are valid.

That is, if all gi(k) are chosen such that |gi(k)| ≤ γ then Si(k) ∈ H(k − i+ 1).

Let us state the following optimization criterion for the vector update whenever w(k) �∈
ψP (k)

w(k + 1) = argmin
w

‖w −w(k)‖2 subject to:

d(k)−XT(k)w = g(k) (5.2)

where d(k) ∈ R
P×1 contains the desired outputs from the P last time instants, g(k) ∈ R

P×1

specifies the point in ψP (k), and X(k) ∈ R
N×P contains the corresponding input vectors,

i.e.,

g(k) = [g1(k) g1(k) . . . gP (k)]
T

d(k) = [d(k) d(k − 1) . . . d(k − P + 1)]T

X(k) = [x(k) x(k − 1) · · · x(k − P + 1)] (5.3)
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H(k)

H(k − 1)

w(k)

d(k − 1)− wT x(k − 1) = g2(k)

d(k)− wT x(k) = g1(k)w(k + 1)

Figure 5.1: General algorithm update.

where x(k) is the input-signal vector

x(k) = [x(k) x(k − 1) . . . x(k −N + 1)]T . (5.4)

Figure 5.1 shows the update procedure for a two-dimensional problem. Using the

method of Lagrange multipliers, the unconstrained function to be minimized is

Jw = ‖w −w(k)‖2 + λT(k)[d(k)−XT(k)w − g(k)] (5.5)

where λ(k) ∈ R
P×1 is a vector of Lagrange multipliers. After setting the gradient of Jw

with respect to w equal to zero, we get

w(k + 1) = w(k) +X(k)λ(k) (5.6)

Invoking the constraintsin (5.2), we obtain

d(k)−XT(k)w(k + 1) = g(k)

= d(k)−XT(k)w(k)−XT(k)X(k)λ(k) (5.7)

and consequently we get,

XT(k)X(k)λ(k) = d(k)−XT(k)w(k)− g(k) = e(k)− g(k) (5.8)
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where

e(k) = [e(k) ε(k − 1) . . . ε(k − P + 1)]T (5.9)

with ε(k − i) = d(k − i)− xT(k − i)w(k) denoting the a posteriori error at iteration k − i.

The update equation is now given by (5.6) with λ(k) being the solution to the system of

equations given in (5.8), i.e.,

w(k + 1) =



w(k) +X(k)

[
XT(k)X(k)

]−1
[e(k)− g(k)] if |e(k)| > γ

w(k) otherwise

(5.10)

Remark 1. To evaluate if an update w(k + 1) is required, it is only necessary to check if

w(k) �∈ H(k). This is a consequence of the constraint set reuse guaranteeing that w(k) ∈
H(k − i+ 1) holds for i = 2, . . . , P before an update.

Remark 2. During initialization, i.e., for time instants k < P only knowledge of H(i) for
i = 1, . . . , k can be assumed. If an update is needed for the initial time instants k < P ,

the algorithm is used with the k available constraint sets.

Remark 3. We can easily verify that choosing the bound γ = 0, the algorithm will reduce

to the conventional AP algorithm [42] with unity step size.

5.2.2 The Parameter Vector g(k)

So far the only requirement on the parameters gi(k) has been that they should be points

in H(k − i+ 1), i.e., |gi(k)| ≤ γ. Obviously there is an infinite number of possible choices

for gi(k), each one leading to a different update.

Choice 1:

A trivial choice would be g(k) = 0, i.e., to force the a posteriori errors to be zero at

the last P time instants. Inserting g(k) = 0 in (5.8) and solving for λ(k) leads to the

recursions

w(k + 1) =



w(k) +X(k)

[
XT(k)X(k)

]−1
e(k) if |e(k)| > γ

w(k) otherwise

(5.11)

103



H(k)

H(k − 1)

w(k)

d(k − 1)− wT x(k − 1) = 0

d(k)− wT x(k) = 0
w(k + 1)

Figure 5.2: Update resulting in zero a posteriori error.

The updating equation (5.11) is identical to the conventional affine-projection (AP) al-

gorithm with unity step size whenever w(k) �∈ H(k). The approach taken here allows a
considerable reduction in average complexity as compared with the conventional AP al-

gorithm due to the data selectivity. Figure 5.2 shows a graphical view of the coefficient

update.

Choice 2:

We now take a closer look at Equation (5.8) that solves for λ(k) and make some

important observations. We know already that w(k) ∈ H(k − i + 1), i.e., |ε(k − i + 1)| =
|d(k−i+1)−xT(k−i+1)w(k)| ≤ γ, for i = 2, . . . , P . Therefore, choosing gi(k) = ε(k−i+1),

for i �= 1, will cancel all but the first element on the right-hand side of (5.8). Now we only
need to choose the constraint value g1(k). In the same way as the SM-NLMS we can choose

g1(k) such that the solution lies at the nearest boundary of H(k), i.e., g1(k) = γe(k)/|e(k)|.
With these choices, Equation (5.8) reduces to

XT(k)X(k)λ(k) = α(k)e(k)u1 (5.12)

where α(k) = 1− γ
|e(k)| and u1 = [1 0 . . . 0]T. Finally we can write the update equation as

w(k + 1) = w(k) +X(k)
[
XT(k)X(k)

]−1
α(k)e(k)u1 (5.13)
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α(k) =



1− γ

|e(k)| , if |e(k)| > γ

0, otherwise

(5.14)

The last algorithm minimizes the Euclidean distance ‖w − w(k)‖2 subject to the

constraint w ∈ ψP (k) such that the a posteriori error at iteration k − i,

ε(k − i) = d(k − i) − wT(k)x(k − i), is kept constant for i = 2, . . . , P . The updat-

ing procedure is shown graphically in Figure 5.3. The equations of the SM-AP algorithm

are summarized in Table 5.1.

H(k)

H(k − 1)

w(k)

d(k − 1)− wT x(k − 1) = ε(k − 1)

d(k)− wT x(k) = γ
w(k + 1)

Figure 5.3: Update resulting in constant a posteriori error.

5.3 Simulation Results

5.3.1 System Indentification

The SM-AP algorithm, which updates along constant a posteriori errors (Choice 2) was

used to identify a system of order N = 10. The input signal was colored noise,

generated by filtering Gaussian noise through the fourth-order IIR filter

x(k) = 0.95x(k − 1) + 0.19x(k − 2) + 0.09x(k − 3) − 0.5x(k − 4) [112]. The signal-to-
noise ratio (SNR) was set to 80dB, and the bound was chosen to γ =

√
5σ2

n where σ
2
n is

the variance of the additional noise. Figure 5.4 shows the learning curves averaged over
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Table 5.1: The Set-Membership Affine-Projection Algorithm.

SM-AP Algorithm
for each k
{
e(k) = d(k)− xT(k)w(k)
if |e(k)| > γ
{
α(k) = 1− γ/|e(k)|
t(k) =

[
XT(k)X(k)

]−1
α(k)e(k)u1

w(k + 1) = w(k) +X(k) t(k)
}
else
{
w(k + 1) = w(k)

}
}

500 simulations for P = 1, 2, 4, and 6 constraint set reuses. The number of data reuses in

the conventional AP algorithm was chosen as P = 4.

Figure 5.4 clearly shows the increase in convergence speed obtained by increasing

P . As can be seen from the figure all curves of the SM-AP algorithms have the same

level of misadjustment, which is lower than that of the the conventional AP algorithm.

In an ensemble of 500 experiments and 1000 iterations, the average number of updates

per experiment for the SM-AP algorithm were 962, 402, 268, and 215 out of 1000 for

P = 1, P = 2, P = 4, and P = 6 respectively, demonstrating the significant reduction of

computational complexity obtained by increasing P .

5.3.2 Adaptive Equalizer

The SM-AP algorithm (Choice 2) was used to adapt an equalizer in a single-user system

using BPSK transmission. The channel was a three-tap raised-cosine channel [12] having

the impulse response {0.3887, 1, 0.3887}. The number of taps in the equalizer was chosen
to N = 11, and the delay associated with the reference signal was chosen as D = 7 (see

Chapter 1 for a schematic diagram of the equalizer setup). The threshold γ was chosen to√
9σ2

n according to the choice made in [98].
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Figure 5.4: Learning curves for the SM-AP algorithm with P = 1, P = 2, P = 4, P = 6

and the conventional AP algorithm with P = 4, γ =
√
5σ2

n, SNR = 80 dB, and colored

input signal.

Figure 5.5 shows the learning curves for the SM-AP algorithm using different values

of P , the SM-BNDRLMS-I algorithm proposed in Chapter 5, and the conventional NLMS

algorithm. The SNR was set to 30 dB. In an ensemble of 500 experiments and 1000

iterations, the average number of updates per experiment for the SM-AP algorithm were

390, 320, and 340 for P = 1, P = 2, P = 3. The average number of updates for SM-

BNDRLMS-I algorithm was 310, where 190 were full updates, i.e., 190 out of 310 updates

required two steps to be performed. We can see from the figure that the largest performance

improvement is obtained when going from P = 1 to P = 2 data reuses. A small penalty in

terms of an increased MSE is observed for P = 3.

Figure 5.6 shows the learning curves for the case when the SNR was set to 15 dB. The

figure indicates that the performance improvement decreases for a decreasing SNR. A small

improvement in the convergence speed can be observed for P = 2 as compared to the case
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Figure 5.5: Learning curves for the adaptive equalizer using the SM-AP algorithm with

P = 1, P = 2, P = 3, the SM-BNDRLMS-I, and the conventional NLMS algorithm with

µ = 1, γ =
√
9σ2

n, SNR = 30 dB.

of P = 1 (SM-NLMS). For this SNR, no performance improvement in terms of convergence

speed can be observed for P > 2. The average number of updates per experiment for the

SM-AP algorithm were 230, 210, and 225 for P = 1, P = 2, and P = 3, respectively. The

average number of updates for SM-BNDRLMS-I algorithm was 210, where 115 were full

updates, i.e., 115 out of 210 updates required two steps to be performed.

5.4 Conclusions

A novel data-selective adaptation algorithm, the set-membership affine-projection (SM-AP)

algorithm was derived based on the concept of set-membership filtering. The algorithm

utilizes consecutive data-pairs in order to construct a space of feasible solutions for the

updates. The SM-AP algorithm reduces the tradeoff of misadjustment and computational
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Figure 5.6: Learning curves for the adaptive equalizer using the SM-AP algorithm with

P = 1, P = 2, P = 3, the SM-BNDRLMS-I, and the conventional NLMS algorithm with

µ = 1, γ =
√
9σ2

n, SNR = 15 dB.

complexity associated with the conventional AP algorithm. Simulations confirmed that the

proposed algorithm leads to fast convergence speed, low misadjustment, and a substantial

reduction in the number of updates. The more correlated is the input signal, the better is

the performance of the SM-AP algorithm when compared with the SM-NLMS algorithm.

This improvement is more clearly observed in cases of high SNR.
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Chapter 6

Low-Complexity Constrained

Affine-Projection Algorithms

This chapter presents low-complexity constrained affine-projection algorithms. An effi-

cient implementation of the constrained affine-projection algorithm utilizing Householder

transformation is presented. A data-selective version of the constrained algorithm is also

derived based on the concept of set-membership filtering. The data-selective property can

greatly reduce the average computational burden as compared with a nonselective approach

without compromising speed of convergence and final misadjustment. The chapter also dis-

cusses important aspects of convergence and stability of constrained normalized adaptation

algorithms in general. Computer simulations are also included providing extra insight to

the algorithm behavior.

6.1 Introduction

In Chapters 2 and 3, we derived and discussed adaptive filtering algorithms satisfying

linear constraints. This class of algorithms was mentioned to have various applications

in fields such as communications and system identification. The algorithms considered

were mainly LMS-type or RLS-type algorithms. As already discussed in Chapter 2, the

constrained LMS (CLMS) algorithm is attractive due to the low computational complexity.

The main drawback of the CLMS algorithm is the slow convergence speed for colored input
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signals [27]. On the other hand, the constrained RLS (CRLS) enjoys a fast convergence but

at the expense of high computational complexity. Similarly to the case of unconstrained

adaptation algorithms, it would be of interest to have linearly-constrained adaptive filtering

algorithms which could, by using a suitable number of data-reuses, balance convergence

speed and computational complexity.

In this chapter we develop and analyze a constrained affine-projection (CAP) algo-

rithm using the same framework already used for other normalized constrained algorithms,

such as the normalized constrained LMS (NCLMS) and binormalized data-reusing con-

strained LMS (BNDRCLMS) algorithms [86]. Moreover, a Householder transformation

introduced in [66] is used to derive an efficient implementation for the CAP algorithm.

Thereafter, the ideas of normalized constrained algorithms are extended to the framework

of set-membership filtering (SMF) [69], from which a set-membership constrained affine-

projection (SM-CAP) algorithm is derived. The SM-CAP algorithm, which can also be seen

as a constrained version of the set-membership affine-projection (SM-AP) algorithm [113],

retains the fast convergence of the CAP algorithm, and low misadjustment is obtained due

to the data-selective property. The a posteriori output constrained LMS (APOC-LMS)

algorithm proposed in [71] bears similarity to the proposed SM-CAP algorithm for the

special case of one data-reuse and a single constraint. However, our approach differs from

that in [71] by the use of a correction term that prevents accumulation of errors when

implemented in finite precision. We further analyze the bias of the coefficient-error vector

of the proposed algorithms.

The chapter is organized as follows. Section 6.2 presents the derivation of the CAP

algorithm, followed by an efficient Householder implementation in Section 6.3. Section 6.4

presents the SM-CAP algorithm. Section 6.5 analyze the bias of the coefficient-error vector

for the proposed algorithms. Simulations of the algorithms are shown in Section 6.6,

followed by conclusions in Section 6.7.
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6.2 The Constrained Affine-Projection Algorithm

As was discussed in Chapter 2, the constraints in linearly constrained adaptive filtering are

given by the following set of p equations

CTw = f (6.1)

where C is an N × p constraint matrix (parameter M used in Chapter 2 assumed here to

be unity) and f is a vector containing the p constraint values.

The constrained affine-projection (CAP) algorithm to be derived solves the following

optimization problem

w(k + 1) = argmin
w

‖w −w(k)‖2 subject to

CTw = f

d(k)−XT(k)w = 0 (6.2)

where d(k) ∈ R
P×1 and X(k) ∈ R

N×P are the desired-signal vector and input-signal matrix

defined by (1.7). Using the Lagrange multipliers in the following objective function

Jw = ‖w −w(k)‖2 + λT
1 [d(k)−XT(k)w] + λT

2 [C
Tw − f ] (6.3)

the CAP algorithm becomes:

w(k + 1) = P[w(k) +X(k) t(k)] + F (6.4)

with

t(k) = [XT(k)PX(k)]−1e(k) (6.5)

and

e(k) = d(k)−XT(k)w(k) (6.6)

As in Chapter 2, the matrix

P = I−C(CTC)−1CT (6.7)
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Table 6.1: The Constrained Affine-Projection Algorithm.

CAP Algorithm
for each k
{
e(k) = d(k)−XT(k)w(k)

t(k) =
[
XT(k)PX(k) + δI

]−1
e(k)

w(k + 1) = P [w(k) + µX(k) t(k)] + F
}

is a projection matrix for a projection onto the homogeneous hyperplane defined byCTw(k) =

0, and the vector

F = C(CTC)−1f (6.8)

is used to move the projected solution back to the constraint hyperplane.

For P = 1 or P = 2, the above relations will result in the normalized constrained LMS

(NCLMS) or binormalized data-reusing constrained LMS (BNDRCLMS) algorithms [86],

respectively. For all constrained algorithms mentioned here, the simplification Pw(k)+F =

w(k) should be avoided in a finite precision environment, since accumulation of round-off

errors may cause the solution to drift away from the constraint hyperplane [27]. The

equations of the constrained affine-projection algorithm are summarized in Table 6.1.

6.3 The Householder-Transform CAP Algorithm

In this section, the results of the Householder-transform constrained LMS (HCLMS) al-

gorithm [66] proposed in Chapter 3 are used to obtain an efficient Householder-transform

constrained AP (HCAP) algorithm.

From Chapter 3 we remember that an orthogonal matrix Q was used to transform the

adaptive-filter coefficient vector in order to generate a modified coefficient vector w̄(k) =

Qw(k). If the same transformation is applied to the input signal x(k), i.e., x̄(k) = Qx(k),

the output signal from the transformed filter ȳ(k) = w̄T(k)x̄(k) will be the same as the
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Figure 6.1: The Householder transformation on the coefficient vector.

1. Untransformed adaptive filter
2. Applying the transformation as in (6.9);
3. Splitting the transformed vector w̄(k) into

a constant vector w̄U (0) ∈ R
p×1 and a vector

w̄L(k) ∈ R
(N−p)×1 to be updated adaptively.

original untransformed filter, i.e., we have

ȳ(k) = w̄T(k)x̄(k) = wT(k)QTQx(k) = wT(k)x(k)

If the matrix Q is chosen such that it triangularize C
(
CTC

)− 1
2 through a sequence of

Householder transformations, as was proposed in Chapter 3 and [66], the first p elements

w̄U(0) of the transformed vector are constant, while its last N − p elements w̄L(k) can

be updated using any desired adaptive algorithm. The transformation steps are shown in

Fig. 6.1. The advantage of such approach, outlined above, as compared to the generalized

sidelobe canceling (GSC) structure was discussed in Chapter 3 and lies in the efficient

implementation of the productQx(k) that can be carried out through the following product

of p matrices

x̄(k) = Qx(k) = Qp · · ·Q2Q1x(k) (6.9)
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Table 6.2: The Householder-Transform Constrained Affine-Projection Algorithm

HCAP Algorithm
Initialize:
w̄(0) = QC(CTC)−1f
w̄U(0) = p first elements of w̄(0)
w̄L(0) = N − p last elements of w̄(0)

for each k
{
x̄(k) = Qx(k) % according to, e.g., [94]
x̄U(k) = p first elements of x̄(k)
x̄L(k) = N − p last elements of x̄(k)

w̄(k) =

[
w̄U(0)
w̄L(k)

]

d̄(k) =

[
w̄T

U(0)x̄U(k)
first P − 1 elements of d̄(k − 1)

]

e(k) = d(k)− [d̄(k) + X̄T
L(k)w̄L(k)

]
t̄(k) =

[
X̄T

L(k)X̄L(k) + δI
]−1
e(k)

w̄L(k + 1) = w̄L(k) + µX̄L(k)t̄(k)
}

where

Qi =


Ii−1×i−1 0T

0 Q̄i


 (6.10)

and matrix Q̄i = I − 2v̄iv̄
T
i is an ordinary (N − i + 1) × (N − i + 1) Householder trans-

formation matrix. For the implementation of the product in (6.9), see Tables 3.2 and 3.3

in Chapter 3. Table 6.2 presents the Householder-transform constrained affine-projection

(HCAP) algorithm.

6.4 Set-Membership Constrained Affine-Projection

Algorithm

For a review of the set-membership filtering (SMF) framework and the notation used in

this section, see Chapter 4 of this thesis. More detailed treatment of SMF can be found
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in [70]. In our SMF formulation we want to design the filter such that the magnitude of

estimation error is bounded. For this formulation we express the exact membership set in

Equation (4.4) as ψ(k) = ψk−P (k) ∩ ψP (k) where ψP (k) =
k⋂

i=k−P+1

H(i), as in the SM-AP
algorithm of Chapter 5, which corresponds to the intersection of the P past constraint sets.

Next we consider the derivation of a data-selective algorithm whose coefficients belong

to the hyperplane defined by equation (6.1) and also to the last P constraint sets, i.e.,

CTw = f and w ∈ ψP (k). Let us state the following optimization criterion whenever

w(k) �∈ ψP (k).

w(k + 1) = argmin
w

‖w −w(k)‖2 subject to

CTw = f

d(k)−XT(k)w = g(k) (6.11)

where d(k) and X(k) are given by (1.7) and

g(k) = [g1(k) g2(k) . . . gP (k)]
T (6.12)

In order to guarantee that w(k + 1) ∈ ψP (k) the elements of g(k) are chosen such that

|gi(k)| ≤ γ for i = 1 . . . P . The solution is obtained by applying the method of Lagrange

multipliers to the unconstrained function

Jw = ‖w −w(k)‖2 + λT
1 [f −CTw] + λT

2 [d(k)−XT(k)w − g(k)] (6.13)

for which the solution is

w(k + 1) = P [w(k) +X(k)t(k)] + F

= w(k) +PX(k)t(k) +C(CTC)−1
[
f −CTw(k)

]
(6.14)

where

t(k) =
[
XT(k)PX(k)

]−1 [
d(k)−XT(k)w(k)− g(k)]

=
[
XT(k)PX(k)

]−1
[e(k)− g(k)] (6.15)

e(k) = [e(k) ε(k − 1) . . . ε(k − P + 1)]T (6.16)
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and ε(k − i) = d(k − i)− x(k − i)Tw(k) denoting the a posteriori error at iteration k − i,

with P and F given by (6.7) and (6.8) respectively.

Similarly to the SM-AP algorithm discussed in Chapter 5, we have w(k) ∈ H(k− i+1),

i.e., |ε(k − i + 1)| ≤ γ, for i �= 1. Therefore, choosing gi(k) = ε(k − i + 1), for i �= 1, will
cancel all but the first element in the vector e(k)− g(k) of (6.15).
The first element of g(k) is chosen such that the a posteriori error lies on the closest

boundary of H(k), i.e., g1(k) = γe(k)/|e(k)|. With the above choices we get

t(k) =
[
XT(k)PX(k)

]−1
α(k)e(k)u1 (6.17)

where u1 = [1 0 . . . 0]T and

α(k) =


1− γ/|e(k)| if |e(k)| > γ

0 otherwise
(6.18)

is the data dependent step size. Note that for time instants k < P only knowledge of

H(i) for i = 1, . . . , k can be assumed. If an update is needed for the initial time instants
k < P , the algorithm is used with the k available constraint sets. The equations of the

SM-CAP algorithm are summarized in Table 6.3 and a graphical description in R
2 is shown

in Figure 6.2 for the case of N = 2 filter coefficients and P = 1 data-reuse.

We note that for the particular case of P = 1, the SM-CAP reduces to

w(k + 1) = w(k) +
α(k)e(k)

xTPx(k)
Px(k) +C(CTC)−1

[
f −CTw(k)

]
(6.19)

which for a single constraint (p = 1), apart from the correction term, is identical to the a

posteriori output constrained LMS (APOC-LMS) algorithm proposed in [71], reproduced

below:

w(k + 1) = w(k) +
α(k)e(k)

xTPx(k)
Px(k) (6.20)

We stress that in our formulation no accumulation of roundoff errors will cause the solution

to drift away from the constraint hyperplane.

118



Table 6.3: The Set-Membership Constrained Affine-Projection Algorithm.

SM-CAP Algorithm
for each k
{
e(k) = d(k)− xT(k)w(k)
if |e(k)| > γ
{
α(k) = 1− γ/|e(k)|
t(k) =

[
XT(k)PX(k) + δI

]−1
α(k)e(k)u1

w(k + 1) = P [w(k) +X(k) t(k)] + F
}
else
{
w(k + 1) = w(k)

}
}

6.5 On the Convergence of the CAP Algorithms

For unconstrained adaptation algorithms, it is usually expected that convergence of the

coefficients in the mean can be assured as the number of iterations goes to infinity. For

normalized algorithms, such as the NLMS, BNDRLMS, or quasi-Newton (QN) [60] al-

gorithms, convergence with probability one is usually more tractable and is sometimes

preferred. As the CAP and SM-CAP algorithms are normalized algorithms, we will favor

the latter approach in the analysis to be presented in this section. We will analyze the

bias for a system identification problem where a known training sequence is available. An

example of such a setup is given in [36] where the plant is constrained to have linear phase.

The optimal solution wopt to the constrained optimization problem is given by [89]

wopt = R
−1p−R−1C

(
CTR−1C

)−1 (
CTR−1p− f) . (6.21)

Let d(k) be modeled as

d(k) = XT(k)wopt (6.22)

If the coefficient-error vector is defined as

∆w(k) = w(k)−wopt (6.23)
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Figure 6.2: Geometrical interpretation of the SM-CAP algorithm in R
2 for N = 2 and

P = 1.

we get

∆w(k + 1) = P{I− µX(k)[XT(k)PX(k)]−1XT(k)}∆w(k)

+C(CTC)−1[f −CTwopt] (6.24)

The constraints are clearly satisfied by the optimal solution, i.e., f−CTwopt = 0, therefore,

we get

∆w(k + 1) = P{I− µX(k)[XT(k)PX(k)]−1XT(k)}∆w(k) (6.25)

Before continuing we notice that P∆w(k) = ∆w(k). This can be shown for k ≥ 1
by multiplying Equation (6.25) with P from the left and using the fact that the matrix

P is idempotent [94], i.e., PP = P and PT = P. For k = 0 we have w(0) = F, and
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consequently ∆w(0) = F−wopt. Therefore,

P∆w(0) = P (F−wopt)

= PF−Pwopt

=
(
I−C(CTC)−1CT

)
C(CTC)−1f − (I−C(CTC)−1CT

)
wopt

= C(CTC)−1CTwopt −wopt

= F−wopt (6.26)

We can now rewrite Equation (6.25) as

∆w(k + 1) = P{I− µX(k)[XT(k)PX(k)]−1XT(k)}P∆w(k)

= {P− µPX(k)[XT(k)PTPX(k)]−1XT(k)PT}∆w(k)

= {P− µPPX(k)[XT(k)PTPX(k)]−1XT(k)PT}∆w(k)

= {I− µPX(k)[XT(k)PTPX(k)]−1XT(k)PT}∆w(k)

= {I− µX̄(k)[X̄T(k)X̄(k)]−1X̄T(k)}∆w(k)

= T(k)∆w(k) (6.27)

where X̄(k) = PX(k) and T(k) =
{
I− µX̄(k)[X̄T(k)X̄(k)]−1X̄T(k)

}
. Usually convergence

in the mean can be claimed for difference equations of the same form as Equation (6.27),

under the assumption that E[∆w(k + 1)] ∝ E[T(k)]E[∆w(k)] and E[T(k)] being time-
invariant with eigenvalues strictly inside the unit circle. To avoid this strong independence

assumption we look at the conditions for convergence with probability 1 of the system

describing ∆w(k + 1). In order to guarantee stability of the linear time-variant system

of (6.27), consider the following observation

Observation. The CAP algorithm of Eq. ( 6.27) is stable, i.e., ‖∆w(k+1)‖ ≤ ‖∆w(k)‖,
for 0 ≤ µ ≤ 2.

Proof. Using the relation ‖AB‖p ≤ ‖A‖p · ‖B‖p which is valid for all matrix p-norms [94],

we get

‖∆w(k + 1)‖p = ‖T(k)∆w(k)‖p ≤ ‖T(k)‖p · ‖∆w(k)‖p = ‖∆w(k)‖p (6.28)

where we used ‖T(k)‖p = 1 for 0 ≤ µ ≤ 2. �
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As for the asymptotic stability we state the following theorem

Theorem 2. If the input signal is persistently exciting, then the solution of ( 6.27) and,

consequently, the CAP algorithm is asymptotically stable for 0 < µ < 2.

Proof. Using the SVD we can write the transformed input matrix X̄(k) = PX(k) as

X̄(k) = U(k)Σ(k)VT(k), where the unitary matrices U(k) ∈ R
N×N and V(k) ∈ R

P×P

contain the left and right singular vectors, respectively, and Σ(k) ∈ R
N×P contains the

singular values on its main diagonal. Consequently we have

∆w(k + 1) = T(k)∆w(k)

=
{
I− µU(k)Σ(k)VT(k)

[
V(k)ΣT(k)Σ(k)VT(k)

]−1
V(k)ΣT(k)UT(k)

}
∆w(k)

=
{
I− µU(k)Σ(k)

[
ΣT(k)Σ(k)

]−1
ΣT(k)UT(k)

}
∆w(k)

(6.29)

where we used the fact that for two invertible matrices A and B, (AB)−1 = B−1A−1. The

matrix Σ(k)
[
ΣT(k)Σ(k)

]−1
ΣT(k) ∈ R

N×N is a diagonal matrix with P ones and N − P

zeros, i.e.,

Σ(k)
[
ΣT(k)Σ(k)

]−1
ΣT(k) =


 IP×P 0T

N−P×1

0N−P×1 0N−P×N−P


 (6.30)

Therefore,

‖∆w(k + 1)‖2 = ∆wT(k)TT(k)T(k)∆w(k)

= ∆wT(k)
{
I− µ(2− µ)U(k)Σ(k)

[
ΣT(k)Σ(k)

]−1
ΣT(k)UT(k)

}
∆w(k)

= ‖∆w(k)‖2 − µ(2− µ)∆w̃T(k)Σ(k)
[
ΣT(k)Σ(k)

]−1
ΣT(k)∆w̃(k)

= ‖∆w(k)‖2 − µ(2− µ)
P∑

i=1

∆w̃2
i

(6.31)

where ∆w̃(k) = UT(k)∆w(k). For the asymptotic stability, we can conclude that

‖∆w(k+1)‖2 remains constant, i.e., ‖∆w(k+1)‖2 = ‖∆w(k)‖2, during an interval [k1, k2]

if and only if we choose µ = 2 or µ = 0, or ∆w(k) is orthogonal to the P left singular

122



vectors of X̄(k) = PX(k) corresponding to the P non-zero singular values in Σ(k) for all

k ∈ [k1, k2], i.e, U
T(k)∆w(k) = [0, . . . , 0︸ ︷︷ ︸

P

, ∗, . . . , ∗︸ ︷︷ ︸
N−P+1

]T, ∀k ∈ [k1, k2], where the elements

denoted ∗ can take arbitrary values. However, if the input signal is persistently exciting,
we can define an infinite number of sets Si = {Ūk1i

, . . . , Ūk2i
}, where Ū(k) ∈ R

N×P

denotes the P first columns of U(k), with M ≤ (k2i − k1i) ≤ M ′, such that each set Si

completely spans R
N for some finite value of M ′ > 0. This makes it impossible to have

∆w(k) orthogonal to all Ū(k) ∈ Si and, as a consequence, ‖∆wk2i
‖2 < ‖∆wk1i

‖2. Since

the number of sets is infinite, ‖∆w(k + 1)‖2 → 0 for k → ∞ [43], which concludes the

proof. �

6.6 Simulation Results

6.6.1 Identification of Plant with Linear Phase

A first experiment was carried out in a system identification problem where the filter

coefficients were constrained to preserve linear phase at every iteration. For this example

we chose N = 10 and, in order to meet the linear phase requirement, we made

C =



IN/2

0T

−JN/2


 (6.32)

with J being a reversal matrix (an identity matrix with all rows in reversed order), and

f = [0 · · · 0]T (6.33)

This setup was employed to show the improvement of the convergence speed when the

number of data-reuses P is increased. The input signal consists of colored noise with a zero

mean and unity variance with eigenvalue spread around 2000, and the reference signal was

obtained after filtering the input by a linear-phase FIR filter and adding observation noise

with variance equal to 10−10.

Fig. 6.3 shows the learning curves for the CAP, the HCAP, and the SM-CAP algorithms

for P = 1, P = 2, and P = 4. The CAP and HCAP algorithms present identical results in
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Figure 6.3: Learning curves for the CAP and the SM-CAP algorithms with P = 1, P = 2,

and P = 4 data reuses, σ2
n = 10

−10, γ = 3σn, and colored input signal.

infinite precision environment. The value of γ in the SM-CAP algorithm was chosen equal

to
√
6σn. A higher value would result in less frequent updates but in a slightly higher final

misadjustment. It is clear from this figure that for the CAP algorithm the misadjustment

increases with P . It is also clear from this figure that the misadjustment with the SM-CAP

algorithm is lower than with the CAP algorithm, and that the misadjustment increases

more slowly when P is increased. The only way for the CAP algorithm to achieve the

low misadjustment of the SM-CAP is through the introduction of a step size resulting in

a slower convergence. Furthermore, in 500 iterations the SM-CAP algorithm performed

updates in 485, 111, and 100 time instants for P = 1, P = 2, and P = 4, respectively. In

other words, the SM-CAP algorithm with P = 4 had a better performance than the CAP

algorithm while performing updates for only a fraction of data.
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Also for this first experiment, Fig. 6.4 shows that we have no bias in the coefficient vector

after convergence. In this experiment the CAP algorithm and the SM-CAP algorithm

presented identical bias curves. It is worth mentioning that the optimum coefficient vector

used to compute the coefficient error vector was obtained from (6.21) after replacing R−1p

(the Wiener solution) by wus (the FIR unknown system). The input signal was taken as

colored noise generated by filtering white noise through a filter with a pole at α = 0.099.

The autocorrelation matrix for this example is given by

R =
σ2
WGN

1− α2




1 −α (−α)2 · · · (−α)N−1

−α 1 −α · · · (−α)N−2

...
...

. . .
...

(−α)N−1 (−α)N−2 · · · 1




(6.34)

where σ2
WGN is set such that

σ2
WGN

1−α2 corresponds to the desired input signal variance σ
2
x.

6.6.2 Linearly-Constrained Minimum-Variance

Filtering of Sinusoids

A second experiment was done where the received signal consists of three sinusoids in white

noise:

x(k) = sin(0.3kπ) + sin(0.325kπ) + sin(0.7kπ) + n(k) (6.35)

where n(k) is white noise with power such that the SNR is 40 dB. The filter is constrained

to pass frequency components of 0.1rad/s and 0.25rad/s undistorted which results in the

following constraint matrix and vector:

CT =




1 cos(0.2π) . . . cos[(N − 1)0.2π]
1 cos(0.5π) . . . cos[(N − 1)0.5π]
0 sin(0.2π) . . . sin[(N − 1)0.2π]
0 sin(0.5π) . . . sin[(N − 1)0.5π]




(6.36)

fT = [1 1 0 0] (6.37)
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Figure 6.4: First experiment: no bias in the coefficient vector.

In this example the reference signal is set to zero, i.e., e(k) = −xT(k)w(k).

The mean output energy (MOE) is shown in Fig. 6.5 for the CAP and the SM-CAP

algorithms for P = 3. The threshold γ was set to 4σn. A step size µCAP = 0.15 was used

with the CAP to obtain a steady-state close to the SM-CAP algorithm. We see from the

figure that the SM-CAP curve is less noisy than the CAP curve during the initial 1500

iterations. After the convergence both algorithm have similar steady-state value. In 5000

iterations, the average number of updates for the SM-CAP algorithm was 790 as compared

with 5000 updates for the CAP algorithm. The norm of the coefficient-error vector for

values of P from 1 to 3 is depicted in Fig. 6.6. The optimum coefficient vector in this case

was also obtained from (2.9) and computing R with

E[x(k)x(k − i)] =
1

2
[cos(0.3πi) + cos(0.325πi) + cos(0.7πi)] + σ2

nδi (6.38)

From Fig. 6.6 we can realize that, although faster, the CAP (or HCAP) and the SM-CAP
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Figure 6.5: The mean output power

algorithms present, for this particular experiment, an increasing misadjustment with P ,

specially when this number of projections is higher than 2 (this value corresponding to the

BNDRLMS algorithm for the CAP algorithm).

6.6.3 Interference Suppression in a CDMA

Communications System

In this section, we apply the constrained adaptive algorithms to the case of single-user

detection in DS-CDMA mobile communications systems. The goal of this example is to

demonstrate the effect of the correction term used in the SM-CAP and the CAP algorithms,

when the algorithms operate in finite-precision. Using a similar setup as in [71] we can

127



0 200 600 1000 1400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CAP (P = 3) CAP (P = 2) CAP (P = 1)

SM-CAP (P = 3) SM-CAP (P = 2)

SM-CAP (P = 1)

200 · 1031801601208040
k

E
[‖w

o
p
t
−

w
‖2
]

Figure 6.6: Coefficient-vector deviation for the second experiment.

compare our results with those of the APOC-LMS algorithm [71] which, as was noted

earlier in this chapter, does not make use of a correction term.

The received signal for a system with K simultaneous users can be written as

x(k) =
K∑
i=1

Aibi(k)si + n(k) (6.39)

where for the ith user, Ai is the amplitude, si ∈ R
N is the spreading code, and bi(k) ∈ {±1}

is the transmitted bit. In the case of single-user detection, we are only interested in

detecting one user (here assumed to be i = 1). One way to construct the receiver coefficients

is to minimize the Euclidean distance of the coefficient update under the constraint that

the desired user’s spreading code can pass with unity response, i.e.,

w(k + 1) = argmin
w

‖w −w(k)‖2 subject to sT1w = 1 (6.40)

where, using the notation of this chapter, we see that the reference signal d(k) = 0, C = s1,
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and f = 1. To solve this problem adaptively, we can apply the CAP algorithm with one

data-reuse, i.e., P = 1.

For the SMF approach proposed in [71], it was suggested that the receiver coefficients

should be chosen such that they belong to the hyperplane defined by CTw = 1 and also

to the constraint set defined by

H(k) = {w ∈ R
N : |wTx(k)| ≤ A1 + γ′}.

Consequently, we can apply the SM-CAP with P = 1 data-reuse and γ = A1 + γ′ to

implement the single-user detector.

The system considered contained K = 10 users. The spreading codes for each users

were taken as random unit-norm vector, where the interfering user codes were changed for

each of the M = 500 realizations. The signal-to-noise ratio (SNR) for the desired user

was set to 20dB, and the interfering-users amplitudes were set to 5 times the desired user

amplitude. The signal-to-interference plus noise ratio (SINR) versus the iterations was

measured for all algorithms using

SINR(k) =

∑M
i=1

[
wT(k)A1s1

]2∑M
i=1 [w

T(k) {x(k)− A1b1(k)s1}]2

The CAP (P = 1), SM-CAP (P = 1), NCLMS without correction term, and APOC-

LMS [71] algorithms were implemented using 16-bits fixed-point arithmetic. For the SMF

algorithms we used γ = A1 + γ′ = A1 + 0.1 according to the choice made in [71].

Figure 6.7 shows the SINR versus the iteration k. We see from the figure that SM-CAP

and APOC-LMS algorithms have a similar performance, converging faster to a steady-state

solution than the other algorithms. In 1000 iterations the number of times an update took

place for SM-CAP and APOC-LMS were 300. The value of γ′ will trade off the number of

required updates with a slight decrease in SINR steady-state value.

Figure 6.8 shows the deviation from the constraint hyperplane versus the iterations.

Here we can see that the CAP and SM-CAP algorithms will not depart from the constraint

plane. However, the NCLMS without correction term and APOC-NLMS will depart from

the constrain plane due to accumulation of round-off errors. For a continuous operation

or very long data records, algorithms lacking a mechanism to enforce the constraints may
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Figure 6.7: SINR versus iteration for the CAP (P = 1), SM-CAP (P = 1), APOC-

LMS, NCLMS (without correction term) algorithms, 16-bits fixed-point arithmetic, and

γ = (1 + 0.1).

not be a suitable choice [85]. One solution for these last type of projection algorithms

would be to periodically project the solution back onto the hyperplane spanned by the

constraints [25]. We note that the departure from the constraint plane is slower for the

APOC-LMS algorithm as compared to the NCLMS without correction term. This is due

to the sparse update in time coming from the SMF approach to adaptive filtering.

6.7 Conclusions

In this chapter, we have introduced the constrained version of the affine-projection algo-

rithm as well as an efficient Householder-transform constrained version. We also derived
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metic, and γ = (1 + 0.1).

a data-selective version of the constrained affine-projection algorithm that can in certain

applications substantially reduce the number of required updates. The simulation results

confirmed that the proposed algorithms leads to fast convergence speed, low misadjust-

ment, and reduction in the number of updates. The analysis claims of an unbiased solution

was supported by a system-identification example, where the filter was constrained to have

linear phase.
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Chapter 7

Partial-Update NLMS Algorithms

with Data-Selective Updating

In this chapter, we introduce and present mean-squared convergence analysis for the

partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form ex-

pressions for the case of white input signals. The formulas presented here are more accurate

than the ones found in the literature for the PU-NLMS algorithm. Thereafter, the ideas

of the partial-update NLMS-type algorithms found in the literature are incorporated in

the framework of set-membership filtering, from which data-selective NLMS-type of al-

gorithms with partial-update are derived. The new algorithms, referred to herein as the

set-membership partial-update normalized least-mean square (SM-PU-NLMS) algorithms,

combine the data-selective updating from set-membership filtering with the reduced com-

putational complexity from partial updating. A thorough discussion of the SM-PU-NLMS

algorithms follows, where we propose different update strategies, provide stability analysis,

and closed-form formulas for excess mean-squared error (MSE). Simulation results verify

the analysis for the PU-NLMS algorithm and the good performance of the SM-PU-NLMS

algorithms in terms of convergence speed, final misadjustment, and reduced computational

complexity.
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7.1 Introduction

When implementing an adaptive-filtering algorithm, the affordable number of coefficients

that can be used will depend on the application in question, the adaptation algorithm,

and the hardware chosen for implementation. With the choice of algorithms ranging from

the simple least-mean square (LMS) algorithm to the more complex recursive least squares

(RLS) algorithm, tradeoffs between performance criteria such as, e.g., computational com-

plexity and convergence rate, have to be made. In certain applications, the use of the RLS

algorithm is prohibitive due to the high computational complexity and in such cases we

must resort to simpler algorithms. As an example, consider the acoustic echo cancellation

application where the adaptive filter may require thousands of coefficients [111]. This large

number of filter coefficients may impair even the implementation of low computational

complexity algorithms, such as the normalized least-mean square (NLMS) algorithm [1].

As an alternative, instead of reducing filter order, one may choose to update only part of the

filter coefficient vector at each time instant. Such algorithms, referred to as partial-update

(PU) algorithms, can reduce computational complexity while performing close to their full-

update counterparts in terms of convergence rate and final mean-squared error (MSE). In

the literature one can find several variants of the LMS and the NLMS algorithms with

partial updates [73, 74, 75, 114, 115, 116, 117, 118, 119], as well as more computationally

complex variants based on the affine projection algorithm [14].

The objective of this chapter is to propose a framework which combines set-membership

filtering with partial-update. The resulting algorithms benefit from the data-selective up-

dating related to the set-membership framework reducing the average computational com-

plexity, and also from the reduced computational complexity obtained with the partial

update of the coefficient vector. The main contributions are the development of updat-

ing schemes that guarantee performance comparable to that of set-membership filtering

algorithms and partial-updating algorithms whereas computational complexity is reduced

with respect to both updating schemes. Furthermore, a thorough discussion on the prop-

erties of the developed algorithms is presented stating their most important features and

contributing to improve the understanding of their behavior.
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When presenting the basis for developing the new algorithm, here referred to as set-

membership partial-update NLMS (SM-PU-NLMS) algorithm, we rederive and analyze one

particular case of the partial-update NLMS (PU-NLMS) algorithm introduced in [14, 75]

that obeys the principle of minimum disturbance [14]. The results from our analysis, which

is based on order statistics, yield more accurate bounds on step size and on the prediction of

excess MSE when compared to the results presented in [14]. We also clarify the relationship

between the PU-NLMS and M-Max NLMS [74, 116] algorithms, whereby we show that the

M-Max NLMS algorithm uses an instantaneous estimate of the step size that achieves the

fastest convergence in the MSE.

We propose two versions of the SM-PU-NLMS algorithm: one version updates a con-

stant number of coefficients whenever an update is required, whereas the other version

allows the number of coefficients to be updated vary up to a maximum pre-defined num-

ber. In both versions the SMF criterion is used in tandem with the PU criterion to construct

guidelines that will determine when and which coefficients shall be updated. We also pro-

vide proof of convergence for the SM-PU-NLMS algorithm in the mean-squared sense in

the case of white input sequences.

The organization of the chapter is as follows. Section 7.2 reviews the PU-NLMS al-

gorithm for the particular case where the coefficients to be updated are not contiguous

and are chosen based on the minimum disturbance criterion. We also provide an analysis

in the mean-squared sense that is novel for this algorithm and allows new insights to its

behavior. Section 7.3 contains the derivation of the new algorithm. Section 3 also provides

discussion on the convergence properties of the new algorithm. Section 7.4 discusses com-

putational complexity issues of the algorithms, followed by simulations in Section 7.5. In

this section we validate our analysis of the PU-NLMS algorithm and compare our results

with those available in the literature. We also compare the SM-PU-NLMS algorithm for

different choices of update strategy and evaluate the reduction in the computational com-

plexity resulting from the combination of partial-update and set-membership approaches.

Conclusions are given in Section 7.6.
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7.2 The Partial-Update NLMS Algorithm

This section reviews the partial-update NLMS (PU-NLMS) algorithm proposed in [14, 75].

The approach taken here is slightly different from that in [14, 75], but the final algorithm

is the same as the one that satisfies the minimum disturbance criterion. We also provide

analysis in the mean-squared sense with new bounds on the step size to be used in the

PU-NLMS algorithm that are more accurate than the one given in [14].

The objective in PU adaptation is to derive an algorithm that only updates L out of

the N filter coefficients. Let the L coefficients to be updated at time instant k be specified

by an index set IL(k) = {i1(k), , . . . , iL(k)} with {ij(k)}L
j=1 taken from the set {1, . . . , N}.

Note that IL(k) depends on the time instant k. As a consequence, the L coefficients to be

updated can change between consecutive time instants. A question that naturally arises is

“Which L coefficients should be updated?” The answer can be related to the optimization

criterion chosen for the algorithm derivation.

In the conventional NLMS algorithm, the new coefficient vector can be obtained as

the vector w(k + 1) that minimizes the Euclidean distance ‖w − w(k)‖2 subject to the

constraint of zero a posteriori error. Applying the same idea for the partial update of

vector w(k), we take the updated vector w(k + 1) as the vector minimizing the Euclidean

distance ‖w−w(k)‖2 subject to the constraint of zero a posteriori error with the additional

constraint of updating only L coefficients. For this purpose, we introduce the diagonal

matrix AIL(k)
having L elements equal to one in the positions indicated by IL(k) and zeros

elsewhere. Defining the complementary matrix ÃIL(k)
= I−AIL(k)

will give ÃIL(k)
w(k+1) =

ÃIL(k)
w(k), which means that only L coefficients are updated. With this notation the

optimization criterion for the partial update can be formulated as

w(k + 1) = argmin
w

‖w −w(k)‖2 subject to

xT(k)w = d(k)

ÃIL(k)
[w −w(k)] = 0

(7.1)
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Applying the method of Lagrange multipliers (see Appendix A7.1 of this chapter) gives

w(k + 1) = w(k) +
e(k)AIL(k)x(k)

‖AIL(k)
x(k)‖2

. (7.2)

We see from (7.2) that only the coefficients of w(k) indicated by the index set IL(k) are

updated, whereas the remaining coefficients are not changed from iteration k to iteration

k + 1.

We now concentrate on the choice of the index set IL(k). Substituting the recursions

in (7.2) into (7.1) we get the Euclidean distance as

E(k) = ‖w(k + 1)−w(k)‖2 =

∥∥∥∥∥e(k)AIL(k)
x(k)

‖AIL(k)
x(k)‖2

∥∥∥∥∥
2

=
1

‖AIL(k)
x(k)‖2

e2(k) (7.3)

For a given value of e2(k), we can conclude thatE(k) achieves its minimum when ‖AIL(k)
x(k)‖

is maximized. In other words, we should update the L coefficients of w(k) related to the

elements of x(k) with the largest norm.

In order to control stability, convergence speed, and error in the mean-squared sense a

step size is required, leading to the following final recursion for the PU-NLMS algorithm

w(k + 1) = w(k) + µ
e(k)AIL(k)

x(k)

‖AIL(k)
x(k)‖2

(7.4)

The bound on the step size is given by (see Appendix A7.2 of this chapter)

0 < µ <
2

E
[
r2(k)
r̃2(k)

] ≈ 2E [r̃
2(k)]

Nσ2
x

(7.5)

where r̃2(k) has the same distribution as ‖AIL(k)
x(k)‖2, and r2(k) has the same distribution

as ‖x(k)‖2, which in this particular case is a sample of an independent process with chi-

distribution with N degrees of freedom, E [r2(k)] = Nσ2
x. For given N and L, E [r̃2(k)]

can be evaluated numerically, as shown in Appendix A7.3 of this chapter. It can also

be shown that Lσ2
x ≤ E [r̃2(k)] ≤ Nσ2

x for white Gaussian input signals (see Lemma 3 in

Appendix A7.3 of this chapter). A more pessimistic bound on the step size, 0 ≤ µ ≤ 2L/N ,
was given in [14] as a consequence of the approximation E [r̃2(k)] ≈ Lσ2

x.

In Appendix A7.2 of this chapter it is shown that if order statistics is used, the final
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excess MSE after convergence is given by

∆ξexc ≈ N
µσ2

nσ
2
x

2− µE
[
r2(k)
r̃2(k)

]E [ 1
r̃2(k)

]

≈ N
µσ2

nσ
2
x

2E [r̃2(k)]− µNσ2
x

(7.6)

When L = N , Equation (7.6) is consistent with the results obtained for the conventional

NLMS algorithm in [44]. The algorithm presented in this section is identical to the partial-

update NLMS algorithm with multiple blocks of contiguous coefficients to be updated

proposed in [14] for the case of unity block size and L blocks. Choosing blocks of filter

coefficients rather than the L coefficients corresponding to the elements with the largest

magnitude in the input-signal vector can reduce the amount of memory required for im-

plementation [118]. However, such an approach will no longer perform an update that

minimizes the criterion in (7.1), resulting in slower convergence speed.

For a step size µ(k) = µ̄‖AIL(k)
x(k)‖2/‖x(k)‖2, the PU-NLMS in (7.4) becomes identical

to the M-Max NLMS algorithm of [74]. For µ̄ = 1, the solution is the projection of the

solution of the NLMS algorithm with unity step size onto the direction of AIL(k)
x(k), as

illustrated in Figure 7.1. Furthermore, µ = ‖AIL(k)
x(k)‖2/‖x(k)‖2 corresponds to the

instantaneous estimate of E[r2(k)/r̃2(k)] which gives the fastest convergence, as observed

in Appendix A7.2 of this chapter.

7.3 The Set-Membership Partial-Update

NLMS Algorithm

In this section we merge the ideas of partial updating and set-membership filtering. The

goal is to combine the advantages of SMF and PU in order to obtain an algorithm with

sparse updating and low computational complexity per update. The following subsections

present the algorithm derivation and discuss convergence issues.
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w(k)

w(k + 1)

x(k)AIL(k)x(k)

wNLMS

d(k)− wTx(k) = 0

Figure 7.1: The solution w(k + 1) is the PU-NLMS algorithm update obtained with a

time-varying step size µ(k) = ‖AIL(k)x(k)‖2/‖x(k)‖2, or equivalently, the M-Max NLMS

algorithm with unity step size.

7.3.1 Algorithm Derivation

Our approach is to seek a coefficient vector that minimizes the Euclidean distance

‖w−w(k)‖2 subject to the constraint w ∈ H(k) with the additional constraint of updating

only L coefficients. This means that if w(k) ∈ H(k), the minimum distance is zero and
no update is required. However, when w(k) �∈ H(k), the new update is obtained as the
solution to the following optimization problem

w(k + 1) = argmin
w

‖w −w(k)‖2 subject to:

d(k)− xT(k)w = g(k)

ÃIL(k)
[w −w(k)] = 0

(7.7)

where g(k) is a parameter that determines a point within the constraint set H(k), or
equivalently, |g(k)| ≤ γ. Here g(k) is chosen such that the updated vector belongs to the

closest bounding hyperplane in H(k), i.e., g(k) = γ e(k)/|e(k)|. The updating equation is
obtained in a similar manner as the PU-NLMS algorithm in the previous section

w(k + 1) = w(k) + α(k)
e(k)AIL(k)x(k)

‖AIL(k)x(k)‖2
(7.8)

139



but here the step size α(k) is data dependent and given by

α(k) =



1− γ/|e(k)| when w(k) �∈ H(k), i.e., if |e(k)| > γ

0 otherwise

(7.9)

The index set IL(k) specifying the coefficients to be updated is chosen as in the PU-NLMS

algorithm, i.e., the L coefficients in the input vector x(k) having the largest norm. The

algorithm is similar in form to the PU-NLMS algorithm [14], but not in philosophy or in

derivation.

A geometrical interpretation of the SM-PU-NLMS algorithm update is given in Fig-

ure 7.2 for the case ofN = 3 filter coefficients and L = 1 coefficient to be updated. In the fig-

ure, the component x(k−2) is the element of largest magnitude in x(k), therefore the matrix
AIL3(k)

, which specifies the coefficients to update in w(k), is equal to AIL3(k)
= diag(0 0 1).

The solution w⊥ in Figure 7.2 is the solution obtained by the SM-NLMS algorithm abiding

the orthogonality principle. The angle θ shown in Figure 7.2 denotes the angle between the

direction of update AIL3(k)
x(k) = [0 0 x(k − 2)]T and the input vector x(k), and is given

from standard vector algebra by the relation cos θ = |x(k−2)|√
|x(k)|2+|x(k−1)|2+|x(k−2)|2 . In the gen-

eral case, with L coefficients in the update, the angle θ in R
N is given by cos θ =

‖AIL(k)x(k)‖
‖x(k)‖ .

In order to take the solution of the SM-PU-NLMS algorithm closer to the orthogonal

projection than the solution, w⊥, before the update, consider the bound given by the

following lemma:

Lemma 3. ‖w(k + 1)−w⊥‖2 ≤ ‖w⊥ −w(k)‖2 for
‖AIL(k)x(k)‖2

‖x(k)‖2 ≥ 1
2
.

Proof. The orthogonal projection is given by w⊥ = w(k) + α(k) e(k)x(k)
‖x(k)‖2 [69] where α(k)

is given by Equation (7.9). Consequently, ‖w⊥ − w(k)‖2 = α2(k)e2(k)
‖x(k)‖2 . Since w(k + 1)

and w⊥ lie in the same hyperplane, we have [w(k + 1) −w⊥] ⊥ [w⊥ −w(k)]. Therefore,
‖w(k + 1)−w⊥‖2 = ‖w(k + 1)−w(k)‖2 − ‖w⊥ −w(k)‖2 = α2(k)e2(k)

‖AIL(k)x(k)‖2 − α2(k)e2(k)
‖x(k)‖2 . For

‖w(k + 1)−w⊥‖2 ≤ ‖w⊥ −w(k)‖2 to hold
‖AIL(k)x(k)‖2

‖x(k)‖2 ≥ 1
2
is required. �

The lemma tells us that if the instantaneous power in the input vector corresponding to

the partial update is larger than half of the total instantaneous power, the SM-PU-NLMS
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w(k)

w(k + 1)
w⊥

[x(k) 0 0]T

[0 x(k − 1) 0]TAIL(k)x(k) = [0 0 x(k − 2)]T
x(k) = [x(k) x(k − 1) x(k − 2)]T

d(k)− wTx(k) = γ

d(k)− wTx(k) = −γ

θ

Figure 7.2: Geometric illustration of an update in R
3 using L = 1 coefficient in the partial

update, and with |x(k − 2)| > |x(k − 1)| > |x(k)|, the direction of the update is along the

vector [0 0 x(k − 2)]T forming an angle θ with the input vector x(k).
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w(k)

w(k + 1)

wNLMS

x(k)AIL(k)x(k)

H(k)

d(k)− wTx(k) = γ

d(k)− wTx(k) = 0

d(k)− wTx(k) = −γ

θ

φ

Figure 7.3: General projection solution for ‖AIL(k)x(k)‖2 ≥ α(k)‖x(k)‖2.

update will be closer to the orthogonal solution than the current solution. For large values

of N and L, and white input signals, we can make the approximations ‖AIL(k)x(k)‖2 = Lσ2
x

and ‖x(k)‖2 = Nσ2
x, although the former should be considered a rather crude approxima-

tion (see Appendix A7.3 of this chapter). Using these approximations, a lower bound on

the number of coefficients in the partial update is L > N/2. However, it is desirable to

allow any choice of smaller values of L, not bounded from below, as long as it does not

compromise stability or convergence.

Unlike the PU-NLMS algorithm, the solution to the SM-PU-NLMS algorithm is required

to belong to the constraint set. However, stability problems may arise when L is small,

and as a consequence, angle θ is increased. In order to address this problem, consider the

following update strategies.

Proposition 1. Increase the number of filter coefficients to update in the partial update

vector until the relation ‖AIL(k)x(k)‖2 ≥ α(k)‖x(k)‖2 is true.

Proposition 1 gives a solution where the number of coefficients in the update vary with

time. In case of equality we have ‖AIL(k)x(k)‖2 = α(k)‖x(k)‖2, and the update can be

viewed as the projection of the zero a posteriori solution onto AIL(k)x(k), as illustrated

in Figure 7.3. No upper bound on L is guaranteed, and the proposed strategy would

most likely result in L being close to N during the initial adaptation. This is clearly

not desirable for the case of partial-update algorithms, where in many cases L << N is
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x(k)AIL(k)x(k)

H(k)

d(k)− wTx(k) = γ

d(k)− wTx(k) = 0

d(k)− wTx(k) = −γ

d(k)− wTx(k) = γ(k)

d(k)− wTx(k) = −γ(k)

θ

φ

Figure 7.4: Projection solution with temporary expansion of the constraint set H(k) using
a new threshold γ(k).

required. Therefore, we consider the following alternative proposition.

Proposition 2. Increase the number of filter coefficients to update in the partial update

vector until the relation ‖AIL(k)x(k)‖2 ≥ α(k)‖x(k)‖2 is true or L = Lmax. If L = Lmax, in-

crease the threshold γ temporarily at the kth iteration to γ(k) =
(‖x(k)‖2−‖AIL(k)x(k)‖2)

‖x(k)‖2 |e(k)|.

As illustrated in Figure 7.4, Proposition 2 will temporarily expand the constraint

set in order to provide a feasible solution if the required number of coefficients to meet

Proposition 1 exceeds a predefined maximum number of coefficients Lmax, set at the design

stage. Tables 7.1 and 7.2 show two different versions of the SM-PU-NLMS algorithm. The

version in Table 7.1 implements Proposition 2 and the number of coefficients are allowed

to vary freely such that L ≤ Lmax, where Lmax ≤ N is a predefined value. If Lmax = N

the algorithm will be the same as the one in Proposition 1. Table 7.2 implements a version

where L is fixed during the adaptation. The choice between the two versions is application

dependent.

7.3.2 Convergence Issues

Any partial update strategy imparts deviation in the direction of update from the direction

orthogonal to any hyperplane defined by d(k)−wTx(k) = c, where c is a scalar. The angle
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of deviation depends on the particular strategy adopted to choose the index set IL(k). The

strategies suggested in Propositions 1 and 2 above puts a bound on the norm of the update

by stating that
‖AIL(k)x(k)‖2

‖x(k)‖2 ≥ α(k) = 1 − γ/|e(k)|. If this implies violation of condition
L ≤ Lmax, then the value of γ is temporarily increased (see Figure 7.4). Notice that it

may happen that θ approaches 90◦, but in these cases the distance to the constraint set

boundary will approach zero due to the temporarily increased γ. This is explained by the

fact that the angle φ in Figure 7.3 is forced to be always greater than or equal to 90◦ as a

consequence of ‖AIL(k)x(k)‖2/‖x(k)‖2 ≥ α(k).

A simple model for the desired signal will be adopted for a preliminary study of the

convergence properties of the algorithm. For this particular case, let the coefficient-error

vector at instant k be defined as ∆w(k) = w(k)−wopt and the desired signal be modeled

as d(k) = xT(k)wopt. The error signal is expressed as e(k) = −xT(k)∆w(k), and the

following expression gives the norm of the coefficient-error vector:

‖∆w(k + 1)‖2 = ‖∆w(k)‖2 − 1

‖AIL(k)x(k)‖2
×

∆wT(k)
[
α(k)AIL(k)x(k)x

T(k) + α(k)x(k)xT(k)AIL(k) − α2(k)x(k)xT(k)
]
∆w(k)

= ‖∆w(k)‖2 − 1

‖AIL(k)x(k)‖2
∆wT(k)

[
2α(k)AIL(k) − α2(k)I

]
x(k)xT(k)∆w(k)

(7.10)

A reduction in the coefficient-error norm will occur whenever the term

∆wT(k)
[
2α(k)AIL(k) − α2(k)I

]
x(k)xT(k)∆w(k) is positive. Although matrix[

2α(k)AIL(k) − α2(k)I
]
x(k)xT(k) has nonnegative eigenvalues (see Lemma 4 below) there

exist time instants when the coefficient-error norm may increase as a result from the partial-

update strategy, as indicated in Figure 7.5. Whenever a reduction in the coefficient-error

norm occurs, the optimal α(k) (which causes the largest reduction) is given by the following

lemma:

Lemma 4. The SM-PU-NLMS algorithm with α(k) = ‖AIL(k)x(k)‖2/‖x(k)‖2 achieves the

largest reduction in coefficient-error norm whenever a reduction occurs.

Proof. MatrixB =
[
2α(k)AIL(k) − α2(k)I

]
x(k)xT(k) is a rank-one matrix with the nonzero

eigenvalue given by λ = 2α(k)‖AIL(k)x(k)‖2 − α2(k)‖x(k)‖2. Consequently for
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α(k) ≤ 2 ‖AIL(k)x(k)‖2/‖x(k)‖2 the relation λ ≥ 0 holds. Maximizing the eigenvalue of
matrix B with respect to α(k) gives αλmax(k) = ‖AIL(k)x(k)‖2/‖x(k)‖2. �

Notice that, although we cannot guarantee convergence with probability one (see Fig-

ure 7.5), we can guarantee almost sure convergence with the heuristic argument that the

update, even if only for a fraction of the coefficients, will point toward the optimal solution

most of the time. In addition, we can guarantee convergence in the mean-squared sense

for the case of additive measurement noise, as stated by the following theorem.

w(k)

w(k + 1)

wopt

AIL(k)x(k)

H(k)

d(k)− wTx(k) = γ

d(k)− wTx(k) = 0

d(k)− wTx(k) = −γ

‖∆w(k + 1)‖

‖∆w(k)‖
θ

φ

Figure 7.5: Coefficient-error norm evolution.

Theorem 3. The SM-PU-NLMS converges in the mean-squared sense for zero-mean i.i.d.

input signals in the presence of zero-mean additive uncorrelated noise when

‖AIL(k)x(k)‖2

‖x(k)‖2 ≥ α(k).

Proof. In order to account for the data-selectivity of SMF adaptive filters, assign a proba-

bility of update Pe(k) = P (|e(k)| > γ) and proceed similarly to the derivation described in

Appendix A7.2 of this chapter to calculate the coefficient-error norm for the SM-PU-NLMS

algorithm:

∆w(k + 1) =

[
I− Pe(k)α(k)

AIL(k)x(k)x
T(k)

‖AIL(k)x(k)‖2

]
∆w(k) + Pe(k)α(k)

n(k)AIL(k)x(k)

‖AIL(k)x(k)x(k)‖2
.

(7.11)
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With the independence assumption and also assuming the additive measurement noise to

be zero mean and not correlated with the white input signal, the expression for the excess

MSE is

∆ξ(k + 1) = ∆ξ(k)

− σ2
xE

[
α(k)Pe(k)∆w

T(k)
{
x(k)xT(k)AIL(k) +AIL(k)x(k)x

T(k)
}
∆w(k)

‖AIL(k)x(k)‖2

−α2(k)P 2
e (k)∆w

T(k)x(k)xT(k)∆w(k)

‖AIL(k)x(k)‖2

]
+ E

[
α2(k)P 2

e (k)n
2(k)

‖AIL(k)x(k)‖2

]

= ρ1 − ρ2 + ρ3

(7.12)

The scalar ρ2 is a linear function of ∆ξ(k), therefore convergence is ensured if ρ2 assumes

positive values only. Substituting α(k) by its upper bound will account for a worst-case

scenario. Invoking the independence assumption and assuming N large such that ‖x(k)‖2

can be considered a reasonable estimate of (N + 1)E [x2(k)], we may rewrite ρ2 as

ρ2 ≈ σ2
xE

[
∆wT(k)Pe(k)

(
x(k)xT(k)AIL(k) +AIL(k)x(k)x

T(k)
)
∆w(k)

‖x(k)‖2

−P 2
e (k)‖AIL(k)x(k)‖2∆wT(k)x(k)xT(k)∆w(k)

‖x(k)‖4

]

≈ σ2
xE

[
∆wT(k)Pe(k)E

[
x(k)xT(k)AIL(k) +AIL(k)x(k)x

T(k)
]
∆w(k)

Nσ2
x

−P 2
e (k)E

[‖AIL(k)x(k)‖2
]
∆wT(k)∆w(k)

N2σ2
x

]
(7.13)

Evaluating ρ2 requires the computation of the elements of matrix

B = E
[
x(k)xT(k)AIL(k) +AIL(k)x(k)x

T(k)
]
. Assuming the input samples to be i.i.d.,

the off-diagonals will average to zero. Since AIL(k) will select only the L values in the

input vector with the largest norm, the diagonal will be an average over the L strongest

components only. Let pi denote the probability for one of the L largest components that

contribute to the ith element in the diagonal. Let also {yi}N
i=1 be the elements of the input

vector x(k) sorted in magnitude such that y1 ≤ y2 ≤ · · · ≤ yN . For a given L, the

146



diagonal elements of B can be calculated as follows

E
[
x(k)xT(k)AIL(k) +AIL(k)x(k)x

T(k)
]
i,i
= 2

L−1∑
i=0

E
[
pi y

2
N−i

]
=
2

N
E
[‖AIL(k)x(k)‖2

]
(7.14)

where for i.i.d. signals pi = 1/N . Substituting this into (7.13) results in

ρ2 ≈ Pe(k) [2− Pe(k)]
E
[‖AIL(k)x(k)‖2

]
N2σ2

x

∆ξ(k) < 2∆ξ(k) (7.15)

Therefore, Equation (7.12) is always stable. �

7.4 Computational Complexity

The computational complexities of the PU-NLMS and the SM-PU-NLMS algorithms de-

pend on the number of coefficients to be updated and the search technique for finding

the L elements of x(k) with largest norm. The computational complexities per update

in terms of the number of additions, multiplications, and divisions for the NLMS, SM-

NLMS, PU-NLMS, and SM-PU-NLMS (L fixed) algorithms are shown in Table 7.3. Al-

though the PU-NLMS and SM-PU-NLMS algorithms have a similar complexity per update,

the gain of applying the SM-PU-NLMS algorithm comes through the reduced number of

required updates, which cannot be accounted for a priori. For time instants where no

updates are required, the complexity of the SM-PU-NLMS algorithm is due to filter-

ing, i.e., N − 1 additions and N multiplications. In the operation counts, the value of

‖x(k − 1)‖2 was assumed known at iteration k such that ‖x(k)‖2 can be computed as

‖x(k)‖2 = ‖x(k − 1)‖2 + x2(k) − x2(k − N), which requires only two multiplications and

two additions. In order to find the L largest-norm elements in x(k), comparison-sort algo-

rithms can be used, which require a maximum number comparisons of order O(N logN).

Examples of such comparison-sort algorithms are the Heapsort and the Mergesort algo-

rithms [120, 121]. For the SM-PU-NLMS algorithm, it is necessary that the comparison-

sort algorithm run irrespectively if an update is required or not. Both the PU-NLMS

and the SM-PU-NLMS algorithms require additional memory to store the pointers to the

sorted list. The amount of additional memory required and the number of elements to sort
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can be reduced by partitioning the coefficient and input vectors into blocks and perform

block-updates as proposed in [118], but at the expense of a decrease in convergence speed.

7.5 Simulation Results

7.5.1 Verification of the Analysis of the PU-NLMS Algorithm

In this subsection, our analysis of the PU-NLMS algorithm is validated using a system-

identification setup. The number of coefficients was N = 51, and the input signal was

zero-mean Gaussian noise with σ2
x = 1. The signal-to-noise ratio (SNR) was set to 60 dB.

Figure 7.6 shows the learning curves for the case of L = 5, L = 10, and L = 25

coefficients in the partial update. The curves were obtained through averaging 100 trials.

The step size for each value of L was chosen such that convergence to the same level of

misadjustment was achieved. The corresponding theoretical learning curves obtained from

evaluating Equation (7.32) were also plotted. As can be seen from the figure, the theoretical

curves are very close to the simulations. Figure 7.7 shows the excess MSE as a function

of µ ranging from 0.1µmax to 0.8µmax for different values of L, where µmax is given by

Equation (7.34) in Appendix A7.2 of this chapter. Note that the axis is normalized with

respect to the maximum step size µmax, which is different for each value L. The quantity

E [r̃2(k)] needed for the calculation of µmax was obtained through numerical integration. For

L = 5, L = 10, and L = 25 the corresponding values were E [r̃2(k)] = 21.438, E [r̃2(k)] =

32.232, and E [r̃2(k)] = 43.860, respectively. As can be seen from Figure 7.7, the theoretical

results are very close to the simulations within the range of step sizes considered. Using

step sizes larger than 0.8µmax, resulted in poor accuracy or caused divergence. This is

expected due to the approximations made in the analysis. However, only step sizes in the

range µ ≤ 0.5µmax are of practical interest because larger ones will neither increase the

convergence speed nor decrease the misadjustment. This fact is illustrated in Figure 7.8,

where the theoretical convergence curves were plotted for different values of µ using L = 10

and N = 51. Therefore, we may state that our theoretical analysis is able to predict very

accurately the excess MSE for the whole range of practical step sizes.
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Figure 7.6: Learning curves for the PU-NLMS algorithm for N = 51, L = 5, L = 10 and

L = 25, SNR = 60 dB.

In Figure 7.9 we compare our results (solid lines) with those provided by [14] (dashed

lines) for the particular case where their algorithm is equal to the one presented in Section II

of this chapter. As seen from Figure 7.9, the results presented in [14] are not accurate even

for reasonably high values of L, whereas Figure 7.7 shows that our analysis is accurate for

a large range of L. This comes from the fact that in [14] order statistics was not applied in

the analysis, resulting in poor estimates of E[‖AIL(k)x(k)‖2] for most values of L < N .

7.5.2 SM-PU-NLMS Algorithm

In this section, the two SM-PU-NLMS algorithms are applied to a system identification

problem. The number of coefficients was N = 51 and colored noise input signal was used

with SNR set to 60dB. The colored noise was generated by passing a white noise sequence

through a one-pole filter with pole at zp = 0.8238. The bound on the output error was

set to γ =
√
5σ2

n. Figure 7.10 shows the learning curves averaged over 500 simulations for

the SM-PU-NLMS algorithm using the algorithm shown in Table 2, i.e., with L constant.
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Figure 7.7: Excess MSE for the PU-NLMS algorithm versus the step size µ for N = 51,

L = 5, L = 10 and L = 25, SNR = 60 dB.

The learning curve for the PU-NLMS algorithm with L = 5 was included as a reference.

The step size in the PU-NLMS algorithm was µ = 0.3676 which resulted in the same level

of misadjustment as the SM-PU-NLMS algorithm with L = 5. In 12000 iterations the

number of times that an update took place for L = 5, L = 10 and L = 25 were 4950, 3340,

and 2420, respectively. This should be compared to the 12000 updates required by the

PU-NLMS algorithm, and the drastic reduction is a result of the SMF strategy. As can be

seen from Figure 7.10 the SM-PU-NLMS algorithm converges faster than the PU-NLMS

algorithm for the same level of misadjustment with less computational complexity.

Figure 7.11 shows the learning curves for the SM-PU-NLMS algorithm with variable L.

The counterpart results for the SM-PU-NLMS algorithm obtained previously are included

in Figure 7.11 for reference. As can be seen from the figure, the SM-PU-NLMS algorithm

with variable L converges to a slightly higher steady-state value than the SM-PU-NLMS

algorithm using fixed L. In 12000 iterations the number of times that an update took

place for Lmax = 5, Lmax = 10, and Lmax = 25 were 5070 and 3640, and 2840, respectively,
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Figure 7.8: Theoretical learning curves for different choice of step size in the PU-NLMS

algorithm for N = 51 and L = 10, SNR = 60 dB.
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Figure 7.9: Comparison of Equation ( 7.32) (solid lines) with the excess MSE formula

obtained from literature (dashed lines).
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Figure 7.10: Learning curves for the SM-PU-NLMS algorithm using fixed L for N = 51,

L = 5, L = 10 and L = 25, and the PU-NLMS algorithm for L = 5, SNR = 60 dB.

which is slightly higher than when L is fixed. However, the number of coefficients in the

partial update was also smaller for most of the time instants, which can be observed from

Figure 7.12 where for L ≤ Lmax = 25, the number of coefficients in the partial update

versus time is shown during one realization. As can be seen from the figure, a number of

coefficients close to Lmax = 25 coefficients were updated during the initial iterations whereas

later on this value decreases. The same trend was observed for the case of Lmax = 5 and

Lmax = 10.

7.6 Conclusions

This chapter studied normalized partial-update adaptation algorithms. Convergence analy-

sis for the conventional partial-update NLMS (PU-NLMS) algorithm was presented, which

gave further insight to the algorithm in terms of stability, transient and steady-state per-

formances. The analysis was validated through simulations showing excellent agreement.

New stability bounds were given for the step size that controls the stability, convergence
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Figure 7.11: Learning curves, L ≤ Lmax (dashed) and L fixed (solid).

speed, and final excess MSE of the PU-NLMS algorithm. It was shown that the step size

giving the fastest convergence could be related to the time-varying step size of the M-Max

NLMS algorithm. These results extend and improve the accuracy of the previous results

reported in the literature. The excellent agreement between the theory and the simula-

tions presented here for the PU-NLMS algorithm has advanced significantly the study of

order-statistic-based adaptive filtering algorithms. Furthermore, novel data-selective nor-

malized adaptation algorithms with partial updating were derived based on the concept of

set-membership filtering.

The new algorithms benefit from the reduced average computational complexity from

the set-membership filtering framework and the reduced computational complexity result-

ing from partial updating. Simulations were presented for a system identification appli-

cation. It was verified that not only the data-selective adaptation algorithms with partial

updating can further reduce the computational complexity when compared to the partial-

update NLMS algorithm, but can also present a faster convergence for the same level of

excess MSE. The new SM-PU-NLMS algorithm proposed and discussed herein shows a new

perspective for adaptive filters when a very large number of coefficients needs to be used
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Figure 7.12: Number of coefficients updated in the partial update versus time in a single

realization for the SM-PU-NLMS algorithm with L variable and L ≤ 25.
and high performance needs to be maintained.

Appendix A7.1

The optimization problem in (7.1) can be solved by the method of Lagrange multipliers

having the following objective function

Jw = ‖w −w(k)‖2 + λ1

[
d(k)− xT(k)w

]
+ λT

2 ÃIL(k) [w −w(k)] . (7.16)

where λ1 is a scalar and λ2 is an N ×1 vector. Setting the derivative of (7.16) with respect
to w equal to zero and solving for the new coefficient vector gives us

w = w(k) +
λ1

2
x(k)− ÃIL(k)

λ2

2
(7.17)

In order to solve for the constraints, multiply Equation (7.17) by ÃIL(k) and subtract

ÃIL(k)w(k) from both sides, i.e.,

ÃIL(k) [w −w(k)] = 0 = +λ1

2
ÃIL(k)x(k)− ÃIL(k)

λ2

2
(7.18)

154



where we have used ÃIL(k)ÃIL(k) = ÃIL(k). Therefore,

ÃIL(k)
λ2

2
=

λ1

2
ÃIL(k)x(k) (7.19)

If we substitute (7.19) in (7.17) we get

w = w(k) +
λ1

2
x(k)− λ1

2
ÃIL(k)x(k)

= w(k) +AIL(k)x(k)
λ1

2
(7.20)

where we used AIL(k) = I − ÃIL(k). Finally, λ1 is obtained by pre-multiplying (7.20) by

xT(k), which gives λ1/2 = e(k)/‖AIL(k)x(k)‖2 for xT(k)w(k) = d(k). Our final update is

then given by

w(k + 1) = w(k) +
e(k)AIL(k)x(k)

‖AIL(k)x(k)‖2
. (7.21)

Appendix A7.2

In this appendix, the PU-NLMS algorithm is analyzed in the mean-squared sense.

Coefficient-Error Vector

In order to derive expressions for the second-order statistics of the PU-NLMS algorithm

we will first derive an expression for the evolution of the coefficient-error vector. Assuming

that the desired signal is given by

d(k) = xT(k)wopt + n(k) (7.22)

and defining the coefficient error vector as ∆w(k) = w(k)−wopt, we can express the error

as

e(k) = n(k)− xT(k)∆w(k) (7.23)

Therefore, from Equations (7.4) and (7.23) we have

∆w(k + 1) =

[
I− µ

AIL(k)x(k)x
T(k)

‖AIL(k)x(k)‖2

]
∆w(k) + µ

n(k)AIL(k)x(k)

‖AIL(k)x(k)x(k)‖2
. (7.24)
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Excess MSE for White Input Signals

For the MSE analysis, we assume that the vectors are excited in a discrete number of

directions. This model was used to analyze the NLMS algorithm in [44] and is consistent

with the first- and second-order statistics of the original input signal. The model was also

successfully used to analyze the quasi-Newton (QN) [43] and the binormalized data-reusing

LMS (BNDRLMS) [51] algorithms.

The following assumptions are made:

• Independence between x(k) and ∆w(k).

• The vectors x(k) andAIL(k)x(k) are modeled by x(k) = s(k)r(k)v(k) andAIL(k)x(k) =

s̃(k)r̃(k)ṽ(k), respectively, where

– s(k) and s̃(k) take on values ±1 with probability 1/2.

– r(k) and r̃(k) are positive real valued stochastic variables such that r2(k) and

r̃2(k) have the same probability distribution functions as ‖x(k)‖2 and ‖AIL(k)x(k)‖2,

respectively.

– v(k) is equal to one of the N orthonormal eigenvectors of R = E
[
x(k)xT(k)

]
denoted as V(k), and ṽ(k) is equal to one of the N +1 orthonormal eigenvectors
of R̃ = E

[
AIL(k)x(k)x

T(k)AT
IL(k)

]
denoted as Ṽ(k). For white Gaussian input

signals v(k) and ṽ(k) are uniformly distributed and R and R̃ share the same

eigenvectors, i.e., V(k) = Ṽ(k). Therefore,

P [v(k) = V(k)] = P [ṽ(k) = V(k)] = 1
N

(7.25)

Notice that for any value of L we have s(k) = s̃(k) since the inner product of x(k) and

AIL(k)x(k) is always positive.

For white input signals, the excess MSE is given by ∆ξ(k+1) = σ2
xtr [cov (∆w(k + 1))] [1],
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where

cov [∆w(k + 1)] = E
[
∆w(k + 1)∆wT(k + 1)

]
= E

[(
I− µ

AIL(k)x(k)x
T(k)

‖AIL(k)x(k)‖2

)
∆w(k)∆wT(k)

(
I− µ

AIL(k)x(k)x
T(k)

‖AIL(k)x(k)‖2

)T
]

+ E

[
µ2n2(k)

AIL(k)x(k)x
T(k)AT

IL(k)

‖AIL(k)x(k)‖4

]

= E
[
∆wk∆w

T(k)
]

− E
[
µ
∆w(k)∆wT(k)x(k)xT(k)AT

IL(k)

‖AIL(k)x(k)‖2

]

− E
[
µ
AIL(k)x(k)x

T(k)∆w(k)∆wT(k)

‖AIL(k)x(k)‖2

]

+ E

[
µ2
AIL(k)x(k)x

T(k)∆w(k)∆wT(k)x(k)xT(k)AT
IL(k)

‖AIL(k)x(k)‖4

]

+ E

[
µ2n2(k)

AIL(k)x(k)x
T(k)AT

IL(k)

‖AIL(k)x(k)‖4

]
(7.26)

Let us analyze each term separately:

ψ1 = σ2
xtr
{
E
[
∆w(k)∆wT(k)

]}
= ∆ξ(k) (7.27)

ψ2 = σ2
xtr

{
E

[
µ
∆w(k)∆wT(k)x(k)xT(k)AT

IL(k)

‖AIL(k)x(k)‖2

]}

= σ2
xtr

{
E

[
µ
∆w(k)∆wT(k)s(k)r(k)s̃(k)r̃(k)v(k)ṽT(k)

s̃2(k)r̃2(k)

]}

= σ2
xE
[
µ∆wT(k)v(k)ṽT(k)∆w(k)

]
E

[
s(k)r(k)s̃(k)r̃(k)

r̃2(k)

]

=
µ

N
E

[
r(k)

r̃(k)

]
∆ξ(k) (7.28)

where we used Equation (7.25). Since tr {AB} = tr {BA} we will have ψ2 = ψ3.

ψ4 = σ2
xµ

2tr

{
E

[
AIL(k)x(k)x

T(k)∆w(k)∆wT(k)x(k)xT(k)AT
IL(k)

‖AIL(k)x(k)‖4

]}

= σ2
xµ

2E

[
∆wT(k)x(k)xT(k)AT

IL(k)AIL(k)x(k)x
T(k)∆w(k)

‖AIL(k)x(k)‖4

]
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= σ2
xµ

2E

[
∆wT(k)x(k)xT(k)∆w(k)

‖AIL(k)x(k)‖2

]

= σ2
xµ

2E

[
∆wT(k)v(k)vT(k)∆w(k)

r2(k)

r̃2(k)

]

= µ2 1

N
E

[
r2(k)

r̃2(k)

]
∆ξ(k) (7.29)

ψ5 = σ2
xµ

2tr

{
E

[
n2(k)

AIL(k)x(k)x
T(k)AT

IL(k)

‖AIL(k)x(k)‖4

]}

= σ2
xσ

2
nµ

2tr

{
E

[
ṽ(k)ṽT(k)

1

r̃2(k)

]}

= σ2
xσ

2
nµ

2E

[
1

r̃2(k)

]
(7.30)

Finally we obtain the expression for the excess MSE

∆ξ(k + 1) ≈ ψ1 − ψ2 − ψ3 + ψ4 + ψ5

=

{
1− µ

N

(
2E

[
r(k)

r̃(k)

]
− µE

[
r2(k)

r̃2(k)

])}
∆ξ(k) + µ2σ2

xσ
2
nE

[
1

r̃2(k)

]
(7.31)

which can be approximated as

∆ξ(k + 1) ≈
{
1− µ

N

(
2− µE

[
r2(k)

r̃2(k)

])}
∆ξ(k) + µ2σ2

xσ
2
nE

[
1

r̃2(k)

]
(7.32)

where the conservative approximation E
[
r(k)
r̃(k)

]
≈ 1 was used. The stability region in the

mean-squared sense for µ is

0 < µ <
2

E
[
r2(k)
r̃2(k)

] (7.33)

where the step size µ = 1/E
[
r2(k)
r̃2(k)

]
yields maximum reduction of ∆ξ(k) in (7.32). Further

simplifications with E
[
r2(k)
r̃2(k)

]
≈ E[r2(k)]

E[r̃2(k)]
give us

0 < µ <
2E [r̃2(k)]

Nσ2
x

(7.34)

where E [r2(k)] = Nσ2
x and E [r̃

2(k)] can be calculated using knowledge of L and N using

order statistics (see also Appendix A7.3 of this chapter). A more pessimistic bound can be

obtained by using the relation E [r̃2(k)] ≥ Lσ2
x (see Appendix A7.3 of this chapter) giving

0 < µ <
2L

N
(7.35)
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which corresponds to the bound given in [14]. We stress that the analysis presented in this

appendix shows that step sizes larger than the ones indicated by Equation (7.35) may be

used according to Equation (7.34).

For k → ∞ we have

∆ξexc ≈ N
µσ2

nσ
2
x

2− µE
[
r2(k)
r̃2(k)

]E [ 1
r̃2(k)

]

≈ N
µσ2

nσ
2
x

2E [r̃2(k)]− µE [r2(k)]

= N
µσ2

nσ
2
x

2E [r̃2(k)]− µNσ2
x

. (7.36)

Appendix A7.3

In this Appendix it is shown how to obtain numerically E [r̃2(k)] used in the step size

bound derived in Appendix A7.2 of this chapter. In addition, a lower bound on E [r̃2(k)]

is provided. This parameter was also required in the analysis of the M-Max NLMS algo-

rithm [116], which used the approach as presented here.

The basic problem here is to calculate the second moment of ordered statistics. This

problem has received much attention in the past, see, e.g., [122, 123, 124], where recursion

formulas and tables were produced for expected values and moments of ordered statistics

for various different distributions.

Let y = [y1 y2 . . . yN ]
T be a vector containing the elements of vector

x(k) = [x(k) x(k−1) . . . x(k−N+1)]T ordered in value, i.e, y1 ≤ y2 ≤ . . . ≤ yj ≤ . . . ≤ yN .

The probability density function fj(y) of the jth element in y is given by [125]

fj(y) =
N !

(j − 1)!(N − j)!
F j−1

x (y) [1− Fx(y)]
N−j fx(y) (7.37)

where fx(x) is the density of the unsorted random variables in vector x(k) and F j−1
x (x) is

their cumulative distribution to the power of j−1. The second moment of the jth element
is given by

E
[
y2
j

]
=

∫ ∞

−∞
y2
j fj(y)dy

=
N !

(j − 1)!(N − j)!

∫ ∞

−∞
y2F j−1

x (y) [1− Fx(y)]
N−j fx(y)dy (7.38)
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The PU-NLMS algorithm chooses the L elements in x(k) of largest magnitude. Therefore,

if we order the values in AIL(k)x(k) in magnitude their second moments can be found by

evaluating (7.38) for j = N + 1 − L, . . . , N . For the case of Gaussian input signals and

using the cumulative distribution and density functions for the magnitude of a Gaussian

variable, we have

Fx(y) =


2Φx(y)− 1 for y ≥ 0

0 otherwise
(7.39)

and

fx(y) =


2φx(y) for y ≥ 0

0 otherwise
(7.40)

where Φx(y) and φx(y) are the cumulative distribution function and the density function,

respectively, of a Gaussian variable. The density function fx(y) in (7.40) is in fact the

probability density function for a random variable from a chi-distribution with one degree

of freedom. The problem of calculating moments of order statistics in samples from the

chi-distribution (1 degree of freedom) was considered in [124], where a recursion formula

was developed. The quantity E [r̃2(k)] is given by

E
[
r̃2(k)

]
=

N∑
j=N+1−L

2N !

(j − 1)!(N − j)!

∫ ∞

0

y2 [2Φx(y)− 1]j−1 [2− 2Φx(y)]
N−j φx(y)dy

(7.41)

which for given N and L can be evaluated numerically.

With the aid of the previous results we are able to calculate bounds for E[r̃2(k)], as

stated in the following lemma.

Lemma 5. If the input signal x(k) is Gaussian with zero mean and variance σ2
x, then

E[r̃2(k)] =
∑N

j=N+1−L E[y
2
j ], where L ≤ N , is bounded as follows:

Lσ2
x ≤ E[r̃2(k)] ≤ Nσ2

x

with equality iff L = N .

Proof. In the proof we need the following relations

E[y2
1] ≤ E[y2

2] ≤ · · · ≤ E[y2
k] ≤ · · · ≤ E[y2

N ] (7.42)

160



N∑
k=1

E[y2
k] = NE[x2(k)] (7.43)

E[y2
1] < σ2

x, for N > 1 (7.44)

Relation (7.42) holds true by definition, and (7.43) holds true for an arbitrary distribution

for which the integral in (7.38) converges [124], as shown below

N∑
j=1

E[y2
j ] =

N∑
j=1

N !

(j − 1)!(N − j)!

∫ ∞

−∞
y2F j−1

x (y) [1− Fx(y)]
N−j fx(y)dy

=

∫ ∞

−∞

{
N∑

j=1

N !

(j − 1)!(N − j)!
F j−1

x (y) [1− Fx(y)]
N−j

}
y2fx(y)dy

=

∫ ∞

−∞

{
N

N−1∑
k=0

(N − 1)!
k!(N − 1− k)!

F k
x (y) [1− Fx(y)]

N−1−k

}
y2fx(y)dy

=

∫ ∞

−∞
Ny2fx(y)dy

= NE[x2(k)] (7.45)

where we used
∑N

k=0

(
N
k

)
pkqN−k = (p+q)N . The relation (7.44) can be shown for Gaussian

input signals by evaluating (7.38) for j = 1 with Fx(y) and fx(y) given by Equations (7.39)

and (7.40):

E[y2
1] =

∫ ∞

0

2Ny2 [2− 2Φx(y)]
N−1 φx(y)dy

=

∫ ∞

0

2NNy2 [1− Φx(y)]
N−1 1√

2πσ2
x

e
−y2

2σ2
x dy

≤
∫ ∞

0

2NNy2

[
1

2
e

−y2

2σ2
x

]N−1
1√
2πσ2

x

e
−y2

2σ2
x dy

=

∫ ∞

0

2Ny2 1√
2πσ2

x

e
−Ny2

2σ2
x dy

=
σ2
x√
N

< σ2
x for N > 1. (7.46)

where we used 1 − Φx(y) ≤ 1
2
e

−y2

2σ2
x for y ≥ 0 [125], and ∫∞

0
y2e−ay2

dy = 1
4a

√
π
a
. From

relations (7.42) and (7.44) it follows that Lσ2
x ≤ E[r̃2(k)] ≤ Nσ2

x holds true for L ≤ N .

Relation (7.44) gives us strict inequality for L < N when N > 0, and consequently equality

holds true only when L = N . �
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Table 7.1: SM-PU-NLMS Algorithm, L Time-Varying with L ≤ Lmax.

SM-PU-NLMS Algorithm L ≤ Lmax

for each k
{
Px = Px + x2(k)− x2(k −N)
e(k) = d(k)− xT(k)w(k)
if |e(k)| > γ
{
[z, i] = sort [|x(k)|] % z, i: sorted vector and index vector
l = 0 % no. of coefficients in PU
px = 0 % power in PU
α(k) = 1− γ/|e(k)|
b = α(k) · Px

while px < b and l < Lmax % too low power?
{
l = l + 1 % increase no. of coefficients in PU
px = px + z2(l) % power in PU

}
if px < b % increase bound?
{
γ(k) = [1− px/Px] · |e(k)|
α(k) = 1− γ(k)/|e(k)| % equal to px/Px

}
% update coefficients specified by i
w[i(1 : l)] = w[i(1 : l)] + α(k)e(k)/pxx[i(1 : l)]

}
else
{
w(k + 1) = w(k)

}
}
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Table 7.2: SM-PU-NLMS Algorithm, L Fixed During the Adaptation.

SM-PU-NLMS Algorithm L fixed
for each k
{
Px = Px + x2(k)− x2(k −N)
e(k) = d(k)− xT(k)w(k)
if |e(k)| > γ
{
[z, i] = sort [|x(k)|] % z, i: sorted vector and index vector
px = z

T(1 : L)z(1 : L) % power in PU
α(k) = 1− γ/|e(k)|
b = α(k) · Px

if px < b % increase bound?
{
γ(k) = [1− px/Px] · |e(k)|
α(k) = 1− γ(k)/|e(k)| % equal to px/Px

}
% update coefficients specified by i
w[i(1 : l)] = w[i(1 : l)] + α(k)e(k)/pxx[i(1 : l)]

}
else
{
w(k + 1) = w(k)

}
}

Table 7.3: Computational Complexity.

ALG. MULT. ADD. DIV.

NLMS 2N + 3 2N + 2 1
SM-NLMS 2N + 3 2N + 3 2
PU-NLMS [14] N + L+ 3 N + L+ 2 1
SM-PU-NLMS N + L+ 3 N + L+ 3 2
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Chapter 8

Conclusions and Future Work

This chapter concludes the results of the thesis and suggests a number of future directions

that can be taken.

8.1 Conclusions

The thesis considered the derivation of new adaptive filtering algorithms for two types of

adaptive filters: the linearly-constrained adaptive filter and the conventional training-based

adaptive filter. When choosing an adaptive filtering algorithm, it is important to take into

account its computational complexity, convergence speed and misdajustment. These per-

formance measures have a direct effect on the applicability of the particular algorithm to

the application in mind. For example, in communications systems the amount of training-

data may be limited to a few samples. Therefore, a fast convergence speed of the adaptive

filtering algorithm can be crucial. Low computational complexity of the adaptive filtering

algorithm can, for example, reduce the required power consumption of the implementation.

A low power consumption is important in wireless applications, particularly at the mobile

terminal side, where the physical size of the mobile terminal and long battery life are

crucial. In addition, a high sampling rate limits the time for the chosen digital-signal pro-

cessor to execute the operations involved. Therefore, it is desirable to choose an algorithm

that with a specification on the convergence speed, has a low computational complexity

without compromising final misadjustment. The algorithms derived in the thesis could
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serve as viable low-complexity alternatives to the RLS algorithm in applications where a

simple algorithm such as the NLMS algorithm does not fulfill the requirements set on the

convergence speed and misadjustment.

The linearly-constrained adaptation algorithms derived in the thesis provide a simple

mechanism to trade off computational complexity and convergence speed. The constrained

affine-projection (CAP) algorithm can overcome the slow convergence of the normalized

constrained LMS (NCLMS) algorithm, in situations where the input signal is colored,

by increasing the number of data-reuses, i.e., using more information in each update.

The increased number of data-reuses of the CAP algorithm will slightly increase the final

misadjustment. The set-membership constrained affine-projection (SM-CAP) algorithm

reduces the effect of this tradeoff of complexity and misadjustment. Furthermore, the

reduced average computational complexity of the SM-CAP algorithm can be considerable

as compared to that of the CAP algorithm, especially when the number of data-reuses

increases and the CAP update is computationally complex.

The Householder Transform (HT) approach to linearly constrained problems results

in an efficient implementation of LCMV adaptive filters. By a HT transformation of the

input signal, the dimension of the subspace in which the coefficients of the adaptive filter are

adapted can be reduced. In terms of computational complexity, the proposed Householder

structure compares to the most efficient implementation of the generalized sidelobe canceler

(GSC), which is a structure frequently used in literature. As with the GSC structure, the

HT implementation can be used with any unconstrained adaptation algorithm.

Table 8.1 summarizes the tradeoff between the complexity and convergence of the adap-

tive filtering algorithms for linearly-constrained problems considered in this thesis. The

comparison considers the case of colored input signals, which is the case when the most

notable differences in terms of convergence rate can be made. It should be noted that

for the SM-CAP algorithm, the data-selectivity of the algorithm can decrease the average

complexity considerably, although the computational complexity per update can be rather

high.

For the proposed family of training-based set-membership normalized algorithms with
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Table 8.1: Algorithm Comparisons for LCMV Adaptive Filters.

ALG COMPLEXITY CONVERGENCE

CLMS LOW SLOW
NCLMS/NHCLMS LOW SLOW

HCLMS LOW SLOW

HCAP/CAP LOW–HIGH1), 2) SLOW–FAST3)

SM-CAP LOW–HIGH1), 2) SLOW–FAST3)

1) Complexity depends on the number of data reuses.
2) Reduced average complexity.
3) Slow convergence for low complexity and fast convergence
for high complexity.

data-reuse, the computational complexity per update is easily varied. The results indi-

cate that the algorithms can provide favorable results in terms of convergence speed and

steady-state MSE, unlike the most widely used algorithms such as the LMS and NLMS

algorithms. In addition, the data-selective updating of the proposed algorithms can sub-

stantially reduce the overall computational complexity as compared to the application

of their conventional counterparts. The set-membership binormalized data-reusing (SM-

BNDRLMS) algorithms, having two data-reuses, are viable low-complexity alternatives to

the set-membership NLMS (SM-NLMS) algorithm when the input signal is colored. If the

SM-BNDRLMS algorithms do not present sufficient convergence speed, an arbitrary num-

ber of data-reuses can be utilized in the coefficient update by applying the set-membership

affine-projection (SM-AP) algorithm.

Adaptive set-membership filters with data-reuse update more frequently during the

transient. As the solution approaches the steady-state, updating becomes less frequent.

If there is a tight constraint on processing power such that a high order of the adaptive

filter is needed, even the application of the SM-NLMS algorithm can turn out impractical.

The new set-membership partial-update NLMS (SM-PU-NLMS) algorithm shows a new

perspective for adaptive filtering when a very large number of coefficients needs to be

used, and high performance needs to be maintained. The SM-PU-NLMS algorithm can be

properly designed to control the computational complexity during the transient phase by

167



Table 8.2: Algorithm Comparisons for Training-Based Adaptive Filters.

ALG COMPLEXITY CONVERGENCE

PU-NLMS LOW SLOW

SM-PU-NLMS LOW2) SLOW

SM-NLMS LOW2) SLOW

SM-BNDRLMS LOW2) MEDIUM

SM-AP LOW–HIGH1), 2) SLOW–FAST3)

1) Complexity depends on the number of data reuses.
2) Reduced average complexity.
3) Slow convergence for low complexity and fast convergence
for high complexity.

only updating a fraction of all the filter coefficients. When approaching the steady-state,

the number of coefficients used in the update can be further reduced. The SM-PU-NLMS

offers the advantage of sparse update in time as compared to the conventional partial-

update NLMS (PU-NLMS) algorithm. Furthermore, the data-dependent step size offers

fast convergence and low misadjustment.

Finally, Table 8.2 summarizes the tradeoff between the complexity and convergence of

the training-based adaptive filtering algorithms considered in this thesis.

As was the case for the comparison in Table 8.1, the input signals are assumed to be

correlated. We note that for the case of PU algorithms, the convergence rate can in general

be rather slow if only a small fraction of the filter coefficients are used for the update.

However, one application where this type of algorithm can provide favorable results is

network echo cancellation, where only a small fraction of the echo path to be identified is

nonzero. In such cases the convergence speed may be sufficient even when a small number

of coefficients are used in the update. Furthermore, the data-selective versions can provide

a low overall complexity, although, the complexity per update is rather high.

8.2 Future Work

For the linearly-constrained adaptive filters considered in the thesis, the set of equations

specifying the constraints was assumed to be fixed and perfectly known throughout the
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adaptation. In some applications this may not hold true for all time instants. For example,

we may have a mismatch in the vectors building the constraint matrix as compared to

the true ones, or the constraint values and the constraint matrix could be time-varying.

The case of constraint mismatch can cause signal cancellation of the signal of interest.

Algorithms more robust to mismatch in the constraint matrix could be obtained if quadratic

constraints are incorporated into the solution. This should be investigated for the proposed

linearly-constrained adaptive filtering algorithms. If constraint values are time-varying,

convergence problems may occur because the optimal solution will change accordingly.

An approach to handle situations of time-varying constraints was proposed for the GSC

structure in [92], where a transformation was applied to the input signal such that the

adaptation was not affected by these changes. It would be of interest to investigate how

this solution would combine with the Householder structure considered in this thesis.

The set-membership adaptive filtering algorithms considered herein made use of an ob-

jective function, which in some sense minimizes the Euclidean distance to the set of feasible

solutions. The form of the objective function constrained the solutions to be bounded by

a spheroid as was also the case for the SM-NLMS algorithm. An interesting extension

of our work is to associate bounding ellipsoids to the normalized data-reusing algorithms.

This may result in a family of data-reusing algorithms which can be related to the optimal

bounding ellipsoid (OBE) algorithms proposed withing the SMF framework [70].

The convergence analyses of the PU-NLMS and the SM-PU-NLMS algorithms were

performed for white input signals. This should be extended to the case of colored input

signals. Furthermore, an extension to incorporate data-reuse into the partial-update so-

lution could improve the convergence speed for colored inputs. The expected increase in

computational complexity per update as a result of reusing past data motivates an SMF

approach to reduce the overall complexity.
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