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Abstract

We present two new algorithms for calculating call blocking
probabilities for multi-layer multicast streams with the as-
sumption that blocked calls are lost. Users may join and
leave the multicast connections freely, thus creating dy-
namic multicast trees. We define the state space, and give
two recursive algorithms; for the general case and for the
special case where all multicast channels are statistically
indistinguishable. Our recursive algorithms are linear with
respect to the number of links. The special case is also poly-
nomial with respect to the number of channels.

1 Introduction

We present two new algorithms for calculating call block-
ing probabilities for multi-layer multicast streams with the
assumption that blocked calls are lost. Consider a network
with circuit switched traffic, or packet switching with strict
quality guarantees, such as the IntServ architecture in the
Internet. Decisions on whether to allow a new connection
to network are made according to availability of resources.

In general, traffic is a mixture of point-to-point (unicast)
and point-to-multipoint (or multicast) traffic. There are
well known algorithms for calculating blocking probabil-
ities for unicast traffic in absence of multicast traffic, see
e.g. [6, 5, 16]. These models apply also for static multicast
traffic. For dynamic multicast trees, however, these models
do not work, since they fail to capture the network state de-
pendent call establishment behaviour of such connections.
In these networks, users at the leaf nodes can join or leave
any of the several multicast channels offered by one source
(i.e. the root of the tree) in the network. The users join-
ing the channels form dynamic multicast connections that
share the network resources. Note that, due to the multicast
nature of traffic, the amount of resources reserved at this
time depends on the network state. If there are users on that
channel nearby, the reservation may concern just the access
link, whereas the other extreme is that resources must be
reserved along the whole route from the source to the new
user. Blocking occurs when there are not enough resources
available in the network to satisfy the resource requirements
of a request. Since blocked calls are lost, this system is also
called a “multicast loss system”. The multicast loss system
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may be seen as a virtual network over the real one, carrying
the multicast traffic of the real network.

Audio and video streams can be coded hierarchically {7].
In hierarchical, or layered, coding, information is separated
according to its importance, and then coded and transmitted
separately. In this paper, we study a setting where a user
may, depending on her needs and abilities, subscribe to the
most important substream only, in which case we say she
is on layer 1, or subscribe to any number r of the most im-
portant substreams, in which case we say she is on layer r.
Our focus is on the calculation of blocking probabilities for
multicasted layered streams. The assumption that blocked
calls are lost implies that if a user does not get the desired
layer (or number of substreams) due to blocking, she will
not get any layer (there will be no re-negotiation).

In this paper, we give an algorithm allowing calculation
of call blocking probabilities in this general setting, both in
the case where the multicast loss system is in isolation (with
no unicast traffic), and in the case where there is indepen-
dent background traffic. The latter case refers to a scenario
where multicast trees are embedded in a network with an
arbitrary topology carrying also unicast traffic. The algo-
rithm has a complexity of O((U — 1)(L + 1)27), where U
denotes the number of user populations (or leaves) in the
network, L the number of layers, and I the number of mul-
ticast channels in the network. Since the dependence on U
is only linear, the network size will not preclude usage of
the algorithm.

In addition to the general setting, we study a special case,
which is applicable if channels within each layer are statis-
tically indistinguishable. By this we mean that

o the channels are chosen with the same probabilities,

¢ the mean holding time for these channels is the same,
and

o the capacity needed to carry a specific layer is the same
for all channels on any link.

We show how to organise the problem of calculating ex-
act time blocking probabilities for each layer under this as-
sumption of statistical indistinguishability, yielding an al-
gorithm with complexity O((U — 1)(I + 1)¥{L+2)). The -
algorithm is polynomial with respect to I, which is a con-

[1 2002 IEICE. Reprinted, with permission, from Proceedings of HPSR2002,

Kobe, Japan.

—268—


kex
ã 

kex
2002 IEICE.  Reprinted, with permission, from Proceedings of HPSR2002, Kobe, Japan.


siderable improvement from the exponential growth of the
state space.

Chan and Geraniotis [4] studied the system of layered
video multicasting. They gave the definition of the state
space, but resorted on.approximations for the actual cal-
culations. After their work, research on multicast block-
ing probabilities has concentrated on non-layered multicast
streams. Karvo et al. [9] studied the non-layered system
under the assumption of having an infinite user population
generating call requests at the leaf nodes and a single fi-
nite capacity link in the network. An exact algorithm to
compute the blocking probabilities was derived. This work
was extended by Boussetta and Belyot [3] by adding uni-
cast traffic to the system. Reduced load approximations of
the blocking probabilities in a network were derived in [10].
Ramanan et al. [15] have studied phase transitions in mul-
ticast calls, using simplified static multicast calls. Their
study suggests, that the reduced load approximation is not
adequate for multicasting, and further work is needed. An
exact algorithm with complexity O((U —1)22/) for the net-
work case with dynamic non-layered multicast connections
has been given in Nyberg et al. [14, 13]. Efficient Monte-
Carlo simulation method for dynamic multicast networks
has been developed by Lassila et al. [12]. Recently, there
has been slight progress in the case where the multicast
streams are layered. Karvo et al. [8] developed an algorithm
for calculating blocking probabilities of two-layer streams
with Poisson arrivals and exponential holding times. The
contribution of the present paper is a generalisation of this
work to an arbitrary number of layers, and a study of insen-
sitivity for different known user models for this system.

This paper is organised as follows. Section 2 presents
the basic system model, and the basic time blocking prob-
ability calculation with exponential complexity. Section 3
presents a time blocking probability calculation algorithm
with reduced complexity with respect to the network size.
Section 4 shows how to efficiently calculate time blocking
probabilities for statistically indistinguishable channels us-
ing a polynomial-time algorithm. Section 5 studies the in-
sensitivity of the system, and the call blocking probabili-
ties, when applying some basic user population models to
the system. The results are summarised in section 6.

2  Multicast loss system

We study the multicast loss system using notation presented
in Nyberg et al. [14], adding multilayer-specific properties
to the model. Consider a network consisting of J links,
indexed with j € J = {1, ..., J}, link j having a capacity
of C; resource units. The network is organized as a tree (see
Figure 1). The set I/ denotes the set of user populations,
located at the leaves of the tree. The leaf links and the user
populations connected to them are indexed with the same
index w € U = {1,...,U}. The set of links on the route
from user population u to the root node is denoted by R.,,.
The user populations downstream link j, i.e. for which link

J € Ry, are denoted by Uf;. The size of the set {; is denoted
by U;. Let M denote the set of all links downstream link
J (including link 7), and A the set of neighbouring links
downstream link j (excluding link 7). The links of the tree
are indexed so that for all 5/ € Aj, j'. < j. Thus, the
root link is denoted by J. The multicast network supports I
channels, indexed with ¢ € Z = {1,...,I}. The channels
originating from the root node represent different multicast
transmissions, from which the users may choose. There are
L layers. Each layer ! € £ = {1,..., L} has a capacity
requirement d(!). The capacity requirements are unique and
d(l) < d(l') foralll < I, i.e. we assume that layer L
contains all hierarchically coded sub-streams, layer 2 the
two most important ones, and layer 1 only contains the most
important sub-stream.

Figure 1: Network definitions. R, is shown by the thick
links.

2.1 State space

The state of link j is defined by the states of the channels ¢.
Each channel is on one of the states {0,1,..., L}, depend-
ing on whether the channel is off, or on layer 1, ..., L. That
is, the state of channel ¢ on link j is Y ; € {0,...,L}. The
state of link j is denoted by the vector Y; = (Y ;i € I) €
S, where S is the link state space S = {0, ..., L}!. A mul-
ticast connection is defined by the tuple (u,,!) of the user
population v (leaf link), channel ¢ and layer [. The network
state X is defined by the states Y, of the leaf links,

X=Yyuveld)=Y,ueld,iecI)e, (1)

where Q = {0, ..., L}V*! denotes the network state space.
The state of any link j is determined by the network state as
follows:

Y. ifj=uel,
Y5 =9 max (Yy) otherwise, 2)
u' €U;

where max(-) denotes the componentwise max-operation.
The occupancy of any link j is determined by the link state

as
I

S = D(Y;) =Y _d(Y;s),

=1
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Figure 2: Original and supplemented networks. There are
three possible supplemented networks, each having exactly
the same states in the links from the original network (solid
lines).

where d(0) = 0, i.e. when channel is off, it does not need
any link capacity. We denote the occupancy generated by
all other channels but I by S} = D'(Y;) = Z{;ll da(Y;)-
Now, in a finite capacity network, the state space is trun-
cated by the capacity constraints of the links,
Q:{xen]D(yj)gcj,VjeJ}. 3)
Any tree network where the number of child nodes of
all non-leaf nodes is greater or equal to two can be sup-
plemented to a binary tree by adding supplemented links
with infinite capacity. There are many possible ways to sup-
plement trees, see Figure 2. The states of the original net-
work are the same as the states in the corresponding links in
the supplemented network. Because of this property, every
algorithm that works properly in a binary tree-shaped net-
works, works in any tree network, as stated in the following
lemma:

Lemma 2.1 Given an original tree J and any supple-
mented tree J', the state of any link j in the original net-
work can be calculated recursively from the leaf links U;
using the supplemented tree as

Y, fi=u€lU,
Y;= max (Y;) otherwise,
J'EN;

where Nj is the set of downstream neighbour links of link j
in the supplemented tree.

This result follows directly from the associativity and
commutativity of the max(-) operation, applied recursively
to the whole tree. Because of this property, we can use a
supplemented tree to calculate the link probabilities instead
of the original network. In the sequel we assume that the
multicast loss system is first supplemented to a binary tree.

2.2 Probability distributions

Let us assume that the user populations of the leaf links are
independent, and that the leaf link distributions m,(y) =
P{Y, =y}, u € U, are known, and represent stationary
distributions of reversible Markov processes satisfying the
detailed balance equations. Several types of user population
models of this kind have been discussed in [13], and will be
presented in section 5.

The steady state probabilities 7(x) of the network states
in a system with infinite link capacities can be calculated
from

r(x) = P{X = x} = [ mulyu),

uel

C))
since the user populations are independent.

Lemma 2.2 Probabilities 7(x), x € Q, of states in a sys-
tem with finite link capacities are obtained by truncation

ﬁ(x):P{x=x|Xefz}=%‘;—m,

where P{X € Q} = 3", (%)

Proof: By assumption, the leaf processes satisfy the
detailed balance. Since the leaf link processes are inde-
pendent, and the whole process is thus of product form
(Eq. (4)), detailed balance holds for the network state space.
Thus, truncation is allowed (see e.g. [11], [16, page 19]). =

2.3 Blocking

In a finite capacity network, blocking occurs whenever a
user tries to establish a connection for channel 7 and layer
r, and there is at least one link j € R, where the channel
is on state ! < r and there is not enough spare capacity for
setting the channel on the requested layer. Without loss of
generality, we assume that the channels are ordered so that
the channel for which we are calculating blocking has the
greatest index I. Consider a link j. A request for layer
r succeeds if there is enough capacity already reserved for
the layer in link j, or there is enough free capacity in the
link, i.e.

max{d(r),d(y;,1)} < Cj — D'(y;) ®)
We use the expression “link j blocks” if this condition does
not hold for link j. The set B,, - consists of the states where
at least one link blocks for connection (u, I, 7), when layer
r of channel I is requested, and is defined as

Bur = {x € fllElj ERy :d(r) > Cj— D'(yj)}.
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Then the time blocking probability for connection (u, I,7)
is
P{X € By}

Bu,r:P{xeBu,T|x€Q}= P{XEQ}

_ P{X e Q\Bu,} ©

P{X € 0}

Call blocking probabilities for users depend on the chosen

user model, and will be discussed in section 5. Calcula--

tion of time blocking probabilities for layers is now easy,
but very time consuming: the number of states in the state
space is (I + 1)V, Thus, efficient algorithms are needed.
An algorithm utilizing the so-called MAX-convolution is
presented in the next section.

3 MAX-convolution algorithm

As seen in Eq. (4), network state probabilities can be calcu-
lated from the leaf link state probabilities. That is, the state
of any link j in the network is defined by the leaf links I/;.

Definition 3.1 The MAX-convolution operation ® for any
two functions f, g : S — R is defined as

[fedly) = >

¥y max(y',y")=y

fyNey"),

where max(-, -) denotes a componentwise MAX-operation.

Lemma 3.2 The link probabilities 7;(y) of any link j in
the network can be calculated recursively as follows:

7 (y) - {WJ' (Y)

[7Ts ® 7rt] (y)

field
otherwise,

where Nj = {s,t}.

Proof: Consider three links in a branching point of the
tree, such that ; = {s,t}. Since the processes in links s
and ¢ are independent,

P{Y; =y} =

>

Yo,ye:max(ys,¥e)=y

P {Ys = ys}P {Yt = }'t} .
This operation corresponds to the MAX-convolution oper-
ation. u

3.1 Denominator
Definition 3.3 Define forall j € 7,

Qi) =P{Y; =y; D(Y;) < Cy,j' € M;}.

Definition 3.4 The truncation operator T]d for any function
f 8 = Ris defined as

T f(¥) = F¥) 1)<

Theorem 3.5 The terms is the state sum P{X € 1}
(Eq. (6)) :
P{X €0} =3 Qi)
y

can be calculated recursively as

drn ) Timi(y) ifj e,
Q;(y) = {Tjd [Q¢® Q] (y) otherwise,

and Nj = {s,t}.

Proof: Link probabilities Q%(y) are defined by point-
wise disjoint sets of network states. These sets are all in the
allowed state space €1, according to the definition of Q? (y)-
The union of all sets of network states defined by different
Q%(y) is the allowed state space.

Lemma 3.2 states the recursive way to calculate link
probabilities. The truncation constraints (Eq. (3)) are link-
wise, and affect link probabilities in a similar way as the
original state space probabilities. The truncation operations
applied recursively guarantee that the link capacity con-
straints are taken into account for all links j' € M. =

3.2 Numerator

The condition for a state in € to be in set { \ B, is given
in Eq. (5).

Definition 3.6 Define for j € R,

Tey) = P{Yj =y; D(Y;) <Cy,j' € My;

d(r) < Cjy — DI(Y]")J’ € Mj ﬂRu}.

Definition 3.7 The truncation operator T, for any func-
tion f : S = R is defined as

T2 £(y) = F(¥) Lmax{a(r),d(yr)} <C;— D' (v)-

Theorem 3.8 The terms in the state sum P{X € Q\ By .}
(Eq. (6))

P{X € Q\B,,} = Q3.%)
y
can be calculated recursively as

7 (y) = Tj?r“’j ) when j = u, and
G T7, (@3, ® QY] (y) whenj € Ru\ {u},

and Nj = {s,t}, where s € R,.

The only difference to Theorem 3.5 is a tighter condi-
tion for links on route R,,. This is implemented by the new
truncation operator, which guarantees simultaneously that
the state is in the allowed state space, and that it is a non-
blocking state.
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3.3 Algorithm

To calculate the time blocking probability B, ., state sums
P{X € Q\ B,,} and P{X € Q} are needed. These are
calculated as in the previous subsections. The algorithm is
summarised as follows:

1. Setj:=1.
2. Calculate Q;-l(y) for all y from Theorem 3.5.

3. If j € Ry, calculate Q;fr(y) for all y from Theo-
rem 3.8.

4. Setj:=j+1.Ifj <J,jump to step 2.

5. Sum Q%(y) over y and divide it with the sum of
Q7 (y)togetl— By,

Note here that our link numbering scheme (Vj' €
Nj;3' < j) guarantees that link probabilities for all links
J' € Nj have already been calculated when calculation of
the link probability of link j starts.

The complexity of the MAX-convolution algorithm is
O((U — 1)(L + 1)*). For each MAX-convolution oper-
ation, two leaf links are removed, leaving one leaf link. The
process stops when there is only one leaf link remaining
(link J). That is, the number of MAX-convolution opera-
tions equals the reduction of the number of leaf links, U —1.

Each convolution step requires operating each value of
the J-element vector y, where each element has L + 1 possi-
ble values, yielding (L + 1)” possible values. There are two
such vectors involved, thus the number of steps is (L +1)2'.

The complexity of the algorithm is seen to be linear with
respect to the number of leaf links U. This is a signifi-
cant improvement compared to the exponential complexity
of the original problem.

3.4 Background traffic

So far we have treated a single multicast tree in isolation.
When there are also unicast traffic and other multicast trees
in the network, we need to use approximations to get ef-
ficient algorithms. The approximation used here groups
all traffic except the interesting multicast tree as indepen-
dent background traffic. The approach is similar to the one
in [14], but note that other multicast trees may also occupy
the same links.

To take the background traffic into account, we first cal-
culate the link occupancy distribution g;(z) in the link in
the case there is only background traffic. Then, the only re-
maining step is to redefine the truncation operators of the
MAX-convolution algorithm to take background traffic into
account:

Definition 3.9 Define truncation operator ff for any func-
tionf:S8 = Ras

R ©;-D(y)
Ty =| Y, 4] k).
z=0

Figure 3: Combining two links when L = 2. All channels
in Z are equally probable. Link s has |£;| = [; channels on
layer 1 and |£2| = l2 channels on layer 2. Sets £; and L
are disjoint. Similarly, link ¢ has m; and ms channels on
layers 1 and 2, respectively.

Definition 3.10 Define truncation operator T}’,’r for any
Sunction f : S = Ras

C;—D' (y)—max{d(r),d(y1)}

T f(y) = a(2) | F(y)-

z=0

4 Combinatorial algorithm

It may happen that all channels in the network are statisti-
cally indistinguishable (as explained in section 1), to a suf-
ficient accuracy. Thus, to describe the state of a link, it is
not necessary to express the state of every individual chan-
nel ¢ separately (as in the previous section), but just to tell
the number of channels on each layer . Then, the link state
can be defined as K; = (Kj;1 € £), where Kj; refers to
the number of channels on layer [ in link 5. This results in
a considerable reduction in the dimensionality of the state
space, since typically L < I. In this section, we develop an
algorithm with polynomial complexity for this special case.

First, assume that link j has two downstream neighbour
links, A; = {s,t}. The set of channels that are on layer [
on link s is denoted by £; C Z. These sets are disjoint, i.e.
foralll # ', £; N Ly = 0. The set of channels that are
on layer { on link ¢ is denoted by M; C Z. These sets are
also disjoint; for all  # I', M, N My = . We denote the
intersections of these sets as £; "My = X1, LN My =
Xi2, LaNMy = X1, LoN Mo = Va2, and so on. For
a two layer example, see Figure 3. The set of channels that
are on layer [ on link j is denoted by ;. Letl; = [£4],
and correspondingly from I, to Iy, from m; to mr, and
from ky to kr. Let z,p = |Xpp| forall a,b € L. Let
1= (ll,...,lL),mz (ml,...,mL),k = (kl,A..,kL).

First consider the case L = 1. Now, z = [ + m — k, and
P{K; = k| K, =, K; = m} is easily calculated from the
following lemma.
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Lemma 4.1 Given three links j, s, and t, such thar Nj =
{s,t}, carrying multicast traffic with a single layer and 1
statistically indistinguishable channels,

(o) (m %)
(m)
The proof of this lemma can be found in 2, 1].

For the general case, we first give our notation for the
multinomial coefficient:

P{K; =k|K,=1,K,=m} =

( a ) _ al
b - ba) (a— Z:':l bn’)!Hz'ﬂ(bn'!)'

In the general case, there are L2 possible intersections for
the sets. Of these, however, L are defined by the others. We
choose the intersections x, o as such:

L

Z (wa,a: + za/,a) .

a'=a+1

ZTa,a =lo+ Mg — kg —

The sizes of the rest of the intersections are then free pa-
rameters. From now on, we will use the short notation of
style P {k} for probabilities P {K = k}. With these def-

initions, the probability P {K; =k |K; =1, K; =m} =
P {k|1,m} is easily calculated from the following lemma.

Lemma 4.2 Given three links j, s, and t, such that ./\/] =
{s,t}, carrying multicast traffic with L layers and I statis-
tically indistinguishable channels,

P{k|l,m} = o(k,1,m,I)

z1,2 Z1,L T2,1 £2,3 T2,L L1 TL,L—-1
( I‘EnZ)’“ L
mM1—3 051 %a,1 " ML—3 > Ta,L ( la )
T 11 :
(m1 mL) a=1 a1 a,L

This lemma can be proven easily by induction, but be-
cause of space restrictions, we have omitted the proof. For
the two layer case, see [8].

Definition 4.3 We define the binary operation @ for all
Sfunctions f, g : Zf_ — Ras

[f @ g)(k) =) > o(k,1,m,I)f()g(m).
1 m

Let 7m;(k) = P {K; = k} = P {k} denote the link state
probability in link j corresponding to the state vector k.

Lemma 4.4 The link probabilities w;(k) of any link j in
network can be calculated recursively as follows:

oy _ (k)
mik) = {[m ® ] (k)

fjelu
otherwise,

where N = {s,t}.

Proof: Consider then three links, 7, s, and ¢, such that
Nj = {s,t}.

P{k} =3 ) P{k|L,m}P{1}P{m}.

Lemma 4.2 gives the probability P {k |1,m}. Combining
this with Definition 4.3 yields one step in the recursion. =

4.1 Denominator
For this case, we define

L
D(k) = kd(l).
=1

Definition 4.5 Define
Q](k) = P{Kj =k ; D(Kj:) < le,jl € Mj}.

Definition 4.6 We define the truncation operator T} for any
function f : ZX — Ras

T; f(k) = f(K)1pao<c;-

Theorem 4.7 The terms in the state sum P{X € Q}
(Eq. (6)) ~
P{X e} =3 Q,K),
y

can be calculated recursively as

A _ Tim;(k) fjeu
Qjk) = {Tj [és ® Q;] (k) otherwise,

and Nj = {s,t}.

Proof: Lemma 4.4 states the recursive way to calcu-
late link probabilities. The truncation constraints (Eq. (3))
are linkwise and affect link probabilities in a similar way
as the original state space probabilities. The truncation op-
erations applied recursively guarantee that the link capacity
constraints are taken into account for all links j' € M;. =

4.2 Numerator

We can calculate the numerator in the same way as the
denominator. The state of the channel the request is for,
however, affects the truncation condition for non-blocking
states, as seen in Eq. (5). Thus, we need to consider the in-
teresting channel I separately for links on the route R,,. In
this subsection, we use prime (') for all variables which are
calculated using the first I — 1 channels, i.e. excluding the
channel for which we are calculating blocking.

Let K'] denote random variables in a state space where
there are I — 1 channels, corresponding to the variables K ;
in the complete state space. L; denotes the random variable
representing the state of channel I in link 7, i.e. L; = Yj .

Since the link probabilities Q;(k) have been defined for
I channels, we define an operator E to generate link proba-
bilities Q% (k', 1), where state [ of channel [ is explicit.
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Definition 4.8 Define operator E for any function f :
Z% - Ras

1-¥2) f0),  if1=0

HEL) f( +e), if1>0
forallk' -1 < I Fork'-1>1I; Ef(k',l) =0. Here, ¢

denotes a vector whose ™ element is 1, and the others are

0.
Denote 7} (k’,1) =P {K}; = k', L; =}

Lemma 4.9 Given link probability distribution m;(k), it
holds that

Ef(K,l) =

(K, 1) = Em;(K',1).
Proof: First, the probabilities P {k’, [} are as follows:

P{K,1} =) P{K,l|k} P {k}.
k

The conditional probability P {k’, 1|k} is then

1-1k ifk=k'andl=0,
P{K',l|k} =< &, ifk = k' + e, and
, otherwise.

(==}

Finally, for each (k’,1), there is one and only one k for
which P {k’, 1]k} > 0. n

Definition 4.10 We define Q) .(k',1) for j € Ry, as
i, D) =P{K, =k, L; =1;
D(K}) +d(r) < Cy,j' € MjNRy ;
D(K;) < Cyr,j € M;}.
Definition 4.11 We define the operation ® for functions f :
ZE x 7, —)Randg:Zi—)lRas

fodk, =3 ok, ' m, I1-1)

¥ m

X > F(V',v1)Eg(m’,v3).

(v1,v2)s.t. max(vy,vz)=!

Definition 4.12 The truncation operator T}, for functions
f: Zi x Z4 — Ris defined as follows:

T f(K,1) = f(K', D)1 D)+ max{d(1),d(r)} <C; -

Theorem 4.13 The terms in the state sum P{X € Q\B,, ..}
(Eq.6)

P{X € Q\Bu,} = > QK1)

can be calculated recursively as

TS, Era(K, 1) i =u
T7,[Q, @ QK1) ifj € Ru\{u},
and Nj = {s,t}, where s € R,,.

Q5 (K1) = {

Proof:  For the user leaf link w, we may apply state-
dependent truncation simply as

(1) = TS By (K1),

since operator E makes dependence on channel I state !
explicit.

The operation © combines the link probabilities Q@ with
the corresponding probabilities for links not on the route,
taking into account the condition for non-blocking states on
the route.

Otherwise, the composition is similar to Theorem 4.7. m

4.3 Algorithm
To calculate blocking probability B, ,, state sums P{X €
Q\ By,r} and P{X € Q} are needed. These are calculated

as in the previous subsections. The algorithm is summarised
as follows:

1. Setj = 1.
2. Calculate @, (k) for all k from Theorem 4.7.

3. If j € Ry, calculate Q) (k',1) for all k' and ! from
Theorem 4.13.

4. Setj:=j+1.1fj < J,jump to step 2.

5. Sum @;(k) over k and divide it with the sum of
Q. (k') togetl — By .

The complexity of the combinatorial algorithm is O((U —
1)(I + 1)LE+2)). The number of links affects as for the
MAX-convolution. For each combinatorial convolution,
two links are combined, each having L layers. The amount
of intersections is L2, of which L intersections are de-
fined by the other parameters. Thus, when calculating the
o(k,1,m, I), there are L? — L loops. In each convolution,
there are additional 2L loops for each value of k. Calculat-
ing the convolution operation for all values of k results in
L more loops. Thus, there is a total of L + 2L + (L? — L)
sets over which summations are done. Each set has at most
I + 1 values. Thus the complexity of the convolution step
is (I + 1)H(L+2),

A computational note: for all I < r, the link probabilities
Q' (k’, 1) can be summed and treated as a single state proba-
bility, since the truncation affects them in a similar fashion.

4.4 Background traffic

Indenpendent background traffic can be treated as for the
MAX-convolution algorithm, by re-defining truncation op-
erators. Recall the link occupancy distribution g;(2) due to
background traffic. Now, the truncation operators must be
redefined to take background traffic into account:

Definition 4.14 Define truncation operator Tj for any
Sfunction f : Zi — Ras

C;~D(k)

f;f(k)=( > q,~<z)> 1),

2=0
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Definition 4.15 Define truncation operator f;r for any
function f : Z% x Zy — Ras

Cj—D(x')—max{d(l),d(r)}

>

z=0

TrfK' 1) = g;(2) | fF(',0).

4.5 Mulitiple groups of channels

The combinatorial convolution algorithm can be gener-
alised to handle multiple groups of statistically indistin-
guishable channels. This generalisation can be done as was
done in the single layer case in [1].

5 User population models

In this section, we introduce several user population mod-
els, in a similar way as Nyberg et al. [13]). The “interface”
between the user population models and the presented al-
gorithms consists of two components. First, the user pop-
ulations are assumed to generate a time reversible Markov
process. Second, the parameter given to the algorithms is
either m,, (y) for the MAX-convolution algorithm, or 7, (k)
for the combinatorial convolution algorithm.

For the algorithms to work, we required detailed bal-
ance to hold (Lemma 2.2). In the following subsections,
we present user population models that satisfy the detailed
balance condition, and give expressions for the correspond-
ing 7y (-) probabilities.

5.1 Insensitivity

We study the insensitivity of the system using the results
given in [17]. The main idea is to associate each state with
clocks s € T, of which a part is running. When a clock
runs out, a state transition is made and the clock is given
a new value, taken from a distribution g, if the clock is
active in the new state. If the steady state distribution of the
system is the same, independently of the distribution , (as
long as the mean remains the same), the system is said to be
insensitive with respect to clock s. This happens when the
states are locally balanced with respect to clock s.

The results on insensitivity are given for each user model
in the following subsections.

5.2 Infinite user population

In an infinite user population model, calls to channels are
generated as a Poisson arrival stream with arrival intensity
Ay, and a random sampling is done to deal the calls to dif-
ferent channels and layers. Call holding times (for all chan-
nels and layers) are assumed to be exponentially distributed
with mean 1/u. Channels and layers are selected with prob-
abilities au,ip (3 ;e7 2oier Qusiy = 1). Blocked calls are
lost. The resulting traffic process is easily found to be a re-
versible Markov process. Since states of channels 7 on any
leaf link w are independent,

7I'u(}’) = Hpu,i,yn

i€l

. to death of s,,;;m must equal for allm = 1,..

where py iy, = P {Y,,; = y;} is the probability that chan-
nel ¢ is on layer y; on leaf link u.

The probabilities p,, ;; are found by examining the prob-
ability of state 0 of an M /M /oo-queue (cf. [9]):

L

Puio =1- Zpu,i,l;
=1

%ui,LAu

Puir=1—e"" #

and

L
_ 2wt _Cuimiu
Puit=\|(1—e u I I e CHE

m=Ii+1

In the case of statistically indistinguishable channels, the
equations for P,; = py i, for all ¢ are similar, except that
we need to substitute o, i /1 for ay, ;1. where 37 - ay =
1. Thus,

— I ST=3 ek =kt
m9 = (1 ) Tk

leL

Due to the PASTA property of traffic generated by the
infinite user population, the call blocking probability equals
the time blocking probability [18].

To study the insensitivity of the infinite user population
model, the clocks associated to each state need to be de-
fined. In order to do so, we extend all the state diagrams of
the leaf links. In the extended state diagram of leaf link u,
there are separate states corresponding to different numbers
of actual users on each channel 7 and layer I. This results in
a countably infinite number of states. If the call arrival and
connection holding times are exponentially distributed, the
resulting process is a reversible Markov chain.

Let £ denote the extended state space. Now, for state
vectorsn € £, andn + e, ;; € &, and state probabilities
i (-), a detailed balance equation holds:

T Ay i = T (0 + €y,i0) (i + 1)

For general connection holding times, we generate a
scheme with relabelling for this associated Markov chain
(see [17, Theorem 3.1]). We associate each channel-layer
pair with a clock s, ;,; that generates calls to that channel-
layer pair. These clocks are active in all states of the sys-
tem. In addition, each channel-layer pair is associated with
clocks that represent the actual users on a specific channel-
layer pair. For the insensitivity property to hold, the steady-
state intensity of transitions due to birth of s, ; ; m and due
sy N g
This can be seen to hold from the detailed balance equation
of the extended state space. Thus, the system is insensitive
to the call holding times.
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Figure 4: State transition diagram for user u (the single user
model)

5.3 Single user model

Consider the case where the user population consists of a
single user, selecting each channel and layer with intensity
Ay, and bolding them with intensity p. Both user idle
and call holding times are assumed to be exponentially dis-
tributed. The resulting Markov process is reversible. Fig-
ure 4 shows the state transition diagram of the process.
The probability that the user is on channel ¢ and layer [ is

Puii = Au,ii/ 1
wh 1+ Zi‘el’ Zz'ec Au it ,l’/#,

and the probability that the user is idle is

1
1+ Yaer Lves Muwia /1

The probabilities 7, (y) can.be calculated from these prob-
abilities as

Pu,0

Pupo Wheny =0,
Tu(y) = Du,iy Wwheny =le;,
0 otherwise.

For the case of statistically indistinguishable channels, use
Au,i /T instead of Ay ;. The probabilities m,, (k) are then

Pu,0 wheny =0,
(k) = Ziez Pujiy Whenk =e,
0 otherwise.

With the single user model, call blocking equals time
blocking in a network without this user. Thus, for calcu-
lating call blocking for a specific user, it is just necessary to
use for this user p, o = 1 and p,,;; = 0 for! > 0 and for
all ¢.

Each user u is associated with a set of clocks: clock s, 9
for the state where the user is not on any channel or layer,
and clocks s, ;; for each channel-layer pair. In each state,

only one of these clocks can be on. If the user is on a spe-
cific channel ¢ and layer [, s, ;; is on. If the user is not on
any channel, clock sy, is on. The resulting state space is
locally balanced w.r.t. all clocks s € 7. Thus, the system is
insensitive to both call holding times and user idle times.

5.4 Finite user population of independent
users

We can generate finite user populations with independent
users using the single user model presented. Just generate
a tree with supplemented links of infinite capacity, where
each leaf node contains a single user, and the root link of
the tree is the actual leaf link of the original problem.
Consider, for example, a user population consisting of a
finite number of independent layer-specific users. Each user
is defined as a single user, as in the previous section, who
only visits the states of a specific layer and the idle state.

Call blocking with finite user populations is calculated by
first removing the user we are calculating blocking for (by
setting p,0 = 1), and then calculating the time blocking
probability of the network.

The system with a finite user population has the insen-
sitivity properties of the actual users used to construct the
user population.

6 Summary

We presented two new algorithms for calculating call block-
ing probabilities for multi-layer multicast streams with the
assumption that blocked calls are lost. Calculating block-
ing probabilities for this system directly from the steady
state probabilities is easy in principle, but excessively time-
consuming.

Our first algorithm, the so called MAX-convolution al-
gorithm has linear complexity with respect to the network
size (number of user populations). We also devised an al-
gorithm for the case where all channels are statistically in-
distinguishable, yielding an algorithm with a computational
complexity which is polynomial with respect to the number
of channels and linear with respect to the number of user
populations (network size). Due to this linear dependence
on the number of links, network size does not prohibit usage
of the algorithms.

We presented the algorithms for the cases where multi-
cast traffic is in isolation, as well as an approximation for
mixtures of unicast and multicast traffic in real networks.

An interesting subject for future work is an extensive
study on the accuracy of the approximation in the case of
background traffic.
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