
0-7803-7016-3/01/$10.00 ©2001 IEEE

Efficient Importance Sampling for Monte Carlo
Simulation of Multicast Networks

P. Lassila, J. Karvo and J. Virtamo
Laboratory of Telecommunications Technology

Helsinki University of Technology
P.O.Box 3000, FIN-02015 HUT, Finland

Email: {Pasi.Lassila, Jouni.Karvo, Jorma.Virtamo}@hut.fi

Abstract—We consider the problem of estimating blocking probabilities
in a multicast loss system via simulation, applying the static Monte Carlo
method with importance sampling. An approach is introduced where
the original estimation problem is first decomposed into independent sim-
pler sub-problems, each roughly corresponding to estimating the blocking
probability contribution from a single link. Then we apply importance
sampling to solve each sub-problem. The importance sampling distrib-
ution is the original distribution conditioned on that the state is in the
blocking state region of a single link. Samples can be generated from
this distribution using the so called inverse convolution method. Finally,
a dynamic control algorithm is used for optimally allocating the samples
between different sub-problems. The numerical results demonstrate that
the variance reduction obtained with the method is remarkable, between
400 and 36 000 in the considered examples.

Keywords—Multicast, loss systems, simulation, Monte Carlo methods,
variance reduction, importance sampling.

I. Introduction

We consider the calculation of blocking probabilities in tree-
structured multicast networks with dynamic membership. In
these networks, users at the leaf nodes can join or leave any
of the several multicast channels offered by one source (i.e. the
root of the tree) in the network. The users joining the network
form dynamic multicast connections that share the network re-
sources. Blocking occurs when there are not enough resources
available in the network to satisfy the resource requirements of
a request. Since blocked calls are lost, this system is also called
a “multicast loss system”. This scheme is applicable to circuit
switched systems as well as packet switched systems with strict
quality guarantees for multicast flows.

Karvo et al. [1] studied this system under the assumption of
having an infinite user population generating call requests at
the leaf nodes and a single finite capacity link in the network.
An exact algorithm to compute the blocking probabilities was
derived. This work was extended by Boussetta and Belyot [2]
by adding unicast traffic to the system. Reduced load approxi-
mations of the blocking probabilities in a network were derived
in [3]. An exact algorithm for the network case has been given
in Nyberg et al. [4]. A problem with the exact solution, how-
ever, is that it cannot be computed for networks with a large
number of channels, I , due to the exponential growth of the
size of the state space; the complexity of the algorithm is of or-
der O(22I) (however, the complexity grows only linearly with
respect to the number of links in the network). Therefore, to
be able to analyse systems with a larger number of channels,

new methods need to be developed for estimating the blocking
probabilities quickly and reliably.

One possible approach is to use simulations. As the form
of the stationary distribution is known, the static Monte Carlo
(MC) method can be used. In order to make the simulation more
efficient, it is possible to use importance sampling (IS), where
one uses an alternative sampling distribution, which makes the
interesting samples more likely than under the original distri-
bution. The twist in the distribution is then corrected for by
weighting the samples with the so called likelihood ratio.

The use of IS in MC estimation of blocking probabilities has
been previously studied in [5], [6], [7], and [8]. However, the
particular loss system that has been studied in these works is
the so called multiservice loss system. The multicast network
studied here is in many ways different from the multiservice
loss system, but it possesses sufficiently common features with
the multiservice loss system to allow us to apply in this case
the so called inverse convolution method developed in Lassila
and Virtamo [8].

In this paper we first show how the problem can be decom-
posed into independent sub-problems. The decomposition cor-
responds to breaking the blocking probability down into com-
ponents each of which essentially gives the blocking probability
contribution from a single link. Then we present an efficient
IS distribution to be used to estimate the blocking probability
contribution from each link. The distribution is a conditional
distribution and allows one to generate samples directly into the
set of blocking states of a given link, assuming that link solely
to have a finite capacity. To generate these samples we use
the inverse convolution method. We will show via numerical
examples the efficiency of the above method when compared
with a direct Monte Carlo approach.

The paper is organized as follows. Section 2 presents briefly
the multicast loss system and the decomposition approach. In
section 3 we discuss the efficient estimation of blocking proba-
bilities when applying the decomposition and importance sam-
pling. Section 4 contains the main result of the paper, describ-
ing the inverse convolution method for multicast loss system. In
section 5 we describe the dynamic method for optimally allocat-
ing the number of samples to be used for each sub-problem and
give some numerical examples demonstrating the effectiveness
of the method. Section 6 contains our conclusions.

432 IEEE INFOCOM 2001

kex
ã 2001 IEEE.

kex
Reprinted, with permission, from IEEE INFOCOM 2001 conference proceedings

0-7803-7016-3/01/$10.00 ©2001 IEEE

II. The multicast loss system

We define the multicast loss system in the same way as Ny-
berg et al. [9]. Consider a network consisting of J links, in-
dexed with j = 1, . . . , J , link j having a capacity of Cj re-
source units. The set of all links is denoted by J . The network
is organized as a tree, where the root link is denoted by J . The
set U denotes the set of user populations, located at the leaves
of the tree. The leaf links and the user populations connected
to them are indexed with the same index u ∈ U = {1, . . . , U}.
The set of links on the route from user u to the root node is
denoted by Ru. The user populations which use link j, i.e. for
which link j ∈ Ru, are denoted by Uj . The size of the set Uj

is denoted by Uj . The multicast network supports I channels,
indexed with i ∈ I = {1, . . . , I}. The channels originating
from the root node represent different multicast transmissions,
from which the users may choose. Each channel has a capacity
requirement di ∈ d = {di; i ∈ I}. We assume the di and
Cj to be integer multiples of a basic resource unit. In this
work, we use the same capacity requirement for all links, but
it is trivial to generalize this model to link dependent capacity
requirements, by using dj,i.

The state of a link j is defined by the states of the channels
i. Each channel may be either on (1) or off (0), i.e. the state
of channel i on link j is Yj,i ∈ {0, 1}. The state of a link is
denoted by the vector Yj = {Yj,i; i ∈ I} ∈ S, where S is
the link state space S = {0, 1}I . A multicast connection is
defined by the pair (u, i) of the user u (leaf link) and channel
i. Synonymously, we refer to the multicast connection (u, i) as
a traffic class. The network state X is defined by the states of
the leaf links Yu ∈ S,

X = (Yu;u ∈ U) = (Yu,i;u ∈ U , i ∈ I) ∈ Ω, (1)

where Ω = {0, 1}U×I denotes the network state space. The
state of link j is determined by the network state as follows:

Yj =




Yu if j = u ∈ U ,⊕
u′∈Uj

Yu′ otherwise, (2)

where ⊕ denotes an OR-operation between channel states in
different links, i.e. channel i is on on link j if and only if there
is a link u ∈ Uj on which the channel is on. We denote the
link capacity occupancy (or link occupancy for brevity) of link
j by Sj ,

Sj = d ·Yj =
I∑

i=1

diYj,i.

Now, in a finite capacity network, the state space is truncated
by the capacity constraints of the links,

Ω̃ =
{
x ∈ Ω

∣∣∣Sj ≤ Cj , ∀j ∈ J
}
.

A. Probability distributions and blocking

Let us assume that in a system with infinite link capacities,
the user populations of the leaf links are independent, and that

the leaf link distributions πu(yu) = P{Yu = yu}, u ∈ U
are known, and represent stationary distributions of reversible
Markov processes satisfying the detailed balance equations.
Several types of user population models of this kind have been
discussed in [9].

In our work, we use a user population model for which traffic
classes (u, i) are independent so that

πu(y) =
∏
i∈I
pyi

u,i(1 − pu,i)1−yi , (3)

where pu,i = P{Yu,i = 1} is the probability that channel i is
on on leaf link u. The probability pj,i of channel i to be in the
on state on any link j may be calculated from the corresponding
known probabilities of the leaf links Uj ,

pj,i = 1 −
∏

u∈Uj

(1 − pu,i).

An example of this kind of a process might be an infinite
population of users generating calls (connections to the root
of the tree) as a Poisson process with intensity λu. Arriving
calls select channel i with a probability αi. The channel on-
probability can be calculated by pu,i = 1 − exp(−λuαiτi),
where τi denotes the mean holding time of channel i calls.
Note that the steady state distribution is insensitive to the call
holding time distribution.

The steady state probabilities π(x) of the network states in a
system with infinite link capacities can then be calculated from

π(x) = P{X = x} =
∏
u∈U
πu(yu),

since the user populations are independent. Due to the assumed
detailed balance, the probabilities π̃(x), x ∈ Ω̃, of states in a
system with finite link capacities are now obtained simply by
truncation,

π̃(x) = P{X = x |X ∈ Ω̃} =



π(x)
P (Ω̃)

, x ∈ Ω̃,

0, otherwise,

where P (Ω̃) = P{X ∈ Ω̃} =
∑

x∈Ω̃ π(x).

In a finite capacity network, blocking occurs when a user tries
to establish a connection for channel i, and there is at least one
link j ∈ Ru where the channel is not already on and there is
not enough spare capacity for setting the channel on. Without
loss of generality, we assume that the channels are ordered
so that the channel for which we are calculating the blocking
probability has the greatest index I . With this convention, the
channel index is unnecessary and will be omitted for most of
the notation. Let S′j denote link occupancy due to the channels
{1, . . . , I − 1}, i.e.

S′j =
I−1∑
i=1

diYj,i.

433 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

Then, the set Bu of states where connections of traffic class
(u, I) are blocked is defined as

Bu =
{
x ∈ Ω̃

∣∣∣ ∃j ∈ Ru : S′j > Cj − dI ,
}
.

We use the expression “link j blocks” if for link j, S′j >
Cj − dI . Thus the set Bu consists of the states where at least
one link blocks. Then the time blocking probability for traffic
class (u, I) is

Bu = P{X ∈ Bu |X ∈ Ω̃} =
P{X ∈ Bu}
P{X ∈ Ω̃} =

P (Bu)
P (Ω̃)

, (4)

where P (Bu) = P{X ∈ Bu}.

B. Decomposition

In order to divide the task of estimating P (Bu) to simpler
sub-problems, we partition Bu into sets Ej

u. Ej
u is defined as

the set of points in Bu where link j blocks but none of the links
closer to user u block,

Ej
u = Bu ∩

{
x ∈ Ω

∣∣∣S′j > Cj − dI ∧

S′j′ ≤ Cj′ − dI , ∀j′ ∈ Rj
u

}
,

where Rj
u denotes the set of links on the path from u to j,

including link u but not link j. The E j
u obviously form a

partitioning of Bu, i.e.

Bu =
⋃

j∈Ru

Ej
u,

and E j
u ∩ Ej′

u = ∅, when j �= j′. From this it follows that

P{X ∈ Bu} =
∑

j∈Ru

P{X ∈ Ej
u}, (5)

and we have decomposed the problem into simpler sub-
problems of determining the probabilities P{X ∈ Ej

u}. The
probability P{X ∈ Ej

u} can be thought of as the blocking prob-
ability contribution due to link j. It should be noted, however,
that blocking in the states where several links block can be arbi-
trarily attributed to any of the blocking links. We have adopted
the convention which attributes it to the blocking link closest
to the user.

For later use, we introduce the superset Dj
u ⊃ Ej

u, which will
have an important role in importance sampling,

Dj
u =

{
x ∈ Ω

∣∣∣Cj − dI < S′j ≤ Cj ∧ Yj,I = 0
}
.

This set corresponds to blocking states in a system where link j
has a finite capacity Cj but all other links have infinite capacity.
However, in real systems, all links have finite capacity, and
several links could block simultaneously. Thus, sets Dj

u are
not disjoint unlike their subsets Ej

u.

The sets Dj
u and E j

u are illustrated in Figure 1. The real
state space is impossible to draw, since it has U × I dimen-
sions, and has only two points per each dimension. Thus, the
figure only illustrates the principle of decomposition showing
an example where the sets consist of elements having two com-
ponents (x1, x2). In the figure, Bu is represented by the grey
area and it consists of the union of three disjoint subsets E2

u, E3
u

(light grey areas) and E1
u (dark grey area). Also note that each

Ej
u is a subset of the corresponding Dj

u.

x1

x2

D1
u D2

u

D3
u

E3
u

E1
u

E2
u

Bu

Fig. 1. Decomposition of Bu into sets Dj
u and Ej

u.

III. Efficient importance sampling

In what follows we discuss the efficient estimation of the
blocking probabilities. As the form of the stationary distribution
π(x) is known, a natural choice for the simulation method
is the static Monte Carlo method. The main problem in the
simulation is to quickly get a good estimate for P{X ∈ Bu},
i.e., the numerator in Eq. (4), especially in the case when the
blocking probability Bu is very small. For completeness, recall
that Bu also depends on P{X ∈ Ω̃} given by the denominator
of (4). This probability is usually close to 1 and is easy to
estimate using the standard MC method. Therefore, in the rest
of this paper we concentrate on efficient methods for estimating
P{X ∈ Bu}.
As already noted, Eq. (5) allows us to decompose the esti-

mation of P{X ∈ Bu} into independent sub-problems of es-
timating the P{X ∈ Ej

u}. Now, the idea of our importance
sampling method is simply based on expressing P{X ∈ Ej

u} as
a conditional probability,

P{X ∈ Ej
u} = P{X ∈ Ej

u |X ∈ Dj
u}P{X ∈ Dj

u}. (6)

This relation is useful from the simulation point of view since
we can compute P{X ∈ Dj

u} exactly (see [1]) and we can
efficiently generate points from the original distribution under
the condition X ∈ Dj

u, as explained later.

Then we only need to estimate via MC simulation the con-
ditional probability p′ = P{X ∈ Ej

u | X ∈ Dj
u} instead of

p = P{X ∈ Ej
u} (see Figure 2). The estimation of p′ is much

more efficient than the estimation of p since typically p′ is much
greater than p. The efficiency gain obtained with the above can

434 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

be shown as follows. When estimating p via standard MC sim-
ulation each sample is an independent Bernoulli variable and
the relative error (or relative deviation) of the estimate, given
by the ratio of the standard deviation and the mean of the es-
timate, after N samples have been drawn is

√
(1 − p)/(pN).

Similarly, when estimating p′ the relative deviation is given by√
(1 − p′)/(p′N) Typically, the blocking probabilities are of

the order 1% and to illustrate the efficiency gain we can con-
sider e.g. an example where p = 0.005. Then we need almost
80 000 samples to get a relative error of 5%. On the other
hand, when estimating p′ we need less samples to reach the
same accuracy level. How much less depends on how big a
part of Ej

u is inside Dj
u. Typically p′ is in the range 0.5, . . . , 1.

Assuming, e.g. that p′ = 0.9, we only need about 45 samples
to reach the same 5% relative error level, giving us a decrease
by a factor of almost 2000 in the required sample size. Our
numerical results also indicate that variance reductions of this
order can indeed be obtained.

x2

x1

D1
u

E1
u

Ω

Fig. 2. Estimation of P{X ∈ Ej
u |X ∈ Dj

u}.

From Eq. (6) we have the following estimator, η̂ju, for ηju =
P{X ∈ Ej

u},

η̂ju =
vju
Nj

Nj∑
n=1

1X∗
n∈Ej

u
, (7)

where vju = P{X ∈ Dj
u} and X∗

n denotes samples drawn from
the conditional distribution p∗j (x) = P{X = x | X ∈ Dj

u}.
Observe that Eq. (7) corresponds to the same estimator for η̂ju
if we take the conditional distribution p∗j (x) as our importance
sampling distribution in the importance sampling estimator

η̂ju =
1
Nj

Nj∑
n=1

1X∗
n∈Ej

u
w(X∗

n),

where w(x) = π(x)/p∗j (x) = vj is the so called likelihood
ratio, the value of which in our case is constant.

Finally, the estimator for P (Bu) is simply

P̂ (Bu) =
∑

j∈Ru

η̂ju.

Given the total number of samples N to be used for the estima-
tor, the number of samples Nj allocated to each sub-problem is

a free parameter. In section V-A we show how to choose each
Nj to minimize the variance of P̂ (Bu).

IV. Inverse convolution method

In this section, we present the inverse convolution method
(IC) for sample generation. We are now only considering the
estimation of one ηju for fixed j ∈ Ru and traffic class (u, I).
The following method is based on the observation that it is rel-
atively easy to generate points from the conditional distribution
p∗j (x) = P{X = x | X ∈ Dj

u} by reversing the steps used
to calculate the occupancy distribution of the considered link.
Note that the condition X ∈ Dj

u is a condition expressed in
terms of the occupancy, S′j , of the considered link. The idea in
the inverse convolution method is to first generate a sample of
Yj such that the occupancy of the link is in the blocking region.
Then, given the state Yj , the state of the network, i.e. states
of the leaf links, is generated. The mapping

⊕
: X → Yj is

surjective, having several possible network states X generating
the link state Yj , and we draw one of them according to their
probabilities.

The main steps of the simulation can be summarized as fol-
lows:

1. Generate the states for leaf links u by
(a) Generate a sample state Yj under the condition Cj−dI <
S′j ≤ Cj ∧ Yj,I = 0 for link j.
(b) Generate the leaf link states Yu, u ∈ Uj , with the condi-
tion that link j state Yj = ⊕u∈UjYu is given.
(c) Generate the states Yu, u ∈ U −Uj for the rest of the leaf
links as in the normal Monte Carlo simulation.
2. The sample state of the network Xn ∈ Dj

u consists of the
set of all sample states of leaf links generated with step 1.
3. To collect the statistics for estimator (7), check if Xn ∈ Ej

u.

The above steps are repeated for generatingNj samples. The
method of generating a sample for link j (step 1a) is explained
in more detail in section IV-A. The method for generating the
leaf link states from the link state (step 1b) is explained in
section IV-B. See figure 3.

A. Generating a sample for Dj
u

As already noted, we have partitioned the set of blocking
states into disjoint sets Ej

u. However, it is not easy to generate
samples directly to these sets. Instead, we generate samples to
sets Dj

u which correspond to the states in which at least link j
blocks. After that it is possible to check if the sample belongs
to the set Ej

u to collect the sum in Eq. (7).

First, the link occupancy Sj is easily calculated recursively
as follows. Let Sj,i denote link occupancy due to the first i
channels,

Sj,i =
∑
i′≤i

di′Yj,i′ .

Then Sj = Sj,I and S ′
j = Sj,I−1. The Yj,i are mutually

independent, and we can express Sj,i = Sj,i−1 + diYj,i, where

435 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

uj
O

Fig. 3. Example of generating a sample in the set Dj
u. First, a sample state

for the link j, denoted by the thick dashed line, is generated by inverse
convolution. Given that channel i is on in this state, the states of that
channel are generated for the links marked by the dashed ellipse by another
inverse convolution step (if channel i is off on link j then it is off on all
those links). This is repeated for all i. States for the links denoted by ticks
are generated by a simple draw.

Sj,i−1 and Yj,i are independent. For sample generation, we are
only interested in the occupancy generated by the first I − 1
channels, S ′

j , since a call for a channel cannot be blocked if it
is already in the on state. This is also reflected in the definition
of the set Dj

u.

Let P{S′j,i = x} = qj,i(x) denote the probability distribution
of S′j,i. Now, the probability mass vj of the set Dj

u, can be
calculated as

vj = P{X ∈ Dj
u} = (1 − pj,I)

Cj∑
i=Cj−dI+1

qj,I−1(i).

The link occupancy distribution qj,I−1 may be calculated
recursively by convolution:

qj,i(x) = qj,i−1(x − di)pj,i + qj,i−1(x)(1 − pj,i), (8)

where the recursion starts with qj,0(x) = 1x=0. For interpreta-
tion of the convolution step, note that the event {Sj,i = x} is
the union of the events {Yj,i = yj,i, Sj,i−1 = x − diyj,i},
yj,i ∈ {0, 1}, where yj,i = 0 means that the channel i is
in the off state, and yj,i = 1 means that the channel i is in
the on state on link j. The corresponding probabilities are
qj,i′−1(x)(1−pj,i′) and qj,i′−1(x−di′)pj,i′ , respectively. Con-
versely, we can infer what is the conditional probability of the
event {Yj,i = 1, Sj,i−1 = x− di} given that Sj,i = x,

P{Yj,i = 1, Sj,i−1 = x− di |Sj,i = x} =
qj,i−1(x− di)pj,i

qj,i−1(x− di)pj,i + qj,i−1(x)(1 − pj,i) =

qj,i−1(x− di)pj,i
qj,i(x)

.

(9)

The probability of the event {Yj,i = 0, Sj,i−1 = x |Sj,i = x}
is then 1 − P{Yj,i = 1, Sj,i−1 = x− di |Sj,i = x}.
Having all the necessary tools, we are now able to generate

samples to the set Dj
u. This set corresponds to states in which

Cj − dI < S′j ≤ Cj and Yj,I = 0. Generation of a state starts

by drawing a value for S′j = Sj,I−1 using the distribution
qj,I−1(·) with the condition that Cj − dI < S′j ≤ Cj . This
conditional distribution can be precomputed and stored.

Then, given the value of Sj,I−1, the state Yj,i of each channel
(i = I − 1, . . . , 1) is drawn in turn using probabilities (9).
Concurrently with the state Yj,i, the value of Sj,i−1 becomes
determined. This is then used as the conditioning value in
the next step to draw the value of Yj,i−1 (and of Sj,i−2), etc.
Drawing a sample for Yj,i requires just generation of a uniform
random number from the interval (0,1) and setting the channel
to on state if the number is smaller or equal than the probability.
Note that for reasonable sizes of links, it is advantageous to
store the probabilities for fast generation of samples.

The next subsection presents a method for drawing leaf link
states Yu, given the state Yj of link j.

B. Generating leaf link states from a link state

Having drawn a value for state Yj of link j, it is possi-
ble to draw values of the state vectors Yu, u ∈ U of the leaf
links. For u ∈ Uj , states Yu are generated under the condition
Yj = ⊕u∈UjYu using a similar inverse convolution procedure
as above. This condition can be broken down into separate
conditions for each channel, i.e. for each i we have a sepa-
rate problem of generating the values Yu,i, u ∈ U , under the
condition Yj,i = ⊕u∈UjYu,i with a given Yj,i. Note that only
channels i which are in the on state on link j, Yj,i = 1, need
to be considered. If Yj,i = 0, then necessarily Yu,i = 0 for
all u ∈ Uj . The above conditions affect leaf links u ∈ Uj .
For other links u ∈ U − Uj , the states Yu are independently
generated from the distribution (3).

First, let us consider a convolutional approach for generating
a link state for channel i and link j if we already know the
states for each link u ∈ Uj . In this section, we use an index
uj ∈ {1, . . . , Uj} = Uj for the subset of leaf links. Let Suj ,i =
x denote the event that the channel is on state x on link j when
u′ = 1, . . . , uj leaf links have been counted for, i.e.

Suj ,i =
⊕

u′≤uj

yu′,i.

Let P{Suj,i = 1} = quj ,i be the probability that the channel
is on in at least one of the links {1, . . . , uj} ⊂ Uj . These
probabilities can be calculated recursively as follows:

quj ,i = 1 − (1 − puj ,i)(1 − quj−1,i)
= (1 − quj−1,i)puj ,i + quj−1,i.

The recursion starts with q0,i = 0. If Suj−1,i = 1, then nec-
essarily Suj ,i = 1 in any case, see figure 4. Conversely, to
generate the state for each leaf link, given the value of Yj,i, we
first check if the channel would be off after uj − 1 leaf links
counted for, since if it is, then it has to be on on leaf link uj ,
and off on the rest of the links, which happens with probability

P{Suj−1,i = 0 |Suj ,i = 1} =
(1 − quj−1,i)puj ,i

(1 − quj−1,i)puj ,i + quj−1,i
=

(1 − quj−1,i)puj ,i

quj ,i
.

436 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

Note that the event Suj−1,i = 0 implies directly that {Yu′,i =
0, ∀u′ < uj}. The probability P{Suj−1,i = 1 | Suj ,i = 1} is
given by 1 − P{Suj−1,i = 0 | Suj ,i = 1}. In the case of the
event Suj−1,i = 1, we need to check if the channel is on on
the leaf link u, which happens with probability

P{Yuj,i = 1 |Suj−1,i = 1} = puj ,i.

Thus we generate a uniform random number first to decide if
the leaf link is the last one for which the channel is on. If it is
not, we generate yet another uniform random number to decide
if the channel should be set on.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

p1

p2 3 4 5

1-p1 1-p 1-p 1-p 1-p

p p p p

1-p
p2

2

2

p p p
1-p 1-p 1-p3

3

3

4
4

4

5
5

5

off

on

Fig. 4. Convolution approach for generating link state from leaf link states.
Each link is convoluted in turn. Note that if the channel is already on, it
will be on in the next step also, independently of the state of the convoluted
link.

This procedure is repeated for each channel. As a result
of this procedure, we have the state vectors of each leaf link
u ∈ Uj . The rest of the leaf link states must be generated as in
the normal Monte Carlo simulation using Eq. (3).

C. Complexity

The generation of samples is almost as fast as in the stan-
dard MC method, once the conditional distributions have been
computed. Generation of the link state in Dj

u is as fast as gen-
erating a standard link state. Generating leaf link states takes
2(U − 1) steps at maximum, compared with U steps of the
standard MC method (generating U leaf link states). Thus, the
worst case time to generate a sample state with the proposed
method is twice that of the standard MC method. Furthermore,
the memory requirements of the algorithm, i.e. the number of
elements in the arrays, are not prohibitive. The number of array
elements to be stored can be seen to be I(Cj + U). It should
be noted that the dependence on I and U is only linear, in spite
of the exponential growth in I of the state space Ω.

Our method scales very favourably with the network size, es-
sentially defined by the number of user populations U . Appar-
ently, the decomposition leads to replication of the simulation
for each link on the route of the connection. Per each subtask,
the work is about the same as in standard MC. The number
of links on the route, however, grows relatively slowly, and in
practice will never be very large. Moreover, optimal allocation
of samples between the subtasks, discussed in the next section,
essentially eliminates the slight disadvantage.

V. Numerical results

A. Allocation of the sample points

We also implemented and tested a scheme of allocating sam-
ple points optimally for each estimation of η̂ju, as explained
in [8]. The inverse convolution method with sample allocation
(ICSA) is presented in this subsection. The η̂ju for different
links have differing variances, and contribute differently to the
total variance of the estimate P̂ (Bu). Thus, we may vary sam-
ple size for different links j to minimize the total variance. The
optimal allocation of samples is

Nj =
sj∑J
i=1 si

N, j = 1, . . . , J, (10)

where we have denoted s2j = V[1X∗∈Ej
u
] = (1 − p′)/p′, where

p′ = P{X∗ ∈ Ej
u}.

Of course, the sj are not known before the simulation. There-
fore a dynamic sample allocation scheme is needed. One prac-
tical solution is to make the simulation in batches, using J ·M
samples per batch, where M is a suitable integer, for instance
M = 100. In the first batch, all the samples are distributed
evenly between different links, i.e., M samples are used per
link. Then initial estimates for the sj are obtained. Using these
estimates, the optimal sample sizes after the second batch, i.e.
for N = 2J ·M , can be calculated from (10). If the calculated
Nj is less than the number of samples already used (M samples
in the first batch) no samples of the new batch are allocated
for that link. Otherwise, the available J ·M new samples are
distributed between the links in proportion to the deficiencies
(deficiency being the difference between the calculated optimal
value after the new batch and the actual number of samples
used so far). Real numbers are appropriately rounded to inte-
gers. After the new batch, new estimators are calculated for
the sj and the procedure is repeated.

B. Numerical examples

Here some numerical examples are presented in order to il-
lustrate the efficiency of the presented method in Monte Carlo
simulation of the blocking probabilities. We consider the same
network used in [4], [9], for which we know the exact results.
The network is shown in figure 3. There is a root node, eight
channels, I = 8, with di = 1 for all channels. The capac-
ity of the root link is CJ = 7, for the others, Cj = 6. Each
leaf link has an infinite user population offering traffic to each
channel with intensity aαi, where αi comes from the truncated
geometric preference distribution with p = 0.2. We simulated
blocking for channel I with three values for a: 1.0, 1.3 and
2.0 to compare the simulation methods in light load, moderate
load and high load circumstances.

To this end, we estimated the relative deviation of the estima-
tor, given by (V[P̂ (Bu)])1/2/P̂ (Bu), for 104 samples (Case 1)
and 105 samples (Case 2). For classic Monte Carlo (MC), the
total number of samples were used, while for Inverse Convolu-
tion method (MC-IC), one third of samples was used for each

437 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

TABLE I
The relative deviation of the estimatesP (Bu) for the first example. Case 1:

10 000 samples, Case 2: 100 000 samples.

relative deviationCase a / Bu MC MC-IC MC-ICSA
1.0 / 0.56% 0.5883 0.0187 0.0031

1 1.3 / 1.7% 0.3493 0.0214 0.0036
2.0 / 7.2% 0.1755 0.0262 0.0047
1.0 / 0.56% 0.1765 0.0058 0.0010

2 1.3 / 1.76% 0.1092 0.0069 0.0011
2.0 / 7.2% 0.0527 0.0085 0.0015

estimate η̂ju,i. For Inverse Convolution with Sample Allocation
(MC-ICSA), the total number of samples were allocated for
each estimate, according to the algorithm. In these examples,
we implemented MC-IC so that it first generates a network
state for estimating P (Ω̃). Then it reuses this state partially
for those links not generated with inverse convolution. This
induces some dependence between the estimates η̂ju in the sim-
ulation, but its effect on the variance of the estimator is not too
high for these networks. For MC-ICSA this scheme of reducing
processing time per sample is not feasible.

As can be seen, the variance reductions obtained with the
inverse convolution method are remarkable. For example, for
light load (a = 1.0), the ratio between the deviations of the
standard MC and the inverse convolution method (MC-IC) is
about 30 in both cases, and between MC and MC-ICSA, about
190 in case 1 and 180 in case 2, corresponding to a decrease
of 900 to 36 000 in the required sample sizes.

Also, we can note here that with the inverse convolution
method the estimation of the variance of the estimates is guar-
anteed to be reliable. In rare event simulation (which is not the
main interest here), one problem is that one can get results that
appear to be very accurate judging from the estimated variance,
but the results can, in reality, be far from the correct value. This
can happen, e.g. when using a single heavily twisted IS distrib-
ution, and the reason is that the likelihood ratio w(·) can have
a huge value at some point in the state space, but under the
twisted distribution these points are very rare and we never en-
counter them during the course of a simulation run. Hence, the
estimates, especially for the variance or other higher moments,
can be heavily underestimated, as has been rigorously shown
in [10]. With the inverse convolution method, however, the
estimation is always reliable, since the observed values of the
samples are bounded within the interval [0, 1]. Thus, the prob-
lem of the occurrence of events with a very small probability
under the IS distribution but having a significant contribution
to the estimate does not occur.

A second example used was a network having a larger num-
ber of channels, thus generating a somewhat larger state space,
big enough for not being solvable with the exact algorithm [4].
In this case, we have the same network topology as in the first
example, but use I = 50 channels. The link capacities are also

increased: the leaf link capacities Cu = 30, root link capacity
CJ = 35, and the middle link capacity Cj = 33. All the other
parameters remained the same as in the first example. We es-
timated the blocking probability of a three link route from the
user to the root node. The results are presented in table II.
For example, the ratio between the deviations of the standard
MC and MC-ICSA is about 20 in both cases for heavy load
(a = 700), and about 140 for light load (a = 400), correspond-
ing to a decrease of 400 to 19 600 in the required sample sizes.
To get a feel of what kind of reductions in the run time one
can obtain with the inverse convolution method, we also pro-
vided the actual CPU-time used by our simulator implemented
in Matlab. Note that the classic MC algorithm could be imple-
mented using matrix operations, which in this case increases
the speed difference in favour of the classic MC. In spite of
this, we see that the time used per sample in MC-IC is only
five times as long as for the classic MC. Increasing the number
of samples for the classic MC even ten times (case 2), how-
ever, does not bring the relative deviation anywhere near to the
one of MC-IC. We also see that the added penalty for sample
allocation is small enough to justify its use. The added cost
for preparing simulation in MC-IC and MC-ICSA was small,
about 80ms even for this larger network.

TABLE II
The relative deviation of the estimatesP (Bu), and CPU time for simulation,
for the second example. Case 1: 10 000 samples, Case 2: 100 000 samples.

relative deviation/elapsed timeCase a / Bu MC MC-IC MC-ICSA
400 / 0.5655/ 0.0230/ 0.0038/
0.59% 7.0 s 37 s 43 s1
700 / 0.1245/ 0.0338/ 0.0063/
10% 6.9 s 36 s 41 s
400 / 0.1725/ 0.0072/ 0.0012/
0.59% 70 s 370 s 420 s2
700 / 0.0426/ 0.0105/ 0.0020
10% 69 s 360 s 400 s

VI. Conclusions

In this paper we have presented a new approach to the prob-
lem of estimating blocking probabilities in a multicast network
by using the static Monte Carlo simulation method and impor-
tance sampling. First we observed that the estimation problem
can be decomposed into separate simpler sub-problems; esti-
mation of blocking on each link on the route, attributing each
blocking state to a single link, viz. the blocking link closest to
the user on the route Ru.

For the solution of the sub-problems, we presented a method
which very closely approximates the generation of samples with
the ideal IS distribution, and gives a remarkable variance re-
duction. The idea of the method is to generate samples directly
into the set of blocking states of a given link in a system, where
all the other links are assumed to have an infinite capacity. This

438 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

is achieved by the inverse convolution method presented in the
paper. This set of blocking states of course extends beyond the
allowed state space of the system, and may generate blocking
in other links, as well. Then, simulation is essentially only
needed to determine which part of this set is actually inside the
allowed state space, and which part of this set adds to the at-
tributed blocking of the link. The inverse convolution method
can easily be modified to cover the case studied by Nyberg
et al. [4], where the multicast network model was extended
to include independent background traffic on the links. This
extension includes the from a practical point of view impor-
tant case where the multicast tree is a part of a larger network
carrying also unicast traffic.

Acknowledgement

This research has been funded by the Academy of Finland.
The work of the first author has also been financially supported
by the Nokia Foundation.

References
[1] J. Karvo, J. Virtamo, S. Aalto, and O. Martikainen, “Blocking of dynamic

multicast connections in a single link,” in Proceedings of Broadband
Communications’98, April 1998, pp. 473–483.

[2] K. Boussetta and A. L. Belyot, “Multirate resource sharing for unicast
and multicast connections,” in Proceedings of Broadband Communica-
tions’99, November 1999.

[3] J. Karvo, J. Virtamo, S. Aalto, and O. Martikainen, “Blocking of dynamic
multicast connections,” to appear in Telecommunication Systems.

[4] E. Nyberg, J. Virtamo, and S. Aalto, “An exact algorithm for calcu-
lating blocking probabilities in multicast networks,” in Proceedings of
Networking 2000, Paris, May 2000, pp. 275–286.

[5] P. E. Lassila and J. T. Virtamo, “Efficient importance sampling for monte
carlo simulation of loss systems,” in Proceedings of the ITC-16. June
1999, pp. 787–796, Elsevier.

[6] M. Mandjes, “Fast simulation of blocking probabilities in loss networks,”
European Journal of Operations Research, vol. 101, pp. 393–405, 1997.

[7] K. W. Ross, Multiservice Loss Models for Broadband Telecommunication
Networks, Springer-Verlag, 1995.

[8] P. Lassila and J. Virtamo, “Nearly optimal importance sampling for monte
carlo simulation of loss systems,” to appear in: ACM Transactions on
Modeling and Computer Simulation.

[9] E. Nyberg, J. Virtamo, and S. Aalto, “An exact algorithm for calculating
blocking probabilities in multicast networks,” submitted for publication.

[10] J. S. Sadowsky, “On the optimality and stability of exponential twisting
in monte carlo estimation,” IEEE Transactions on Information Theory,
vol. 39, pp. 119–128, 1993.

439 IEEE INFOCOM 2001

	Copyright: © 2001 IEEE. Reprinted with permission from Proc. INFOCOM'01. Anchorage, Alaska, April 2001, pp. 432-439.

