
Part Two: Publications © 2001 IEEE. Reprinted, with permission, from Proceedings of
the IEEE International Conference on Multimedia and Expo 2001,

Tokyo, Japan, August 22-25, 2001, pp. 685-688.

ISBN: 0-7695-1198-8 © 2001 IEEE 104

DIGITAL TELEVISION APPLICATION MANAGER
C. Peng and P. Vuorimaa

Telecommunications Software and Multimedia Laboratory,
Helsinki University of Technology

P.O. Box 5400, FI-02015 HUT, Finland.
pcy@tml.hut.fi and petri.vuorimaa@hut.fi

ABSTRACT

The future digital television will provide viewers new interactive
services, e.g., Electronic Programming Guide, TV shopping,
video-on-demand, etc. The set-top box needs a middleware to
launch these applications before interaction and collect garbage
after quitting or switching to another service. It is the application
manager’s responsibility to manage the lifecycles of the services.
Thus, the application manager plays a crucial role in controlling
the applications and efficiently utilizing the limited resources of
set-top box. This paper presents a design of an application
manager, including a lifecycle model of an application and a
communication protocol between an application and the
application manager. Also, the Application Information Table
(AIT), which carries the essential application signaling
information in a transport stream is introduced. Finally, the
implementation, which uses Java technology, is described in
detail.

1. INTRODUCTION
Our work followed the Digital Video Broadcasting-Multimedia
Home Platform (DVB-MHP) standard. It is a common platform
for user to transparently access a range of multimedia services. It
includes software architecture and hardware devices. Its hardware
devices consist of the home terminal (e.g., set-top box, TV, and
PC), its peripherals, and the in-home digital network [1]. Its
system software includes a Real-time operating system, an
interactive engine, a virtual machine, the libraries or Application
Programming Interface, the databases, navigator, an application
manager, etc.

The DVB-MHP defines an application as a functional
implementation of an interactive service [2]. A DVB-MHP
application can be categorized either as DVB-Java or DVB-
HTML application. They all run in set-top box [3]. In this paper,
the application manager manages only DVB-Java applications.
Each application has a lifecycle (i.e., the sequence of steps by
which an application is initialized, undergoes various state
changes, and is eventually destroyed) [4]. Such DVB-Java
applications are called Xlet applications. An Xlet is either resident
in the set-top box or downloaded from object and data carousels
or network and controlled by the application manager.

An application manager is a part of system software and residents
in set-top box. The primary purpose of an application manager is
to signal the state changes of an Xlet and bridge the gap for an Xlet
to access set-top box resources. The application manager defines
an application lifecycle model and a communication protocol
between Xlet and the application manager.

The application manager is responsible for managing the
application lifecycle, including checking the code and integrity,
synchronizing the commands and information, obtaining and
disposing the system resources, managing the error signaling and
exceptions, initiating and terminating any new sessions, allowing
the sharing of variables and contents, concluding in an orderly and
clean fashion, and adapting the presentation graphic format to suit
the platform display [1].

A DVB-Java application (i.e. Xlet) is actually a set of Java classes
that operate together and need to be signaled as a single instance
to the application manager so that it can control its state changes.
Applications can be launched automatically via broadcast
signaling or via Navigator controlled by viewers from a remote
control. One critical design requirement is low start-up latency of
each Xlet [3].

All the information of downloadable applications is stored in an
AIT table, which is multiplexed and transmitted together with
other elementary streams in MPEG-2 transport stream [3] [5]. The
application manager needs this information to identify the
locations and signaling information of the applications. All the
signaling information of resident applications is stored in a system
configuration file after they are downloaded or updated.

The AIT, Java classes and data associated with the applications
are stored in either object and data carousels or delivered by IP via
DVB multi-protocol encapsulation. Object carousels convey
hierarchical file structures using MPEG-2 Digital Storage Media
Command and Control (DSM-CC) User-to-User File and
Directory objects over data carousel. Then, data carousel
cyclically transmits data modules over broadcasting network.

Figure 1. The procedure for application manager to
identify AIT.

TS
packets

PMT
(PID=22)

program number PMT PID value

0 16

3 22

stream stream-type PID app-type

1

2

3

video

audio

AIT

19

56

225

null

null

DVB-J

PAT
(PID=0)

v a AIT

Part Two: Publications

ISBN: 0-7695-1198-8 © 2001 IEEE 105

2. TRANSPORT STREAM AND AIT
2.1 Identifying AIT

The application manager is responsible for identifying AIT carried
in transport stream packets. The signaling information contained
in AIT is then used for managing an Xlet application. Figure 1
shows an example procedure for application manager to identify
AIT in a MPEG-2 transport stream.

The Program Association Table (PAT) can be found from the
transport stream packets with PID 0 [6]. Suppose that the AIT of
an application is associated with program 3. Therefore, the
Program Map Table (PMT) can be identified in the PID 22
packets. In PMT, if the field of stream-type indicates 0x05 (i.e.,
AIT), the PID 225 packets will carry the corresponding AIT. The
AIT also carries application_type information (cf. Table 1) like in
the PMT table. The two values will agree if the
AIT_version_number is the same as the field carried in AIT. This
information can be used to detect the change of the application
version.

2.2 Description of AIT

The AIT has the fields of application_type, version_number,
application_control_code, common descriptor, and application
information descriptor. Table 1 lists the main fields and
corresponding data of AIT used in the application manager.

Field Value Descriptions
Application_type DVB-J Java application
Application_control_code 0x02 Request by the

viewer
protocol_id 0x0002 Transport via IP
Transport_protocol_label http Http access
URL_byte tml.hut.fi Location of

classes
ISO_639_language_code eng English language
application_name_char Screen Info Application name
icon_locator_byte /data/ Location of icon

file
icon_flags 0000 0000

0000 0010
32x32 broadcast
pixels on 4:3
display

base_directory_byte /~pcy/ Directory name in
the server

classpath_extension_byte /hockey/ Path of classes
Initial_class_byte ScreenInfo Name of

implementing
Xlet

Table 1. The Sample AIT used in application manager.

In Table 1, Application_control_code value 0x02 means that the
application will be activated by the viewer via remote control.
Icon_locator_byte is the path relative to the base directory of the
application classes in a server or object carousel. The
ISO_639_language_code field indicates the broadcasting
language of the TV program. The protocol_id field indicates that
an application shall be downloaded via broadcasting network or
IP. The Initial_class_byte conveys the starting Java class name
used by the application manager to execute the Xlet application.

3. LIFECYCLE MODEL AND PROTOCOL

3.1 Application Lifecycle Model
A state machine diagram, which is used to model an application
(or Xlet) lifecycle, is shown in Figure 2. In the lifecycle model, an
Xlet application has four lifecycle states (i.e., loaded, paused,
running, and dead).

When the initial Java class of an application is loaded and
instantiated from data carousel or from set-top box, it enters the
loaded state. After that, the application manager signals the Xlet to
initialize itself. The Xlet enters the paused state. An Xlet in paused
state is ready to run. The running state indicates that the
application is executing. The running application can be frozen
from running to paused state. An application in paused state can
resume its execution. An Xlet can be terminated at any time and it
changes into the dead state.

Figure 2. Application lifecycle model.

3.2 Communication Protocol

Each Xlet application cannot run by itself without the application
manager. It is necessary to define a protocol between an Xlet and
the application manager. Figure 3 shows a communication
protocol between an Xlet and set-top box environment.

Figure 3. Protocol between an Xlet application and set-top
box environment.

For downloadable Xlets, the code and the associated AIT can be
loaded into set-top box memory from data carousel and initialized
by the application manager. The application manager is able to
control the state changes of Xlet and terminate an Xlet at any time
via XletContext interface passed to the Xlet. The Xlet can also
change its own state and get set-top box resources passed by the
XletContext.

The Xlet signals its state change to the application manager using
the callback mechanism. Whenever Xlet changes its state, the
application manager must be notified about the state change so
that it can track the state of the Xlet and maintain a data record (cf.

Properties

running

terminate

terminate terminate

resume/start

pause

initialize

load
application

loaded paused

dead

Properties

Signal state
changes

Application
 manager

AIT + code

Set-top box resources

Object/data carousel

Caching

Xlet XletContext

Part Two: Publications

ISBN: 0-7695-1198-8 © 2001 IEEE 106

Table 2) for the purpose of resources sharing and limiting the
number of simultaneous applications. An application manager
cannot force an Xlet to provide its service. It means that, when an
Xlet is in running state, all the functionality is provided by the Xlet
itself. An Xlet can only be activated via broadcasting and viewer’s
request (cf. Figure 3 and Section 4.1).

4. JAVA IMPLEMENTATION
The application manager is implementation-dependent. In our
system, the application manager was implemented as a runnable
thread so that it can run concurrently with all the other threads in
the system. It is always active when the television is on and
preparing to run services. The application manager has a dynamic
priority. It depends on the interaction, e.g., if no application is
running, it has the lowest priority.

The Xlet and XletContext were designed and implemented as
interfaces as specified in DVB-MHP [3] and Java TV API [4].
The interfaces defined the protocols of behavior that can be
implemented by any applications anywhere to ensure the
interoperability of applications.

It is reasonable to limit the number of applications that can be
presented simultaneously. The applications can be presented and
executed concurrently. Selecting one application may result in
stopping running another (i.e., paused) one, but the classes
resident in set-top box’s memory may still exist until they are
signaled for terminating permanently.

4.1 XletContext and Xlet Interfaces

The two interfaces define a set of abstract methods, but do not
implement them. The application manager and applications
implement the XletContext and Xlet interfaces, respectively. They
agree to certain behavior as defined in the set of methods. The
application manager and all the applications must include the class
code together with their other part of class code. The XletContext
acts as a communication bridge between the Xlet and the
application manager (cf. Figure 3). An XletContext object is
passed to the Xlet at the stage of Xlet initialization to permit Xlet
accessing set-top box resources.

The Xlet interface defines four methods that must be implemented
in each application. The methods include initXlet(), startXlet(),
pauseXlet(), and destroyXlet(). It allows the application manager
to create, initialize, start, pause, and destroy an Xlet. Each Xlet
application implements these methods to update its internal
activities and resource usage as directed by the application
manager. The XletContext interface defines four methods that
must be implemented by the application manager. It includes
getXletProperties(), resumeRequest(), notifyPaused(), and
notifyDestroyed(). This interface provides each Xlet application
with a mechanism to retrieve properties and a way to signal
internal state changes to the application manager.

4.2 Functionality of the Application Manager

The application manager consists of some functions as well as the
functions contained in the XletContext methods. One of these
functions includes caching the applications information. That is,
the application manager maintains a hash table that is used to
monitor the state changes and resume execution of Xlets running
in set-top box. Table 2 shows the table cached by the application

manager during system running. The Xlets, i.e., Ice Hockey [7],
Navigator [8], and Teletext [9], are three resident applications
which were developed in the Future TV project.

Xlet name Class
loader

Xlet
object

Initial class State

Ice Hockey loader1 xlet1 ScreenInfo running
Navigator loader2 xlet2 NaviApp paused
Teletext loader3 xlet3 TextTVApp paused

Table 2. Caching table used by the application manager.

Another function is to identify the application information from
the AIT. When the application manager receives the viewer’s
request to start the application during watching the program, it
creates the data in the above table (the first entry). This procedure
includes decoding transport stream to get application information
(e.g., location of classes, etc.) from the AIT and save them in the
system configuration file.

Another function is managing remote control key events. The
application manager and applications have their own key listeners.
When a new application starts, the current key listener must be
removed and a new one is added. Other functions include
calculating and signaling the available memory, handling errors
occurred during system execution, etc.

4.3 ClassLoader and Class

The key java technology to develop the application manager is to
use java.lang.Class and extend java.lang.ClassLoader.

If several applications are executed simultaneously, the
application manager must cope with the problem of name
collisions, which are caused by package naming scheme. Java
Virtual Machine handles these problems through its class loader
architecture known as namespace mechanism. Every class in an
application is loaded by an associated ClassLoader object. The
Java Virtual Machine treats classes loaded by different class
loaders as entirely different types [10].

When the application manager is running, the java.lang.Class can
dynamically load additional classes as extension module. Class’s
newInstance() is used to create new instance of the class. The
classes can be loaded by initial class name into the application
manager. Classes are introduced into the java environment when
they are referenced by name in a class that is already running (i.e.,
application manager).

Two class loaders were defined in our system (i.e.,
FileClassLoader and URLClassLoader), which were extended
from java.lang.ClassLoader. FileClassLoader can load classes
from local class files (e.g., Digital Teletext service and Navigator
application use this class loader). URLClassLoader can load
classes over the internet (cf. Section 4.4 Ice Hockey application).
Both class loaders override the abstract method loadClassBytes()
The difference between FileClassLoader and URLClassLoader is
the source of classes located. The loadClassBytes() method in
URLClassLoader uses java.net.URLConnection to get input
stream (class bytecodes). While FileClassLoader uses
java.io.FileInputStream to read bytecodes.

The most important aspect of designing the two class loaders is to
implement the abstract method loadClass() inherited from
ClassLoader in correct order. The first step is to check if the
primordial class loader can resolve this class name. All Java

Part Two: Publications

ISBN: 0-7695-1198-8 © 2001 IEEE 107

Virtual Machines include a primordial class loader that is
embedded in the virtual machine [10]. Then, loadClassBytes()
method try to load the class from the source (loal file or URL).
The next step is to call the defineClass() method to verify that the
class bytes are legal Java class file. The final step is to call
resolveClass() method, which causes any classes that are
referenced by this class explicitly to be loaded and a prototype
object for this class to be created.

4.4 Running System

The application manager is started up automatically after set-top
box is powered up and keeps running until the set-top box is
powered down.

Figure 4. Ice hockey application.

Figure 4 shows a screenshot of the running system. The upper left
image is an Ice Hockey application (an Xlet), which was launched
by the application manager as a viewer’s request. It used the AIT
table shown in Table 1. The application manager maintained its
data record as shown in Table 2. The DOS prompt on the right
displayed the results of classes loaded, when the application was
in loaded state.

The software test platform was Windows 98 and JDK 1.3. The
application classes were downloaded dynamically from
http://www.tml.hut.fi/~pcy/hockey/. Table 3 lists the start-up and
switching latencies of three Xlet applications. The results show
that the starting time of each application via the application
manager is fast. The latencies are caused by initializing the Xlets.

5. CONCLUSIONS
In this paper, we have presented a novel design of a basic digital
television application manager. In particular, a well-defined state
machine (i.e., application lifecycle model) and a protocol between
Xlet and the application manager were described, and the AIT for
identifying the source of the code and data and application
signaling information was introduced. To achieve these design
goals, the Java class loader and class technology of Java Virtual
Machine were used to load application classes from different
sources and solve name collisions.

In addition, Java thread, key event, and garbage collection
mechanisms were used. Our work demonstrated the possibility of
the proposed application lifecycle model and the protocol, and
flexibility of implementation. It is a valuable basis for future set-
top box manufacturers to develop their own system software.

The Xlet state machine should be designed to ensure that the
behavior of an Xlet is as close as possible to the behavior of
television viewers expect, especially the perceived startup latency
of an Xlet should be very short. We didn’t give performance
evaluation about the start-up latency of the application manager
and Xlet since it depends so much on the set-top box environment
like operating system and memory, etc. This would be very
important. Our following work will focus on overall system
testing and performance evaluation.

Xlet Start-up/Switching time (second)
IceHockey 4 (start-up)
Navigator 6 (start-up)
Digital Teletext 8 (start-up)
IceHoceky - Navigator 4 (switching)
IceHockey – Teletext 8 (switching)
Navigator - IceHockey 4 (switching)
Navigator - Teletext 7 (switching)
Teletext - IceHockey 4 (switching)
Teletext - Navigator 4 (switching)

Table 3. Start-up and switching latencies.

6. ACKNOWLEDGEMENTS
The Future TV project (http://futuretv.uta.fi) is funded by the
National Technology Agency of Finland together with major
Finnish television, telecommunications, and digital media
companies. The author C. Peng would like to thank Nokia Oyj
foundation for the support during the research work.

7. REFERENCES
[1] Evain J. - P. “The Multimedia Home Platform – an

overview”. EBU Technical Review, spring 1998.
[2] Gerard O. The Essential Guide to Digital Set-top Boxes and

Interactive TV. Prentice Hall PTR, 2000.
[3] DVB-TAM232. “Multimedia Home Platform”. European

Broadcasting Union, February 2000, pp.101-120.
[4] Bart C., Jon C., Bill F., Linda K., David R., James V., and

TaoY. “Java TV API Technical Overview”. The Java TV API
Whitepaper Version 1.0, Release Candidate D, July 11, 2000.

[5] Sarginson P.A. MPEG-2: Overview of the systems layer,
Research and Development Report, No. 1996/2.

[6] Jeffery O. “A Rational approach to testing MPEG-2”. IEEE
SPECTRUM, May 1997.

[7] Peng C. and Vuorimaa P. “Development of Java User
Interface for Digital Television”. Computer Graphics,
Visualization, and Interactive Digital Media, WSCG’2000,
Czech Republic, Feb. 7-10, 2000.

[8] Peng C. and Vuorimaa P. “A Digital Television Navigator”.
Proceedings of the Internet and Multimedia Systems and
Applications, IMSA’2000, Las Vegas, USA, Nov. 19-23,
2000, pp. 69-74.

[9] Peng C. and Vuorimaa P. “Digital Teletext Service”.
Proceedings of Computer Graphics, Visualization and
Computer Vision, WSCG'2001, Czech Republic, February 5 -
9, 2001, pp. 120-125.

[10] Lindholm T. and Yellin F. The Java Virtual Machine
Specification. Sun Microsystems, Inc., 1999.

http://futuretv.uta.fi/

